ENTRA: Whole-Systems Energy Transparency Framework 7 FET (MINECC) Project, 1.10.2012 - 30.9.2015

John Gallagher

Coordinator: Roskilde University, Denmark

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

EACO Workshop Bristol, 17 October 2012

Wasted potential

Huge advances have been made in power-efficient hardware. Various software-controllable energy-saving features available, such as DVFS.

BUT – potential energy savings are wasted by

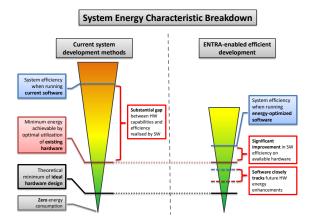
 software that does not exploit energy-saving features of hardware;

(ロ) (同) (三) (三) (三) (○) (○)

• poor dynamic management of tasks and resources.

Energy transparency the central concept of the ENTRA project.

Information on energy usage available for programs;


- without executing them;
- at all levels from machine code to high-level application code.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Partners and Competences

Roskilde	Bristol	IMDEA	XMOS Ltd.
University	University	Software	UK
Denmark	UK	Inst., Spain	
(Coordinator)	Modelling,	Analysis,	Modelling,
analysis,	toolchains,	optimisation,	HW platform,
optimisation	system design	verification	benchmarking
NUT REAL MORE IN PULL	University of BRISTOL	imdea	XMOS.

Towards the limit

Key techniques

Program analysis

- Static analysis abstract interpretation of code
- Dynamic analysis information collected from traces

Hardware-software energy modelling

- detailed low-level models of machine instructions;
- energy models of high-level programming abstractions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Assertion language

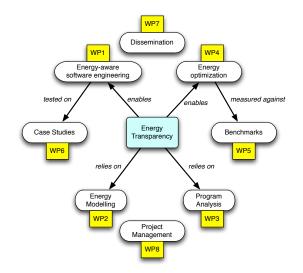
- linking models to analyses;
- providing basis for user tools

Optimisation

Program transformations

- Specialisation compiling away software engineering idioms
- Parallelisation, re-ordering
- Energy-optimised compilation
- Trade-off of energy against quality of service
 - Saving energy by delivering "good enough" or "fast enough" results, rather than optimal

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの


- Trade-off of energy against quality of service
 - Energy-aware scheduling

Metrics, Benchmarks and Case Studies

- Metrics: energy consumption on the XCore.
- Hand-optimised benchmarks: giving "idealised" performance exploiting energy-saving optimisation and hardware features.
- Case studies: XC applications covering a range of optimisation opportunities. E.g. real-time controllers, media players, event-driven communication.

(ロ) (同) (三) (三) (三) (○) (○)

Project organisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Impact

Longer term: fields impacted by energy transparency.

- Algorithms and complexity: finding the most energy-efficient "hardware fit" for algorithms.
- Tools and techniques for holistic "Real-Energy" Programming.
- High-performance computing and data centres: energy consumption a major concern.
- Sustainability of global ICT growth: at current levels, ICT will consume 18% of world's energy by 2030.

(日) (日) (日) (日) (日) (日) (日)

The FET MINECC Project Cluster

ENTRA is one of 7 projects in the MINECC FET Proactive area.

Overall aim: reducing energy consumption "to the limit". Other project topics:

- Ultra low power computing architectures for embedded sensing.
- Dynamic energy management at run time (harvesting/consumption balance).
- Theoretical understanding of energy consumption limits in physical switches, the Landauer limit and thermodynamics.

Future joint MINECC events: an EACO workshop?