
ar
X

iv
:1

30
8.

39
40

v1
 [

cs
.P

L
]

 1
9

A
ug

 2
01

3

Proceedings of WLPE 2013, arXiv:1308.2055, August 2013.

Towards an Abstract Domain for Resource

Analysis of Logic Programs using Sized Types

Alejandro Serrano1, Pedro López-Garćıa1,2, and Manuel Hermenegildo1,3 ⋆

1 IMDEA Software Institute
2 Spanish Council for Scientific Research (CSIC)

3 Universidad Politécnica de Madrid (UPM)

Abstract. We present a novel general resource analysis for logic pro-
grams based on sized types.Sized types are representations that incor-
porate structural (shape) information and allow expressing both lower
and upper bounds on the size of a set of terms and their subterms at
any position and depth. They also allow relating the sizes of terms and
subterms occurring at different argument positions in logic predicates.
Using these sized types, the resource analysis can infer both lower and
upper bounds on the resources used by all the procedures in a program as
functions on input term (and subterm) sizes, overcoming limitations of
existing analyses and enhancing their precision. Our new resource analy-
sis has been developed within the abstract interpretation framework, as
an extension of the sized types abstract domain, and has been integrated
into the Ciao preprocessor, CiaoPP. The abstract domain operations are
integrated with the setting up and solving of recurrence equations for
both, inferring size and resource usage functions. We show that the anal-
ysis is an improvement over the previous resource analysis present in
CiaoPP and compares well in power to state of the art systems.

1 Introduction

Resource usage analysis infers the aggregation of some numerical properties, like
memory usage, time spent in computation, or bytes sent over a wire, throughout
the execution of a piece of code. Such numerical properties are known as re-

sources. The expressions giving the usage of resources are usually given in terms
of the sizes of some input arguments to procedures.

Our starting point is the methodology outlined by [7,6] and [8], characterized
by the setting up of recurrence equations. In that methodology, the size analysis
is the first of several other analysis steps that include cardinality analysis (that
infers lower and upper bounds on the number of solutions computed by a predi-
cate), and which ultimately obtain the resource usage bounds. One drawback of
these proposals, as well as most of their subsequent derivatives, is that they are

⋆ The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 318337,
ENTRA - Whole-Systems Energy Transparency and the Spanish TIN2012-39391-
C04-01 STRONGSOFT project.

http://arxiv.org/abs/1308.3940v1
http://arxiv.org/abs/1308.2055

2 Alejandro Serrano, Pedro López-Garćıa, and Manuel Hermenegildo

only able to cope with size information about subterms in a very limited way.
This is an important limitation, which causes the analysis to infer trivial bounds
for a large class of programs. For example, consider a predicate which computes
the factorials of a list:

listfact ([], []).

listfact ([E|R],[F|FR]) :-

fact (E, F),

listfact (R, FR).

fact (0 ,1).

fact (N,M) :- N1 is N - 1,

fact (N1 , M1),

M is N * M1.

Intuitively, the best bound for the running time of this program for a list L is α+∑
e∈L (β + timefact(e)), where α and β are constants related to the unification

and calling costs. But with no further information, the upper bound for the
elements of L must be ∞ to be on the safe side, and then the returned overall
time bound must also be ∞.

In a previous paper [21] we focused on a proposal to improve the size analysis
based on sized types. These sized types are similar to the ones present in [22] for
functional programs, but our proposal includes some enhancements to deal with
regular types in logic programs, developing solutions to deal with the additional
features of logic programming such as non-determinism and backtracking. While
in that paper we already hinted at the fact that the application of our sized types
in resource analysis could result in considerable improvement, no description was
provided of the actual resource analysis.

This paper is complementary and fills this gap by describing a new resource
usage analysis with two novel aspects. Firstly, it can take advantage of the new

information contained in sized types. Furthermore, this resource analysis is fully
based on abstract interpretation, i.e., not just the auxiliary analyses but also the
resource analysis itself. This allows us to integrate resource analysis within the
PLAI abstract interpretation framework [16,19] in the CiaoPP system, which
brings in features such as multivariance, fixpoints, and assertion-based verifica-
tion and user interaction for free. We also perform a performance assessment of
the resulting global system.

In Section 2 we give a high-level view of the approach. In the following section
we review the abstract interpretation approach to size analysis using sized types.
Section 4 gets deeper into the resource usage analysis, our main contribution.
Experimental results are shown in Section 5. Finally we review some related
work and discuss future directions of our resource analysis work.

2 Overview of the Approach

We give now an overview of our approach to resource usage analysis, and present
the main ideas in our proposal using the classical append/3 predicate as a run-
ning example:

append ([], S, S).

append ([E|R], S, [E|T]) :- append(R, S, T).

Towards Resource Analysis of Logic Programs using Sized Types 3

The process starts by performing the regular type analysis present in the CiaoPP
system [23]. In our example, the system infers that for any call to the predicate
append(X, Y, Z) with X and Y bound to lists of numbers and Z a free variable,
if the call succeeds, then Z also gets bound to a list of numbers. The set of “list
of numbers” is represented by the regular type “listnum,” defined as follows:

listnum -> [] | .(num , listnum)

From this regular type definition, sized type schemas are derived. In our
case, the sized type schema listnum-s is derived from listnum. This schema
corresponds to a list that contains a number of elements between α and β, and
each element is between the bounds γ and δ. It is defined as:

listnum-s → listnum(α,β)(num
(γ,δ)
〈.,1〉)

From now on, in the examples we will use ln and n instead of listnum and
num for the sake of conciseness. The next phase involves relating the sized
types of the different arguments to the append/3 predicate using recurrence
(in)equations. Let sizeX denote the sized type schema corresponding to argu-
ment X in a call append(X, Y, Z) (created from the regular type inferred by a

previous analysis). We have that sizeX denotes ln(αX ,βX)(n
(γX ,δX)
〈.,1〉). Similarly,

the sized type schema for the output argument Z is ln(αZ ,βZ)(n
(γZ ,δZ)
〈.,1〉), denoted

by sizeZ. Now, we are interested in expressing bounds on the length of the
output list Z and the value of its elements as a function of size bounds for the
input lists X and Y (and their elements). For this purpose, we set up a sys-
tem of inequations. For instance, the inequations that are set up to express a
lower bound on the length of the output argument Z, denoted αZ , as a function
on the size bounds of the input arguments X and Y, and their subarguments
(αX , βX , γX , δX , αY , βY , γY , and δY) are:

αZ

(

αX , βX , γX , δX ,

αY , βY , γY , δY

)

≥

αY if αX = 0

1 + αZ

(

αX − 1, βX − 1, γX , δX ,

αY , βY , γY , δY

)

if αX > 0

Note that in the recurrence inequation set up for the second clause of append/3,
the expression αX − 1 (respectively βX − 1) represents the size relationship that
a lower (respectively upper) bound on the length of the list in the first argument
of the recursive call to append/3 is one unit less than the length of the first
argument in the clause head.

As the number of size variables grows, the set of inequations becomes too
large. Thus, we propose a compact representation. The first change in our pro-
posal is to write the parameters to size functions directly as sized types. Now,
the parameters to the αZ function are the sized type schemas corresponding to
the arguments X and Y of the append/3 predicate:

αZ

(

ln(αX ,βX)(n
(γX ,δX)

〈.,1〉
)

ln(αY ,βY)(n
(γY ,δY)

〈.,1〉)

)

≥

αY if αX = 0

1 + αZ

(

ln(αX−1,βX−1)(n
(γX ,δX)
〈.,1〉)

ln(αY ,βY)(n
(γY ,δY)

〈.,1〉
)

)

if αX > 0

4 Alejandro Serrano, Pedro López-Garćıa, and Manuel Hermenegildo

In a second step, we group together all the inequalities of a single sized
type. As we always alternate lower and upper bounds, it is always possible to
distinguish the type of each inequality. We do not write equalities, so that we
do not use the symbol =. However, we always write inequalities of both signs
(≥ and ≤) for each size function, since we compute both lower and upper size
bounds. Thus, we use a compact representation ≶ for the symbols ≥ and ≤ that
are always paired. For example, the expression:

ln(αX ,βX)(n
(γX ,δX)
〈.,1〉) ≶ ln(e1,e2)(n

(e3,e4)
〈.,1〉)

represents the conjunction of the following size constraints:

αX ≥ e1, βX ≤ e2, γX ≥ e3, δX ≤ e4

After setting up the corresponding system of inequations for the output ar-
gument Z of append/3, and solving it, we obtain the following expression:

sizeZ (sizeX , sizeY) ≶ ln
(αX+αY ,βX+βY)(n

(min(γX ,γY),max(δX ,δY))
〈.,1〉)

that represents, among others, the relation αz ≥ αX+αY (resp. βz ≤ βX+βY),
expressing that a lower (resp. upper) bound on the length of the output list Z,
denoted αz (resp. βz), is the addition of the lower (resp. upper) bounds on
the lengths of X and Y. It also represents the relation γZ ≥ min(γX , γY) (resp.
δZ ≤ max(δX , δY)), which expresses that a lower (resp. upper) bound on the
size of the elements of the list Z, denoted γz (resp. δz), is the minimum (resp.
maximum) of the lower (resp. upper) bounds on the sizes of the elements of the
input lists X and Y.

Resource analysis builds upon the sized type analysis and adds recurrence
equations for each resource we want to analyze. Apart from that, when consid-
ering logic programs, we have to take into account that they can fail or have
multiple solutions when executed, so we need an auxiliary cardinality analysis

to get correct results.
Let us focus now on cardinality analysis. Let sL and sU denote lower and

upper bounds on the number of solutions respectively that predicate append/3
can generate. Following the program structure we can infer that:

sL

(

ln(0,0)(n
(γX ,δX)

〈.,1〉
), sizeY

)

≥ 1

sL

(

ln(αX ,βX)(n
(γX ,δX)
〈.,1〉), sizeY

)

≥ sL

(

ln(αX−1,βX−1)(n
(γX ,δX)
〈.,1〉), sizeY

)

sU

(

ln(0,0)(n
(γX ,δX)

〈.,1〉), sizeY
)

≤ 1

sU

(

ln(αX ,βX)(n
(γX ,δX)
〈.,1〉), sizeY

)

≤ sU

(

ln(αX−1,βX−1)(n
(γX ,δX)
〈.,1〉), sizeY

)

The solution to these inequations is (sL, sU) = (1, 1), so we have inferred that
append/3 generates at least (and at most) one solution. Thus, it behaves like
a function. When setting up the equations, we have used our knowledge that
append/3 cannot fail when given lists as arguments. If not, the lower bound in
the number of solutions would be 0.

Towards Resource Analysis of Logic Programs using Sized Types 5

Now we move forward to analyzing the number of resolution steps performed
by a call to append/3 (we will only focus on upper bounds, ru, for brevity). For
the first clause, we know that only one resolution step is needed, so:

rU

(

ln
(0,0)(n

(γX ,δX)
〈.,1〉), ln(αY ,βY)(n

(γY ,δY)
〈.,1〉)

)

≤ 1

The second clause performs one resolution step plus all the resolution steps
performed by all possible backtrackings over the call in the body of the clause.
This number of possible backtrackings is bounded by the number of solutions of
the predicate. So the equation reads:

rU

(

ln(αX ,βX)(n
(γX ,δX)

〈.,1〉), sizeY
)

≤ 1 + sU

(

ln(αX−1,βX−1)(n
(γX ,δX)

〈.,1〉), sizeY
)

× rU

(

ln(αX−1,βX−1)(n
(γX ,δX)
〈.,1〉), sizeY

)

= 1 + rU

(

ln(αX−1,βX−1)(n
(γX ,δX)

〈.,1〉), sizeY
)

Solving these equations we infer that an upper bound on the number of resolution
steps is the (upper bound on the length) of the input list X plus one. This is
expressed as:

rU

(

ln
(αX ,βX)(n

(γX ,δX)
〈.,1〉), ln(αY ,βY)(n

(γY ,δY)
〈.,1〉)

)

≤ βX + 1

3 Sized Types Review

As shown in the append example, the (bound) variables that we relate in our
inequations come from sized types, which are ultimately derived from the regu-
lar types previously inferred for the program. Among several representations of
regular types used in the literature, we use one based on regular term grammars,
equivalent to [5] but with some adaptations. A type term is either a base type

αi (taken from a finite set), a type symbol τi (taken from an infinite set), or a
term of the form f(φ1, . . . , φn), where f is a n-ary function symbol (taken from
an infinite set) and φ1, . . . , φn are type terms. A type rule has the form τ → φ,
where τ is a type symbol and φ a type term. A regular term grammar Υ is a set
of type rules.

To devise the abstract domain we focus specifically on the generic and-or

trees procedure of [3], with the optimizations of [16]. This procedure is generic
and goal dependent: it takes as input a pair (L, λc) representing a predicate
along with an abstraction of the call patterns (in the chosen abstract domain)
and produces an abstraction λo which overapproximates the possible outputs.
This procedure is the basis of the PLAI abstract analyzer present in CiaoPP [11],
where we have integrated an implementation of the proposed size analysis.

The formal concept of sized type is an abstraction of a set of Herbrand terms
which are a subset of some regular type τ and meet some lower- and upper-
bound size constraints on the number of type rule applications. A grammar for
the new sized types follows:

6 Alejandro Serrano, Pedro López-Garćıa, and Manuel Hermenegildo

sized-type ::= αbounds α base type
| τbounds(sized-args) τ recursive type symbol
| τ(sized-args) τ non-recursive type symbol

bounds ::= nob | (n,m) n,m ∈ N,m ≥ n

sized-args ::= ǫ | sized-arg, sized-args

sized-arg ::= sized-typeposition
position ::= ǫ | 〈f, n〉 f functor, 0 ≤ n ≤ arity of f

However, in our abstract domain we need to refer to sets of sized types which
satisfy certain constraints on their bounds. For that purpose, we introduce sized
type schemas : a schema is just a sized type with variables in bound positions,
along with a set of constraints over those variables. We call such variables bound
variables. We will denote sized(τ) the sized type schema corresponding to a
regular type τ where all the bound variables are fresh.

The full abstract domain is an extension of sized type schemas to several
predicate variables. Each abstract element is a triple 〈t, d, r〉 such that:

1. t is a set of v → (sized(τ), c), where v is a variable, τ its regular type and c

is its classification. Subgoal variables can be classified as output, relevant, or
irrelevant. Variables appearing in the clause body but not in the head are
classified as clausal ;

2. d (the domain) is a set of constraints over the relevant variables;
3. r (the relations) is a set of relations among bound variables.

For example, the final abstract elements corresponding to the clauses of the
listfact example can be found below. The equations have already been nor-
malized into their simplest form for conciseness:

λ
′
1 =

〈{

L → (ln(α1,β1)(n(γ1,δ1)), rel.), FL → (ln(α2,β2)(n(γ2,δ2)), out.)
}

{α1 = 1, β1 = 1}, {ln(α2,β2)(n(γ2,δ2)) ≶ ln(1,1)(nnob)}

〉

λ
′
2 =

〈

L → (ln(α1,β1)(n(γ1,δ1)), rel.), FL → (ln(α2,β2)(n(γ2,δ2)), out.),

E → (n(γ3,δ3), cl.), R → (ln(α4,β4)(n(γ4,δ4)), cl.),

F → (n(γ5,δ5), cl.), FR → (ln(α6,β6)(n(γ6,δ6)), cl.)

{α1 > 0, β1 > 0},
{

ln(α2,β2)(n(γ2,δ2)) ≶ ln(α′+1,β′+1)(n(min(γ1!,γ
′),max(δ1!,δ

′))

ln(α′,β′

(n(γ′,δ′)) ≶ factlist
(

ln(α1−1,β1−1)(n(γ1,δ1))
)

}

〉

4 The Resources Abstract Domain

We take advantage of the added power of sized types to develop a better resource
analysis which infers upper and lower bounds on the amount of resources used
by each predicate as a function of the sized type schemas of the input arguments

Towards Resource Analysis of Logic Programs using Sized Types 7

(which encode the sizes of the terms and subterms appearing in such input
arguments). For this reason, the novel abstract domain for resource analysis that
we have developed is tightly integrated with the sized types abstract domain.

Following [17], we account for two places where the resource usage can be
abstracted:

– When entering a clause: some resources may be needed during unification
of the call (subgoal) and the clause head, the preparation of entering that
clause, and any work done when all the literals of the clause have been
processed. This cost, dependent on the head, is called head cost, β.

– Before calling a literal: some resources may be used to prepare a call to a
body literal (e.g., constructing the actual arguments). The amount of these
resources is known as literal cost and is represented by δ.

We first consider the case of estimating upper bounds on resource usages.
For simplicity, assume also that we deal with predicates having a behavior that
is close to functional or imperative programs, i.e., that are deterministic and do
not fail. Then, we can bound the resource consumption of a clause

C ≡ p(x̄) :− q1(x̄1), . . . , qn(x̄n),
denoted rU,clause using the formula:

rU,clause(C) ≤ β(p(x̄)) +
∑n

i=1 (δ(qi(x̄i)) + rU,pred(qi(x̄i)))

As in sized type analysis, the sizes of some input arguments may be explicitly
computed, or, otherwise, we express them by using a generic expression, giving
rise (in the case of recursive clauses) to a recurrence equation that we need to
solve in order to find closed form resource usage functions.

The resource usage of a predicate, rU,pred, depending on its input data sizes,
is obtained from the resource usage of the clauses defining it, by taking the
maximum of the equations that meet the constraints on the input data sizes
(i.e., have the same domain).

However, in logic programming we have two extra features to take care of:

– We may execute a literal more than once on backtracking. To bound the
number of times a literal is executed, we need to know the number of solutions
each literal (to its left) can generate. Using that information, the number
of times a literal is executed is at most the product of the upper bound on
the number of solutions, sU , of all the previous literals in the clause. We get
then the relation:

rU,clause (p(x̄) :− q1(x̄1), . . . , qn(x̄n))

≤ β(p(x̄)) +
∑n

i=1

(

∏i−1
j=1 spred(qj(x̄j))

)

(δ(qi(x̄i)) + rU,pred(qi(x̄i)))

– Also, in logic programming more than one clause may unify with a given
subgoal. In that case it is incorrect to take the maximum of the resource
usages of clauses when setting up the recurrence equations. A correct solution
is to take the sum of every set of equations with a common domain, but the
bound becomes then very rough. Finer-grained possibilities can be considered
by using different aggregation procedures per resource.

8 Alejandro Serrano, Pedro López-Garćıa, and Manuel Hermenegildo

Lower bounds analysis is similar, but needs to take into account the possi-
bility of failure, which stops clause execution and forces backtracking. Basically,
no resource usage should be added beyond the point where failure may happen.
For this reason, in our implementation of the abstract domain we use the non-
failure analysis already present in CiaoPP. Also, the aggregation of clauses with
a common domain must be different to that used in the upper bounds case. The
simplest solution is to just take the minimum of the clauses. However, this again
leads to very rough bounds. We will discuss lower bound aggregation later.

Cardinality Analysis We have already discussed why cardinality analysis
(which estimates bounds on the number of solutions) is instrumental in resource
analysis of logic programs. We can consider the number of solutions as another
resource, but, due to its importance, we treat it separately.

An upper bound on the number of solutions of a single clause could be
gathered by multiplying the number of solutions of all possible clauses:

sU,clause (p(x̄) :− q1(x̄1), . . . , qn(x̄n)) =
∏n

i=1 sU,pred(qi(x̄i))

For aggregation we need to add the equations with a common domain, to get a
recurrence equation system. These equations will be solved later to get a closed
form function giving an upper bound on the number of solutions.

It is important to remark that many improvements can be added to this
simple cardinality analysis to make it more precise. Some of them are discussed
in [6], like maintaining separate bounds for the relation defined by the predicate
and the number of solutions for a particular input, or dealing with mutually
exclusive clauses by performing the max operation, instead of the addition oper-
ation when aggregating. However, our focus here is the definition of an abstract
domain, and see whether a simple definition produces comparable results for the
resource usage analysis.

One of the improvements we decided to include is the use of the determi-
nacy analysis present in CiaoPP [14]. If such analysis infers that a predicate is
deterministic, we can safely set the upper bound for the number of solutions to
1, avoiding the setting up of recurrence equations.

In the case of lower bounds, we need to know for each clause whether it
may fail or not. For that reason we use the non-failure analysis already present
in CiaoPP [4]. In case of a possible failure, the lower bound on the number of
solutions is set to 0.

The Abstract Elements The abstract elements are derived from sized type
analysis by adding some extra components. In particular:

1. The current variable for solutions, and current variable for each resource.

2. A boolean element for telling whether we have already found a failing literal.

3. Information about non-failure analysis, coming from its abstract domain.

4. Information about determinacy analysis, coming from its abstract domain.

Towards Resource Analysis of Logic Programs using Sized Types 9

We will denote the abstract elements by

〈(sL, sU), vresources, failed?, d, r, nf, det〉

where (sL, sU) are the lower and upper bound variables for the number of so-
lutions, vresources is a set of pairs (rL, rU) giving the lower and upper bound
variables for each resource, failed? is a boolean element (either true or false),
d and r are defined as in the sized type abstract domain, and nf and det can
take the values not fails/fails and non det/is det respectively.

In this analysis we assume that we are given the definition of a set of re-
sources, which are fixed throughout the whole analysis process. We have already
mentioned three operations, but we need an extra one for having a complete
algorithm. For each resource r we have:

– Its head cost, βr, which takes a clause head as parameter;
– Its literal cost, δr, which takes a literal as parameter;
– Its aggregation procedure, Γr, which takes the equations for each of the

clauses and creates a new set of recurrence equations from them;
– The default upper ⊥r,U and lower ⊥r,L bound on resource usage.

To better understand how the domain works, we will continue with the analy-
sis of the listfact predicate that we started in the previous section. We assume
that the only resource to be analyzed is the “number of steps,” so that we use
the following values for the parameters of the resource analysis:

β = 1, δ = 0, Γr = +, (⊥L,⊥U) = (0, 0)

⊑, ⊔ and ⊥ We do not have a decidable definition for ⊑ or ⊔, because there is
no general algorithm for checking the inclusion or union of sets of integers defined
by recurrence relations. Instead, we just check whether one set of inequations is
a subset of another one, up to variable renaming, or perform a syntactic union
of the inequations. This is enough for having a correct analysis.

For ⊥ we first generate new variables for each of the resources and the solu-
tion. Then, we add relations between them and the default cost for each resource.
For an unknown predicate, the number of solutions could be any natural number,
so we take it as [0,∞). We also assume that the predicate may fail.

As mentioned before, the components for non-failure and determinacy come
from the abstract domains for those analyses.

For example, the bottom element for the “number of steps” resource will be
(where ⊥nf and ⊥det are the bottom elements in the non-failure and determinacy
domains respectively):

〈(sL, sU), {(nL, nU)}, true, ∅, {(sL, sU) ≶ (0,∞), (nL, nU) ≶ (0, 0)},⊥nf ,⊥det〉

λcall to βentry In this operation we need to create the initial structures for
handling the bounds on the number of solutions and resources. This implies the
generation of fresh variables for each of them, and setting them to their initial

10 Alejandro Serrano, Pedro López-Garćıa, and Manuel Hermenegildo

values. In the case of the number of solutions, the initial value is 1 (which is
the number of solutions generated by a fact, and also the neutral element of
the product which appears in the corresponding formula). For a resource r, the
initial value is exactly βr.

The addition of constraints over sized types when the head arguments are
partially instantiated is inherited from the sized types domain. Finally, for the
failed? component, we should start with value false, as no literal has been
executed yet, so it cannot fail.

In the listfact example, the entry substitutions are:

βentry,1 =

〈

(sL,1,1, sU,1,1), {(nL,1,1, nU,1,1)}, false, {α1 = 0, β1 = 0},
{(sL,1,1, sU,1,1) ≶ (1, 1), (nL,1,1, nU,1,1) ≶ (1, 1)}, not fails, is det

〉

βentry,2 =

〈

(sL,2,1, sU,2,1), {(nL,2,1, nU,2,1)}, false, {α1 > 0, β1 > 0},
{(sL,2,1, sU,2,1) ≶ (1, 1), (nL,2,1, nU,2,1) ≶ (1, 1)}, not fails, is det

〉

The Extend Operation In the extend operation we get both the current ab-
stract substitution and the abstract substitution coming from the literal call. We
need to update several components of the abstract element. First of all, we need
to include a call to the function giving the number of solutions and the resource
usage from the called literal.

Afterwards, we need to generate new variables for the number of solutions
and resources, which will hold the bounds for the clause up to that point. New
relations must be added to the abstract element to give a value to those new
variables:

– For the number of solutions, let sU,c be the new upper bound variable, sU,p

the previous variable defining an upper bound on the number of solutions,
and sU,λ an upper bound on the number of solutions for the subgoal. Then
we need to include an assignment: sU,c ≤ sU,p × sU,λ.
In the case of lower bound analysis, there are two phases. First of all, we check
whether the called literal can fail, looking at the output of the non-failure
analysis. If it is possible for it to fail, we update the failed? component of
the abstract element to true. If after this the failed? component is still
false (meaning that neither this literal nor any of the previous ones may
fail) we include a relation similar to the one for upper bound case: sL,c ≥
sL,p × sL,λ. Otherwise, we include the relation sL,c ≥ 0, because failing
predicates produce no solutions.

– The approach for resources is similar. Let rU,c be the new upper bound
variable, rU,p the previous variable defining an upper bound on that resource
and rU,λ an upper bound on resources from the analysis of the literal. The
relation added in this case is rU,c ≤ rU,p + sU,p × (δ + rU,λ).
For lower bounds, we have already updated the failed? component, so we
only have to work in consequence. If the component is still false, we add a
new relation similar to the one for upper bounds. If it is true, it means that

Towards Resource Analysis of Logic Programs using Sized Types 11

failure may happen at some point, so we do not have to add that resource
any more. Thus the relation to be included would be rL,c ≥ rL,p.

In our example, consider the extension of listfact after performing the analysis
of the fact literal, whose resource components of the abstract element will be:

〈

(sL, sU), {(nL, nU)}, false, {α, β ≥ 0}
{(sL, sU) ≶ (1, 1), (nL, nU) ≶ (α, β)}, not fails, is det

〉

As this literal is known not to fail, we do not change the value of the failed?
component of our abstract element for the second clause. That means that it is
still false, so we add complete calls:

βentry,2 =

〈

(sL,2,2, sU,2,2), {(nL,2,2, nU,2,2)}, false, {. . . }

. . . ,

(sL,2,2, sU,2,2) ≶ (1× sL,2,1, 1× sU,2,1),
(nL,2,2, nU,2,2) ≶ (γ1 + nL,2,1, δ1 + nU,2,1)

,

not fails, is det

〉

βexit to λ′ After performing all the extend operations, the variables appearing
in the number of solutions and resources positions will hold the correct value
for their respective numerical properties. As we did with sized types, we follow
now a normalization step, based on [6]: we replace each variable appearing in a
expression with its definition in terms of other variables, in reverse topological
order, starting from the desired variables. Following this process, we should reach
the variables in the sized types of the input parameters in the clause head.

Going back to our listfact example, the final substitutions would be:

λ
′
1 =

〈

(sL,1,1, sU,1,1), {(nL,1,1, nU,1,1)}, false, {α1 = 0, β1 = 0},
{(sL,1,1, sU,1,1) ≶ (1, 1), (nL,1,1, nU,1,1) ≶ (1, 1)}, not fails, is det

〉

λ
′
entry,2 =

〈

(sL,2,3, sU,2,3), {(nL,2,3, nU,2,3)}, false, {α1 > 0, β1 > 0},

sL,2,3 ≥ 1× listfactsol.,L(ln
(α1−1,β1−1)(n(γ1,δ1))),

sU,2,3 ≤ 1× listfactsol.,U (ln
(α1−1,β1−1)(n(γ1,δ1))),

nL,2,3 ≥ γ1 + listfactno. steps,L(ln
(α1−1,β1−1)(n(γ1,δ1))),

nU,2,3 ≤ δ1 + listfactno. steps,L(ln
(α1−1,β1−1)(n(γ1,δ1)))

,

not fails, is det

〉

Widening ∇ and Closed Forms As mentioned before, in contrast to previous
cost analyses, at this point we bring in the possibility of different aggregation
operators. Thus, when we have the equations, we need to pass them to each of
the corresponding Γr per each resource r to get the final equations.

This process can be further refined in the case of solution analysis, using the
information from the non-failure and determinacy analyses. If the final output of
the non-failure analysis is fails, we know that the only correct lower bound is
0. So we can just assign the relation sL ≥ 0 without further recurrence relation
setting. Conversely, if the final output of the determinacy analysis is is det, we

12 Alejandro Serrano, Pedro López-Garćıa, and Manuel Hermenegildo

can safely set the relation sU ≤ 1, because at most one solution will be produced
in each case. Furthermore, we can refine the lower bound on the number of
solutions with the minimum between the current bound and 1.

In the example analyzed above there was an implicit assumption while setting
up the relations: that the recursive call in the body of listfact refers to the
same predicate call, so we can set up a recurrence equation. This fact is implicitly
assumed in Hindley-Milner type systems. But in logic programming it is usual
for a predicate to be called with different patterns (such as different modes).
Fortunately, the CiaoPP framework allows multivariance (support for different
call patterns of the same predicate). For the analysis to handle it, we cannot just
add calls with the bare name of the predicate, because it will conflate all the
existing versions. The solution that we propose adds a new component to the
abstract element: a random name given to the specific instance of the predicate
we are analyzing, that is generated in the λcall to βentry. Then, in the widening
step, all different versions of the same predicate name are conflated.

Even though the analysis works with relations, these are not as useful as
functions defined without recursion or calls to other functions. First of all, de-
velopers will get a better idea of the sizes if presented in such a closed form.
Second, functions are amenable to comparison as outlined in [15], which is es-
sential for example in resource usage verification. There are several software
packages that are able to get bounds for recurrence equations: computer algebra
systems, such as Mathematica (which has been integrated to get a fully auto-
mated analysis) or Maxima; and specialized solvers such as PURRS [2] or PUBS
[1]. In our implementation we apply this overapproximation operator after each
widening step. For our example, the final abstract substitution is:

λ
′
1∇λ

′
2 =

〈

(sL, sU), {(nL, nU)}, false, {α1, β1 ≥ 0},
{(sL, sU) ≶ (1, 1), (nL, nU) ≶ (α1γ1, β1δ1)} , not fails, is det

〉

5 Experimental results

We have constructed a prototype implementation in Ciao by defining the ab-
stract operations for sized type and resource analysis that we have described in
this paper and plugging them into CiaoPP’s PLAI implementation. Our objec-
tive is to assess the gains in precision in resource consumption analysis.

Table 1 shows the results of the comparison between the new lower (LB)
and upper bound (UB) resource analyses implemented in CiaoPP, which also
use the new size analysis (columns New), and the previous resource analyses in
CiaoPP [6,8,17] (columns Previous). We also compare (for upper bounds) with
RAML’s analysis [12] (column RAML).

Although the new resource analysis and the previous one infer concrete re-
source usage bound functions (as the ones in [17]), for the sake of conciseness
and to make the comparison with RAML meaningful, Table 1 only shows the
complexity orders of such functions, e.g., if the analysis infers the resource us-
age bound function Φ, and Φ ∈ ©(Ψ), Table 1 shows Ψ . The parameters of

Towards Resource Analysis of Logic Programs using Sized Types 13

Table 1. Experimental results.

Program Resource Analysis (LB) Resource Analysis (UB)
New Previous New Previous RAML

append α α = β β = β =
appendAll2 a1a2a3 a1 + b1b2b3 ∞ + b1b2b3 =
coupled µ 0 + ν ∞ + ν =
dyade α1α2 α1α2 = β1β2 β1β2 = β1β2 =
erathos α α = β2 β2 = β2 =
fib φµ φµ = φν φν = infeasible +
hanoi 1 0 + 2ν ∞ + infeasible +
isort α2 α2 = β2 β2 = β2 =
isortlist a2

1 a2
1 = b21b2 ∞ + b21b2 =

listfact αγ α + βδ ∞ + unknown ?
listnum µ µ = ν ν = unknown ?
minsort α2 α + β2 β2 = β2 =
nub a1 a1 = b21b2 ∞ + b21b2 =
partition α α = β β = β =
zip3 min(αi) 0 + min(βi) ∞ + β3 +

such functions are (lower or upper) bounds on input data sizes. The symbols
used to name such parameters have been chosen assuming that lists of num-
bers Li have size ln(αi,βi)(n(γi,δi)), lists of lists of lists of numbers have size
llln(a1,b1)(lln(a2,b2)(ln(a3,b3)(n(a4,b4)))), and numbers have size n(µ,ν). Table 1
also includes columns with symbols summarizing whether the new CiaoPP re-
source analysis improves on the previous one and/or RAML’s: + (resp. −) in-
dicates more (resp. less) precise bounds, and = the same bounds. The new size
analysis improves on CiaoPP’s previous resource analysis in most cases. More-
over, RAML can only infer polynomial costs, while our approach is able to infer
other types of cost functions, as is shown for the divide-and-conquer bench-
marks hanoi and fib, which represent a large and common class of programs.
For predicates with polynomial cost, we get equal or better results than RAML.

6 Related work

Several other analyses for resources have been proposed in the literature. Some
of them just focus on one particular resource (usually execution time or heap
consumption), but it seems clear that those analyses could be generalized.

We already mentioned RAML [12] in Section 5. Their approach differs from
ours in the theoretical framework being used: RAML uses a type and effect
system, whereas our system uses abstract interpretation. Another important
difference is the use of polynomials in RAML, which allows a complete method of
resolution but limits the type of closed forms that can be analyzed. In contrast,
we use recurrence equations, which have no complete decision procedure, but
encompass a much larger class of functions. Type systems are also used to guide
inference in [10] and [13].

14 Alejandro Serrano, Pedro López-Garćıa, and Manuel Hermenegildo

In [18], the authors use sparsity information to infer asymptotic complexities.
In contrast, we only get closed forms. Similarly to CiaoPP’s previous analysis, the
approach of [1] applies the recurrence equation method directly (i.e., not within
an abstract interpretation framework). [20] shows a complexity analysis based on
abstract interpretation over a step-counting version of functional programs. [9]
uses symbolic evaluation graphs to derive termination and complexity properties
of logic programs.

7 Conclusions and Future Work

In this paper we have presented a new formulation of resource analysis as a
domain within abstract interpretation and which uses as input information the
sized types that we developed in [21]. We have seen how this approach offers
benefits both in the quality of the bounds inferred by the analysis, and in the ease
of implementation and integration within a framework such as PLAI/CiaoPP.

In the future, we would like to study the generalization of this framework
to different behaviors regarding aggregation. For example, when running tasks
in parallel, the total time is basically the maximum of both tasks, but memory
usage is bounded by the sum of them. Another future direction is the use of
more ancillary analyses to obtain more precise results. Also, since we use sized
types as a basis, any new research that improves such analysis will directly
benefit the resource analysis. Finally, another planned enhancement is the use of
mutual exclusion analysis (already present in CiaoPP) to aggregate recurrence
equations in a better way.

References

1. E. Albert, S. Genaim, and A. N. Masud. More Precise yet Widely Applicable
Cost Analysis. In R. Jhala and D. Schmidt, editors, 12th Verification, Model
Checking, and Abstract Interpretation (VMCAI’11), volume 6538 of Lecture Notes
in Computer Science, pages 38–53. Springer Verlag, January 2011.

2. R. Bagnara, A. Pescetti, A. Zaccagnini, and E. Zaffanella. PURRS: Towards
Computer Algebra Support for Fully Automatic Worst-Case Complexity Analysis.
Technical report, 2005. arXiv:cs/0512056 available from http://arxiv.org/.

3. Maurice Bruynooghe. A practical framework for the abstract interpretation of logic
programs. J. Log. Program., 10(2):91–124, 1991.

4. F. Bueno, P. López-Garćıa, and M. Hermenegildo. Multivariant Non-Failure Anal-
ysis via Standard Abstract Interpretation. In 7th International Symposium on
Functional and Logic Programming (FLOPS 2004), number 2998 in LNCS, pages
100–116, Heidelberg, Germany, April 2004. Springer-Verlag.

5. P.W. Dart and J. Zobel. A Regular Type Language for Logic Programs. In Types
in Logic Programming, pages 157–187. MIT Press, 1992.

6. S. K. Debray and N. W. Lin. Cost Analysis of Logic Programs. ACM Transactions
on Programming Languages and Systems, 15(5):826–875, November 1993.

7. S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic
Programs. In Proc. of the 1990 ACM Conf. on Programming Language Design and
Implementation, pages 174–188. ACM Press, June 1990.

http://arxiv.org/abs/cs/0512056
http://arxiv.org/

Towards Resource Analysis of Logic Programs using Sized Types 15

8. S. K. Debray, P. López-Garćıa, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In 1997 International Logic Programming
Symposium, pages 291–305. MIT Press, Cambridge, MA, October 1997.

9. Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes, and Carsten
Fuhs. Symbolic evaluation graphs and term rewriting: a general methodology for
analyzing logic programs. In PPDP, pages 1–12. ACM, 2012.

10. Bernd Grobauer. Cost recurrences for DML programs. In International Conference
on Functional Programming, pages 253–264, 2001.

11. M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J.F. Morales,
and G. Puebla. An Overview of Ciao and its Design Philosophy. The-
ory and Practice of Logic Programming, 12(1–2):219–252, January 2012.
http://arxiv.org/abs/1102.5497.

12. Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate amortized re-
source analysis. ACM Trans. Program. Lang. Syst., 34(3):14, 2012.

13. Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. In Symposium on
Principles of Programming Languages, pages 331–342, 2002.

14. P. López-Garćıa, F. Bueno, and M. Hermenegildo. Automatic Inference of Determi-
nacy and Mutual Exclusion for Logic Programs Using Mode and Type Information.
New Generation Computing, 28(2):117–206, 2010.

15. P. López-Garćıa, L. Darmawan, and F. Bueno. A Framework for Verification and
Debugging of Resource Usage Properties. In M. Hermenegildo and T. Schaub,
editors, Technical Communications of the 26th Int’l. Conference on Logic Pro-
gramming (ICLP’10), volume 7 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 104–113, Dagstuhl, Germany, July 2010. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

16. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315–347, July 1992.

17. J. Navas, E. Mera, P. López-Garćıa, and M. Hermenegildo. User-Definable Re-
source Bounds Analysis for Logic Programs. In 23rd International Conference on
Logic Programming (ICLP’07), volume 4670 of Lecture Notes in Computer Science.
Springer, 2007.

18. Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl. Automatic complexity
analysis. In European Symposium on Programming, pages 243–261, 2002.

19. G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Anal-
ysis of Logic Programs. In International Static Analysis Symposium (SAS 1996),
number 1145 in LNCS, pages 270–284. Springer-Verlag, September 1996.

20. M. Rosendahl. Automatic Complexity Analysis. In 4th ACM Conference on
Functional Programming Languages and Computer Architecture (FPCA’89). ACM
Press, 1989.

21. A. Serrano, P. Lopez-Garcia, F. Bueno, and M. Hermenegildo. Sized Type Analysis
for Logic Programs (technical communication). Theory and Practice of Logic Pro-
gramming, 29th Int’l. Conference on Logic Programming (ICLP’13) Special Issue,
On-line Supplement, August 2013. To Appear.

22. Pedro B. Vasconcelos and Kevin Hammond. Inferring cost equations for recur-
sive, polymorphic and higher-order functional programs. In Philip W. Trinder,
Greg Michaelson, and Ricardo Pena, editors, IFL, volume 3145 of Lecture Notes
in Computer Science, pages 86–101. Springer, 2003.

23. C. Vaucheret and F. Bueno. More Precise yet Efficient Type Inference for Logic
Programs. In International Static Analysis Symposium, volume 2477 of Lecture
Notes in Computer Science, pages 102–116. Springer-Verlag, September 2002.

http://arxiv.org/abs/1102.5497

	Towards an Abstract Domain for Resource Analysis of Logic Programs using Sized Types

