
TPLP 13 (4-5): Online Supplement, July 2013. c© 2013 [A. SERRANO ET AL.] 1

Sized Type Analysis for Logic Programs

A. SERRANO1 P. LOPEZ-GARCIA1,2 F. BUENO3 M. V. HERMENEGILDO1,3
ã

1IMDEA Software Institute

(e-mail: alejandro.serrano@imdea.org, pedro.lopez@imdea.org, manuel.hermenegildo@imdea.org)
2Spanish Council for Scientific Research (CSIC)

3Universidad Politécnica de Madrid (UPM)

(e-mail: bueno@fi.upm.es, herme@fi.upm.es)

submitted 10 April 2013; accepted 23 May 2013

Abstract

We present a novel analysis for relating the sizes of terms and subterms occurring at different
argument positions in logic predicates. We extend and enrich the concept of sized type as a
representation that incorporates structural (shape) information and allows expressing both lower
and upper bounds on the size of a set of terms and their subterms at any position and depth.
For example, expressing bounds on the length of lists of numbers, together with bounds on the
values of all of their elements. The analysis is developed using abstract interpretation and the novel
abstract operations are based on setting up and solving recurrence relations between sized types.
It has been integrated, together with novel resource usage and cardinality analyses, in the abstract
interpretation framework in the Ciao preprocessor, CiaoPP, in order to assess both the accuracy
of the new size analysis and its usefulness in the resource usage estimation application. We show
that the proposed sized types are a substantial improvement over the previous size analyses present
in CiaoPP, and also benefit the resource analysis considerably, allowing the inference of equal or
better bounds than comparable state of the art systems.

1 Introduction

Size analysis is the process of assigning numerical metrics to terms appearing in a program

and estimating bounds for these metrics. Such analysis is useful on its own as a source

of information for the developer, and it is also often instrumental to other analyses.

For example, the consumption of resources, such as memory or time, by a program is

usually expressed in terms of the sizes of its arguments. In this paper we focus on the size

analysis of Prolog terms. Our starting point is the methodology outlined by (Debray et al.

1990; Debray and Lin 1993) and (Debray et al. 1997), characterized by the setting up of

recurrence equations. There, the size analysis is the first of several other analysis steps

ultimately arriving at cost bounds. An important limitation of that analysis is that it is

only able to cope with size information about subterms in a very limited way. However,

dealing fully with subterms is in fact a key issue in the cost analysis of realistic programs.

For example, consider a predicate which computes the factorials of a list:

ã This research was supported in part by projects EU FP7 318337 ENTRA, Spanish MINECO TIN2012-39391
StrongSoft and TIN2008-05624 DOVES, and Madrid TIC/1465 PROMETIDOS-CM.

2 A. Serrano et al.

listfact ([], []).

listfact ([E|R], [F|FR]) :-

fact(E, F),

listfact(R, FR).

fact(0, 1).

fact(N, M) :- N1 is N - 1,

fact(N1 , M1),

M is N * M1.

Intuitively, the best bound for the running time over a list L is α+
∑

e∈L

(

β + timefact(e)
)

where α and β are constants related to the unification and calling costs. However, with

no further information, the upper bound for the elements of L must be ∞ to be on the

safe side, and then the returned overall time bound must also be ∞.

Several authors have worked to overcome this limitation. In (Hoffmann et al. 2012) a

system is proposed which is able to analyze listfact. This is done within the framework

of amortized analysis with the potential method, enriched with fixed polynomials relating

the cost with sizes of contained elements. However, polynomials are not enough for

expressing some kinds of bounds, especially exponential ones.

In (Vasconcelos and Hammond 2003) the authors introduce the idea of sized types to

directly represent information about the upper bounds on sizes within a Hindley-Milner

type system, for functional programs. Our proposal of sized types is related to this idea,

but differs from it in several significant ways:

• We incorporate structural (shape) information expressing both lower and upper

bounds on the sizes of a set of terms and their subterms, at any depth.

• We focus on logic programming, which includes features such as non-determinism

and creation of terms without previously having to define the constructors involved.

• Instead of a Hindley-Milner type system, we use regular types (Dart and Zobel

1992) as the base for sized types. Regular types are structural instead of nominal,

and there is a notion of subtyping based on inclusion, important differences that

the analysis must handle. Furthermore, the sized types are automatically derived.

• We develop the analysis as an abstract interpretation instead of a type and effect

system. To our knowledge, this is the first time a recurrence-based analysis is

developed entirely as an abstract domain. Using abstract interpretation enables us

to integrate the analysis in a standard engine (in our case PLAI within the CiaoPP

analysis framework), which brings in features such as multivariance, accelerated

fixpoint computation, and assertion-based verification and user interaction for free.

• (Vasconcelos and Hammond 2003) allows assigning costs to higher-order functions

based on the cost of other functions. Our system does not yet allow this, but we

believe the extension is not complex.

2 Overview of the Approach

We show the different ideas in our proposal using the classical append predicate:

append ([], S, S).

append ([E|R], S, [E|T]) :- append(R, S, T).

In a first phase we infer types for the predicate arguments by using an existing analysis

for regular types (Vaucheret and Bueno 2002). This analysis infers for instance that if we

call append(X, Y, Z) with X and Y bound to lists of numbers and Z a free variable, then

Z gets bound to a list of numbers upon success.

Sized Type Analysis for Logic Programs 3

Even more importantly, the definition of the inferred regular type is the following:

listnum -> [] | .(num , listnum)

From this inferred definition, or any other expressed as a regular type, we derive the

schema of the corresponding sized type. Such sized types represent the size of a particular

term, i.e., in our case, the sized type listnum-s:

listnum-s → listnum(α,β)(num(γ,δ)
〈.,1〉)

represents that the list has between α and β elements which are numbers between γ

and δ. The 〈., 1〉 below num expresses that this inner size description applies to subterms

occurring at the first parameter of the ./2 functor.
The next phase involves relating the sized types of the different arguments to the

predicate using recurrences. Let1 sizeX = ln(αX ,βX)(n(γX ,δX)
〈.,1〉) be the sized type of a list X of

numbers. Assume a call append(X, Y, Z). The inequations for the lower bound on the
length of the output argument Z , denoted αZ , as a function on input data sizes are:

αZ

(

αX , βX , γX , δX ,

αY , βY , γY , δY

)

>

αY if αX = 0 (first clause)

1 + αZ

(

αX − 1, βX − 1, γX , δX ,

αY , βY , γY , δY

)

if αX > 0 (second clause)

The whole set of inequations defining all bounds on a sized type is too large. Thus, we

aim for a more compact representation. Our proposal is to write parameters directly as

sized types and group all inequalities (both upper and lower bounds) on a single type in

a expression. We decided to use the symbol 7 to mean that both types of inequalities are

represented. For example:

ln(a1 ,b1)(n(c1 ,d1)) 7 ln(a2 ,b2)(n(c2 ,d2)) ⇐⇒ a1 > a2, b1 6 b2, c1 > c2, d1 6 d2

Using this syntax, the tightest bounds on the entire recurrence relation are:

sizeZ

(

ln(αX ,βX)(n(γX ,δX)
〈.,1〉), ln(αY ,βY)(n(γY ,δY)

〈.,1〉)
)

7 ln(αX+αY ,βX+βY)(n(min(γX ,γY),max(δX ,δY))
〈.,1〉)

3 Sized Types

As shown in the append example, the variables we relate in our inequations come from

sized types. Sized types are representations for summarizing the size of a set of terms,

close to those found in (Hughes et al. 1996) for functional languages. In our approach,

sized types schemas are automatically built from automatically inferred regular types

by analyses present in the CiaoPP system (Vaucheret and Bueno 2002). Among several

representations of regular types used in the literature, we use one based on regular term

grammars, equivalent to (Dart and Zobel 1992) but with some adaptations. A type term

is either a base type αi (taken from a finite set), a type symbol τi (taken from an infinite

set), or a term of the form f(φ1, . . . , φn), where f is a n-ary function symbol (taken

from an infinite set) and φ1, . . . , φn are type terms. A type rule has the form τ → φ,

where τ is a type symbol and φ a type term. A regular term grammar Υ is a set of type

rules.

1 In the examples we will use ln and n instead of listnum and num for the sake of conciseness.

4 A. Serrano et al.

γ
(

num(α,β)
)

= {n ∈ Z : α 6 n 6 β}
γ
(

τ(α,β)(x̄)
)

=
⋃

α6s6β

γexact (τ
s(x̄)) , if τ is recursive

γ (τ(x̄)) = γexact
(

τ1(x̄)
)

, if τ is not recursive
γ
(

τnob(x̄)
)

= ∅

γexact
(

τ0(x̄)
)

= ∅
γexact (τ

s(x̄)) =
⋃

τ→φ∈Φ

γrule(φ, x̄, τ
s), s > 0

γrule (σ, d, τ
s) = γ(d), if σ is a type symbol

γrule (f(σ1, . . . , σn), x̄, τ
s) = {f(y1, . . . , yn) :

∑

ai = s− 1} , f functor

where yi =

{

γ(d), σi 6= τ and d〈f,i〉 ∈ x̄

γexact (τ
ai (x̄)) , σi = τ

Fig. 1. Concretization function γ for sized types.

In this paper, we introduce the concept of sized type as an abstraction of a set of

Herbrand terms that: 1) are a subset of a set abstracted by some regular type τ, and 2)

meet some lower- and upper-bound size constraints on the number of type rule applications

(or other metrics for base types). A grammar for the these sized types follows:

sized-type ::= αbounds α base type

| τbounds(sized-args) τ recursive type symbol

| τ(sized-args) τ non recursive type symbol

bounds ::= nob | (n, m) n, m ∈ N, m > n

sized-args ::= ǫ | sized-arg, sized-args

sized-arg ::= sized-typeposition
position ::= ǫ | 〈f, n〉 f functor, 0 6 n 6 arity of f

We say that n and m appearing in the bounds element of this grammar are in bound

positions. The concretization function γ given in Figure 1 takes a sized type and returns

the set of terms defined by it. Note that for each type appearing in the right hand side

of a type rule, we include its sized type along with the position (functor and place) where

it appears. In the case of top level types we use ǫ. We use nob as a value for bounds to

prevent the application of a specific type rule.

Other approaches, e.g., the one proposed for CASLOG (Debray et al. 1990; Debray and

Lin 1993) and previous CiaoPP analyses (López-Garcı́a et al. 1996; Navas et al. 2007),

use a predefined set of size metrics, such as the actual value of a number, the length of a

list, or term depth. In addition, the developer can create new metrics. We only use type

rule applications to bound compound terms. This is not a limitation, since most useful

metrics can be expressed or bounded as sized types. For example, the size of a list of

between a and b elements is list(a+1,b+1) (we have to include the extra []) and the depth

of a term is bounded by the sum of all numbers appearing in the bound positions.

Sized Type Analysis for Logic Programs 5

sized(num) = num(α,β), α and β fresh
sized(τ) = τ(α,β) (sized-args(τ)) , τ recursive, α and β fresh
sized(τ) = τ (sized-args(τ)) , τ not recursive

sized-args(τ) =
⋃

τ→φ∈Φ

sized-rule(φ, τ)

sized-rule(σ, τ) = ∅, σ ⊑ τ

sized-rule(σ, τ) = {dǫ : d = sized(σ)}, σ 6⊑ τ

sized-rule(f(σ1, . . . , σn), τ) =
⋃

{d〈f,i〉 : d ∈ sized(σi), σi 6⊑ τ}

Fig. 2. Sized type schema sized(τ) for a regular type τ.

Sized Type Schemas In our abstract domain, we need to refer to sets of sized types which

satisfy certain conditions on their bounds. For that purpose, we introduce sized type

schemas: a schema is just a sized type with variables in bound positions, along with a

set of constraints over those variables. We call such variables bound variables. Given a

schema si, the set of bound variables appearing in it is denoted vars(si).
For each regular type, we can compute a sized type schema representing the same set

of terms: basically a schema without any constraints on the variables. The algorithm in
Figure 2 generates the mentioned schema for a type τ. Basically, it traverses the set of
rules while keeping track of the last type seen in order to detect where recursion appears
in type rules. If we apply it to the type:

nonemptylistnum -> .(num , listnum)

listnum -> [] | .(num , listnum)

we get as sized type schema: nonemptylistnum
(

num
(α,β)
〈.,1〉 , listnum

(γ,δ)
〈.,2〉 (num(µ,ν)

〈.,1〉)
)

4 The Abstract Domain

To devise the abstract domain we focus specifically on the geneic and-or trees procedure

of (Bruynooghe 1991), with the optimizations of (Muthukumar and Hermenegildo 1992).

This procedure is generic and goal dependent: it takes as input a pair (L, λc) representing

a predicate along with an abstraction of the call patterns in the chosen abstract domain

and produces and abstraction λo which overapproximates the possible outputs, as well as

all different call/success pattern pairs for all called predicates in all paths in the program

and the corresponding abstract information at all other program points. This procedure

is the basis of the PLAI abstract analyzer found in CiaoPP (Hermenegildo et al. 2012),

where we have integrated a working implementation of the proposed analysis.

The full abstract domain is an extension of the sized type schemas to several sized types

corresponding to different predicate variables. Each abstract element is a triple 〈t, d, r〉:

1. t is a set of v → (sized(τ), c), where v is a variable, τ its regular type and c is its

classification. Subgoal variables can be classified as output, relevant, or irrelevant.

Variables appearing in the clause body but not in the head are classified as clausal ;

2. d (the domain) is a set of constraints over the bound variables of relevant variables;

3. r (the relations) is a set of relations among bound variables.

6 A. Serrano et al.

The analysis will try to infer a functional relation for the size of output variables in

terms of the sizes of relevant variables output variable 7 f(relevant variables).
The concretization γ̃ of the abstract elements comes from that of sized types: we just

need to select the subset of the terms for which domain constraints and relations hold.

γ̃(〈{vi → (si, ci)}, d, r〉) =

⋃

{vi → ti}

∣

∣

∣

∣

∣

∣

ti ∈ γ(si(m̄i)), v̄i = vars(ti),
v̄ = (v̄1, . . . , v̄n), m̄ = (m̄1, . . . , m̄n),
v̄ = m̄ |= d(v̄) ∧ r(v̄)

As mentioned before, the analysis comprises two stages. The first stage involves run-

ning a regular (and moded) type analysis over the program, done in our implementation

using (Vaucheret and Bueno 2002). In a second stage we feed this information to the pro-

posed size analysis, which takes such types as fixed, and computes an overapproximation

of the least fixpoint for the set of domains and relations. We will now look at each of the

operations that define this second stage as an abstract domain in CiaoPP’s setting. At the

same time we will analyze our initial “list of factorials” example.

4.1 ⊑, ⊔ and ⊥

As mentioned before, these three operations are needed to define the abstract domain

correctly as a join-semilattice and for the computation of fixpoints in the analysis (Cousot

and Cousot 1992). One important remark here is that we do not have a complete definition

for ⊑, because there is no general algorithm for checking the inclusion of sets of integers

defined by recurrence relations. Instead, we simply check whether one set of inequations

is a subset of another one, up to variable renaming (we will denote this syntactic inclusion

as ⊆s). This check is enough to achieve correctness. Recall that in the size analysis we see

the types as being fixed by a previous type analysis. We define ⊑ as follows:

〈t, d, r〉 ⊑ 〈t, d′, r′〉 ⇐⇒ t = t′ ∧ d ⊆s d′ ∧ r ⊆s r′

⊔ and ⊥ are defined according to this definition of ⊑. For ⊥ we need to know the types

of the variables being referred to as extra parameters. Union is done syntactically again,

taking care of renaming variables in inequations to refer to the same terms.

〈t, d, r〉 ⊔ 〈t, d′, r′〉 = 〈t, d ∪s d′, r ∪s r′〉 ⊥t = 〈t, ∅, ∅〉

4.2 λcall to βentry

This operation abstracts the unification of the subgoal variables (λcall) onto head variables

for each clause Ci (βentry i) defining a predicate. This is done in four steps. The first one

is classification of variables, using mode information (also provided by type analysis): if

a variable is unbound at the predicate call and bound to some non-variable term upon

success, the variable is clasified as output. Otherwise, it is classified as relevant.2

The next step is generating the sized type schemas of subgoal variables by applying the

function sized in Figure 2 on their corresponding regular types. Then, we set up constraints

for the domain of the relevant variables in these sized types. For this purpose, we check

2 As future work, we plan to extend this classifier for the discovery of irrelevant variables which play no role
in the size of outputs.

Sized Type Analysis for Logic Programs 7

unify-sizes takes as input a list of unification equations of the form X = Y , where X is a subgoal
variable and Y a term in the head, and produces a list of assignments. For each variable X, we

denote τX and sX its regular and sized type, respectively.

unify-sizes(R) =
⋃

X=Y ∈R

(

⋃

(V ,p)∈paths(Y ,[])
{sV 7 unify-path(p, τX , sX)}

)

paths(Y , L) = {(Y , L)}, Y variable
paths(f(Y1, . . . , Yn), L) =

⋃

paths(Yi, L++ [〈f, i〉]), f functor

unify-path([], τ, s) = s

unify-path
(

[〈f, i〉|r], τ, τ(α,β)(x̄)
)

= unify-path(r, σi, s
′)

where τ → f(σ1, . . . , σn) ∈ Φ

s′ =

{

τ(α−1,β−1)(x̄), σi = τ

d, σi 6= τ, d〈f,i〉 ∈ x̄

unify-path
(

[〈f, i〉|r], τ, τ(x̄)
)

= unify-path(r, σi, s
′), s′

〈f,i〉 ∈ x̄

Fig. 3. Size unification of subgoal and head variables.

if in the clause head the variable is bound to a ground term, in which case we constrain

size variables to be bound to concrete numbers, according to the term. Otherwise, we just

impose the constraint that size variables must be positive.

Finally, we need to perform the unification between sizes of subgoal input variables

and sizes of head variables. This is performed using the algorithm in Figure 3. In the

following steps, when a new variable is not found in the first component of the abstract

substitution, a new sized type for it is generated, and it is added as clausal.

In our listfact(L, FL) example, from previous regular type analysis we know that

at call time L is bound to a list of numbers and FL is a free variable, and on success FL is

also bound to a list of numbers. Thus, we classify FL as output and L as relevant. Then,

we generate the sized types for them. So far the procedure is the same for both clauses.

From now on, we will focus on the second clause. In βentry 2 we have unifications between

relevant subgoal variables and head variables: L = [E|R]. Following the algorithm for

unify-sizes([L = [E|R]]), given in Figure 3, we need to call paths([E|R], []). We get as

output [E = [〈., 1〉], R = [〈., 2〉]]. In both calls to unify-path we will go to the rule

listnum → .(num, listnum). Since the type of the variable E is not listnum, we just take the

sized type referred to by the position 〈., 1〉, in this case n(γ1 ,δ1). For R, s′ is similar to the

initial sized type for L, but with one rule application less.

βentry 2 =

〈

{

L → (ln(α1 ,β1)(n(γ1 ,δ1)), relevant), FL → (ln(α2 ,β2)(n(γ2 ,δ2)), output),
E → (n(γ3 ,δ3), clausal), R → (ln(α4 ,β4)(n(γ4 ,δ4)), clausal)

}

,

{α1 > 0, β1 > 0},

{

n(γ3 ,δ3) 7 n(γ1 ,δ1)

ln(α4 ,β4)(n(γ4 ,δ4)) 7 ln(α1−1,β1−1)(n(γ1 ,δ1))

}

〉

8 A. Serrano et al.

unify-back(R) =
⋃

X=Y ∈R

{sX 7 unify-back′(Y , τY)}

unify-back′(t, τ) = ground-size(t, τ), t ground
unify-back′(X, τ) = sX , X variable

unify-back′(f(t1, . . . , tn), τ) = none-but(τ, f(d1, . . . , dn))
where di = unify-back′(ti, σi) and

τ → f(σ1, . . . , σn) ∈ Φ

Fig. 4. Backwards size unification of subgoal and head variables.

4.3 The Extend Operation

This operation is responsible for extending the current abstract element with the inform-

ation of a call to a literal. The operation is very simple: include the sized types of any

variable which was not yet in the first component of the abstract element and add a call

to the equation for the clause referencing the literal.

In our example, we will need to extend βentry,2 (which will be the first λ in the second

clause) with a call to fact. To do so, we add the sized type schema for F (we already have

information for E) and the call, so the abstract substitution is now:3

λ2,2 =
〈 {

. . . , F → (n(γ5 ,δ5), clausal)
}

, {. . . },
{

. . . , n(γ5 ,δ5) 7 fact(n(γ3 ,δ3))
} 〉

4.4 βexit to λ′

This operation abstracts the unification of the execution of an entire clause back with the

subgoal variables. Thus the algorithm needs to do the opposite of λcall to βentry: deriving

the size of a variable from the sizes of its constituent elements. To do so we use the

unify-back algorithm outlined in Figure 4.4 After this point we have a complete set of

relations defining the output parameters.

For the second clause of listfact we have to call unify-back′([F |FR], listnum). We

need to recursively call unify-back′ with the components F and FR. The final substitution

for the second clause will be:

λ′
2 =

〈

{

. . . , FR → (ln(α6 ,β6)(n(γ6 ,δ6)), clausal)
}

, {. . . },

. . .

ln(α6 ,β6)(n(γ6 ,δ6)) 7 listfact
(

ln(α4 ,β4)(n(γ4 ,δ4))
)

ln(α2 ,β2)(n(γ2 ,δ2)) 7 ln(α6+1,β6+1)(n(min(γ5 ,γ6),max(δ5 ,δ6))

〉

3 Only additions to the elements will be shown. Three dots (. . .) will replace previous information.
4 The function none-but returns a sized type restricted to a particular type rule.

Sized Type Analysis for Logic Programs 9

4.5 Closed Forms

Even though the analysis works with relations, these are not as useful as functions defined

without recursion or calls to other functions. First of all, developers will get a better idea

of the sizes if presented in this closed form. Second, functions are amenable to comparison

as outlined in (López-Garcı́a et al. 2010), essential for example in verification.

The ↑ operator will try to replace relations with a closed form bound. We can see this

operator as overapproximating an abstract element, x ⊑ ↑ x. In our experiments we have

integrated Mathematica as recurrence solver, and ↑ is applied at every ⊔ step.

In our example we obtain the following abstract substitution for the first clause:

λ′
1 =

〈 {

L → (ln(α1 ,β1)(n(γ1 ,δ1)), relevant), FL → (ln(α2 ,β2)(n(γ2 ,δ2)), output)
}

,

{α1 = 1, β1 = 1}, {ln(α2 ,β2)(n(γ2 ,δ2)) 7 ln(1,1)(nnob)}

〉

Then, we can bound the joint inequations to get a closed solution:

↑ (λ′
1 ⊔ λ′

2) =
〈

{. . . } , {α1, β1 > 0}, {ln(α2 ,β2)(n(γ2 ,δ2)) 7 ln(α1 ,β1)(n(γ1!,δ1!))}
〉

5 Refinements in the Analysis

Multivariance and Widenings In the example analysed above there is an implicit assump-

tion while setting the relations: the recursive call in the body of listfact refers to the

same predicate call, so we set up a recurrence equation. This fact is implicitly assumed in

Hindley-Milner type systems. But in logic programming it is usual for a predicate to be

called with different patterns (such as different modes or even types).

The CiaoPP framework allows multivariance (support for different call patterns of the

same predicate) in the analysis. But to do so we cannot just add calls with the bare name

of the predicate, because it will conflate all the existing versions. The proposed solution

adds a new component to the abstract element: a random name given to the specific

instance of the predicate we are analyzing, that is generated in the λcall to βentry . In the

computation of the fixpoint, the ⊔ operator is changed to a widening ∇ which conflates

all different versions of the same predicate. In this way we obtain the recurrences.

Structural Subtyping Another problem that may arise is that a predicate returns a subtype
of the type we were looking for. For example, in:

n_to_zero (0, [0]).

n_to_zero(N, [N|R]) :- N1 is N - 1, n_to_zero(N1 , R).

the regular type inferred is nonemptylistnum for the second argument. In this case, in the

backwards unification we have variables of type num and nonemptylistnum but the rule

for the ./2 functor reads .(num, listnum). However, since nonemptylistnum ⊑ listnum

we can view the size description as an instance of a description of its supertype.

To do so, we have developed an extended version of the Dart-Zobel algorithm for type

inclusion (Dart and Zobel 1992) which can be found in Appendix B.

10 A. Serrano et al.

6 Cardinality and Resource Analysis

In order to assess the usefulness of the new size analysis in the resource usage estimation

application (which is our main goal), we have also developed an integrated into the

CiaoPP abstract interpretation framework a resource usage analysis and a cardinality

analysis. The latter infers lower and upper bounds on the numbers of solutions produced

by a predicate. We provide below a sketch of these analyses (the full details are beyond

the scope of this paper).

Cardinality has a multiplicative behavior: if we know the number of solutions of

every literal in a clause, we can bound the number of solutions contributed by it using

Sclause (p(x̄) :− q1(x̄1), . . . , qn(x̄n)) 6
∏n

i=1 Spred(qi(x̄i)). Here we are implicitly using the

previously discussed size analysis. The number of solutions of the whole predicate Spred
can be calculated by gathering all the equations and solving the resulting system.

Regarding resources, following (Navas et al. 2007) each resource is defined by its head
cost β, which quantifies the amount of resource used in the unification between a subgoal
and a clause head, and its literal cost δ, which quantifies the amount of resource needed
for preparing a call to a predicate. Apart from that, the user can attach directly some
resource usage functions to particular predicates. Using these parameters, we can get a
formula for upper bounding the resource usage of a clause C ≡ p(x̄) : − q1(x̄1), . . . , qn(x̄n):

RUclause (C) 6 β(p(x̄)) +
∑n

i=1

(

∏i−1
j=1 Spred(qj(x̄j))

)

(

δ(qi(x̄i)) + RUpred(qi(x̄i))
)

The resource usage of a predicate RUpred is calculated in a similar way to Spred.

As we have seen, cardinality and resource analyses are tightly related to size analysis.

Consequently, our implementation of these analyses is via an extension of the previously

defined sized types abstract domain:

• The upper and lower bounds, both for the number of solutions and for each resource,

is represented by a pair of bound variables (Sl , Su) and (RUl , RUu) respectively,

similarly to those used by the analysis in sized type schemas.

• These variables are initialized in the λcall to βentry step: Sl and Su to 1 (the cardinality

before any literal is called), and RUl and RUu to the corresponding resource head

cost β.

• In each extend step, we need to update the bound variables with new values, given

the cardinality (S ′
l , S

′
u) and resource usage (RU ′

l , RU
′
u) of the called literal:

— For upper bounds, the cardinality is updated by the product of the previous

cardinality and the one from the called literal, Su × S ′
u. For resource usage, the

formula is very similar, RUu + Su × (δ + RU ′
u).

— The methodology is similar for lower bounds, but we have to take into account

the possibility of failure, as explained in (Debray et al. 1997).

• As a result of threading the variables through all extend steps, in βexit the values of

the bound variables for cardinality and resources will be equal to the ones obtained

by the formulas we have previously presented.

7 Experimental Results and Conclusions

We have constructed a prototype implementation in Ciao by defining the abstract oper-

ations for sized type analysis that we have described in this paper and plugging them

Sized Type Analysis for Logic Programs 11

into CiaoPP’s PLAI implementation. While full benchmarking is beyond the scope of

the paper, we provide preliminary results on two aspects: (a) comparison of the new size

analysis to the existing CiaoPP size analyses (Debray and Lin 1993; Debray et al. 1997;

Navas et al. 2007), and (b) effect of using the new size analysis in the resource usage

analysis application.
Regarding (a), the main advantage of our technique is the richer information about

the size of terms that is inferred by the analysis. As an illustrative example, consider the
predicate insert used in insertion sort of a list of lists. The code we used for analysis is
a direct translation to Prolog of the one in (Hoffmann et al. 2012):

insert(X,[],[X]).

insert(X,[Y|Ys],[X,Y|Ys]) :- leq(X,Y), !.

insert(X,[Y|Ys],[Y|Zs]) :- insert(X,Ys ,Zs).

leq([],_).

leq([X|Xs],[Y|Ys]) :- X =< Y, leq(Xs ,Ys).

Given input arguments5 〈X → ln(c,d)(n(e,f)), L → lln(g,h)(ln(i,j)(n(k,l)))〉, we get as sized type

relation for the third argument I6:

I → nelln

(

ln
(min(i,c),max(d,j))
〈.,1〉 (n(min(k,e),max(f,l)))

lln
(g,h)
〈.,2〉 (ln

(min(i,c),max(d,j))(n(min(k,e),max(f,l))))

)

We see that the analysis has correctly inferred that the result will be a non-empty list

and the bounds for all inner elements. For example, the first element of the list of lists

will be either the list X or one list in L, so the bound at that position will be the largest.

Our results show that the new analysis improves on the previous one in 86% (13/15)

of a set of benchmarks and produces the same results in the other 14%.

Regarding (b), we have compared the new CiaoPP lower and upper bound resource

analyses using the new size analysis with the previous CiaoPP analyses (Debray and Lin

1993; Debray et al. 1997; Navas et al. 2007), and also (upper bounds) with RAML’s

analysis (Hoffmann et al. 2012). The new analyses improve on CiaoPP’s previous resource

analysis and in most cases, and are equal in the rest. RAML only infers polynomial

costs, while our new approach can infer exponential costs and many other types of cost

functions. For predicates with polynomial cost, we get equal or better results than RAML.

8 Other Related Work

Apart from recurrence equations, there are other approaches to size analysis. One popular

one is the use of CLP(R) and convex hulls, such as (Benoy and King 1997). In this case,

the analysis infers a set of linear inequations between sizes of terms. The main advantage

of this proposal is the possibility of relating sizes of several arguments. However, these

approaches are usually limited in the mathematical domain used for abstraction (for

example, linear inequations), whereas recurrence relations allow much richer expressions.

As mentioned in the introduction, (Hoffmann et al. 2012) shows another approach to

5 We write lln for listlistnum, the type of lists of lists of numbers, and nelln for its non-empty variant.
6 We are using a condensed version of the abstract element, where we write the results of inequations directly

inside the sized type.

12 A. Serrano et al.

size analysis, based on the potential method. Although it allows some costs that we cannot

express in our system (for example, sums over all the elements in a list), it is limited to

polynomial expressions. In our case, not being tied to polynomial bounds is important,

since problems such as the number of solutions usually have exponential behavior.

Inference of norms for termination analysis is also related to size analysis. For example,

(Decorte et al. 1994) or (Bruynooghe et al. 2007) use semi-linear norms to prove termina-

tion. These norms define the size of a term as the sum of some of its components, which

are later related by linear inequations. This approach summarizes all information in one

number, so it is less convenient for the developer and less useful for other analyses.

References

Benoy, F. and King, A. 1997. Inferring Argument Size Relationships with CLP(R). In Workshop

on Logic-based Program Synthesis and Transformation (LOPSTR’97). Lecture Notes in Computer
Science, vol. 1207. Springer, 204–223.

Bruynooghe, M. 1991. A practical framework for the abstract interpretation of logic programs. J.

Log. Program. 10, 2, 91–124.

Bruynooghe, M., Codish, M., J. P. Gallagher, Genaim, S., and Vanhoof, W. 2007. Termination
analysis of logic programs through combination of type-based norms. ACM Transactions on

Programming Languages and Systems 29, 2.

Cousot, P. and Cousot, R. 1992. Abstract Interpretation and Applications to Logic Programs.
Journal of Logic Programming 13, 2-3, 103–179.

Dart, P. and Zobel, J. 1992. A Regular Type Language for Logic Programs. In Types in Logic

Programming. MIT Press, 157–187.

Debray, S. K. and Lin, N. W. 1993. Cost Analysis of Logic Programs. ACM Transactions on

Programming Languages and Systems 15, 5 (November), 826–875.

Debray, S. K., Lin, N.-W., and Hermenegildo, M. 1990. Task Granularity Analysis in Logic
Programs. In Proc. PLDI’90. ACM, 174–188.

Debray, S. K., López-Garcı́a, P., Hermenegildo, M., and Lin, N.-W. 1997. Lower Bound Cost
Estimation for Logic Programs. In 1997 International Logic Programming Symposium. MIT Press,
Cambridge, MA, 291–305.

Decorte, S., Schreye, D. D., and Fabris, M. 1994. Exploiting the power of typed norms in
automatic inference of interargument relations. Tech. rep., TR 246, Dpt CS, , K.U.Leuven.

Hermenegildo, M. V., Bueno, F., Carro, M., López, P., Mera, E., Morales, J., and Puebla,

G. 2012. An Overview of Ciao and its Design Philosophy. Theory and Practice of Logic

Programming 12, 1–2 (January), 219–252. http://arxiv.org/abs/1102.5497.

Hoffmann, J., Aehlig, K., and Hofmann, M. 2012. Multivariate amortized resource analysis. ACM

Trans. Program. Lang. Syst. 34, 3, 14.

Hughes, J., Pareto, L., and Sabry, A. 1996. Proving the correctness of reactive systems using sized
types. In POPL. 410–423.

López-Garcı́a, P., Darmawan, L., and Bueno, F. 2010. A Framework for Verification and Debug-
ging of Resource Usage Properties. In Technical Communications of ICLP. LIPIcs, vol. 7. Schloss
Dagstuhl, 104–113.

López-Garcı́a, P., Hermenegildo, M., and Debray, S. K. 1996. A Methodology for Granularity
Based Control of Parallelism in Logic Programs. J. of Symbolic Computation, Special Issue on

Parallel Symbolic Computation 21, 715–734.

Muthukumar, K. and Hermenegildo, M. 1992. Compile-time Derivation of Variable Dependency
Using Abstract Interpretation. Journal of Logic Programming 13, 2/3 (July), 315–347.

Sized Type Analysis for Logic Programs 13

Navas, J., Mera, E., López-Garcı́a, P., and Hermenegildo, M. 2007. User-Definable Resource
Bounds Analysis for Logic Programs. In 23rd International Conference on Logic Programming

(ICLP’07). Lecture Notes in Computer Science, vol. 4670. Springer.

Vasconcelos, P. B. and Hammond, K. 2003. Inferring cost equations for recursive, polymorphic
and higher-order functional programs. In IFL, P. W. Trinder, G. Michaelson, and R. Pena, Eds.
Lecture Notes in Computer Science, vol. 3145. Springer, 86–101.

Vaucheret, C. and Bueno, F. 2002. More Precise yet Efficient Type Inference for Logic Programs. In
International Static Analysis Symposium. Lecture Notes in Computer Science, vol. 2477. Springer-
Verlag, 102–116.

14 A. Serrano et al.

merge
(

τ(α,β)(x̄), τ(γ,δ)(ȳ)
)

= τ(α+γ,β+δ)(merge-args(x̄, ȳ))

merge-args(x̄, ȳ) = {merge-arg(xi, yi)〈f,p〉 : xi and yi have subscript 〈f, p〉}

merge-arg(σnob, y) = y

merge-arg(x, σnob) = x

merge-arg
(

σ(α,β)(z̄), σ(γ,δ)(w̄)
)

= σ(max(α,γ),min(β,δ))(merge-args(z̄, w̄))

none(τ) = τnob

(

⋃

τ→φ∈Φ

none-rule(φ, τ)

)

none-rule(f(σ1, . . . , σn), τ) = {σnobi,〈f,i〉 : σi 6⊑ τ}
none-rule(σ, τ) = {σnobǫ }, σ 6⊑ τ

none-rule(σ, τ) = ∅, σ ⊑ τ

none-but(τ, f(d1, . . . , dn)) = merge(τ(1,1)(A), fold merge over S)
where 〈A, S〉 =

⋃

τ→φ∈Φ

none-but-rule(τ, φ, f(d1, . . . , dn))

none-but-rule(τ, f(σ1, . . . , σn), f(d1, . . . , dn)) = 〈{di,〈f,i〉 : σi 6⊑ τ}, {di,〈f,i〉 : σi 6⊑ τ}〉
none-but-rule(τ, φ, f(d1, . . . , dn)) = 〈∅, ∅〉, φ does not start with f

ground-size(n, num) = num(n,n)

ground-size(f(t1, . . . , tn), τ) = none-but(τ, f(d1, . . . , dn))
where di = ground-size(ti, σi)

τ → f(σ1, . . . , σn) ∈ Φ

Fig. A 1. Sized types auxiliary functions.

Appendix A Auxiliary Algorithms over Sized Types

In Figure A 1 we describe the auxiliary algorithms used in the operations in the sized

types abstract domain. These algorithms are very similar to the derivation of sized type

definitions. For simplicity, we only give the algorithms for recursive types, the non-recursive

case just does not compute bounds for the number of rule applications.

Appendix B Extended Type Inclusion with Sizes

We do not include the definition of the “plural” functions, which just apply a “singular”

function over a list (for example opens just collects the results of open over every element

of a list). The auxiliary functions can be found in Figure B 1 and the main subset algorithm

is in Figure B 2.

Sized Type Analysis for Logic Programs 15

We assume head and tail functions giving the first and rest elements of a list, respectively, and a
++ list concatenation operator.

expand(ψ) =

{

{ψ}, τ not a type symbol

{[〈φ, expand-size(φ, s)〉] ++ tail(ψ) : τ → φ ∈ Φ}, τ a type symbol

where 〈τ, s〉 = head(ψ)

expand-size(σ, τ(α,β)(x̄)) = σs
′
(ȳ), if σs

′

ǫ (ȳ) ∈ x̄

expand-size(f(σ1, . . . , σn), τ
(α,β)(x̄)) = f(d1, . . . , dn)

where di =

{

τ(α−1,β−1)(x̄), σi = τ

si, σi 6= τ, si,〈f,i〉 ∈ x̄

selects(τ,Ψ) =

{

{ψ ∈ Ψ : head(ψ) = 〈⊤, s〉 ∨ head(ψ) = 〈τ, s〉}, τ a type symbol

{ψ ∈ Ψ : head(ψ) = 〈⊤, s〉 ∨ head(ψ) = 〈f(ω1, . . . , ωn), s〉}, τ = f(σ1, . . . , σn), n > 0

open(〈τ, s〉, ψ) =

tail(ψ), τ is ⊤ or a base symbol

[〈⊤,⊤〉, . . . , 〈⊤,⊤〉] ++ tail(ψ), τ = f(ω1, . . . , ωn), head(ψ) = 〈⊤, s′〉

[〈σ1, s1〉, . . . , 〈σn, sn〉] ++ tail(ψ), τ = f(ω1, . . . , ωn),

head(ψ) = 〈f(σ1, . . . , σn), f(s1, . . . , sn)〉

Fig. B 1. Extended type inclusion, auxiliary functions.

subset(〈⊥, s〉, 〈τ, s′〉) = 〈true, ∅〉
subset(〈σ, s〉, 〈⊥, s′〉) = 〈false, ∅〉
subset(〈σ, s〉, 〈τ, s′〉) = 〈b, postprocess(r)〉

where 〈b, r〉 = subsetv([〈σ, s〉], {[〈τ, s′〉]}, ∅)

subsetv(ψ, ∅, C) = 〈false, ∅〉
subsetv([],Ψ, C) = 〈true, ∅〉
subsetv(ψ,Ψ, C) = subsetv(tail(ψ), tails(Ψ), C)

if 〈head(ψ),Θ〉 ∈ C ∧ heads(Ψ) ⊆ Θ
subsetv(ψ,Ψ, C) = subsetvs(expand(ψ),Ψ, C ∪ {〈head(ψ), heads(Ψ)〉})

if head(ψ) = 〈τ, s〉, τ a type symbol
subsetv(ψ,Ψ, C) = 〈bR , R ∪ rR〉

if head(ψ) = 〈τ, s〉, τ is ⊤ or f(ω1, . . . , ωn), n > 0
Σ = selects(τ, expands(Ψ))
R =

⋃

S∈Σ unify(s, head(S))
〈bR , rR〉 = subsetv(open(〈τ, s〉, ψ), opens(〈τ, s〉,Σ), C)

subsetvs([],Ψ, C) = 〈true, ∅〉
subsetvs([ψ|R],Ψ, C) = 〈bψ ∧ bR , rψ ∪ rR〉

where 〈bψ , rψ〉 = subsetv(ψ,Ψ, C)
〈bR , rR〉 = subsetvs(R,Ψ, C)

postprocess(R) gathers all the unifications in R over the same variable X, and generates the
maximum or minimum expression of it, depending on whether the variable is in an upper or lower

bound position.

Fig. B 2. Extended type inclusion, main subset function.

