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Short description:
Software developers can benefit from the ability to express non functional specifications and informa-
tion such as resource consumption in their programs. The ENTRA common assertion language seeks
to address this need. We introduce an internal assertion language used by resource analysis frame-
works that is not tied to particular software development languages. This can be used to express com-
plex specifications including energy consumption functions which depend on data properties, such as
data size, other environmental properties such as clock frequency and voltage and inter-module con-
tracts. We also introduce a front end to express parts of these specifications in the source code. We do
this by extending an existing embedded software language, which allows the end user to express these
in their own source code. We describe these two parts of the Common Assertion Language, together
with a mechanism that propagates information from the front end, through the various system layers
and all the way to the resource analysis framework.
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Figure 1: ENTRA toolchain, and the relationship of the front end to the internal assertion language.

1 Introduction

The Common Assertion Language plays an essential role in the ENTRA project, as it is one of the
main elements that makes energy transparency possible. It allows the expression of resource consump-
tion such as energy, together with other useful information at different levels of abstraction, and to
propagate such information up and down the levels. It is the language in which the user communicates
with the energy aware tools developed in the project, but also the language that allows interoperability
among different analysis, verification and optimisation tools in a seamless and unified way.

The notion of the Common Assertion Language needs to be clarified at an early stage. In the
ENTRA project, this assertion language is made from a front end and an internal assertion language
for the resource analysis framework. In fact the Common Assertion Language is pervasive across the
source code language and the intermediate representations used by the resource analysis framework
(D3.1). The role of the front end and the internal assertion language can be seen in Figure 1. Here we
can see a block diagram of the ENTRA toolchain. At the top, we have the programmer’s toolchain,
including the compiler and user-facing analysers. Here, we expect that the user will only interact
with the front end of the Common Assertion Language. The internal assertion language, on the
bottom, allows the expression of assertions in the intermediate representation language of the resource
analysis framework, and is an integral part of this framework. For the internal assertion language, we
first focus on the definition of such elements conceptually, ignoring the syntax as much as possible.
Since this language is internal to the resource analysis framework, the embedded software developer
does not express properties directly in this. We define the assertion language in Section 4, where we
adopt a domain specific language based initially on Ciao, instantiated and extended to support the
requirements of ENTRA. Moreover, we want to produce a language that can be easily instantiated
to deal with different programming languages and systems. Hence, the assertion language is not
language- or platform-specific. The end users of the front end and the internal assertion language
have different goals. The person using the internal assertion language is the actual resource analysis
toolchain developer. The front end is however used by the embedded systems developer. We therefore
expect that the expressiveness in the internal assertion language to be more than that of the front end.
For instance, instruction level energy models are expressed using the internal assertion language rather
than using the front end.
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Prior to defining the elements of our deliverable we have also performed an extensive study of
languages and language extensions used to express functional and non-functional properties. We
adopt useful features and identify necessary extensions to the state-of-the-art (see Section 3). Since
the internal assertion language will be used to “glue” the various components of the resource analysis
framework (D3.1) together, a starting point of this language is defined as early as possible and is one
of the first deliverables of the project. For this purpose, we make use of the Ciao assertion language
since it meets some of the requirements and can be extended to meet others. In this document we will
not fully specify this language, and the syntax we use is for presentation purposes.

Another part of the Common Assertion Language is the front end, which is user-facing. Referring
back to Figure 1, the front end is used to annotate the existing code with useful hints and information.
This information is subsequently propagated to the underlying layers in the programming toolchain
such as intermediate compiler representations (LLVM IR) or assembly code. This part of the language
is defined in Section 5, where we also discuss any changes or extensions to the source code language.
In our case, this happens to be the XC [Wat09] language, a language designed for programming
multicore systems. Hence, we can say that the front end language exposes an interface to a subset of
the internal assertion language of the resource analysis framework.
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2 Requirements

In order to design the various parts of the Common Assertion Language, we have first performed
a study of requirements. Since we have two parts of the common assertion language, we divide
the requirements into two subsections. The following subsection describes the requirements of the
internal assertion language, used in the resource analysis framework. Section 2.2, on the other hand,
describes the requirements from an embedded software developer point of view, including the required
extensions to the source language and the mapping of information expressed in this language through
the respective toolchains. Therefore, Sections 2.1 and 2.2 correspond to Sections 4 and 5 respectively.

2.1 Internal Assertion Language requirements

Ciao provides a generic and extensible assertion language, which can be extended and instantiated
with energy specific features. The internal assertion language “glues” together the various parts of
the toolchain, such as the energy models, program metadata, LLVM IR (Low Level Virtual Machine
Intermediate Representation language) to ISA (Instruction Set Architecture) mappings, and so on. In
this section we assume that “the user” refers to the user/developer of the resource analysis framework.
We have identified the following requirements for the internal assertion language:

• Contains a base language of relations and functions over standard domains including arithmetic
and boolean values, and program datatypes such as arrays and strings. Value ranges can be
given probability distributions and accuracy specifications.

• Allows the expression of properties of computation states of the program, such as constraints
on the values of input data and invariants at specific program points. Such functional properties
are often vital in order to infer non-functional resource-related information.

• Contains special constructs for the expression of non-functional resource-related specifications
(including energy, power and timing specifications) at various levels of abstraction, such as
source language or any intermediate representation. Such specifications should be expressible
as functions on various parameters of the input data and environment, including for example
input data size, range, clock frequency, voltage, number of running threads, and so on.

• Allow the description of models of underlying hardware (environment). The hardware is ab-
stracted as a set of relevant properties (e.g., clock frequency, voltage, contents of registers,
etc.), that we call environment properties. A set of concrete values for such properties is what
we call a “hardware state” or environment. The change in the environment by the execution of
instructions can also be expressed using the assertion language.

• Allows assertions to be marked as “trusted”, meaning that such assertions are assumed to be
true by the verification and analysis tools. Such trusted assertions include energy models at
different abstraction levels, and energy consumption assertions about parts of a system which
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are not developed yet or for which the analysis infers inaccurate information, so that it can be
propagated by the analysis tools to estimate their impact in the energy consumption of the whole
system. Adding trusted information also helps with the scalability of the resource analysis.

• Allows assertions to be automatically verified or inferred by the analysis tools, and therefore
marked as checked or true/false respectively.

• Allows information relating internal or intermediate program representations to source code
program points, thus permitting analysis results to be relayed as automatic program documen-
tation generation or visualisation of resource usage.

• Is flexible and extensible to express new properties and resources and not tied to a particular
programming language or hardware platform.

In the rest of this section, we give more detailed information for the requirements.

2.1.1 Elements of the assertions

Semantically, assertions should express properties of programs and should talk about preconditions,
postconditions, whole executions, program points, etc. At the core of an assertion is a base language
of relations and functions for expressing arithmetic and boolean properties. On top of this, assertions
should provide linguistic constructs, which include the following elements:

• Status: Describes whether the assertion is provided by the programmer and is to be checked
(i.e., as a specification) by the resource analysis framework, i.e., check. The resource anal-
ysis framework generates another assertion stating whether the provided assertion is correct
(checked) or false. Assertions should also specify information to be trusted, i.e., trust.

• Scope: Specifies the scope of application of the assertion, e.g., whether the assertion refers to a
function, to a ISA instruction, to a piece of code marked with delimiters, etc.

• Precondition: Specifies the conditions under which the assertion is applicable. The Precondi-
tion should involve program state properties as well as environment properties.

• Postcondition: Specifies the conditions that hold after the successful execution of the element
described in the Scope, provided the Precondition holds. This field involves the same peoperties
as the Precondition.

• Computational properties: Describes the properties of the whole computation of a Scope that
meets a Precondition. This field involves non-functional global properties, such as energy con-
sumption, execution time, or resource usage in general.
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2.1.2 Energy models and annotations

As part of Work Package 2, we will deliver energy models for assembly level instructions and also
higher levels including intermediate representations such as LLVM IR and source language such as
XC. The assertion language should not be tied to a specific platform and should be flexible and ex-
pressive enough to describe energy models at all levels, using a common syntax and toolchain. This
would include but not limited to upper and lower bounds for ISA instructions (possibly for different
platforms), LLVM IR instructions or XC programming language terms. Another useful metric to in-
clude with the energy values is the variance or confidence level of the energy values. This should
come in useful especially for energy models that are extrapolated from others.

Section 4.2.4 includes examples of how the energy model should be expressed at various levels,
and how a function can be annotated with energy information.

2.2 Front end requirements

It is possible to extend C and XC such that extra information is added to the source code of a program.
This information must not affect the semantics of the executing program. Rather, this would be used
by the programming tools to check certain properties such as obeying non-functional requirements.

2.2.1 Program analysis

Although we expect the number of manual annotations to be minimal, a number of hints can be given
in advance by the programmer by annotating the source code. These allow the programmer to express
a limit for iteration bounds for loops and recursion. This is important in cases were such a limit is not
declared or cannot be inferred. Otherwise a number of measurements such as worst case execution
time and energy consumption become unbounded. The likelihood of taking a particular branch over
another can also be expressed, and this helps the analysis to produce tighter results. Another important
thing that needs to be expressed is probability distributions of integer variables and arrival time of
events.

2.2.2 Generic language requirements

In ENTRA, we want to augment the source language such that trusted information can be added. We
would also want to check that certain information holds. In order to do so, we need two different
assertion modes, check and trust, which correspond to the same modes in the Internal Assertion
Language. We do not however require all the modes supported by the Internal Assertion Language.
As in the Internal Assertion Language, expressions support relations and functions for expressing
arithmetic and boolean properties.

The front end language should be expressive enough to make assertions about functional and
non-functional properties. Therefore, assertions can be made about the values stored inside program
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variables, input values, etc., but also about energy consumption and timing. For the latter, we need
specific linguistic constructs, such as counters, which are explained in the next section.

2.2.3 Energy related extensions

We propose extensions to the source language (XC), that cater for the following requirements:
Power: The embedded programs we shall be dealing with in ENTRA are typically non-terminating

and therefore the most relevant property we can specify is the target power dissipated by the micro-
controller. The power budget therefore applies for the whole program and is specified in watts.

Accuracy: Throughout the ENTRA project, we might also investigate extensions to the type
system such that the accuracy of operations [SDF+11] can be specified. This would entail adding
information to the existing types. For example, a type in a variable declaration statement could be
annotated, indicating that the accuracy of the value stored in the variable is unimportant.

Bounds: For the purposes of verification, bounds can be given to individual variables and there-
fore these need to be annotated with this information.

Counters: Through the use of the front end, it is required to specify assertions about power con-
sumption and timing in various parts of the system. The addition of global energy and time counters to
the language makes it possible to use these values within our assertions. These constructs are erased
at runtime.

2.2.4 Information flow through the toolchains

The information conveyed through the front end language has to be retained and mapped from source
code to intermediate compiler representations and ISA level. This information also has to be translated
to the assertion language for the resource analysis framework. In order to accomplish this, we need to
establish which elements in a language can be propagated to the language in the intermediate compiler
representation. We also want the source language extension to be least invasive as possible. Therefore,
any annotations and extensions to the source language need to be separate from the language and have
their own namespace.
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3 Background

In this section we review related work, which has influenced the design decisions of the Common
Assertion Language. We start by describing design by contract [Mey92]. This work has influenced
other languages such as Ciao [HBC+12]. We also investigate languages to describe and verify realtime
and concurrent systems. This is especially relevant since XC is used for these applications. Even
though the deliverable here is about software, it is also important to investigate languages used to
describe hardware properties, for example power modes. Finally we summarise how these languages
and extensions are integrated within other systems.

3.1 Design by Contract

Design by contract is the addition of formal specifications describing preconditions, postconditions
and invariants of blocks of executable code (collectively known as contracts) to improve both safety
and documentation. This idea was initially implemented in the Eiffel language by Bertrand Meyer
[Mey92] and later adopted in many other languages.

Traditionally, contracts have focused on functional properties of the execution, specially proper-
ties of the data that is given as input or returned as output. When moving towards more expressive
languages, contracts have been enhanced for expressing specifications about the functions themselves
(what we call higher-order contracts) and about non-functional properties such as execution time or
energy consumed.

3.1.1 Eiffel-style Contracts

In this section we describe the kind of contracts found in imperative and object-oriented languages
with no support for higher-order functions.

Eiffel is an object-oriented language with automatic management of memory through garbage
collection. The syntax resembles that of Pascal. It offers support for multiple inheritance and method
overriding in child classes. Error handling is based on the exception mechanism.

In Eiffel, the main unit of organisation is the class. Each class may have several features (cor-
responding to both fields and methods in other object-oriented languages). For each feature, a level
of visibility can be specified, expressing whether other classes can access it or not. For example, the
following Eiffel code declares two classes: A class named ANIMAL with a field named “colour” and
a method named “speak,” and another class named “dog” inheriting from it, that overrides the method
“speak.”
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class ANIMAL

feature

color : INTEGER

speak is do

print("??%N")

end

end

class DOG

inherit ANIMAL

redefine speak end

feature

speak is do

print("Woof!")

end

end

Each contract block is made of one of more assertions, which have the form name: boolean

condition. The boolean condition may include function calls, what makes possible to abstract
common patterns in contract checking for libraries.

The fact that any function can be used in assertions implies that:

• Libraries of reusable contract definitions can be created.

• Functions that encode universal and existential quantification for specific data structures can be
used but in a limited way, as Eiffel does not allows passing functions as parameters).

• Static analysis gets much more difficult, as there is no limitation on the properties being defined.

For features, blocks defining preconditions and postconditions can be added. The following ex-
ample defines a feature that computes the square root of a real number n, to which a contract is added
with the precondition that n should be non-negative, and a postcondition expressing a tolerated margin
of error in the computation of the square root of n:

feature

square_root (n : REAL) : REAL is

require:

non_negative: n >= 0

do

-- implementation omitted

ensure

result_is_ok: abs(n - result*result) <= 0.0001

end

Apart from feature assertions, we can include class-wide and loop invariants and conditions in any
other point of the program using a check block.
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Spec# [RLM08] is an extension of the C# language with support for contracts. The essence of
its assertion framework is very similar to that found in Eiffel, as both are object-oriented languages.
However, Spec# has some unique features that are interesting to discuss.

Sometimes invariants or conditions may refer to private fields. This is discouraged (and in some
cases even banned) in Spec#. Instead, the developer should use model fields. Those fields do not
exist in the implementation itself, but allow to model information that can be useful for stating the
assertions. The declaration of model fields has this form:

model Type Field {

satisfies Assertion;

}

It can be used later in any assertion as any other field (but cannot be used in the implementation). One
extra feature of Spec# is the addition of forall and exists for assertions. They usually allow
to include not efficient specifications of methods. For example, the postcondition for searching an
element into a specific data structure could take the form:

bool has(K item)

ensures result = exists{ K i in this.values; item == i };

{ /* implementation */ }

A method in Spec# can specify exactly which members of a receiving object are going to be
modified during the execution of a method. This is done using a modifies specifier after the other
contracts. An example of its use can be found in a Spec# Tutorial:

public void Swap(int[] a, int i, int j)

requires 0 <= i && i < a.Length;

requires 0 <= j && j < a.Length;

modifies a[i], a[j];

ensures a[i] == old(a[j]) && a[j] == old(a[i]);

{ ... }

If the method is known to have no side-effects (no modifications but neither printing on the screen,
saving to disk. . . ), it can be marked using the [Pure] attribute (attributes are to C# as annotations to
Java). Searching an element in an array is an example of a pure method:

[Pure]

public int Find(int[] a, int element)

ensures -1 <= result && result < a.Length;

{ ... }

As with the other contracts, the static verifier will try to prove that the method is indeed pure. Finer-
grained levels of non-purity can be specified with other attributes.
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Usually classes are not completely closed, but use information and code for other classes, aggre-
gating them. So it may well be that contract of a class refer to members of its component classes. To
represent this fact, in the declaration of a component in the aggregate class, a [Rep] attribute must
be added. For example:

public class Car

{

String name;

[Rep] Motor motor;

...

}

In this way, when any operation changes the motor being part of a Car, contracts found in the Car
class referring to it must also be checked.

Apart from basic ownership, Spec# also supports the notion of peers, which are sets of objects
with a common parent. For example, all elements in a linked list can be thought as members of the
list object. This creates a stronger notion of consistency of objects called peer consistency.

3.1.2 Higher-order Contracts

Racket (previously known as PLT Scheme) is among the best-known functional programming lan-
guages. This language is interesting to consider because it provides a way to specify assertions over
functions that will be passed as parameters, something not found in previously discussed assertion
frameworks.

In this section the new-style contract syntax for Racket, introduced in version 5.2, is used. Essen-
tially, the contract declarations take the form:

(provide

(contract-out [some_definition its_contract]

[other_definition another_contract]

...

))

In Racket, functions are also values, so there is no need to have special syntax for them. Moreover,
any boolean predicate can be used as a condition over the value. This is an example of a contract
declaring that the “amount” variable should always hold a positive value:

(provide (contract-out [amount positive?]))

For functions, the contracts can be written as (-> pre post) or (pre .->. post) . This can be
combined to add conditions to higher-order functions (those which take other functions as parameters).
A contract for a function that takes as parameter any function which only returns positive numbers,
and builds negative numbers out of it is an example of this syntax:
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(provide (contract-out [ fn ((any .->. positive?)

.->. negative?) ] ))

Finally, structures can also be annotated with contracts. For example:

(provide (contract-out [ struct position (

(x number?) (y number?) ) ] ))

A larger example taken from the Racket Guide, showing some features mentioned above:

(define id? symbol?)

(define id-equal? eq?)

(define-struct basic-customer (id name address) #:mutable)

(provide

(contract-out

[id? (-> any/c boolean?)]

[id-equal? (-> id? id? boolean?)]

[struct basic-customer ((id id?)

(name string?)

(address string?))]))

Contracts can have any kind of boolean function as argument, so larger contracts can be built by
combining these functions (for example, here id? is given an implementation and a contract, and
later used in another contract). Contracts are also specified separately from the definitions of functions
and data structures.

3.1.3 ANSI/ISO C Specification Language

Eiffel style contracts reappear under different guises in different programming languages. For in-
stance, the Java Modelling Language (JML) [LBR99] is a specification language for Java programs. It
uses Hoare style pre- and postconditions and invariants, and follows the design by contract paradigm.
Specifications are written as annotations, inside comments. Similarly, the ANSI/ISO C Specification
Language [BFM+] follows the same pattern.

Since annotations are written inside comments, standard compilers can be used to parse the origi-
nal source files. An example of the ANSI/ISO C Specification Language can be seen in the following
code:

/*@ requires \valid(p);

@ assigns *p;

@ ensures *p == \old(*p) + 1;

@*/

void incrstar (int *p);
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In this case, the precondition requires that p be a valid pointer. The annotation also says that *p is
rewritten and that *p is incremented exactly by 1. We note that as opposed to JML, in the ANSI/ISO
C Specification language, in most functions we need to add pre-conditions to make sure that the input
arguments are valid pointers. ACSL is used by Frama-C [CKK+12], a set of interoperable program
analysers for C programs.

3.1.4 Assessment

There are several conclusions from the analysis of contract languages:

• Many languages have only a fixed set of properties that can be expressed, which is good for
analysis, while many others allow any boolean property, which is very expressive but also very
hard to analyse. There is indeed a trade off between extensibility, something desired in the
assertion language, and analysability of the assertions;

• Contracts or assertions are applied to different elements in each language: classes, methods,
loops. . . These elements are usually the basic blocks of the programming language that hosts the
contracts. To target interoperability and wide applicability of our assertion language, the design
must not be dependent of particular code structures in a particular paradigm of languages;

• The relation between functional properties and non-functional properties for a specific hardware
platform must be figured out to gather a good set of basic assertions. For example, bigger data
sizes usually imply greater energy consumption. Along with the set of properties that directly
express energy, time and precision, any other that may affect those must be part of the language.

3.2 Realtime and concurrent systems

One of the special requirements of the assertion language is that it should tie together high-level
languages in which algorithms and applications are written with low-level and even hardware opera-
tional information, which is ultimately responsible for energy and time consumption. For that reason
we look at existing assertion languages used for hardware design and assertion languages used in
writing systems software.

3.2.1 UML for Real Time systems (MARTE)

UML is a graphical modelling language for object-oriented development. The UML Profile for Mod-
elling and Analysis of Real-Time and Embedded Systems (MARTE) [Gro11] allows modelling of
real-time systems.

MARTE is a good source of inspiration because it has graphical ways to talk about non-functional
concerns. Specifically, it adds to the UML language:

• A set of annotations that can be added to sequence diagrams, specifying its time constraints,
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• A way to encode non-functional properties into diagram elements. For this matter it introduces
the Value Specification Language (VSL), allowing to give textual representation of complex
properties.

• A set of classes representing resources, which can be used to model complete systems.

MARTE distinguishes between two kinds of non-functional properties:

• Quantitative properties are those specified by a number together with a unit of measurement (in
MARTE there is support for different units, along with conversions between them).

• Qualitative properties are more complex, defining for example a probability distribution or a
pattern of clock ticks.

The NFP package in MARTE predefines several of the units and types of properties in a way that
can later be used for in-depth analysis (for example, when given a duration, it is given with its mean
value and its possible error). Some of these predefined types are energy, transmission rate or clock
frequency. The same package also defines the most used probability distributions, such as Gaussian
or Poisson.

Special care is taken for modelling time, which is defined in a separate Time package. There are
three different related concepts introduced in that package:

• Clocks, which can be physical or logical;

• Usage, which allows to model events, repetition, constraints. . . ;

• Structure, which defines the basic blocks for time modelling.

Graphical time specification can be very tricky, so using VSL expressions is quite useful in this case.
Properties can be attached to UML models to specify their non-functional properties. They are

interesting in combination with sequence diagrams, because they allow to model precisely the real-
time constraints of a system.

Finally, MARTE has the notions of resources and components, which can be used to model hard-
ware and software systems. However, the scope of them is outside of the assertion of properties in
existing languages.

3.2.2 Promela

Promela is a language for the specification of interactive concurrent systems. These consist of a
finite number of separate components, which are independent from each another, and interact through
message passing over channels.

Generally, the correct functioning of concurrent systems depends on the timely coordination of
their interacting components. In Promela [Hol91] assertions can be specified to indicate system states
that should never happen (never claims). These can also be generated using linear temporal logic
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(LTL) formulae, which describe correct (or incorrect) behaviour of the system. the formalism for
temporal reasoning deals only with the qualitative aspect of time, for example, the order of certain
system events. An example of such a specification is “system state 1 never happens after state 2
and before state 3”. Promela specifications can be simulated or verified using a model checker (Spin
[Hol97]). Executable code can also be generated from these specifications.

3.2.3 Bound-T Assertion Language

Bound-T [HLS10] is a software tool that uses static analysis to compute upper bounds on the execution
time (WCET) and stack usage of embedded programs and is developed by Tidorum Ltd. It has a
very expressive high-level assertion language which allows users to express facts about program in
different contexts. Here the context can be global (about whole programs) or local (subprogram,
loops, calls, program points, and so on). The facts that can be expressed range from a variable’s
value through the number of loop iterations, invariants, and number of executions of a call to time
consumption of a subprogram or call. Assertions are specified in a different file than the source file
thus allowing separation of concerns, however linking this assertion file to the source file can be tricky
and complicated. As the language is expressive enough the user has to be well aware that asserting
facts may introduce errors, yielding erroneous analysis results as a consequence.

Some examples of assertions include:

• variable numSensors ≤ 15. It is the global assertion about the value of the variable
numSensors, which is less or equal to 15.

• subprogram Initialize variable numSensors > 0; end Initialize. This
says on entry of subprogram Initialize the value of variable numSensors is greater than
0.

• subprogram ScanData call to Check invariant numData ; end call; end

ScanData. This says in a subprogram ScanData , calling a subprogram Check the values
of numData does not alter, thus is an invariant in this context.

3.2.4 XMOS Timing Analyser (XTA)

XC is a C-like language developed by XMOS and targeting hardware solutions. XC comes with a
Timing Analyser [XMO12] which provides analysis of time requisites. The assertions language is not
as general as others, but it models timing requirements.

The analysis of XC code timing is based on the notion of endpoints, which are programs points
that can later be specified as starting or finishing paths of computation. Endpoints are defined in
source code with an assertion resembling

# pragma xta endpoint " name "
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Each pair of endpoints gives raise to one or more routes, which are analysed. Then, the worst execution
time of all routes is chosen as an upper bound for time spent.

Additionally, there are two additional kinds of endpoints:

• Function points, which define all possible paths between entries and exits to a function.

• Loop points, i.e., endpoints at the start and end of a path and excluding everything outside the
loop.

Sometimes, the tool may need extra information which cannot be automatically inferred:

• Exclusions: this allows to discard results for a exceptional route that arises only on error cases,
but does not reflect the usual behaviour of the system,

• Loop iterations: sometimes the tool cannot infer an upper bound on the number of iterations, so
the code must be annotated explicitly. This can be made for all executions of the loop or only
for executions in a particular route.

Once such information has been given, one run of the tool generates the entire set of paths that
the program may follow, which are shown in a diagram resembling a flow chart. Then, the best route
along the chart (the one with less execution time) is shown in green, and the worst one is shown in red.
The developer can click on a different route and see the information related to that path of execution.

Apart from the models of execution for their hardware, the XMOS Timing Analyser allows the
programmer to specify the running times of single instructions, functions of paths between two end-
points, which can enrich the analysis and allows to get better bounds for execution times. Finally, as
extra parameters to analysis, the number of cores, threads and clock frequency can be specified, both
in some routes or globally. The tool, however, does not handle recursion, and cannot analyse parallel
programs.

3.2.5 Assessment

The study of these languages helps the design of the assertion language in several ways:

• The embedded system community is very interested in the timing analysis of components. In
case that we decide that the common assertion language should include some kind of temporal
properties, we have to decide how to model them;

• There is a good support from RTL design tools for checking PSL and MARTE assertions both
statically and by simulation. The assertion language could interoperate with these tools, which
give valuable input for higher-level energy and time usage;

• MARTE has whole packages devoted to non-functional properties and time. This can help when
modelling properties. MARTE is an standard from MG, so looking at it will help with further
standardisation.
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3.3 Specification of properties for hardware design

3.3.1 Property Specification Language (PSL)

Several languages have been created to support assertions on hardware specification. The main lan-
guage for this task is the Property Specification Language (PSL) [PSL05], which was standardised in
2005 and augments Verilog [Pal03] and System Verilog with assertions.

These are specified as “layers”: boolean, temporal and verification. The temporal layer allows
us to specify certain properties similar to the way we would using temporal logics. For example,
an expression could say “in the following ten clock rises”. The verification layer tells what to do in
the checker. Possible values are assert (check it), assume or restrict (useful to guide the
checker). The boolean and temporal part of an assertion define a property, which can be given a name,
for example:

property mutex(boolean clk, a, b) = always (!(a & b)) @(posedge clk);

declares that a and b are mutually exclusive on the positive edge of the clock, and once the property
is defined we can assert it:

assert mutex(clk, write_en, read_en);

PSL temporal assertions can be very expressive, allowing us to express sophisticated patterns of tem-
poral conditions. PSL assertions can be checked using a model checker or by simulation.

3.3.2 Unified Power Format

Unified Power Format (UPF) [SM07] is a standard for specifying power intent in power optimisation
of electronic design automation. It is a language to expression the design intent of the hardware
power management. This include the power domains and their voltage levels and the different power
states of the system. UPF is therefore used to augment a hardware specification to define the power
architecture for a given implementation. UPF is used in conjunction with the hardware description
as input to the implementation and verification tools to verify correct power down/up sequences and
detect power architecture structural errors.

UPF makes use of a Power State Table (PST), which describes all the possible power states of a
design. This has a hierarchical structure, and the transitions between power states are described in a
table. Not all possible transitions are valid transitions. A feature similar to a PST could potentially
be used to augment the Common Assertion Language. This would allow, for example, the system to
transition from one power state to another, and this transition would be triggered by the software.

3.4 Language integration and syntax

The concrete syntax of the languages described here can be represented in various ways, or integrated
into other host languages. In this section, we categorise the different methods used to represent the
assertion languages.
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Comments: Assertions are inserted as comments referring to or adjacent to an intended code segment
or term. This option gives the largest amount of freedom for extending and changing the assertion
language. However, it has one main disadvantage: a possible implementation would find difficultly in
finding the segment or term to which a comment may apply.

External language: In the case of UML, for example, where OCL is used as an assertion language,
properties of the code are defined in a separate file. This has the potential problem of keeping syn-
chronised the code and the assertions, whenever the former changes.

Native: In some languages, assertions are part of its specification (as in the case of Eiffel), and
therefore the language implementation understands assertions and can perform analysis and transfor-
mations based on this. While this option allows the tightest integration, it has a drawback in terms of
extensibility, because the language implementation has to be changed significantly.

Extending the language: To work around this drawback, sometimes a language is extended into a
larger one, and a transformation is developed such that code can be transferred back to the “parent”
compiler. This is the case of Spec#, which augments C# with specifications. The main advantage
is that the implementers of the new language can reuse an already developed compiler, while still
keeping a “native” experience.

Using language extensibility: Some languages already allow the programmers to add extensions to
the language. For example: Java annotations, Lisp macros or Prolog directives. Assertion languages
for an extensibile host language typically use this feature in their implementation.

Now that we have classified the integration strategy of some of these languages, we have a better
understanding about the best way to represent both the front end and Internal Assertion Language. We
are going to base the Internal Assertion Language on the Ciao assertion language, which is extensible
in nature and thus allows us to encode all of the required properties. For the front end language, we
are planning to extend the XC source language with annotations and pragmas.
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4 Internal Assertion Language

The Internal Assertion Language (IAL from now on) is the language used by the analysis tools to
communicate and express non-functional information. As we show in deliverable D3.1, there is a
large number of different programs, scripts and processes involved in the analysis of a piece of code.
This highlights the importance of a common language that allow them to communicate freely and to
encode all possible information that may be needed in different stages of the analysis or in later stages
of optimization and visualization.

As mentioned before, the IAL is based on the assertion language found in Ciao [HBC+12]. The
reason underlying this decision is that Ciao is a multiparadigm programming language (supporting
functional, logic and constraint programming at the moment of writing), so it meets our need in the
assertion language for supporting several styles of programming, since the IAL could be generated
from any kind of programming language (in particular, in the ENTRA project we are using XC, an
imperative and concurrent language).

Also, the assertion language in Ciao supports many of the constructs and properties that we defined
as requirement for the IAL. Furthermore, in some cases we perform a translation of a program to
CLP (based on Horn clauses) form, which can be directly managed by the Ciao runtime, and thus
minimizing the time spent in translations in the process.

It is important to remember that in this document we will not define any specific syntax for the
IAL, but rather a conceptual model, but as a syntax is ultimately needed in the concrete implementa-
tion, we have studied two ways in which we can represent the assertions:

• Using Prolog directives: this is the path taken by the Ciao language (which embodies logic
programming). In this case each assertion is represented as a term. The main advantage of
this approach is that directives can be written near the syntactic elements they affect, making
unnecessary in many cases to clarify the scope of an assertion.

An example of an assertion represented as a term is:

:- trust add(X,Y,Z) + resource(avg, energy, 15.0)

• Using JSON (JavaScript Object Notation) or XML: many languages support data interchange
in any of those formats. In this case each assertion is a JSON object or an XML node, with each
of the attributes being part of the information to convey.

The previous example could be represented using JSON as:

{ assertion: {

status: ’trust’,

scope: { function: ’add’ },

properties: {
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computational: [

{ resource: { approx: ’avg’, id: ’energy’, value: 15.0 } }

]

} } }

The previous examples are a possible path towards a concrete representation of an assertion using
these syntactical constructs. At this stage the IAL is defined at a conceptual level.

4.1 Assertions

Assertions are the constructs that will be used throughout the analysis to express the properties of
a computation in both functional and non-functional terms. In this section, we shall focus on the
overall structure of an assertion, and the properties that can be expressed will be the topic of next
section. Each of the assertions will consist of five parts: status, scope, list of preconditions, list of
postconditions and the list of computational properties.

The first of the items, status, tells the analyzer what to do with the assertion that will be read. The
main statuses to be used, and which are found both in the IAL and the front end, are:

• check, which asks the analyzer to verify that the properties indicated in the assertion hold in
the code that this assertion talks about;

• trust, which asks the analyzer to take the information of the assertion as true without fur-
ther checks, and to include it in the knowledge base of facts needed throughout the analysis.
One example of information to be trusted if the energy model for a specific platform, which is
provided from an external source.

In addition to these, the IAL includes the following status that are used to indicate information about
the analysis results:

• true and checked are used to specify results that have been proven to be true. For a subse-
quent analysis, it should be taken as trust with subtle differences in meaning: true is used
to specify analysis results produced by the analyzer which were not explicitly asked for check-
ing (for example, results about auxiliary procedures) and checked is used when the verified
assertion comes from a check assertion given by the user;

• false is used to identify assertions which have been proven to be false.

Notice that after an analyzer performs its work, it may be the case that some assertions still have a
check status, because that analyzer was not able to prove or verify the assertion.

The second part of an assertion is its scope, that is, the program element to which the assertion
refers to or should be applied. Examples of scopes may be an entire function or procedure, a module,
a specific program point, a loop or conditional block, a piece of code between two delimiters and so
on.
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The scopes that can be expressed in the IAL have a strong dependence on the analyzers that are
involved in the whole pipeline. For example, if the assertion language is used by an analyzer which
processes CLP programs, the basic scope will be the predicate and the clause. It is important to notice
that some extra translation work may be needed in the case that the same kind of scopes are not
available in different analyzers.

With each identified scope we can associate three lists: preconditions, postconditions and com-
putational properties. Conceptually, they are just listings of instances of the properties which will be
introduced in the next section. Albeit similar, the semantics of each list is quite different:

• Preconditions specify the conditions under which the assertion is applicable. The precondition
should involve program state properties as well as environment properties.

For example, an assertion about the energy consumption of some predicate may only be appli-
cable for numbers up to a defined value. The assertion will have a precondition with a constraint
over the value to express this limited applicability.

• Postconditions specify the conditions that hold after the successful execution of the element
described in the scope, provided the Precondition holds. Involve the same properties as the
precondition. It should be noted that the postcondition only refers to a successful execution of
its scope (the exact definition of “successful” depends on the context, in CLP for example it
refers to finding at least one answer).

• Computational properties describe the properties of the whole computation of a scope that
meets a precondition, similarly to postconditions. But in constrast to them, computational prop-
erties involve non-functional global properties, such as energy consumption, execution time, or
resource usage in general, that do not refer to a specific state but rather to a path of execution.

For example, the following assertion for a typical append/3 predicate:

:- trust pred append(A,B,C): (list(A),list(B),var(C)) =>

(list(A),list(B),list(C)) + resource(ub, energy,length(A)+100).

states that for any call to predicate append/3 with the first and second arguments bound to lists and
the third one unbound, if the call succeeds, then the third argument is also bound to a list. It also states
that an upper bound on the energy consumed by the execution of any of such calls is length(A)+100

mJ, a function on the length of list A.

4.2 Properties Supported

The IAL has to be equipped with a rich set of properties to be used in assertions in order to achieve all
the functionality stated in the requirements. So far, we have defined a set of new useful properties, and
we foresee the definition of more new properties during the project. Some of the desired properties
were already present in the Ciao assertion language on which the IAL is based.
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We have classified the properties in four groups. Properties in the two first two groups are intended
to be used in pre- and post- conditions. There are program state properties that refer to functional
properties of the execution over some data, and environment properties that refer to the state of the
hardware and the surrounding execution environment. An example of program state property is the
type of a variable. The power consumption of a function may depend on whether the function takes
a list or a number as an argument. An example of environment property is the frequency of the
processor, which affects the energy consumed.

Then, we have properties which characterise the on-going effect of computation, such as memory
or energy consumption: these are referred as computational properties. Finally, we discuss the possi-
ble ways in which this effect can be aggregated, giving rise to modes of execution, such as sequential
or parallel.

In order to be formal, properties will be described as terms using a grammar-like formalism.
Each possible choice for a rule will be denoted as Rule -> format. The shorter notation A* will
describe a list of terms given by the rule A. Base types Number (describing an integer or floating-
point value), String (describing a quoted list of characters) and Id (describing an unquoted string
of characters) are taken as part of the language. Comments will be marked with %.

The arguments of some of the properties are numbers (as for example, the frequency). Depending
on the kind of analysis, the end user may want to express a strict value for a number, a range which
bounds it, or a probability distribution on the values. For that reason, the IAL does not enforce any of
these choices (although in the actual implementation these choices will be made).

NumberArg -> Expr

NumberArg -> (Expr, Expr)

NumberArg -> dist(Id, Expr*)

% The first argument is the type of distribution

% For example: uniform, bernoulli, normal

where Expr denotes mathematical expressions including between numbers and variables.
As we have already stated, this notation is not enforced, but just a way to view the elements

conceptually, and a concrete syntax based on JSON or XML could be used instead.

4.2.1 Program State Properties

In the program state we usually need to refer to variables. In the rules for properties, Var denotes the
name of one of the variables appearing in the intended scope or result, which identifies the value
returned by the function.

Types and modes of execution: These properties refer to the shape of the data that will take part in the
computation. Types are a well-known formalism for this task, and we expect to have different flavours
of types depending on the programming language hosting the assertion language. For example, object-
oriented languages usually have a static type system with inheritance, functional languages tend to
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have type systems related to the one defined by Hindley and Milner, whereas in logic languages, we
have formalisms like regular types or tree grammars that describe sets of terms.

Type -> Id(Var)

% The Id corresponds to a type taken from a set

% defined by the underlying language

Type -> Id(Var, InnerType*)

InnerType -> Id

InnerType -> Id(InnerType*)

Mode -> +Var

Mode -> -Var

Mode -> ?Var

Types can also provide interesting information for guiding the analysis. For example, when
analysing an assembly program, type declarations from the high-level language that produced that
assembly can be attached to registers to know whether it holds an integer, a floating-point number, or
a pointer to a larger structure in memory.

Data sizes: In order to estimate the resources used by a program, we first need to infer bounds on
the loop iterations or recursive steps in a function or predicate. This usually depends on the sizes of
the data structures traversed, like the length of a list or the dimensions of an array. For this reason,
it is important to infer size relationships between sizes of the involved structures at different program
points.

Size -> size(Var, NumberArg*)

Size -> size(Var, SizedType)

Accuracy: Another property, about the data in the computation, is accuracy. This is important be-
cause in some architectures speed and energy gains can be achieved by losing some accuracy in the
computed results. The IAL will include properties for absolute and relative error, and using its com-
modities, these errors can be related to the mode in which the machine is running or the data sizes that
are used.

Accuracy -> accuracy(Var, NumberArg)

Although some concepts of accuracy can be modelled by probabilistic data sizes, we have chosen to
model it independently, because of its particular relationship with energy consumption.

Aliasing and sharing of variables: The fact that data structures have shared parts in memory, affects
the analysis in at least two ways. The first is the consumption of resources, since shared variables may
use less memory and less computational power than independent variables (because we only need an

24



operation in memory to update two structures sharing a variable). The second one is the possibility
of adding parallelism. For instance, to be able to split a sequential task into several parallel tasks, the
optimiser needs to ensure that there will not be any conflicting access to memory which can be proven
for example by ensuring that the variables used in each thread are not aliased or that they point to data
structures that do not share any variable.

Sharing -> mshare(SharingElt*)

SharingElt -> [ Var* ]

There is already some work by some this project’s partners to analyse and detect this requirement.
In particular, the XC compiler by XMOS can detect when a variable will be shared between two
threads, forbidding compilation in that case. CiaoPP also includes a variable sharing analysis. Both
analysis could be extended to deal with fine-grained information.

4.2.2 Environment Properties

The environment properties refer to the computational architecture and hardware state that may affect
the non-functional properties of the code being analysed.

Frequency, voltage, temperature: In general, any physical or logical property of the processor af-
fects the non-functional behaviour. The IAL should include the most common properties in this field
(but these can be extended by defining a new property). Processor frequency and voltage are related
to both speed and dynamic power consumption, so they are essential to energy transparency. Temper-
ature affects static power consumption, so including it as a parameter would give us a more precise
outcome of the analysis.

Frequency -> frequency(NumberArg)

Voltage -> voltage(NumberArg)

Temperature -> temp(NumberArg)

Communication structure: Another source of delays and energy consumption are the buses in which
information is transmitted. So in order to obtain accurate analysis results, information about how
communication is done, distances to each node, whether communication is parallel or sequential is
needed. The exact amount of information will depend on the architecture where the analysis and
optimisation procedures are applied.

Caches: As the communication structure mentioned above, the structure and use of the cache affects
resource consumption in a great deal: retrieving some data from a near cache level is both faster and
less energy-consuming than doing so from main memory. The IAL includes properties describing the
different cache levels, along with information on the distribution of cache hits and misses, which can
be used for probabilistic reasoning.

Input and output on ports: In many embedded systems, input and outputs from ports to peripherals
or other nodes in the network are as important as the data taken or returned by functions. Somehow

25



we need to describe the data in these ports as we do for regular arguments. The proposed solution is
to use the same kind of assertions that we do for the latter, but tagged with the name of the port.

PortIO -> in(Port, DataProp)

PortIO -> out(Port, DataProp)

DataProp -> Type

DataProp -> Size

DataProp -> Accuracy

In these rules, a Port is syntactically similar to a variable, but coming from a predefined set depen-
dent on the architecture.

4.2.3 Computational Properties

Resources: The main category of non-functional properties, that are interesting in achieving energy
transparency, corresponds to counters for a numerical properties that change while a piece of code is
executed. This leads to the notion of resource captured by such counters. The resources in the IAL
are very close to those found in Ciao. In particular, to describe a resource, we have to provide the
following information:

1. A name that uniquely identifies the resource throughout the analysis and optimisation phases.
For example, the resource energy;

2. How does each elementary operation in the program modifies the resource.

These leads to models, which express how the execution of some basic operations in a hard-
ware platform affect the resource consumption. For example, a model can express that the
consumption of energy by the execution of a basic add assembly instruction is 10 mJ;

3. How to aggregate the resource consumption of a piece of code from the information of its con-
stituent parts. For example, when executing functions f and g in parallel, the time consumed
is roughly the maximum of the time of each function, whereas the energy consumed depend
on whether the processor runs at a lower speed, whether the work is divided between cores, etc.

Resource -> resource(Approx, Id, NumberArg)

We have made a preliminary list of resources that the system must tackle:

• Energy resources: Energy, peak power, average power and capacitance fall into this category.
They are highly dependent on frequency, voltage and temperature of the processor;

• Time resources: such as clock time, number of steps or number of executed instructions;
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• Data resources: refer to information stored or transmitted by the system. This includes used
memory or bytes sent or received from a port.

Failure and determinism: In many cases, the analysis also needs to know whether some code will
be executed “to the very end” or there is a chance that it ends in other way. This encompasses three
main ideas:

• In some languages, functions can throw exceptions. Knowing which exceptions can be thrown
can help us giving accurate resource estimations;

• In logic languages, predicates can either succeed or fail. Non-failure analysis, as implemented
in CiaoPP, is instrumental to obtain non-trivial lower bounds for the consumption of some re-
sources;

• Also in logic programming, it is important to know which set of clauses can be executed at a
given time, because it restricts the amount of work needed, for example, to obtain all solutions.

FailDet -> throws(Id*)

FailDet -> not_fails

FailDet -> possibly_fails

FailDet -> is_det

Probability of branches: Failure or determinism are very sharp distinctions in many cases. Instead,
a probability can be assigned to each branch of execution.

Probability -> probability(Num)

Modes of execution: As mentioned in the section on resources, those can be aggregated in different
ways depending on how a piece of code is mapped into execution in the actual hardware. Furthermore,
some of the optimisations that will be proposed are based on changing this mode of execution, usually
between sequential and independent parallel execution. The initial set of modes we would like to
consider in the IAL include sequential, independent parallelism and communicating parallelism (as
can be found in the XC language that we will target).

4.2.4 Examples

In this section we will see how the IAL and the properties stated before are enough for defining
some of the information about the hardware we want to model, for annotating functions with energy
information, and other functionality required. As in the rules, we are going to use Prolog directives
and terms as the concrete syntax.

Energy models: In the most basic case, a model for the energy consumption of a processor assigns
a constant energy to each assembly instruction executed. So, given a set of basic instructions, the
energy model for a simple processor would look like:
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:- trust add(X,Y,Z) + resource(avg, energy, 154).

:- trust sub(X,Y,Z) + resource(avg, energy, 176).

:- trust mul(X,Y,Z) + resource(avg, energy, 330).

...

Note that the first argument (avg) of the resource property expresses that the given energy con-
sumption for the add instruction is an average value.

In a finer version, we could include the frequency as a parameter, and distinguish different types
of operands. For example, an add instruction could take either two registers, or one register and one
immediate value (we model these differences using types), giving different energy results:

:- trust add(T,R,S)

: register(R), register(S), frequency(F)

+ resource(avg, energy, 74*F).

:- trust add(T,R,S)

: register(R), immediate(S), frequency(F)

+ resource(avg, energy, 71*F).

Note that in this case, the energy consumption is given as a function on the frequency F.

Dynamic Voltage and Frequency Scaling: The fact that we can express environment conditions
before and after the execution of a piece of code is very useful for modelling functions that change
the state of the processor.

Assume an instruction chgfrq that has just an operand that is the new frequency in which the
processor must run. This operand is a number, so its size is barely its value. The time needed for
making the switch depends on the difference between the old and new frequency:

:- trust chgfrq(F)

: ( size(F,FNew), frequency(FOld) )

=> frequency(FNew)

+ resource(ub, time, 11*abs(FNew - FOld)).

Annotating functions with energy consumption: Assume that we want to annotate a function (e.g.,
a factorial function in a library) with trusted energy consumption information. The following is an
example of an assertion that could be used for it:

:- trust factorial(N)

: ( int(N), frequency(F) )

+ resource(ub, energy, 70 * N * F).

which express an upper bound (ub) for the energy consumption of a call to the factorial function, given
as a function on the input integer N and the clock frequency F.

28



5 Front end

The front end of the Common Assertion Language consists of syntactic extensions to the XC language,
so that some of the properties described in the assertion language are also expressible using the front
end language. We also describe how the information expressed in the front end can be extracted and
propagated through the system layers. We intentionally do not fully specify the front end language
here since the exact features will depend on experimentation with real case studies.

5.1 Expressions and constraints

In XC, the basic constraints are composed of arithmetic and boolean expressions about program ob-
jects. The linguistic elements of the front end language will likely consist of:

1. Simple XC boolean and arithmetic expressions.

2. Additional energy/power specific functions and predicates.

3. Additional probability density functions.

Expressions are simple arithmetic and probabilistic constraints on program variables e.g.:

x < 10

x = normal_distribution(...)

In addition, specific predicates and functions can specify resource usage properties. For example, a
max energy function that represents the maximum amount of energy a function will consume when
run parametric to input arguments can be represented as:

max_energy(f(x)) < N + M * x

Often, functions run indefinitely so there will be also be a need for power analysis functions e.g:

max_power(f) < N

Another useful addition, which also helps with the translation of the front end language to the
Internal Assertion Language, is the use of symbolic global counters. For instance, we can add two
counters for time and energy called time and energy respectively:

en1 == energy // if true, there exists a variable en1,

... // containing the energy consumed up to this point

en1 + 100mW > energy

These global counters can only be used in boolean expressions such that their actual values do not
have to actually be evaluated. For instance, the following is disallowed:

time == 100

Whatever the exact nature of the constraint expressions, these need to be embedded into the XC
program. The following section describes a method to achieve this.
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5.1.1 Global properties

At the global scope of an XC program, the user can specify global level properties to either trust or
check a property (trust and check having the same meaning as in Section 4):

#pragma entra check expr;

#pragma entra trust expr;

The expressions within the trust/check predicates may reference global variables and functions de-
clared in the XC source.

The properties can have an optional name e.g.:

#pragma entra [assertion_1] check expr;

This allows the user to refer to the property in other tools. It is expected that most power and energy
checks will be expressed in terms of global functions. For example:

void f();

#pragma entra [max_power_of_f] check (max_power(f) < 2mw);

5.1.2 Local properties

At local scope the user can make local properties. These can be trust or check properties but also
require a temporal modality (one of now, always):

[[entra::trust now expr]];

[[entra::trust always expr]];

Here, the expressions can reference both global and local variables in scope.
The now modality says that that expression is true at that point in time e.g.:

x = f();

[[entra::trust now (x < 10)]];

The always modality says that that expression is true at all points in program execution. This can
be used to express, amongst other things, invariants on variables in the program:

int x=0;

[[entra::trust always (x < 10)]];

5.1.3 Program point labels

Program points in the execution of the program can be given labels:

[[entra::label name]];

These labels represent the set of states that the program may reach at that program point.
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5.1.4 Control flow properties

Control flow properties can only be used when attached to a particular loop construct and have no
modality. The following property lets the user state the number of expected iterations of a loop:

[[entra::trust max_loop_iterations(N)]]

while (e) {

...

}

The cond probability lets the user specify the probability of a conditional expression being true:

[[entra::trust cond_probability(0.4))]]

if (e) {

...

}

The ignore if true and ignore if false let the user specify that a branch should be ignored
with respect to any analysis.

[[entra::ignore_if_true]]

if (e) {

...

}

These can also be suffixed with wrt, which is interpreted to mean that a branch is ignored when
checking a particular property (using the named):

[[entra::ignore_if_true_wrt(max_power_f)]]

if (e) {

...

}

5.2 Retaining information in LLVM IR and ISA representations

The assertion pragmas and attributes can be maintained through to the LLVM IR and ISA levels by
translating the assertions into inline assembly at an early stage of compilation (during parsing). For
example, the pragma:

#pragma entra [max_power_of_f] check (max_power(f) < 2mw);

would translate to an XC inline asm statement as follows:

asm("#entra check [max_power_of_f] check (max_power(f) < 2mw)");
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This assembly comment will be maintained through compiler optimisations to the ISA level. To
allow accurate analysis, any global functions referenced in assertions are not inlined by the compiler.
This allows any analysis framework to know all uses of the function (at the expense of some possible
compiler optimisations).

Local assertions translate to volatile inline asm to maintain their position in control flow relative
to other code. The front end of the compiler also has to keep track of any local variables referred to in
the expression, and make them inputs to the inline assembly. For example, the following code:

int x=0;

[[entra::trust always (x < 10)]];

would be translated to:

int x;

asm volatile ("#entra trust always ([x,%0] < 10)]]"::

"r"(x):"memory")

This way, the value of x is always available in the LLVM IR and the final ISA.
Declaring inline assembler statements in this way makes the assertions easier to track during

compiler and optimisation but can prevent certain optimisations from happening. We also need to
keep in mind that single locations in source code can map to multiple locations in assembler code
- asm statements are therefore not immune to program transformations such as loop unrolling and
inlining.

After full compilation and optimisation, the inline assembly comments can then be translated into
constraints for an analysis tools (e.g. CiaoPP).

Control flow assertions also translate to inline assembly by passing the value of the condition to
the assembly as a parameter. For example, the following condition:

[[entra::trust cond_probability(0.4))]]

if (e) {

...

}

would translate to:

int tmp = e;

asm volatile("#entra trust cond_probability([e,%0], 0.4))"::

"r"(tmp):"memory")

if (e) {

...

}
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The one exception to this method of translation is the max loop iterations assertion. This uses
a different method of translation that utilises already existing mechanics in the XC compiler backend
to annotate the back-edge jump of a loop with the information. This feature already exists as part of
the XMOS timing analyser (see Section 3.2.4).

5.3 Linking front end to internal assertion language

As part of the translation from a source language to an internal representation that will be analyzed
(which is explained in deliverable D3.1), the assertions written in the front end language have to be
converted in the corresponding ones in the internal assertion language.

The status and properties remain almost unchanged in the translations. The scope is the part
that needs more work, because the kind of syntactical constructs may differ between the source and
intermediate languages. For example, when converting an XC program into a CLP representation, the
assertions must be moved from program points into Horn clauses.

As an example of the aforementioned translation, consider the following program written in XC
with assertions:

#pragma entra check (energy(factorial(n)) < 200*n);

int factorial(int n) {

[[entra::trust now (n >= 0)]]

[[entra::trust cond_probability(0.4]]

if (n == 0)

return 1;

else

return n * factorial(n-1);

}

The translation to CLP with assertions in the IAL using term syntax would take this form:

:- check pred factorial(N,R)

: int(N), var(R), size(N,(0,’Infinity’))

+ resource(ub, energy, 200*N).

:- trust clause factorial/2/1 + probability(0.4).

factorial(N,R) :- N is 0, R is 1.

:- trust clause factorial/2/2 + probability(0.6).

factorial(N,R) :- N1 is N - 1, factorial(N1,R1), R is N * R1.

There are several things to notice:

• The check assertion in the initial XC program has been converted to a check assertion in the
CLP program. The latter assertion contains some extra preconditions that are only implicit in
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the XC code: the types of variables, and the assertions that apply right at the beginning of the
code of the factorial function;

• Since different paths of execution are represented as Horn clauses, the syntax for the prob-
ability now has as scope a clause (for example, factorial/2/1 is the first clause of the
factorial/2 predicate).
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6 Scenarios for the Use of the Common Assertion Language

We have compiled three different scenarios, which demonstrate how the common assertion language
is utilised in various parts of the system. We demonstrate how the assertions are preserved between
source, intermediate compiler representations and machine representations and how these are trans-
lated to internal assertion language representations and vice versa.

6.1 Scenario 1. Checking and verifying an energy budget

In this scenario the program to be analysed is a function that will be called repeatedly in a system
powered by a battery. The battery can supply 100,000 units of energy (the units are not specified
here) and the developer wants the battery to supply power for at least 1,000 calls to the function.
The function can be called with an input parameter that affects the energy consumed by a call to the
function.

Therefore the developer sets a budget of 100 units of energy, and aims to explore what range of
input values will be handled by the function without exceeding that budget. The aim in this case is
not to simply check that the energy budget holds unconditionally. Therefore, the system is expected
to automatically infer a range of input values for which the budget will hold.

For the purpose of the example we assume that the function is factorial (called fact below) which
has one integer argument.

1. An assertion is added to the XC source of the fact function stating that the energy consumed is
at most 100 units. An example of how this might appear as a source language annotation (front
end assertion language) is as follows.

#pragma entra check (energy(fact(n)) < 100);

Notice that the keyword check means that the analysis tools should try to verify that the
assertion holds in the program. Also note that n is a free variable in the expression, which
means that the resource analysis framework will try to infer its type and its possible ranges in
order to try to meet the conditions expressed in the assertion.

2. The source code pragma is mapped from source code to intermediate compiler representations
and ISA level. A solution that does not involve deep changes to the XC compiler is to simply
copy all entra pragmas at a module level into the LLVM IR. LLVM has a facility to add
inline assembler expressions to a module. These assembler expressions are then copied to the
ISA representation. Since comments are also valid assembler statements, the pragma can be
translated and added to the LLVM IR module:

module asm ".loc 0 3 2"

module asm ";#entra check (energy(fact(n)) < 100)"
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The rest of the standard compiler toolchain (llc) copies this line of inline assembler to the
prelude of the assembler file when compiling to ISA instructions. Note that information is
retained on the relation of compiled assertions to the position of original assertions. This is
preserved using the DWARF standardised debugging format, and preserves line and column
numbers, so that analysis results can be reported back to source level.

3. The ISA code including assertions is translated to the internal representation (IR) which is
the input to the analysis tools. The energy assertion, when translated into the internal assertion
language (IAL) of the IR, has the following form (we omit positional assertions for presentation
purposes):

:- check pred fact_internal(A, B): (int(A), var(B))

+ resource(energy, 0, 100).

Here fact internal is assumed to be the internal name for the predicate representing the
fact function in the source program.

4. The IR of the ISA program is combined with assertions representing the ISA energy model.
In this simple scenario each instruction is assigned an energy value, represented as a trust
assertion. For instance the ADD instruction (integer unsigned add) is given an upper-bound
energy consumption by the following assertion.

:- trust pred add(X,Y,Z) + cost(ub, energy, 1215439).

5. The resource analysis of the IR infers both upper and lower bounds on the resource “energy”.
The analysis results are written in the IAL as:

:- true pred fact_internal(A,B)

: (int(A), var(B) )

=> (int(A), int(B), rsize(A, num(LA,UA)),

rsize(B, num(’Factorial’(LA),’Factorial’(UA)))

)

+ resource(energy, 21 * A + 16, 21 * A + 16).

This means that the analysis in this case infers that both the lower and the upper bound resource
usage function are the same: 21 * A + 16, a linear function on the value of the input argument
to the factorial program. In general the upper and lower bound functions are different.

Note: The analysis also infers upper and lower bounds for the result of the fact function.
These bounds are inferred to be UA! and LA! respectively, represented in the assertion as
’Factorial’(LA) and ’Factorial’(UA), where UA and LA are the respective upper
and lower bounds for the input argument. However this information is not used in checking the
energy assertion.
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6. Then, a comparison of the analysis results with the “check” assertion (the specification) is
performed. As a result, the following assertions in IAL are produced:

:- checked pred fact_internal(A, B):

(int(A), intervals(int(A), [i(0,4)]), var(B))

+ resource(energy, 0, 100).

:- false pred fact_internal(A, B):

(int(A), intervals(int(A), [i(5,inf)]), var(B))

+ resource(energy, 0, 100).

The first assertion means that the specification energy < 100 is true if the input argument of
the factorial program A is in the interval [0, 4]. The second one means that the specification
is false if A > 4.

7. These results are translated back to a representation compatible with the source language. A
new assertion is derived from the original assertion, which indicates that it has been checked,
and holds subject to a constraint.

#pragma entra checked

(n >= 0 && n =< 4 ==> energy(fact(n)) < 100);

6.2 Scenario 2: Checking a power budget

In this scenario the programmer wishes to ensure that the average power during execution does not
exceed a fixed limit. (Note that checking peak power is a different scenario and would have a different
resource name).

Therefore the programmer sets a fixed limit of say, 100 power units (again, the units are not
important). As before, assume that this program is the factorial function.

1. An assertion is added to the XC source of the function stating that the average power dissipated
is at most 100 units. An example of how this might appear as a source language annotation is
as follows.

#pragma entra check (avg_power(fact(n)) < 100);

The keyword check means that the analysis tools should try to verify the assertion.

2. As in the previous scenario, xcc preserves this assertion in the compilation to LLVM/XS1
code.
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3. The ISA code including assertions is translated to the internal representation (IR) which is
the input to the analysis tools. The average-power assertion, when translated into the internal
assertion language (IAL) of the IR, has the following form.

:- check pred fact_internal(A, B):

(int(A), var(B)) + resource(avg_power, 0, 100).

where fact internal(A, B) is a logic predicate (B is an output argument that represents
the returned value of the XC fact function). The property resource(R, L, U) represents
that L and U are lower and upper bounds respectively on the usage of resource R by any call
to fact internal(A, B) that meets the precondition int(A), var(B) (the comma
represents a conjunction).

The assertion has the status check, which expresses that we want the system to attempt to
verify it.

4. Assuming that there exists an ISA-level energy and timing model, the resource analysis engine
must contain the strategy that in order to infer the resource avg power it has to infer the
resources energy and time and derive avg power from them,

5. The resource analysis infers both upper and lower bounds on the resource avg power. The
analysis results are written in the IAL as:

:- true pred fact_internal(A,B)

: ( int(A), var(B) )

=> ( int(A), int(B),

rsize(A, num(LA,UA)),

rsize(B, num(’Factorial’(LA),’Factorial’(UA))) )

+ resource(avg_power, 10, 90).

which means that the lower and upper bounds inferred by the analyser are 10 and 90 respec-
tively. Note the status true of this assertion. The variables UA and LA and the associated
constraint have the same meaning as in Scenario 1.

6. Then, a comparison of the analysis results with the check assertion (the specification) is per-
formed. As a result, the following assertion in IAL is produced:

:- checked pred fact_internal(A, B):

(int(A), var(B)) + resource(avg_power, 0, 100).

which means that the specification has been proved (status checked).
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7. We can have other outcomes of the verification process depending on the analysis results. For
example assume now that the lower and upper bounds inferred by the analysis were 150 and
250 respectively:

:- true pred fact_internal(A,B)

: ( int(A), var(B) )

=> ( int(A), int(B),

rsize(A, num(LA,UA)),

rsize(B, num(’Factorial’(LA),’Factorial’(UA))) )

+ resource(avg_power, 150, 250).

In this case, the specification would be false:

:- false pred fact_internal(A, B):

(int(A), var(B)) + resource(avg_power, 0, 100).

8. Finally, assume that the lower and upper bounds inferred by the analysis were 10 and 150
respectively:

:- true pred fact_internal(A,B)

: ( int(A), var(B) )

=> ( int(A), int(B),

rsize(A, num(LA,UA)),

rsize(B, num(’Factorial’(LA),’Factorial’(UA))) )

+ resource(avg_power, 10, 150).

In this case, the system wouldn’t be able to prove whether the specification is true or false,
which implies that the assertion status remains as check:

:- check pred fact_internal(A, B):

(int(A), var(B)) + resource(avg_power, 0, 100).

9. As in Scenario 1, the result of analysis is reported back to the user by setting the checked,
false or check status in the XC source assertion, corresponding to the sample analysis
results above.

6.3 Scenario 3. Using trusted assertions for unknown code

In this scenario the code of a function called in the main function is not available or is not implemented
yet. The developer wants to know the impact on energy consumption of such a function in the main
function.
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1. Assume the following sqr program that calls the function sqr aux, which is not implemented
yet:

int sqr_aux(int n);

int sqr(int n)

{

if (n == 0)

return 0;

return sqr_aux(n) + sqr(n-1);

}

2. The developer assigns an estimated energy consumption value to the function sqr aux, and
tells the system to trust it in order to see its energy impact on the whole system with an assertion:

#pragma entra trust (energy(sqr_aux(n)) < 100);

3. As in the previous scenarios, xcc preserves this assertion in the compilation to LLVM/XS1
code, which gets translated into the internal assertion language as:

:- trust pred sqr_aux_internal(X,Y) + cost(ub, energy, 100).

which means that the analyser will trust un upper bounds on the energy consumption for the
sqr aux function to be equal to 100, and will infer the energy consumption function 200 *

X + 140 for the main function sqr, where X is its input argument. This is expressed using
the assertion:

:- true pred sqr_internal(X, Y):

(int(X), var(Y)) =>

(int(X), int(Y))

+ cost(ub, energy, 200 * X + 140).

4. Now, assume that we provide a parameterised expression for the energy use of sqr aux:

#pragma entra trust (energy(sqr_aux(n)) < 151 * n + 141);

where n is the input argument to the sqr aux function in XC. The translation in this case
results in:
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:- trust pred sqr_aux_internal(X,Y)

+ cost(ub, energy, 151 * X + 141).

5. The analysis will trust the energy information for sqr aux and will infer energy consumption
for the sqr program by taking into account this trusted information:

:- true pred sqr_internal(X, Y):

(int(X), var(Y))

=> (int(X), int(Y))

+ cost(ub, energy, 103 * exp(X, 2) +

205.8 * X + 188.32).
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7 Summary

The Common Assertion Language will be used throughout the project to express specifications that
are used by the tools developed in ENTRA. These specifications are expressed in the source language,
propaged through the system layers and are also expressed in the internal assertion language. We
have come up with a description for the front end that is generic enough to be integrated into different
source languages. The Ciao assertion language is used as a starting point for the internal assertion
language, and will be extended and modified as needed. This language will be heavily used in the
resource analysis framework (D3.1), and plays an essential role in the ENTRA project. At the same
time, the specification of the Internal Assertion Language is designed such that it is generic enough to
be applied to other resource analysis frameworks.

Thanks to the Common Assertion Language definition, all partners have achieved consensus on
how the tools developed under the ENTRA project will interface to each other. In terms of future
work, we intend to modify and implement the languages based on the kinds of analysis and the sorts
of optimisations we will be performing in future work packages.
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