ENTRA

Whole-Systems
Energy Transparency

ENTRA
318337
Whole-Systems ENergy TRAnsparency

A General Framework for Resource
Consumption Analysis and Verification

Deliverable number: D3.1

Work package: Analysis and Verification (WP3)
Delivery date: 1 October 2013 (12 months)
Actual date: 13 November 2013

Nature: Report

Dissemination level: PU

Lead beneficiary: IMDEA Software Institute

Partners contributed: Roskilde University, University of Bristol, IMDEA Software Insti-
tute, XMOS Limited

Project funded by the European Union under the Seventh Framework Programme,
FP7-ICT-2011-8 FET Proactive call.

Short description:

This deliverable describes the general program analysis framework that we have developed,
and how it can be instantiated for inferring particular resource usages, such as energy, which is

our main motivation. It includes the following attachments:

e D3.1.1. Energy Consumption Analysis of Programs based on XMOS ISA-Level Models.
Published at the 23rd International Symposium on Logic-Based Program Synthesis and
Transformation (LOPSTR’13).

e D3.1.2. Sized Type Analysis for Logic Programs. Published as a technical communication
in Theory and Practice of Logic Programming, 29th Int’l. Conference on Logic Program-
ming (ICLP’13) Special Issue, On-line Supplement.

e D3.1.3. Towards an Abstract Domain for Resource Analysis of Logic Programs Using
Sized Types. Published at the 23rd Workshop on Logic-based Methods in Programming
Environments (WLPE 2013).

e D3.1.4. Genetic Algorithm-based Allocation and Scheduling for Voltage and Frequency
Scalable XMOS Chips. Published at Hybrid Artificial Intelligent Systems (HAIS 2013).

e D3.1.5. A Coverage Model to Capture the Communication Behaviour of Multi-Threaded

Message-Passing Programs. Submitted to the International Conference on Software Test-
ing (ICST 2014).

e D3.1.6. Operational Semantics for XC.

Contents

Introduction
Essentials of the Analysis Framework

Producing the Program for Analysis

3.1 Producing Ciao IR (CLP) by Direct Transformation
3.1.1 ISAto Ciao IR Transformation.
3.1.2 LLVMto Ciao IR Transformation

3.2 Producing CLP by Partial Evaluation of Instrumented Interpreters
32.1 Introduction.
3.2.2 Operational Semantics
3.2.3 Semantics-Based Interpreter L.
3.2.4 Partial Evaluation of the Semantics-Based Interpreter
3.2.5 Instrumented Semantics for Resource Usage Analysis
3.2.6 Partial Evaluation of the Instrumented Semantics

LLVM and its Role in Analysis
4.1 Accessing the LLVM IR Produced by the XMOS xcc Compiler
4.2 LLVM vs. ISA: Advantages and Disadvantages of Analysing at these Layers

Producing the Mapping Information

5.1 Mapping through Debug Information
5.2 Mapping the Analysis Results Back to the Source Code
5.3 Propagating Energy Models to a Different Layer Through Mapping

Analysers

6.1 Analysis with the CiaoPP Tool
6.1.1 Abstract Interpretation L.
6.1.2 Resources
6.1.3 Sized Types Analysis
6.1.4 Cardinality and Resource Usage Analysis
6.1.5 Energy Analysis of XC Programs with CiaoPP

6.2 Direct Analysisof LLVMIR
6.2.1 LLVMIR e
6.2.2 Symbolic evaluation of LLVM IR variables

1

12

13
13
14
14
18
18
18
20
21
25
28

30
31

32
32
33
33

6.2.3 Inferring block arguments
6.2.4 Generating CostRelations
6.3 Model-based Static Analysis of CLP Programs
6.3.1 Checking program properties

6.3.2 Abstract interpretation of fixpoint semantics
7 Showing the Analysis Information to the User

8 Probabilistic Resource Usage Analysis
8.1 The Need for Dependence Analysis
8.2 Copula-Based Analysis
8.2.1 Application to Resource Usage Analysis
8.2.2 Nested Archimedean Copulas
8.3 Transformation based Probability Analysis
8.4 Summary and Future Directions for Probabilistic Analysis
8.4.1 Copula Analysis Using Abstract Interpretation
8.4.2 Transformation Based Probabilistic Analysis

8.4.3 Probabilistic Information in Program Development

9 Analysis of Concurrent Programs
9.1 XCSemantics o e
9.1.1 Parsing and Abstract Syntax
9.1.2 Extra Informationinthe AST
9.1.3 The XCore Thread Execution Model
9.2 Approaches Towards the Analysis of Multi-Threaded Programs

10 Properties used by the State of the Art Energy Optimization Techniques

10.1 Compiler Optimizations for Low Power
10.1.1 Power/Energy vs. Performance Optimizations
10.1.2 Energy Efficient Compiler-based Task and/or Data Parallelization
10.1.3 Summary of Used Static Analysis Techniques

10.2 Algorithm and Code Energy-aware Optimizations
10.2.1 Re-computation vs. Communication
10.2.2 Precision (QoS) - Energy Trade-off
10.2.3 Summary of Used Static Analysis Techniques

10.3 OS/Middleware Level Energy Optimizations

2

55

56
57
59
60
61
61
62
63
63
63

63
64
65
66
66
67

Attachments 79
D3.1.1: Energy Consumption Analysis of Programs based on XMOS ISA-Level Models 81

D3.1.2: Sized Type Analysis for Logic Programs 100
D3.1.3: Towards an Abstract Domain for Resource Analysis of Logic Programs Using
Sized Types o i e 115
D3.1.4: Genetic Algorithm-based Allocation and Scheduling for Voltage and Fre-
quency Scalable XMOS Chips o 131
D3.1.5: A Coverage Model to Capture the Communication Behaviour of Multi-Threaded
Message-Passing Programs o 142
D3.1.6: Operational Semantics for XC 153

1 Introduction

This deliverable describes the general program analysis framework we have developed, and how

it can be instantiated for inferring particular resource usages. A resource is a very general notion

that includes energy, which is our main motivation, execution time, and other non-functional pro-

gram properties about the whole execution of programs or program segments, such as procedures

or functions.

We have designed the framework to meet the following requirements:

1.

Supporting energy transparency through the system layers. This implies that the frame-
work should allow the relation of higher layer properties which are independent from the
underlying hardware, such as the number of times a procedure, loop, or instruction are

executed, with lower layer properties such as energy and execution time.

The framework should be parametric with respect to resources and cost models. In parti-

cular, it should give support to easily:

e define resources and

e express how different basic elements of a program affect its resource usage. This

implies an easy use of the models for lower system layers developed in WP2.

. The resource information inferred by the analysis is:

e given as functions of data sizes and other needed parameters,

e expressed in the common assertion language described deliverable D2.1 (in particu-
lar, in the internal assertion language aspect of the common assertion language, IAL),
and

e used for verification (WP3), optimization (WP4), and to help the system developers
to better understand the effect of their designs in energy consumption (WP1).

The framework is flexible and powerful enough to support a wide range of resources and
other (auxiliary/instrumental) program properties, focusing on those that we foresee to be

used in next stages of the project.

. The framework should support probabilistic resource analysis.

The framework should be capable of dealing with concurrent programs, and

. It should be able to handle different languages in the same framework.

4

The last requirement (7), leads us to differentiate between the source language and the lan-
guage actually analysed, which we call intermediate semantic program representation language
(IR from now on). As a proof of concept to be developed in the project, we focus on the analysis
of programs written in the XC source language. However, our framework is general enough to
easily allow the analysis of other source languages as well. Our approach to allow the analysis
of different source codes is to perform a transformation from each source code into the IR. Then,
the analyser deals with the IR always in the same way, independently of where it comes from.

We have decided to use (Constraint) Horn Clauses, or equivalently, (Constraint) Logic Pro-
grams (CLP from now on), as the IR of a given source code. The main reason is that CLP offers
a good number of features that make it very convenient as the IR for analysis. For instance, CLP
programs are in Static Single Assignment (SSA) form, as it will be explained later. Moreover,
there are available tools (such as CiaoPP [HPBLGOS]) that use a CLP intermediate representation
for analysis and that we can use and extend. In fact, currently, there is a trend to use CLP as in-
termediate representation in analysis and verification tools. The CLP representation is described
in Section 2.

Figure 1 shows a high-level view of the general analysis framework that we propose, illus-
trating the ideas described above. The process starts with a source program that may contain
assertions (expressed in the front end part of the common assertion language, and used to pro-
vide useful hints and information to the analyser, as described in deliverable D2.1), from which
the Transformation tool (red box) generates its associated IR (green box). We assume that the
Transformation box includes the compilation process. Thus, the idea is that the transformation
box takes the source code as input and produces the program to be analysed. The transformation
process is also in charge of translating the (front end) assertions (or annotations) present in the
source code into assertions written in the internal assertion language (IAL) described in deliv-
erable D2.1 already mentioned. Moreover, the transformation process takes an energy model
as input, and translates it into assertions expressed in the IAL. The role of the energy models
is to express the effect, in terms of energy consumption or other resources that depend on the
underlying hardware, of the execution of a software segment (e.g., an assembly instruction) on
the hardware. Such information is required by the analyser, which propagates it during the static
analysis of a program (expressed in the IR) in order to infer information (the analysis results) for
higher-level entities such as functions or procedures in the program. This is also illustrated in
Figure 1, where the Analyser (blue box) takes the IR, together with the IAL assertions, express-
ing the energy models and possibly useful (trusted) information, and processes them, producing
the analysis results, expressed also in the IAL. The analysis results include energy consumption
(or, in general, resource usage) information expressed as functions on data sizes for the whole

program and parts of it, such as procedures and functions, as mentioned before. Such results, are

5

then processed by a Visualiser (pink box) which is in charge of showing the information to the
users (system developers) in an appropriate format, in order to help them to better understand
the effect of their designs on the energy consumption early on during the software development

process, and make more informed design decisions (e.g., using the appropriate data structures),

even when there are parts not developed yet.

Front end _
assertion language

Internal -
assertion language

Front end _
assertion language

Source +
Annotations

“4

Mapping Info

Energy

Transformation +
Mapping Models

Intermediate program
representation + Assertions

Analysis results

Visualizer

[Messages | [Graphs | Source

annotated with
assertions

* When analysis and models are at different layers

Figure 1: High-level view of the general analysis framework architecture.

There can be different ways of showing such information to the user, for example, by annota-
ting the source code with assertions expressing energy consumption functions for the procedures
and functions in it; by colouring the source code according to how much energy it consumes

(e.g., red for the energy-expensive code and green for the “cool” parts); by means of messages;

6

- oats
@ = Tool
Ej = Data sour
_ Informati
flow
— > = Alternati
choices

or by using data structures such as graphs. These alternative choices are represented in Figure 1
by using blue arrows.

The Visualiser also takes as input the mapping information, which includes the information
needed for mapping the analysis results back to the procedures and functions in the source code.
Such mapping information is produced by the transformation process (red box).

We have explored different realizations of the general analysis framework shown in Figure 1
by choosing different combinations of realizations for the Analyser and Transformation. These

will be explained in detail later.

Energy Model + Internal representation

Program (including frontend assertions) Transformation (including IAL assertions) Analysis

i A i i
f \ 1 i [i

Energy E&{ Source code ﬂ Transformation

> IR
Model J
1

9 ! XC Compiler
S > FEEEESSFss s sss TS TS F S SRS SSSSSSSSSSESSSES

=
S 7]
] o
g @ -
et — Transformation
a > IR Analyser

=N -
-
s 3
5 =
(] o
S = LLVM Code Generator

R e T

(%]
o (%]
()
= .
w Energy consumption

w Transformation _ estimations
> IR

Hardware

Figure 2: Overview of the analysis/modeling layer trade-off.

Requirement 1, supporting energy transparency through the system layers, implies that en-
ergy consumption at hardware layer should be immediately visible at the layer at which software

7

Eneréi Modeling Precision Loss

Source +
Annotations

Source)
/ Energy
U rnctormaton | e i Models
i Transformation P TR
1 // 1
B |+ Mapping —#SourcetolRtransform// :
~ Source : o
> Layer ! ! LVM
8 o : ; Energy
= (0] 1 :
: 2 | | Models|
= 9 i
S Sq.lwwm
3 2 /
o & Layer
&+ O
o (%]
=}
o
a
ISA ’
= Layer

Intermediate program
representation + Assertions = Data

Mapping Info

@ = Tool
: _ Information
Analysis results " flow
> = Alternative
Visualizer choices
Energy annotated
ﬂ7 Messages " [r Graphs " Wsource with Assertions

Figure 3: Detailed view of the analysis/modeling layers within the analysis framework.

is designed or used (normally at source code layer). Since the execution of high-level source
code on the hardware is achieved through layers of compilation or interpretation, our approach
to meet the energy transparency requirement is to perform an analysis in combination with an
energy model. In our initial study, we have considered three software layers: XC source code,
LLVM IR [LAO4], and Instruction Set Architecture (ISA, or just assembly). Since our goal is to
investigate all possibilities, we assume that the analysis can be performed, and the models defined
at any one of these layers (with the obvious constraint that the analysis should be performed at
the same or at another upper layer the model is defined). Performing the analysis at a given layer
means that the analyser “mimics” the execution of the program (or an internal representation

of it) at such layer according to the semantics of interest, inferring energy information for such

layer. The energy model determines the bottom layer at which the analysis will propagate energy
consumption information up to the layer at which the analysis is performed, and thus provides

basic information that the analysis will just trust.

Figures 2 and 3 illustrate the idea that the analysis can be performed at the three layers
mentioned before. Figure 3 provides a more detailed view of the analysis/modeling layers within
the analysis framework shown in Figure 1. For simplicity, Figure 3 shows the models defined
at the same layer the analysis is performed. At any of these layers, a transformation into the
IR is carried out, and the IR is then passed to the analyser. These alternative choices for the
“Transformation box” are represented in the figure by using blue arrows. Note that in order
to map the analysis information inferred at one layer to an upper layer (typically to the source
code layer) the (program dependent) mapping information, produced also by the transformation
process, is used. However, this mapping process does not perform any analysis in principle.
Such mapping information is different from the (program dependent) mapping information that
can be used by the analyser to propagate the energy model information defined at one layer up

to the (different) layer at which the analysis is performed.

Our research on the ideas described above led us to face an interesting problem: deciding
at which layer the analysis should be performed and the model defined. Basically, the problem
arises because going down through the mentioned layers has opposite effects on the accuracy of
models and on the precision of the analysis: energy models at lower layers (e.g., at the ISA layer)
are more precise than at higher layers (e.g., XC source code), since the closer to the hardware,
the easier it is to determine the effect of the execution of the program on the hardware. However,
the program structure is lost and types are erased at lower layer representations, resulting in an
accuracy loss in the analysis. This analysis/modeling trade-off is also illustrated in Figures 2
and 3. The possible choices are classified into two groups: those that analyse and model at the
same layer, and the ones that analyse and model at different layers. For the latter, the problem we
face is that we need to find good mappings between software segments from the layer the model
is defined up to the layer the analysis is performed, in order not to lose accuracy in the energy
information. A good compromise could be performing the analysis and defining the energy

model at the LLVM IR layer. However, our plan is to explore all choices.

We first have explored the choice of both analysing and modelling at the ISA layer, and pub-
lished our results in [LKS™13], which is included in this document as attachment D3.1.1. In such
work, we have realized the general analysis framework in Figure 1 by using the CiaoPP analyser,
which uses a CLP based intermediate representation (Ciao IR), and performing a transforma-
tion that produces a CLP program representing the ISA program associated to the XC source
program. This is illustrated in Figure 4, as a realization of Figure 1.

9

XC+
Annotations

Transformation
+ Mapping

Maooer // ISA to CLP //
PP Transformation

”JCLP Program
+ Assertions

i ISA

Mapping Info

// CiaoPP Analyzer//
v

Analysis results

{ CiaoPP printer}}

Energy
Annotated XC

with Assertions

Figure 4: A realization of the general analysis framework using models and performing the
analysis at the ISA layer.

To give another example, a different realization of the general analysis framework in Figure 1
that we have explored is presented in Figure 5. This and other realizations will be described in
detail later as well.

In rest of this document, Section 2 explains fundamental concepts and results that our frame-
work is based on, such as semantics and intermediate program representation. Section 3 de-
scribes different approaches to produce the program for the analysis, which will be in the IR
form, i.e., different realizations for the “transformation” box in Figure 1. Then, Section 6 de-
scribes different choices for the “analyser” box in Figure 1, including the CiaoPP analyser, and

10

Section 7 comments on possible realizations for the “visualiser” box in Figure 1.

XC +
Assertions

Transformation+
Mapping

{ Mapper / Partial.
l / ! evaluatlon;

i ISA

CLP Program

Mapping Info (Instrumented)

/ CiaoPP Analyzer //

Analysis results

/CiaoPP printer //

Energy
Annotated XC
with Assertions

Figure 5: Realization of the general analysis framework based on partial evaluation.

Regarding requirements 5 and 6, Section 8 is devoted to the investigation of the foundations
of probabilistic resource usage analysis, and Section 9 to the investigation of the formal basis of
the analysis of concurrent programs.

Finally, in relation to requirement 4, the properties that the analysis should infer depend on:

e what properties are interesting to the software engineer to talk about in program specifica-

tions, and

e what properties are needed to perform the optimizations of WP4.

11

For this reason, we have performed an initial study of power-aware software optimization
techniques to identify the most promising techniques, and the properties that the analysis should
supply to them. The properties used by the known energy optimization techniques are summa-

rized in Section 10.

2 Essentials of the Analysis Framework

This section gives a summary of essentials of the analysis framework, such as the Intermediate
Semantic Program Representation for Analysis (IR) and translations from source languages to
IR.

Intermediate Semantic Program Representation for Analysis (IR). As already said, the key
to handle different languages in the same framework is to use an Intermediate Semantic Program
Representation for Analysis, IR, and perform a transformation from each source code into the IR.

This representation consists of a sequence of blocks. Each block is represented as a Horn clause:

< block_id > (< params >):— Sy, ... ,Sp.

which has an entry point, that we call the head of the block (to the left of the :— symbol),
including a number of parameters < params >, and a sequence of steps (the body, to the
right of the : — symbol), each of which is either, (the representation of) an ISA or LLVM IR
instruction (depending on the layer at which the program is analysed), or a call to another (or the
same) block. Be it LLVM IR, ISA, or any other program representation, the analyser deals with

the IR always in the same way, independently of its origin.

Translations into IR. We have explored different approaches to produce the program for the
analysis, which will be in the IR form. An approach is to perform a direct transformation into IR,
which is described in detail in Section 3.1, in particular, the transformation from (XS1) ISA and
LLVM IR programs into IR are described in Sections 3.1.1 and 3.1.2 respectively. The resulting
programs are analysed with the CiaoPP tool.

techniques to instrumented interpreters that directly implement the semantics of the language
to be analysed. Information relevant to energy usage can be encoded in the semantics and thus
embedded in the resulting IR (CLP) programs. CLP static analysis tools, such as CiaoPP, can

12

then be applied to the CLP programs to derive assertions relating energy usage to other program

variables. This is described in detail in Section 3.2.

Analysers. In order to analyse the IR representing programs at the XC, ISA, or LLVM IR
layers, we have experimented with the CiaoPP analyser, which uses the CLP based intermedi-
ate representation that we call Ciao IR. In addition, we have improved and extended CiaoPP
to integrate it in different realizations of the general analysis framework. This is described in
detail in Section 6.1. For the particular case of analysing at the LLVM IR layer, we have also
experimented and proposed a tool for the direct analysis of LLVM IR, which is described in
Section 6.2.

Mapping Information. Mapping information also plays an important role in our analysis
framework. There are two types of mapping information. The first one is the information needed
for mapping the analysis results back to the procedures and functions in the source code, and
showing such results to the user in the right place. Such information is a mapping between the
different intermediate code representations, ISA and the source code. The second type of map-
ping information is useful when performing the analysis at one layer using energy models defined
at a lower layer. Such mapping is used to propagate the energy model information defined at one
layer up to the layer at which the analysis is performed. We have developed a tool that produces

both types of mapping information, which is described in detail in Section 5.

3 Producing the Program for Analysis

In this section we describe the different approaches that we have explored to generate the IR to
be analysed, i.e., different realizations for the “transformation” box in Figure 1. In particular,
Sections 3.1 and 3.2 explain different approaches to produce the IR for analysis of LLVM IR and

ISA programs respectively.

3.1 Producing Ciao IR (CLP) by Direct Transformation

In this section we describe the transformations from programs at both the ISA and LLVM layers
into a CLP program written in the Ciao intermediate representation (Ciao IR). Such represen-
tation has already been described in Section 2. The transformation ensures that the program
information relevant to resource usage is preserved, so that the energy consumption functions of

the Ciao IR programs inferred by the resource analysis are applicable to the original programs.

13

3.1.1 1ISA to Ciao IR Transformation

In this section we comment on the transformation used in the realization of the general ana-
lysis framework depicted in Figure 4. ISA programs are expressed using the XS1 instruction
set [May13]. The transformation framework currently works on a subset of this instruction set.
The ISA program is parsed and a control flow analysis is carried out, yielding an inter-procedural
control flow graph (CFG). This process starts by identifying control transfer instructions such
as branch or call instructions. Basic blocks are then constructed, for which the input/output
arguments are inferred. These blocks are transformed into Static Single Assignment (SSA) form,
which, finally yields the target Ciao IR (i.e., Horn clauses). The details of this transformation
can be found in [LKS*13] (attachment D3.1.1).

3.1.2 LLVM to Ciao IR Transformation

In this section we comment about the LLVM to Ciao IR transformation that will be used in
the realization of the general analysis framework depicted in Figure 6. The way to generate
the programs at the LLVM IR layer will be described in Section 4.1. LLVM IR programs are
expressed using typed assembly-like instructions. Each function is in SSA form, represented
as a sequence of basic blocks. Each basic block is a sequence of LLVM instructions that are
guaranteed to be executed in the same sequence.

Each block either ends in a branching instruction or return. In order to represent each of the
basic blocks of the LLVM IR in the Ciao IR, we follow a similar approach as in the case of the

the ISA transformation:
1. Represent each LLVM instruction as a literal.
2. Infer input/output parameters to each block, removing the need for ¢ (phi) nodes.
3. Transform LLLVM types into Ciao regular types.
4. Resolve branching to the predicate with multiple clauses, where each clause denotes one

of the blocks the branch may jump to.

Inferring Block Arguments. As described before a block in the Ciao IR has an entry point
called head of the block with input/output parameters, and a body containing a sequence of
instructions (LLVM instructions in this case). Since the scope of the variables in LLVM blocks
is at the function level, the blocks are not required to pass parameters while making jumps to
other blocks. In order to represent LLVM blocks as Ciao IR blocks, we need to infer input/output
parameters to each block.

14

XC+
Annotations

Transformation

+ Mapping ISA
Energy
Models

™ 1SA/ LLVM IR +

Metadata
// Mapper //

LLVM IR to CLP
Transformation

“’CLP Program +Assertions

“, Mapping Info \
CiaoPP Analyzer

“, Analysis results

CiaoPP printer //

Energy
Annotated XC
with Assertions

Figure 6: A realization of the general analysis framework performing the analysis at the LLVM
IR layer and using ISA models.

The entry block in the LLVM IR is always alloca where the program variables are allocated.
The input/output arguments to the corresponding Ciao IR entry block are same as the input/output
arguments to the function under transformation. We define the functions param;, and param,;
which infer input and output parameters to a block. These are recomputed until the fixpoint is

reached.

params . (b) = (kill(b) U params;, (b)) 0 Uy eneat(n) PATaMS 0 (V')

pammsm(b) = gen(b) U Ub’Enext(b) pammsm(b')

where next(b) denotes the set of immediate target blocks that can be reached from b with a jump
instruction, while gen(k) and kill(k) are the read and written variables in a block respectively,

15

which are defined as:

kill(b) =) def (k)

n

gen(b) = Ufv [v eref(k) AV < k).v & def(5)}

k=1
and def (k) and ref (k) denote the variables written or referred to at a node in the block respec-
tively.

Note that the LLVM IR is in SSA form at the function level. This means that blocks may have ¢
nodes which are created while transforming the program to SSA form. The ¢ node is essentially
a function defining a new variable by selecting one of the multiple instances of the same variable
coming from multiple predecessor blocks.

T = ¢(r1, T2y .y Tyy)

def and ref on this instruction are {z} and {x1, zo, ..., x, } respectively. Once the input/output
parameters are inferred for each block, a post process removes all the ¢ nodes and modifies the
block input arguments such that it receives z directly as an input and an appropriate z; is passed
by the call site.

Translating LLVM Types into Ciao Regular Types. The LLVM type system defines prim-
itive and derived types. The primitive types are the fundamental building blocks of the LLVM
type system. The primitive types include label, void, integer, character, floating point, x86mmx,
metadata. The x86mmx type represents a value held in an MMX register on an x86 machine and
the metadata type represents embedded metadata. The derived types are created from primitive
types or other derived types, these include array, function, pointer, structure, vector, opaque.
Since XC does not support pointers nor floating point data types, the LLVM IR generated from
XC program uses only a subset of the LLVM types.

Translating primitive types to regular types is straightforward. The integer and character
types are represented as num, whereas the label, void and metadata types are represented as
atoms. However, LLVM allows to define varying bit-number integer types which are translated
to a num whose number of bits is not bounded.

Derived types are translated to compound terms. The array, vector, and structure types are
represented as follows:

array_type — list
vector _type — list

structure_type — functor_term

16

Both the array and vector types are represented by the list type in Ciao which is a special case
of compound term. The elements of the list are again one of the primitive or derived types. The
structure type is represented by a compound term which is composed of an atom called functor
and a number of arguments, which are again either primitive or derived types. LLVM also intro-
duces pointer types in the intermediate representation even though the front end language (e.g.
XC) does not use one. This is usually in the pass-by-reference arguments, memory allocations
in allocas block, and memory load and store operations. The types of these pointer variables in
the Ciao IR are treated the same as the types these pointers point to. Consider the example below
written in XC:

struct mystruct{ void print(struct mystruct s[7])
int x; {
int arr[5];

}s }

The type of argument s of the function print is an array of mystruct elements. mystruct
is further composed of an integer and an array of integers. The LLVM IR declaration of the
function print is:

define void @print([T x {i32,[5 x 132]}|* noalias nocapture) nounwind

The array type [7 x {i32,[5 x i32]} is read as an array of 7 elements of {i32,[5 x 32|}
structure type which is composed of a 32 integer type and a [5 x i32] array type. The array type
[5 x i32] is of 5 elements of 732 integer type. This type is represented in the Ciao IR as follows
using the regtype/1 construct of Ciao.

:— regtype arrayl /1. :— regtype structl /1.
arrayl ([]).
arrayl ([Elem |T]): — structl (" mystructl " (X,Y)): —
structl (Elem) , num(X) ,
arrayl (T). array2 (Y).

:— regtype array2/1.

array2 ([]).

array2 ([Elem |T]): —
num(Elem) ,
array2 (T).

17

arrayl type is a list of structl elements. Each structl type element is represented as a
functor mystruct /2 where the first argument is a num and the second is another list type array?2.
array? is defined to be a list of num.

The implementation will be an LLVM pass in the LLVM Pass Framework (LPF) which is an
important part of LLVM system. LPF allows plugging user defined transformation passes over
the LLVM IR. It allows us to re-use existing analysis and transformation passes over the LLVM
IR to aid our transformation.

We plan to use the LLVM IR to Ciao IR transformation described here for a realization of the
general analysis framework that performs the analysis at the LLVM IR layer (using the CiaoPP
tool) and uses the available models at the ISA level, together with the mapping information pro-
duced by the mapping tool described in Section 5.3. Such a realization is illustrated in Figure 6.
The next step will be to use standalone models at the LLVM IR level.

3.2 Producing CLP by Partial Evaluation of Instrumented Interpreters
3.2.1 Introduction

In this section we present a method for the translation of a variety of source programs into the
internal constraint logic program (CLP) representation. It has been implemented in the project for
substantial subsets of the XC language [Wat09] and the assembly language for XCore [May13].
The method is based on specialising a CLP interpreter that directly implements the semantics
of the language. Information relevant to energy usage can be encoded in the semantics and thus
embedded in the resulting CLP programs. CLP static analysis tools can then be applied to the
CLP programs to derive assertions relating energy usage to other program variables.

Section 3.2.2 describes the main aspects of operational semantics. Most features of im-
perative languages, including features for parallel execution, can be described using small-step
operational semantics. Section 3.2.4 explains how this interpreter can be specialised with respect
to a given source program abstract syntax tree, yielding a CLP program whose structure and be-
haviour mirror those of the original program. Section 6.3 outlines methods and tools for analysis
of CLP programs and the form of the results of analysis.

In Section 9.1, an operational semantics for XC is presented, which provides the basis for
translating multi-threaded XC programs into CLP using the techniques to be described in this

section.

3.2.2 Operational Semantics

The main features of typical small-step operational semantics are the following:

18

A configuration is a pair (S, o) where S is a statement in the abstract syntax and o is a
store. A store o is a finite mapping from a set of variable names N to a set of values V,

written as {x1=V1, -+ ,x,=V,, }.

e A transition has the general form (S;,01) £y (S2,09), where L is a set of labels (for
example indicating which communications to the external environment of S; are being
made by the transition). A transition represents one computation step. In the semantics
for parallel threads, one transition encodes one parallel step in which several threads may

progress simultaneously and the label might contain several communications.

e A computation is a finite sequence of zero or more synchronized transitions, which are
those in which the labelling £ is empty. Note that it is also possible to represent asyn-
chronous communication with a small-step semantics, by explicitly modelling buffers or

similar constructs in the configurations.

e Transition rules are of the form:

Cbl §bm

(S1,01) —=5 (S, 09)

where ¢1 - - - ¢,,, (m > 0) are the premises of the rule, which involve transitions on consti-
tuent parts of Sy as well as subsidiary functions, and (S, o1) £, (S5, 09) is the small-step
transition that is established if the premises hold. There is at least one transition rule for
each statement type except possibly the skip or terminal statement; that is, each non-skip

statement in a program matches 57 in at least one transition rule.

e Computations (multi-step transitions) are defined by the following two rules:

)

(skip, o) —"0

(So,Uo> — <51,U1> <51,01>—>*02
<So,0'0>—>*0'2

2)

A computation with initial configuration (S}, ;) and final configuration (Ss, 02) is repre-

sented as (S, 01) —>*09. S is some terminal statement.

The transition semantics can also be used to define the reachable states of a computation.

19

3.2.3 Semantics-Based Interpreter

A CLP program is obtained systematically from the operational semantics.
e Data structures are chosen to express the basic components of the semantics.

— A store is represented as a list of pairs; that is, {x;=V, -+ ,x,=V,,} is represented
as [(z1,V1), ..., (zn, V4)]. Operations such as lookup and update of the store are
implemented straightforwardly using CLP clauses. For example the find relation is
defined such that find(St0, X,V,Stl) is true iff X represents the variable z, St0
represents the store o{z=V} (where @ is the disjoint union of stores) and St1

represents the store o. Its definition is given by the following clauses:

find([(X, N)|St], X, N, 5t).
find([(Y, M)|St], X, N, [(Y, M)|St1]) ==
X\==Y, find(St, X, N, St1).
— Suitable functors are chosen to represent the abstract syntax constructs, so that an

AST is a CLP term. Values are encoded along with their type. For instance the
statement while (z) send ¢ (y + 1) could be represented as the term:

while(var(zx), send(const(chan(c)),var(y) + const(int(1))))
— Suitable terms are chosen to represent the transition labels.

e A single-step transition (S, oq) N (S, 09) is represented by a predicate exec(S1, St1, L, S2, St2)
and a multi-step transition (S}, 01) — "0y is represented by a predicate run(S1, St1, St2)
(where the predicate arguments are the CLP translations of the respective semantic expre-

ssions).
e Each transition rule of the form:

b1 b
bo

is translated to a CLP clause of the form:
AO Z—Al, e ,An.
where A; is the translation of the premise or conclusion ¢; (1 < ¢ < n) or ¢ respectively.

20

If P is a CLP program and A is a closed formula, P |= A states that A is a logical consequence
of P, assuming that constraint predicates and functions are given their standard interpretations.
Given a source program C, let /.~ be the CLP program representing the operational semantics
(possibly together with clauses representing the global definitions comprising C'). Let .Sy be an
initial statement for C' (such as a call to the main function) and o) be some initial store containing
values for (at least) the free variables of Sy; suppose S0 is the CLP representation of Sy, St0 is
the representation of o and St1 represents some other store ;. Then the following proposition

expresses the correctness of the translation.
Proposition. (Sy, o) — oy iff I = run(S0, St0, St1)

The program I~ can be run as an interpreter for program C' using a CLP system in the fo-
llowing way. Given an initial statement SO and an initial store St0 the CLP query

7— run(S0, St0, Stn)

computes the final store Stn, which will contain the final values assigned to the free variables in
S0.
However the main goal of translating the semantics into CLP is not to run source programs,

but rather to exploit static analysis tools for CLP. This will be discussed in Section 6.3.

3.2.4 Partial Evaluation of the Semantics-Based Interpreter

Let /¢ be the CLP program resulting from the operational semantics together with source pro-
gram C' and let Sy be an initial statement. If the initial state St0 is unknown then the query
run(S0, St0, St1) potentially has many (perhaps an infinite number of) solutions. However we
can partially evaluate I with respect to run(S0, St0, St1) with unknown St0, obtaining a spe-
cialised interpreter.

Partial evaluation is a program transformation that specialises a program with respect to a
partially known input or goal. In CLP, the key property of partial evaluation is the following.

Proposition. Let P be a CLP program and let Pg be a partial evaluation of P with respect to a
goal G. Then for all instances GO of G, P |= GO iff Pg = G0.

In other words P gives exactly the same results for (instances of) goal G' as P does. Of
course, we expect P to be more efficient than P when computing the solutions of G.

The idea of partial evaluating /o with respect to run(S0, St0, St1) is to perform as much
as possible of the computation of the goal run (S0, St0, St1) that is determined by the known
argument SO. We call the specialised program C'; since it can be seen as a translation of the

21

source program C' into CLP, via the interpreter /. There is a well known connection between
partial evaluation of an interpreter / with respect to a source program C' and the compilation of
C into the language in which [is written. For more details see Jones et al. [JGS93].

Partial evaluation is not needed, strictly speaking, since it would in principle be possible to
analyse the program [directly. In practice direct analysis of I/ is very hard and would require
specialised CLP analysis tools, whereas analysis of the partially evaluated programs can be done

by standard CLP analysis tools.

General Form of the Specialised Program. Many possible specialisations are possible (in-
cluding returning the program unchanged), depending on the strategy in the partial evaluator for
deciding which parts of the computation can be executed and which cannot.

The key requirement for a useful specialisation of /- is that sufficient computation is per-
formed to discover the control flow of the program C'. When evaluating the small-step seman-
tics of a program with initial statement Sy and initial store oy, a sequence of configurations
(So, 00), (S1,01), (S, 09), . .. is encountered, such that (S;, o;) —— (Siys,04,4) for all i > 0.
The expectation of partial evaluation is that, given the initial statement S, but unknown initial
store, it will be able to construct the possible sequences of the form Sy, 57, S5, . . ., except pos-
sibly for some constants in each S;; for instance .S; could contain an expression containing an
unknown value V. Note that since the initial store is unknown, there could be many possible
such sequences of statements even if the semantics is deterministic. The ideal specialisation of
I should contain code capable of handling only those sequence which could arise from S, with
some initial store.

The following clauses for the run predicate are derived from the transition rules whose con-

clusion is of the form (Sy, o) —*0; shown above:

run(skip, St, St).
run(S0, St0, St2) —
exec(S0,St0, L, S1, St1),
emptyLabel (L),
run(S1, Stl, St2).
Given a call run(S0, St1, St2) in which the structure of SO is known, except possibly for the
values of constant expressions, only one of the two clauses for run can succeed. Furthermore,
if it matches the second clause, then the call to exec(S0, St0, L, S1, St1) can be completely
unfolded apart for some operations on the store, say C1, ..., Cy, and the call emptyLabel(L)
can also be unfolded. After such unfolding the value of S1 will be completely known, except
possibly for the values of constants expressions within S1.

22

To summarise, the partial evaluation of a call run (S0, St1, St2) in which the structure of SO
is known gives rise either to:
run(skip, St, St).

in the case that S = skip, or to zero or more clauses of the form:
run(S0, St0, St2) :— C4,...,Ck, run(S1,St1, St2).

in which S1 is known except possibly for the values of some constants in S1, and C1, ..., C}
are constraints or calls to simple predicates defined only using constraints. Zero clauses could
be produced if, for example, there was no transition from S0 with an empty label, and thus the
computation of SO was blocked; more than one clause could be produced if S0 was a branching
statement. The transition rules are defined so that for all (non-blocked) statements other than skip
and branching statements, exactly one transition rule is applicable.
Partial evaluation can then continue with the goal run(S1, St1, St2) producing further clause(s)

of the same form. Leaving aside for a moment the issue of termination of partial evaluation, we

obtain a set of clauses, such as the following:

run(S0, St0, St2) :— Cy 1, ..., Cox,, run(S1,Stl,St2).
run(S1, St0, St2) :— Cy4,...,Cr, run(S2,Stl, St2).
run(S2, St0, St2) :— Cqq,...,Cop,, run(S3,Stl, St2).
run(S2, St0, St2) :— Cs1,...,Cs,, run(S4,St1, St2).
run(S3, St0, St2) :— Cy1,...,Cyp,, run(S5,Stl, St2).
run(S4, St0, St2) :— Cs1,...,Cs,, run(S6,Stl, St2).

run(skip, St, St).

(Here S2 is an example of a branching statement, giving rise to two clauses for run).
Termination of Partial Evaluation. If we generate a clause such as the following:

run(Sj,St0,5t2) :— Cj1,...,Ciy,, run(Si,Stl, St2).

where S7 is a statement that has previously been encountered (modulo the values of some un-
known constants in S%) then S7 is not (re-)partially evaluated. The process thus terminates if the
number of distinct statements generated is finite.

Termination of partial evaluation has to be established for each set of transition rules. For
languages without recursive functions or procedures it is usually straightforward to show termi-

nation. For programs with recursion, a small modification of the transition rules for function calls

23

can be made, which is sufficient to ensure partial evaluation. Essentially a big-step semantics rule
is used for evaluating (recursive) function and procedure calls. The specialised clauses resulting

from a recursive procedure call followed by some other statement Sk will have the form:

run((p(y); Sk), St0, 5t3) = Cj1,...,Cjx;,
run(p(y), St1, St2),
run(Sk, St2, St3).

Renaming and Flattening of run Clauses. A standard CLP transformation can be used to sim-
plify the partially evaluated program [Gal93] and make it more amenable to analysis. For each
distinct call run(Sj, St0, St2) generated during partial evaluation (including the initial goal) we
define a new predicate

run;(Xy, ..., X,) —run(Sj, St0, St2).

where X1, ..., X, are the distinct variables in run(S7, St0, St2) and run; is a fresh predicate
name. By a standard fold-unfold transformation for CLP [PP99] the run predicates in the pro-
gram can be replaced by the appropriate run; predicates. The following program is an example

of the resulting form.

rung(Xi, ..., Xng) = Con, ooy, Coggs Tuni(Yo, ..., Yn)
runy (X, ..., Xn,) — Ciay oo, Crgy, Tuna(Yo, ..., Ys,)
runs(Xy, ..., Xn,) i— Coxy .oy Cogyy Tuns(Yo, ..., Yo,)
rung(Xq, ..., Xn,) = Cs1, .o, Csy, rung(Yo, ..., Ya,).
runs(Xi, ..., Xny) = Cun, ..o, Capy, runs(Yo, ..., Ys)
rung(Xy, ..., Xn,) — Cs1, .., Cs sy Tuns(Yo, ..., Yn,)
runs(Xi, ..., Xng) = Co1y .oy Coggs Tung(Yo, ..., Yn,)

run,(Xo, ..., X,)-

It captures a control flow graph of the following form.

24

Finally a clause defining the initial goal is added.
run(S0, St0, St2) —rung(Xi, ..., X,,).

where X1, ..., X, are the free variables in S0, St0, St2.
The arguments of the run; predicates range only over source program values, not over state-
ments, stores, or other artifacts of the semantics.

Partial Evaluation with LOGEN. The online tool LOGEN [LJ99] provides a very convenient
interface and efficient implementation of a partial evaluator suitable for handling the semantics-
based interpreter. The program to be partially evaluated is first annotated to indicate which calls
are to be unfolded, and which are kept in the specialised program. Furthermore LOGEN provides
the possibility of defining filfers that control the flattening and renaming process described above.

LOGEN can either generate the specialised program directly from the annotated interpreter
and an initial goal, or else it can produce a so-called generating extension that is a specialised

(much faster) version of the partial evaluator itself.

3.2.5 Instrumented Semantics for Resource Usage Analysis

The semantics can be instrumented; that is, extra information can be added to the configurations
and transitions to capture non-functional aspects of the computation. Information added to con-
figurations could include for example clocks, energy meters, memory meters and communication
counts.

Here we consider two basic techniques for instrumenting semantics that can be used in ana-
lysis of energy usage.

e A global “energy counter” which records the total energy consumed, based on an energy

model for individual statements.

e A vector of counters recording the number of times that each statement is executed. The
values of these counters could be used in a variety of specific resource analyses such as
time or energy usage analysis, and give information relative to specific program points
rather than a global result.

The total energy cost of running a program was expressed by Tiwari et al. [TMWL96] using

the following formula.
Ep = Ez(BZ X Nz) + Ei,j(Oi,j X Ni,j) + EkEk

25

Here N; is the number of times instruction ¢ is executed, and 1V; ; is the number of times that
instruction ¢ is followed immediately by instruction j.

The energy model for a programming language executed on a given hardware platform is
given by the values B; (the energy consumed when executing instruction ¢), the matrix of values
O, ; (the transition energy of moving from instruction ¢ to instruction j) and a set of values £},
representing assorted other energy overheads. Thus an analysis that yields the values N; and 1V, ;
for a given program execution can be combined with the energy model to yield the total energy.
When combined with a timing analysis, energy usage analysis can be used to derive a power
dissipation analysis (an analysis of the rate of use of energy).

As will be seen in Section 6.3, analysis procedures would normally return constraints on
N; and N; ;, or express them as functions of some other variables, rather than precise values.
Hence the total energy consumed by a program will also be expressed in terms of constraints or

parametrised by other variables in the program’s state.

Analysis of a Global Energy Counter. A global energy counter is considered as an extra com-
ponent of configurations in multi-step transitions. It can be modelled as an extra variable e in the
store, where e is a variable name not occurring elsewhere. That is, an instrumented configuration
is (S, 0@{e=V.}), where V. is the total amount of energy used so far in the computation. The
initial store oy is extended by initialising the energy counter, i.e. co®{e=0}.

Each individual transition then updates the energy counter, according to the energy model for
that statement. The label on transitions is extended to return the energy used.

Example: Consider the following transition for the statement send ¢ £ which models the

behaviour of the XC statement that sends a value on a channel.

3)

(senda V, o) b (skip, o)

This is modified to return the energy n. consumed by this step, which could be dynamically
computed depending on (for example) the size of the data or the destination of the channel. This

is represented by a function Fg.,q(c, V') in the transition.

Fsend (aa V) = TNe

(alVine) .
(senda 'V o) " —=" (skip, o)

4)

The energy model for XC would be encoded in the function F; for each statement type s. Note
that the energy consumed in evaluating the expression to be sent and the channel name would be
computed by other transitions.

26

The multi-step transitions are then modified to accumulate the individual transition energies

into the energy counter, returning in the final state the total energy used, V}.

- ” 5
(skip, cB{e=Vip1 })— 0B {e=Vin })
(S0,00) % (S1,01) (S1,018{e=Ve + ne}) — " 020{e=Viur} ©
(Sp, o1@{e=V,})— oo {e=Vini }
We will see in Section 3.2.6 how the energy counter will appear in the partially evaluated

version of the instrumented semantics.

Analysis of Program Point Execution Frequency. We now describe how counters can be
added to the semantics, and how they appear in the resulting CLP program. Let us suppose that
we identify a number of program points whose execution we wish to analyse. (These could be
chosen automatically, say the entry of each procedure and loop). Let these points be identified in
the AST by labels {[y, ..., [;}. It is assumed that the AST representation is extended with such

labels. E.g. we take as an example the following abstract syntax for XC programs.

(Statements) S ::=skip' | return' E |z :=" E | 5155y | Sy ||' Ss |
if' (n) Sy else S | while' (n) S, | let'z = Ein S
send' B, By | 2 :=get' E

A statement label can have a null value o, which means that the statement is not one of those
whose execution is counted.

Recording Statement Counters in Transitions. We then extend transition rules so that each
transition records (as an extra label on the transition) a set of statement labels, namely of those
statements (with non-null statement labels) that have been encountered during the transition. The
set could be empty if no non-null-labelled statement has been executed, or could contain several
labels if several threads in a parallel statement have simultaneously been executed.

Example: Consider the following transition for the statement while (n) S.

(while (E) S, o) — (if (€) S ; while (E)) S else skip, o) @

This is modified to handle labelled statements and record the label of the while statement on the

transition arrow.

()
(while' (E) S, o) “M (if° () $:° while! (E) S else skip®, o)

27

Note that the statements introduced by the transition itself are labelled with null (o) labels,
whereas the label on the while statement is propagated, so that the next time that while state-

ment is executed it will be recorded.

Configurations for Multi-step Transitions. Configurations for the multi-step transition rela-
tion —* are extended by adding k statement counters corresponding to the labels of the state-
ments whose execution we wish to count. That is, an instrumented configuration is (S, o,]_/),
where V = {l; = vy,..., [y = v, } representing the number of times that [, . .., I} respectively
have been encountered so far. The initial configuration with initial statement Sy and initial store
o0 is {Sp, 00, Vo) with Vo = {l; =0, ...,[; = 0}.

Updating Statement Counters in Multi-step Transitions. The transitions for multi-step com-
putations are modified to update the configuration by incrementing the counters for the labels
returned by the small-step transitions. Let V' be a tuple of statement counters and C be a set of
statement labels. Let the function incr be defined such that incr(Ve{I=v},[) = V& {l=v + 1}.
Define V A C to be {incr(V, 1) | L € C}.

The multi-step transitions are then modified as follows.

— = ya—)
(skip', (0,V))—"(0, V)

(S0, 00) “4 (S1,00) (S, (01, V A C))—* (9, V') (10)
<SOv (007 f})>—)*(02, 1_/)

3.2.6 Partial Evaluation of the Instrumented Semantics

Semantics with Global Energy Counter. The result of partially evaluating the extended se-
mantics with statement counters, after renaming and flattening the specialised predicates, is to
add two arguments to the predicate run with a constraint in the clause bodies performing the
incrementation of the energy counter with the transition energy (some constant 7. in the clauses

below). The resulting specialised programs have the following form.

28

rung(Xi, ..., Xn,, Ei, E3) i—
Coas--s Coky,s
Ey = By + ne,
runy (Yo, ..., Yn,, B2, E3).
runy(Xy, ..., X, FEi, E3):—
Cias oy Crpy,
Ey = By + ne,
rung(Yo, ..., Yoy, Ea, E3).

run,(Xo, ..., Xn,, E,E).

Finally a clause defining the initial goal is added, initialising the energy counter to zero.

run(S0, St0, St2, E) -—rung(Xi, ..., Xn,, 0, F).

Semantics with Statement Counters. Similarly, the result of partially evaluating the extended
semantics with statement counters is to add 2k arguments to the predicate run, two variables for
each of the £k statement counters, with constraints in the clause bodies performing the incremen-

tation of the appropriate counter(s).

rung(Xi, ..., Xng, Vi, Vi, V', V) =
Cony-- s Cokg,s
Vi=Vi, . VI=Vi4+1,... .Vl =V,
runy (Yo, ..., Yo, , VI, .. VLV L VD).
runy (X, ..., Xnyy, Vi, oo, Vi, Vo0 V) =
Ciay ooy Crgy,
Vi=W,... VI, =V,+1,...,V/ =V,
runa (Yo, ..., Yo, VI, o VLV L VD).

run,(Xo, ..o, Xo., Vi, Vi Vi, oo, Vi),

Finally a clause defining the initial goal is added, initialising the counters to zero.
run(S0, St0, St2,[Vo, ..., Vi]) i—rung(Xy, ..., Xng, 0,...,0, Vo, ..o, Vi).

More generally, we can see that the partially evaluated program contains run; predicates whose
arguments are divided into two parts.

state variables resource variables
o\ o\

runj(er,...,X<\ Eo,...,Ey).

In>

29

Although logically there is no distinction between these arguments, they might be treated differ-
ently by the analysis tools, and analysis results relating to these variables could be reported in
different ways. For example, recurrence equations for the resource variables could be extracted
from the specialised program, or relational abstract domains could derive invariants for each

run; predicate giving constraints relating the program variables and the resource variables.

4 LLVM and its Role in Analysis

The LLVM open source project is a collection of modular and reusable compiler and tool-chain
technologies. The LLVM Core libraries provide a modern source and target-independent op-
timizer, along with code generation support for many CPUs. These libraries are built around
a well specified code representation known as the LLVM intermediate representation (LLVM
IR) [BW11].

LLVM supports the three-phase compiler design as demonstrated in figure 7. This makes
it easier for a single compiler to support multiple source languages or target architectures. The
strength of the whole design comes from the LLVM IR common code representation in its opti-
mizer. For each source language only a front end that compiles to the LLVM IR is needed, and
then the existing LLVM target-independent optimizer and back-end can be reused.

Due to the retargetability enabled by the three-phase design, all source languages and target
architectures can get advantage of the continuous enhancements and improvements to the com-
piler by the open source community. Also there is a large number of useful tools working directly
on the LLVM IR.

C -»{ C Frontend X86 Backend - X86

Common

Optimizer PowerPC Backend |- PowerPC

Foartran —#=| Fortran Frontend

Ada | Ada Frontend ARM Backend - ARM

Figure 7: Three-phase compiler design using LLLVM core libraries [BW11]

30

4.1 Accessing the LLVM IR Produced by the XMOS xcc Compiler

The XMOS xcc compiler uses both the LLVM optimizer and the code generator framework. The
xcc front end emits LLVM IR code which then is passed to the LLVM optimizer. The LLVM
optimizer runs a series of optimization and analysis passes on it depending on the specified opti-
mization level and compiler flags. Our resource analysis must be done on the optimized LLVM
IR code, after all the optimizations passes are completed. This will ensure that the intermediate
code will be the one closer to the latter assembly emitted code, which will be executed.

There are three possible ways to access to the optimized LLVM IR code in order to perform
our resource analysis. Firstly, using the xcc compiler flag “-emit-llvm” the LLVM IR code can
be emitted and then an external tool can parse it and perform all the analysis. The second way is
to implement an LLLVM analysis pass to traverse the structure of the LLVM IR code and do the
analysis. The existing framework of creating LLVM passes allows to create new passes rapidly
with new functionality that can be used by many architectures. Finally, LLVM bindings exist
for many languages such Java and Python which can provide interfaces to the LLVM optimizer.

Probably for the scope of this project a combination of the methods above will be used.

4.2 LLVM vs. ISA: Advantages and Disadvantages of Analysing at these
Layers

As explained before, the LLVM IR code produced the xcc front end compiler goes through a
series of optimizations to finally end up in the LLVM code generator, the back-end of the com-
piler, which lowers the LLVM IR to the target ISA representation. The ISA representation layer,
being closer to the hardware than the source or LLVM IR layer, makes it easier to characterize
and profile power consumption and build an energy model for ISA than the other two layers.
However due to the lowering, the ISA representation becomes unstructured and untyped, which
hinders the capability of the analysers to infer bounds on energy consumption for programs with
complicated structure and complex data types (i.e., structures and arrays). This analysis and
modeling information trade-off was mentioned in Section 1 and depicted in Figures 2 and 3.

For the reasons discussed above, the analysis at the LLVM IR layer could be reasonably pre-
cise, since it is neither too close to hardware to suffer the loss of important program information
(e.g., typing information), nor too close to the source language to suffer the power modeling and
characterization problem. Theoretically, analysing LLVM IR will enable us to analyse a bigger
class of programs since it preserves more program information for the analysis phase. However
the profiling to obtain the energy models would not be as precise at the LLVM layer, which is
farther away from the hardware than the ISA layer.

31

With the above considerations in mind, we plan to implement prototype tools to perform
an experimental study of the analysis at the LLVM IR layer, which preserves the structure and
semantics of the source program, using different options for the energy models. For example,
we plan to use the already available energy models at the ISA layer, and use the information
produced by the mapping tool that will be described in detail in Section 5.3 to propagate the
ISA energy model information up to the LLVM layer in which the analysis is performed. We
also plan to use (standalone) energy models at the LLVM IR layer, either, obtained directly by
profiling, or obtained from the ISA models by using the mapping information that relates the
LLVM IR and ISA layers, which is generated by the mentioned mapping tool.

S Producing the Mapping Information

In this section we describe the mapper tool we have developed. This tool serves two main
functionalities, as demonstrated in Figure 1. Firstly, to create mapping information between the
different intermediate code representations, ISA and the source code. This enables the mapping
of the analysis results back to the procedures and functions in the source code. The second
functionality of the mapper tool, is to propagate the energy model information defined at one
layer up to the (different) layer at which the analysis is performed. It is important to state that this
mapping tool does not perform any analysis in principle, but it can be seen as the glue that brings
together all the pieces of our framework for resource consumption analysis and verification,

enabling energy transparency.

5.1 Mapping through Debug Information

After investigating our possible options for creating mapping information, we decided that the
best approach is to take advantage of the existing debug mechanism in the XMOS tool-chain.
This mechanism serves the debugging process used by a programmer to investigate and fix po-
tential bugs in a crashing application or any other kind of faulty program behaviour. The main
idea of this mechanism is the creation of debug symbols during the compilation of the source
code and the propagation of them to all the different intermediate code layers and down to the
ISA code. A Debug Symbol (DS) is information that expresses which programming-language
constructs generated a specific piece of machine code in a given executable module. In our
case the Debug Symbols are generated by the front end of the XMOS compiler and then they
are transformed to LLVM metadata information attached to the LLVM IR. LLVM metadata is
a mechanism to tag information for a custom code generator, or pass through information to
link time optimization. LLVM 2.7 and upwards, provides first-class support for this, and has

32

switched debug information over to use it. The main benefit of using the Debug Information
(DI) is that we get advantage of the significant effort the LLVM open source community put in
to preserving those metadata nodes through the different layers of optimizations and transforma-
tions taking place in the LLVM optimizer. The higher the optimization level applied during the
compilation of a program, the less accurate DI associated to the resulted executable code. This
is due to the fact that a lot of the initial code is either discarded or merged during optimization
and transformation phases.

Although we use the XMOS tool-chain for the mapper tool, the approaches and techniques
employed are generally transferable, due to the use of the common LLVM optimizer and code
generator. The LLVM code generator is using the DI to produce DWAREF information [dwal3],
a standardized debugging data format used by many compilers and debuggers to support source
layer debugging. DWARF is architecture independent and applicable to any processor or operat-

ing system.

5.2 Mapping the Analysis Results Back to the Source Code

As debugging information communicates Source Location Information (SLI), type information
and variable information to the debugger, it is easy to manipulate them for the case of mapping
the analysis results back to the procedures and functions in the source code. The idea was to
create a mapping between source code, LLVM IR and ISA code using the location information
of the source code stored in the DI. To achieve this, firstly an LLVM pass was created. This
pass traverses the LLVM IR code and extracts the SLI stored in the metadata of each LLVM IR
instruction. Then a data structure is created, a list of tuples of LLVM IR instruction and their
corresponding SLI. Similarly, a list of tuples of ISA instructions and their corresponding SLI is
created. We build this list by disassembling the executable of a program and then extracting the
DI related to each ISA instruction. Finally a third data structure is created by parsing the source
code and creating tuples of each instruction in the source code and its SLI. Having these three
data structures, enables the mapping between the three layers. These data structures can be used

as inputs to any resource analysis that need to correlate its results back to the source code.

5.3 Propagating Energy Models to a Different Layer Through Mapping

In the case of propagating the energy model information defined at one layer up to a different
layer, the mapper is again using the mechanism of DI but by modifying the DI of a program at the
LLVM IR layer to gain a more fine grained mapping. Since we currently have a low-level energy
model, at ISA layer, we need to map this model up to the LLVM IR layer in order to perform

33

the resource analysis at this layer. The idea here is to find which ISA instructions correspond
to which LLVM IR instruction. During the lowering phase of the compilation the LLVM IR
code is transformed to the specified architecture ISA code by the back-end of the compiler. The
DI is also stored alongside with the ISA code using the DWARF standard as explained earlier.
Using the same methodology described earlier we can extract a mapping between the LLVM IR
and ISA. This will give as an n:m relationship between the two layers, because one source code
instruction can be translated to many LLVM IR instructions and therefore many ISA instructions.
In the case of communicating results from the analysis back to the source code this is enough,
but for propagating energy values to the LLVM IR layer we need something more fine grained.

To address this issue, we created an LLVM pass which traverses the LLVM IR and replaces
the SLI with LLVM IR location information, right after all the optimization passes and just before
emitting the ISA code. In this way, we achieved to have an 1:m relationship between the mapping
of LLVM IR instructions and ISA instructions. Also by doing it after the LLVM optimizations
passes the optimized LLVM IR is more close to the ISA code than the unoptimized one, which
will go through a series of transformations. There are also some optimizations happening during
the lowering phase, such as peephole optimizations and some late target specific optimizations,
that can affect the mapping but not in the degree of the LLVM optimizations. After the mapping is
done for a specific program, the associated energy values for the ISA instructions corresponding
to an LLVM IR instruction, are aggregated and then associated to the LLVM IR instruction.
Although this mapping is more fine grained, we are expecting to have a deviation from the ISA
energy model, due to the optimizations happening after the translation to ISA. This deviation
will be estimated by using the analysis on the LLVM IR layer proposed in this document on our
benchmarks and, depending on the results, the mapping will be further optimized.

Using this fine grained mapping, we plan to obtain an LLVM IR stand alone energy model.
We will first get the mappings of a large set of programs using the methodology described above.
Then we will perform a regression analysis on these mappings to identify energy values for each

LLVM IR instruction. An experimental evaluation will also give us the deviation of this model.

6 Analysers

As mentioned in the introduction and illustrated by Figure 1, the analyser takes as input the
analysable form of the program, the IR, together with the (IAL) assertions, expressing the en-
ergy models and possibly useful (trusted) information, and process them, producing the analysis
results, expressed also in the TAL.

Energy transparency relies on the analysis results, and enables energy optimizations (WP4)

34

and energy-aware software engineering (WP1). As illustrated in Figure 3, the analyser can infer
information at different software system layers (e.g., XC source code, LLVM IR, and ISA) and
can use energy models defined at the same layer or at a lower layer (provided there are mappings
between software segments at different layers in the latter case). Thus, the IR represents a pro-
gram at the layer the analysis is performed. The analyser deals with the IR always in the same
way, independently of the layer of the program the IR represents. This implies that the analysis
results enable (automatic) optimizations at different layers, e.g., at the LLVM IR layer, not only
at the source code layer.

The analysis information at the source code layer can be used to help software developers to
better understand the effect of their designs on the energy consumption, and make more informed
design decisions. Such information can include the energy consumption expressed as functions
on data sizes for the whole program and parts of it, such as procedures and functions.

In this section we describe different choices for the realization of the “analyser” box in Fig-
ure 1. The first one, described in Section 6.1, is based on the techniques present in the CiaoPP
analysis tool [HPBLGOS5], which have been refined, enhanced and integrated in the general
pipeline of energy transparency. The second choice, described in Section 6.2, is applicable to
the analysis at the LLVM IR layer, and propose a direct process of LLVM IR by the analyser.
Finally, Section 6.3 describes a model-based static analysis of CLP Programs.

6.1 Analysis with the CiaoPP Tool

CiaoPP [HPBLGO3], the preprocessor of the Ciao programming environment [HBC*12a], is
a powerful tool for abstract interpretation-based analysis, optimization and verification of CLP
programs. This tool has served as a ground for the development of a first prototype of an energy
analysis (see attachment D3.1.1 for details).

Three main features of CiaoPP make it a good choice for our analysis framework:

e The CiaoPP analyser already uses the IR that we propose for our framework, CLP, as the
analysable language.

e CiaoPP includes a generic abstract interpretation engine, PLAI that allows developing new

analyses, which can be combined, ensuring correctness, as we will see later.

e In particular, CiaoPP includes a generic analysis for resource usage that can be instantiated
to infer bounds on resources of interest, energy consumption in our case. The instantiation
of such analysis for energy consumption (or any other resource) is done by means of an

assertion language that allows the user to define resources and express the resource usage

35

of elementary program operations, certain program constructs, and library procedures. The

details on how to perform such instantiation can be found in attachment D3.1.1.

e CiaoPP already implements the idea of using its assertion language to provide information
to the analyser and output analysis results. This eases the communication between the

tools in the pipeline.

6.1.1 Abstract Interpretation

One of the most important points for analysis is that it should be easily extended and changed,
as we delve more into the complexities of energy consumption analysis. This implies that, rather
than a single energy analysis, we would have to develop an analysis framework that allows chang-
ing or plugging new analyses for inferring other properties in the future. This section delves into
the choice of abstract interpretation as a good ground for developing these analyses, including a
brief introduction to its theory.

As mentioned above, CiaoPP includes a generic abstract interpreter called PLAI. This tool
gives us the engineering and extensible side, and they build upon the basis of abstract inter-
pretation. Furthermore, the ENTRA team includes researchers which have participated in the
development of CiaoPP and which are experts in abstract interpretation of programs. As we will
see below, some work force has been devoted to reengineering some analysis as abstract domains
to take advantages of all of its features.

As a motivating example, in the current stage we use an energy model which assigns a con-
stant amount of energy to each instruction. But in the near future we plan to enlarge the model
with dependencies on the frequency, voltage, accuracy, and other state of the underlying hard-

ware (the environment). This new feature needs changes in two sides:

e First of all, a new analysis for frequency, voltage, or any of the other processor character-
istics must be developed. Writing this new analysis from scratch is quite time-consuming.
Furthermore, it may be the case that we only need a prototype of the analysis to check

whether a new idea for the energy model seems correct;

e The old analysis for energy must be re-engineered to communicate with the new analysis of
processor characteristics. This requires some amount of work. Furthermore, these changes

may put on risk the correctness of an analysis that was working until that point.

In conclusion, we are looking for an analysis framework that helps in the engineering process,
while having enough theoretical power to express the analyses we need to perform and check

their correctness. As mentioned before, the chosen analysis framework is abstract interpretation.

36

Introduced in 1977 by Patrick and Radhia Cousot [CC77b], abstract interpretation is a general
methodology for developing static analyses of any kind of programs. The main idea is that the
execution of the program is simulated by running it in an easier state space, usually called an
abstract domain. By designing this abstract domain in the correct way (the formal definition of
how the abstract domain should relate to the original program state), we are able to abstractly
execute the program, and get as result an element of the abstract domain.

As an example, assume a simple programming language that works with values coming from
a certain domain >. We would like to know statically at each point in the program which are the
possible values for a variable: that is, each variable will have an assignment into an element of
P(X). However, this analysis is undecidable in the general case (we may even run into infinite
loops), so that a solution is choosing a smaller abstract domain and using the techniques of
abstract interpretation to derive a static analysis. This abstract domain could be, for example, a

set of types of variables.

The formal definition of an abstract domain requires both the initial set of possible states and
the simpler one to be lattices, that is, sets with a partial ordering C, and two operations called
join (U) and meet (1) which must satisfy some laws with respect to the ordering. In this work
our initial state space will always be the powerset of some domain of values, so we will show it
as P(X) with the lattice structure given by set containment.

Up to this point, we are given a concrete domain (P(X), C) and an abstract one (A, C).
To go from one to another we use a pair of functions, called abstraction « : P(X) — A and
concretization vy : A — P(X), which should form a Galois connection:

(P(2),C) £ (A,C) ifand only if a(z) Ty <= = C 4(y)

Intuitively «(x) computes the element in A that is the best (most precise) representation of x;
while v(y) computes the element in P(X) that is represented by y.

From this Galois connection, there are several methodologies to calculate an analysis using
the desired abstract domain (some of them are presented in [Cou99]). The main idea is that
the analysis will over-approximate the result of the computation by choosing an element in A
that includes at least all the possible elements from P(X). Using the particular properties of
Galois connections, these analyses can also be proven correct. Furthermore, abstract domains
can be combined in several ways [CC79], one of the key features that we wanted for our analysis

framework.

Abstract interpretation is a very general methodology, which can encompass any possible

computation schema. On the other hand, our translation produces programs with a very specific

37

shape, so that it makes sense to use an instantiation of abstract interpretation specially tailored to
these uses. In particular, we focus on the generic AND-OR trees procedure of [Bru91], with the
optimizations of [MH92]. This procedure is generic in the sense that it separates the abstraction
of program execution flow (the AND-OR trees), from other (mainly data-related) abstractions,
which are encoded as one or more abstract domains. It is also goal dependent: it takes as input
a pair (L, \.) representing a predicate or function along with an abstraction of the call patterns,
that is, the information about the input state and arguments, in the chosen abstract domain and
produces an abstraction)\, which overapproximates the possible outputs.

This procedure is the basis of the PLAI abstract analyser present in CiaoPP [HBC"12b]. In
PLAI, abstract domains are pluggable units which need to define implementations of C, least
upper bound (LJ), bottom (L), and a number of other operations related to calls.

6.1.2 Resources

In order to accommodate several types of analysis, such as energy, time or accuracy, we build
upon the concept of resource. This concept was already present in the resource analysis found
in CiaoPP prior to the start of the ENTRA project [DLGHL97, LGDB10], but we have greatly
enhanced and adapted it to the framework of abstract interpretation in the project.

In short, a resource is any numerical property that changes through the course of a computa-
tion. Examples of resources are memory usage, time spent on a piece of code, bytes sent over a
network, or, central in our case, the energy consumed by the computation. Resource analysis is
the inference of the aggregated value of any of these properties through the execution of a piece
of code.

Usually, the amount of resources needed by some computation is not fixed, but rather depends
on some environment properties or the inputs to the computation itself. This is obvious in the
case of energy: its consumption depends on the frequency of the processor and the temperature
of the environment, and also on the size of the data to be processed. For that reason, we are

interested in parametric resource analysis, not just worst-case resource analysis.

6.1.3 Sized Types Analysis

Size analysis is one of the steps that is needed for producing a precise resource consumption
analysis. This section motivates the need of a powerful size analysis, and presents sized types as a
solution to this problem. The work on this area has been presented as a technical communication
in ICLP 2013 [SLGBH13], and is attached to this deliverable as attachment D3.1.2.

38

As mentioned above, our starting point is the methodology outlined in [DLGHL97]. This

approach shows several important features:

e [t is based on setting up recurrence equations from the possible executions of the code.
Solving those equations gives the developer a closed function, parametrized by input pa-
rameters or any other quantity of interest, giving the consumption of the resource;

e These equations are generated in three steps: first it performs an analysis of the size of data
structures involved in the computation, then infers the number of solutions of predicates,

and finally generates the recurrence equations for resource usage.

One drawback of that previous work is its very limited ability to cope with size information
about subterms. However, dealing fully with subterms is useful not only for the system developer,
but in fact is a key issue in the resource analysis of realistic programs. Without it, the analysis
can only infer trivial bounds for a large class of programs. For example, consider a predicate

which computes the factorials of a list:

listfact ([], (1.

listfact ([E|R], [F|FR]) :— fact(gE, F), listfact (R, FR).
fact (0, 1).

fact (N, M) :—= N1 is N - 1, fact (N1, M1l), M is N = Ml.

Intuitively, the best bound for the running time over a list Lis o+ ., (8 + timeyq.(€)) where
« and (3 are constants related to the unification and calling costs. But with no further information,
the upper bound for the elements of L must be co to be on the safe side, and then the returned

overall time bound must also be co.

Our solution is based on sized types, a representation that incorporates structural (shape)
information and allows expressing both lower and upper bounds on the size of a set of terms and
their subterms at any position and depth. Furthermore, we have developed the analysis using
abstract interpretation and integrated in into PLAI and CiaoPP.

Sized types are derived automatically from the types of the variables present in the code.
These types could be taken directly from the programmer input (for example, from XC code
which includes function prototypes), or inferred by another analysis. We have chosen this se-
cond option in our implementation, integrating the abstract domain of regular types described in
[VBO2]. As we mentioned in the previous section, using this framework allowed us to integrate
other analysis posed as abstract domains.

Using regular types, the type of “list of numbers” is represented as:

39

listnum -> []

listnum -> . (num, listnum)

where num is a built-in type for numbers. This notation tells us that we have two choices for
building a value of the 1istnum type: either we create an empty list using [] /0 or we create a
cons-cell with the functor . /2.

From this regular type definition, a sized type schema is derived. In our case, the sized type
schema listnum-s is derived from 1istnum. This schema corresponds to a list that contains a
number of elements between « and 3, and where each element is between the bounds v and 9. It
is defined as:

listnum-s — listnum'®? (numij’f)))

)

The (., 1) below num expresses that this inner size description applies to subterms occurring at
the first parameter of the . /2 functor.
In a subsequent phase, these sized type schemas are put into relation, giving raise to a system
of recurrences where output argument sizes are expressed as function of input argument sizes.
Our experiments show that sized types improve by a large margin the amount of information
given to the developer. This information is also used by the resource analysis, which results in

much more precise resource consumption information, as it is shown in the next section.

6.1.4 Cardinality and Resource Usage Analysis

Our resource usage analysis builds upon the sized type analysis and adds recurrence equations
for each resource we want to analyse. As mentioned above, our main aim for extending the
power of size analysis was indeed getting more precise results in resource analysis. This section
introduces the work done on enhancing and formalizing resource analysis as an abstract domain.
This work has been presented at WLPE 2013 [SLGH13], and can be found in attachment D3.1.3
to this document.

In order to infer the resource usage, some description of the resource must be given to the
analysis as input. Following [NMLGHO7], we account for two places where resources can be
modified:

e When entering a clause: some resources may be needed during unification of the call
(subgoal) and the clause head, in preparation of entering that clause, and any work done
when all the literals of the clause have been processed. This cost, dependent on the head,
is called head cost and is represented by [3,

40

e Before calling a literal: some resources may be used to prepare a call to a body literal (e.g.,
constructing the actual arguments). The amount of these resources is known as literal cost

and is represented by 9.

Since our analysis is developed for general CLP programs, we need to take care of some
features of logic programs:

e We may execute a literal more than once on backtracking.
e more than one clause may unify with a given subgoal.

e When estimating lower bounds on resource usage, in the case of a possibly failing literal,

no resource usage should be added beyond the point where failure may happen.

All these features make a case for a cardinality analysis, which estimate bounds on the number
of solutions of a certain predicate, and also for a non-failure analysis, which allows us to know
at which point in a clause body we can find a possibly failing literal, which has an effect on
lower bound resource analysis. Luckily, CiaoPP already integrates a non-failure analysis based

on abstract interpretation [BLGHO04] which we can directly integrate in our analysis.

The experimental results for this new analysis are very encouraging. In particular, we con-
ducted an assessment comparing it with the resource analysis available in CiaoPP prior to the
start of the ENTRA Project, and also comparing our new analysis with the Resource Aware ML
system (RAML) [HAH12], which is the closest related work.

In the first case we get better results with the new resources abstract domain 40% of the
times when inferring lower bounds, and 46% of the times for upper bounds. In the comparison
with RAML we get better results 26% of the times. Furthermore, RAML is tied to polynomial
resource usage functions, whereas our approach using recurrence relations supports a wider range
of behaviours, such as exponential or logarithmic.

In conclusion, the sized type, cardinality and resource usage analyses we have developed for
ENTRA are comparable to state-of-the-art systems in these fields. In the next section we will
see how these analyses have been used in the specific case of energy consumption estimation the
XMOS XS-1 architecture.

6.1.5 Energy Analysis of XC Programs with CiaoPP

As a proof of concept, in the ENTRA project, we are developing an energy consumption analysis
for the XS1 processors designed by XMOS. This architecture is usually programmed using the
XC language. In this section we introduce the work done in order to instantiate the CiaoPP

41

analyser for energy consumption estimation, and use it to realize the general resource analysis
as illustrated by Figure 1. Part of it is included in the paper accepted for publication at LOPSTR
2013 [LKS*13] and attached to this document with the identifier D3.1.1.

Defining Resources. As mentioned before, the resource analysis needs a description of the
resource to be analysed. We start by defining the identifier (“counter”) associated to the energy

consumption resource, through the following Ciao declaration:

resource (energy) .

Expressing the Energy Model. We connect the energy models developed in WP2 with the
analyser, using the Common Assertion Language described in deliverable D2.1. Since we are
using CiaoPP as the analysis tools, the assertions will be expressed in the specific syntax of
CiaoPP.

For expressing the energy model, we use a predicate for each possible instruction and its as-
sociated formats. These are the predicates which are called in the transformation from low-level
code to a CLP program. All of them have a similar format: there is some logic code abstract-
ing the operation performed on the processor, which is needed by the analyses to derive correct
equations; and after that a call to a predicate which is annotated with the resource consumption.

For example, the 1ss operation that performs the “less than” comparison on two registers is

written as:
lss_3r(1,N,M) :— N < M, lss_3r _cost ().
lss_3r(0,N,M) :— N >= M, 1lss_3r_cost ().

And the annotated cost predicate is:

:— trust pred 1lss_3r2(_)
+ (is_det, not_fails, cardinality(1l,1)
, resource(energy,1141148,1141148)).

Notice the inclusion of the information about cardinality, non-failure and determinism (as
explained in attachment D3.1.3) and finally the information about resource consumption.

In this case, no energy consumption is associated to head unification or call to literals in
program clauses, which are the means in which we express the low-level flow in a higher-level
logic language. For that reason, the § and 6 parameters to the analysis should be 0. This is

expressed by the following Ciao assertions:

head_cost (energy,_,_,0).

literal_cost (energy,_,_,0).

42

Analysis of Jump-Based Control Languages. As mentioned in Section 3, the programming
style in languages whose control is based on jumps is quite different from the style in more
structured languages. In this stage of analysis, we find further mismatch between the low-level
description and the description based on Horn clauses.

In logic programs, the tests to input variables are usually found in the head of the clauses.

For example, this is how one would express the factorial function in Prolog:

fact (0,1) := !.
fact (N,M) :— N1 is N-1, fact(N1,Ml), M is N=*Ml.

However, the translation from low-level code to Prolog produces instead code similar to the

following:

fact (N,M) :- less_than(B,N,1), fact_aux(B,N,M).

fact_aux(l,N,M) :— store(M,1).

fact_aux(0,N,M) :- subtract (N1,N,1),fact (N1,M1),multiply (M,N,M1).

[

% Built—-ins described here for convenience

store(X,Y) :— var(X), X =Y, st_cost.
less_than(1l,X,Y) :— X <Y, 1lt_cost.
less_than(0,X,Y) :—= X >= Y, 1lt_cost.
subtract (X,Y,72) :— X is Y-Z, sub_cost.
multiply (X,Y,2) :— X is YxZ, mul_cost.

After the unfolding step, the logic code to analyse is:

fact (N,M) :— N < 1, 1lt_cost,
M =1, st_cost.
fact (N,M) :— N >= 1, 1lt_cost,

N1 is N-1, sub_cost,
fact (N1,M1),
M is N%M1l, mul_cost.

In this code, the tests are now explicit in the body, instead of being done in the heads. If we
follow the approach described in D3.1.2, the recurrence relations that will result, for example,

for the energy resource would be:

Cit + Cst

fact.(N) =
faCte<N - 1) + Cut + Csub + Crmul

43

In those equations there is no mention to which case should be taken. Thus, it is an incorrect

equation for which we cannot find any closed form solution.

The solution has been to enhance the sized type and resource analyses with special cases for
those built-ins which introduce tests. From the description in attachment D3.2.1, the changes are

as follows:

e The domain component is not only extended in the abstract unification (A.uy; to Bentry) Step,
also when one of the built-in operations =, >, >, < and < is found in the analysis, during

the extend step;

e The f3..; to X' step must perform an extra task: deriving the larger possible set of relations
between bound positions for variables in the head. The algorithm here is very simple:
apply the transitivity of the operators until no more relations can be discovered, and then

retain only those whose both sides refer to those bound positions;

e The 1 operator for obtaining closed form bounds must take care also of these new tests.

6.2 Direct Analysis of LLVM IR

As already said, modern compilers, such as XMOS xcc and those built using the LLVM frame-
work, internally transform source programs into intermediate compiler representations, which

are more amenable to analysis than either source or machine layer programs. The advantages

In this section we show how resource consumption analysis techniques can be adapted and
applied to programming languages targeting LLVM IR (such as C or XC) by reusing some of the
existing machinery available in the compiler framework (for instance LLLVM analysis passes).
We describe a tool for performing an analysis at the LLVM IR level. The analyser, together with
the toolchain surrounding it can be seen in Figure 8. We discuss generic techniques, which can
be used to extract cost relations from existing LLVM IR code. These can then be solved using
existing solvers [AAGP11].

44

XC+
Annotations

"""" y
Transformation
XCC .
+ Mapping

<

ISA/ LLVM IR +
Metadata

Energy

Models

Mapping Info LLVMIR
Analyser

Analysis results

Visualizer

“, Messages

Figure 8: Realization of the general framework by analysing LLVM IR directly.

6.2.1 LLVMIR

For presentation purposes, we formalise a simple calculus of LLVM IR, based on the following

syntax:

inst = br p BB1 BB, conditional branch instruction
| . =opay..a, generic side effect-free operation
| © = ¢ (BBy,21)..(BB,, x,) phi nodes
|z =call fa . a,
| = memload dynamic memory load operation
| memstore dynamic memory store operation
| ret a

45

We use metavariable names p,f,a,x to describe predicates, function names, generic arguments
and variables respectively. The instruction semantics are modelled on the actual LLVM IR se-
mantics [ZNMZ12]. Instruction op represents any side effect free operation such as icmp or
add in LLVM. The ¢ instruction takes a list of pairs as arguments, with one pair for each pre-
decessor basic block of the current block. Each pair contains a reference to a predecessor block
together with the variable which is propagated from this predecessor block to the current block.
Two interesting instructions are memload and memstore. These represent any dynamic mem-
ory load and store operation respectively. For instance, getelementptr and 1oad are some
examples of instructions represented by memload. These instructions typically compute point-
ers dynamically and load data from memory. We therefore choose not to statically model these
instructions. In our abstract semantics of LLVM IR, we therefore treat variables assigned with
values dynamically loaded from memory as unknown, which we represent using the symbol 7.
LLVM IR instructions are arranged in basic blocks, labelled with a unique name. A basic
block BB over a CFG is a maximal sequence of distinct instructions, inst; through inst,,, such
that all instructions up to inst,,_; are not branch or return instructions. The last instruction in a
basic block is always a br or ret instruction. The only place where a ¢ instruction can appear is

in the beginning of a basic block. All call instructions are assumed to eventually return.

6.2.2 Symbolic evaluation of LLVM IR variables

For every LLVM IR block, and for every output variable for the block, we aim to infer expres-
sions that express output arguments in terms of input arguments. At the core of our resource
analysis mechanism is a symbolic evaluation function seval. Given a block of code, and a vari-
able symbolically executes a slice from this block to produce a result. A program slice, for a
variable z, is a set of instructions that may affect the computation of z at some point of interest.
During this static analysis phase, we do not simply execute the LLVM IR, but we use a non-
standard semantics, which abstracts away the effect of dynamic memory reads and writes, i.e.,
memload and memstore. By doing so, we can produce simple expressions, which can be handled
by existing solvers. We proceed by showing some example LLVM IR snippets and showing the
effect of this on some variables:

LoopBody:
%$1.0 = phi i32 [%postinc, %LoopIncrement], [0, %allocas]

%$subscript = getelementptr [0 x 132]x %0, 132 0, 1i32 %1i.0
%deref6 = load 1i32x %$subscript, align 4
gnot.zerocmp7 = icmp eq i32 %deref6, O

br i1 %not.zerocmp7, label %$iffalse, label %iftrue2

46

In this interesting case, the symbolic evaluator concludes that seval(BB,%not . zerocmp7) =
?. It does so by first evaluating $not . zerocmp7. This evaluates to $deref6 == 0. How-
ever, since $deref 6 is adynamically loaded value memload, the analyser concludes that $deref6

is 7 and that therefore seval(BB,%not .zerocmp7) =7.

iftrue2:
call void @odd()

br label %LoopIncrement

A lot of times, the code inside a block has no effect on a variable of interest. Therefore seval(%1 . 0)

s $1.0.

LoopIncrement:
%$postinc = add 132 %i.0, 1
%$exitcond = icmp eq i32 %postinc, %1

br il %exitcond, label $%return, label %LoopBody

In this case seval(BB,%exitcond)is (%$1.0+1) =%1 which is easily found by traversing the
structure of the LLVM block backwards.

6.2.3 Inferring block arguments

.mine recursively defined and closely follow the control flow structure of the program. What
we actually want to infer is a closed form formula modelling thelnferring ======= recursively

defined and closely follow the control flow structure of the program. What we actually want

relevant input arguments to the program, which requires CRs. Unfortunately, solving multi-
variate cost relations and recurrence relations automatically is still an open problem, and the less
arguments each relation has, the easier it is to solve these. Block arguments characterise the input
data, which flows into the block, and is either consumed (killed) or propagated to another block
or function. Due to the reasons outlined above, we designed an analysis algorithm to minimise
the block arguments before inferring the CRs.

The algorithm for inferring block arguments is a data flow analysis algorithm. We will use
a standard means to describe this algorithm, as in [NNH99]. We define a data flow analysis
function gen, which given a basic block returns the variables of interest in that block:

gen(BB) = geny,,(BB) U genfn(BB)

47

The function gen,, returns the input arguments that affect the branching in a block BB, com-
posed of instructions inst; through inst,, and gen , returns the variables that affect the input to
any external calls in the block. gen,;; is defined as follows:

ref (seval(BB,p)) if inst, = [brp ..]

geny,(BB) = .
0 otherwise

The function ref returns all variables referred to in the symbolically evaluated expression given
as argument, for example ref (v > (y + 3)) returns {x, y}. We also define function gen ;. This
returns all the input arguments that affect the parameters given to the function, and is defined as:

n | U ref(seval(BB,a;)) if insty is [x = call fay...a.,]
genfn(BB) = U =1
k=1 | () otherwise

The data flow analysis function £zl is defined as:

({x} if insty is x = call ...

" if inst,isx =op ...
kill(BB) = | J {e} iftinsty is v = op

w1 | {x} if insty is x = memload . ..

U otherwise

Finally, we combine gen and k:ll by utilising a transfer function, which is inlined into args;,,

and arygs,,,. These compute the relevant block arguments utilised by our resource analysis.

out*

functions’s args if BB is function’s entry

argsin(BB) = U phimapgp ppy(args,,(BB’)) otherwise

BB’enext(BB)

args .. (BB) = (args,,(BB) — kill(BB)) U gen(BB)

where phimap maps variables between adjacent blocks BB and BB’ based on the ¢ instructions
in BB'.
Functions args;, and args,,, are recomputed until their least fixpoint is found. Our block

arguments are found by evaluating args;,,.

6.2.4 Generating Cost Relations

In order to generate cost relations, we have to perform two things. Firstly, we need to characterise
the energy exerted by executing the instructions in a single block. Crucially, we also need to

48

model the continuations of each block. Continuations, expressed as calls to other cost relations,
arise from either branching at the end of a block, or from function calls in the middle of a block.
For instance, consider the following LLVM IR block:

LoopIncrement:
$postinc = add i32 %i.0, 1
%exitcond = icmp eq 132 S%postinc, %1

br i1 %exitcond, label S%return, label %LoopBody

This would translate to the following relation:

CL[(i) :Co+cret(i+1) le+1 = a
Cri(i) = Cy + Cpp(i + 1) ifi+1#a

Where C;, Ce; and C'p g characterise the energy exerted when running the blocks
LoopIncrement, return and LoopBody respectively. We therefore refer to C,.; and Cp
as continuations of C';;. Expressing these calls to other cost relations involves evaluating their
arguments, which we cannot do without actually evaluating the program. Instead, by symboli-
cally executing the block, we can express the arguments of the continuation in terms of the input
arguments to the block. In order to do so, we perform symbolic evaluation using the function
seval.

The cost relations produced using the techniques discussed in this section can be automati-
cally solved by cost relation solvers after “massaging” these to a format accepted by the specific
solver. Experimentally, we have discovered that there are cases where the optimised program
structures produced by LLVM based compilers prevents the cost relation solvers from finding
unique “cover points” in the structure of the cost relations. In order to solve this problem we
have to perform simple transformations to the LLVM IR representation of the program that would
move induction variables out of nested loops. We anticipate that the machinery for doing so is
already available in the LLVM toolkit.

6.3 Model-based Static Analysis of CLP Programs

Analysis of CLP programs can be based either on the model semantics or the proof semantics
of CLP. The latter approach underlies the CiaoPP tools described in Section 6.1. In this section

we focus on the model semantics. The essential task is to compute over-approximations of the

49

minimal model of a given CLP program. Thereby invariants of the model can be inferred or
checked.

For instance given a CLP program representing an XC or XS1 source program, suppose that
the predicate run;(Xy, ..., X,, E1, ..., E) represents the state of computation at some program

point 7. Then the model of the program might imply facts of the form
Tunj(Xl,...,Xn,El,...,Ek) —C

where C is some invariant on the variables of run ;. Note that these could relate program variables

and resource variables at program point j as explained in Section 3.2.4. That is, the arguments

of runj(Xy, ..., Xy, Ei, ..., Ex) may represent a mixture of program variables X7, ..., X,, and
resource variables EY, ..., Ey, and thus the derived invariant C can capture relationships between
them.

We note that computing models for CLP programs provides the basis for several state-of-
the-art software model checkers and verification tools that perform well in software verification
competitions .

A model is represented as a set of constrained facts of the form A < C where A is an
atomic formula p(7;, ..., Z,) where Z, ..., Z, are distinct variables and C is a constraint over
Z1, ..., Zy. The constrained fact A < C is equivalent to the closed formula V(C — A).

A set of constrained facts M denotes the set of true facts {p(v1,...,v,) | M = p(v1,...,0.)},
where vq, ..., v, are objects in the domain of the constraint theory. Depending on context, a
model M may stand for a set of constrained facts or the denoted set of true facts.

The “immediate consequence” operator for a CLP program (a generalisation of the standard

T'p function for logic programs) is given as follows.

(A« B,....B,,DEP)
{A1 «Cy,..., A, < C} el

3 6 such that

Tg([): A+ C mgu((Bla---aBn)>(A1>---aAn)):9
cC'= U {CoyuDbD

1=1,....,n
SAT(C")
L C= proj Var(A) (C,))

MC[P] = Ifp(TF)

'See http://sv-comp.sosy-lab.org/2014/

50

For property p(x)

Vx(x €S = px)
implies
Vx(x €S- p(x)

Figure 9: Proof by approximation

Here the SAT operator is a satisfiability check, and we assume that the constraint theory
underlying the CLP language has a satisfiability procedure, such as those built in to powerful
SMT solvers [DdM06, CGSS13, dMBOS].

MFC[P] is the minimal model of P over the constraint theory underlying the program.

6.3.1 Checking program properties

The minimal model is equivalent to the set of facts derivable from the program. So given an
atomic formula A we can check whether P |= A by checking whether A € M[P]. This is an
undecidable task for CLP programs over most constraint theories, even those theories that have
a decidable satisfiability test, such as linear arithmetic. Hence we focus on computing decidable
over-approximations of M [P] (see Figure 9).

A typical case of proof by approximation is to show that some property holds for all elements
of the minimal model of a program (an invariant). It is sufficient to show that the invariant holds
in an over-approximation of the model. One common case of an invariant for programs is a
safety property, stating that certain states are not reachable. If such states are not reachable in a

program representing an over-approximation of the reachable states, then the safety property is
established.

Computing Fixpoints. The minimal model is computed as the least fixed point of the immedi-
ate consequence function T'S. This is the limit of the Kleene sequence 0, TS(0), Ts(TS(0)),

In general this is not a finite sequence — hence approximation is required.

51

Galois
connection

1)

CONCRETE DOMAIN ABSTRACT DOMAIN

Safety condition: Toy C Y © S

Figure 10: Abstract interpretation of CLP in one picture

Galois
connection

A
%]

CONCRETE DOMAIN =Power(S) ABSTRACT DOMAIN = Power(A)

s (infinite set of states) A (finte set of properties (subsets of S))

Galois
connection

CONCRETE DOMAIN ABSTRACT DOMAIN
S (infinite set of states) A (finite partition of S)

) 3

Figure 12: Partition-based Abstraction

52

6.3.2 Abstract interpretation of fixpoint semantics

The framework of abstract interpretation [CC77a] gives a systematic and practical approach to
proving program properties by safe approximation of the semantics. The essential elements of
abstract interpretation are concrete and abstract domains for expressing concrete and abstract
semantics respectively, with two monotonic functions o and ~y called the abstraction and con-
cretisation functions respectively. The generic form of abstract interpretations for CLP is shown
in Figure 10. Here, the function 7" is shorthand for the concrete function TI‘; over the domain 2°
where S is the set of all atoms of the CLP program. We construct a function .S over some other
domain whose elements describe sets of atoms. The least fixed point of S (or some post-fixpoint
of S) describes an over-approximation of the least fixed point of 7. A generic correctness
condition relating 7" and S is given, that can be used to establish the soundness of particular
abstractions.

We briefly review three kinds of abstract domain widely applicable to abstract interpretation
of CLP programs. Two of them employ finite domains, while the other uses an infinite domain
together with a convergence accelerator (a so-called widening operator) to ensure termination of

the Kleene sequence.

Constraint Domains: Property-based Abstractions. A property-based abstraction is an ab-
stract interpretation, illustrated in Figure 11. Let A be some finite set of constraints. Let S be
a set of atomic formulas. Then the abstraction function «; yields some subset of A, namely
a1(S) = {q € A|Vs € S(q — s)}. Thatis, a;(5) is the set of constraints that hold for
all elements of S. The concretisation function 7, is defined on the subsets of A. Let A’ C A:
7 (A) ={s|Vq € A'.(qg — s)}, that is, the set of atoms that satisfy all the constraints in A’.

Then we construct a function 75" : 24 — 24 defined as a; o Tlg 0.

An abstract interpretation of a program P with respect to a set of properties A is then defined
as Ifp(75"). This is the limit of the sequence A, 175 (A), Tp' (T3 (A)), ..., which converges
after a finite number of steps. The framework of abstract interpretation establishes that Ifp(75")

represents an over-approximation of the minimal model of P, i.e. that Ifp(7S) C v (Ifp(Tp")).

Constraint Domains: Partition-based Abstractions. A related abstract interpretation is based
on a set of properties that forms a partition of the state-space of the program (that is, every atom
A satisfies exactly one property). This abstract interpretation is illustrated in Figure 12.

Given a partition A (as a set of constraints), the abstraction function on a set of atoms S
is the set of elements of the partition that S overlaps with. That is, ay(S) = {¢ € A | Is €
S.SAT(q A s)}, while v, yields the set of all atoms that could satisfy the a set of constraints;

53

Y2 (A) ={s|Fqge A.SAT(q N s)}.

An abstract interpretation is then constructed using the same pattern as for property-based
abstractions. Note that the ordering on the abstract domain is opposite in the two domains:
in property-based abstractions a larger set of properties describes a smaller set of atoms than
a smaller set of properties, whereas a larger set of partition elements describes a larger set of

elements than a smaller set of elements.

Constraint Domains: Convex Polyhedral Abstractions. Both of the two abstract domains
described above are based on a given fixed set of properties. By contrast, in the domain of con-
vex polyhedra no properties are supplied - the purpose of the analysis is to discover them. We
do not give details of this domain here: it was invented by Cousot and Halbwachs [CH78] and
implemented for logic programs by Benoy and King [BK96] and by Henriksen et al. [HBGO7]
among others. The PPL library [BHZ08] provides a robust and efficient implementation of oper-
ations on convex polyhedra and related objects. Special cases of convex polyhedra that involve
less complex analyses include intervals, octagons and difference-bound matrices.

For a CLP program, a convex polyhedral abstraction returns a set of constrained atoms of
the form p(X,...,X,) « C, one such constrained atom for each predicate p of the program.
The constraint C represents a convex polyhedron as a conjunction of linear constraints. This
constraint C is an invariant discovered by the analysis.

Note that the Kleene sequence for the convex polyhedral abstraction does not usually ter-
minate. It is necessary to use a widening operator to force termination, at the price of losing
precision.

Convex polyhedra are a useful and expressive domain; however our intention is to supplement
them with predicate-based abstractions and specialisation algorithms in the context of an iterative

abstraction-refinement algorithm (see below).

SMT Solvers in Constraint-based Abstractions. The domains described above are all heavily
reliant on constraint solvers to compute the abstract semantics. In particular, constraint satisfia-
bility algorithms play a critical role in the abstraction functions for property-based abstractions
and partition-based abstractions. In experiments to date we made use of the powerful SMT (Sat-
isfiability Modulo Theories) solver Yices [DdAMO06]. Others that can be used are Z3 [dMBO08]
and MathSAT [CGSS13]. These are applied as back-end solvers for the analysis tools interfaced
to Prolog (the implementation language for our analysis tools) as external libraries.

Solvers for linear arithmetic constraints are the basic tool employed so far, but the SMT
solvers cited above contain satisfiability procedures for a range of theories including equality

54

and uninterpreted functions, bit-vectors, and arrays. These theories (especially arrays) will be

essential to the analysis of realistic programs.

Abstraction-refinement Techniques Combined with Abstract Interpretation. The abstract
interpretations outlined above can be embedded in a family of iterative verification algorithms
called abstraction-refinement. For example, the choice of properties with which to construct a
property-based or partition-based abstraction is not easy to invent directly. The central idea of
abstraction-refinement is to start with a coarse abstraction and successively refine it, using infor-
mation gained from previous unsuccessful attempts. Often, refinements are drawn from counter-
examples; if the required property cannot be proved in a given abstraction then the failure of
the proof can guide the construction of the next refinement. This family of verification algo-
rithms is known as CEGAR (Counterexample-Guided Abstraction and Refinement) [CGJT00].
An example of a state-of-the art CLP-based approach for software verification using the CEGAR
approach is presented by Grebenshchikov et al. [GLPR12].

7 Showing the Analysis Information to the User

In this section we comment on possible realizations for the “visualizer” box in Figure 1. The re-
sults from the various parts of the resource consumption analysis will be used either for transfor-
mation of programs into more efficient forms or relayed back to the programmer as suggestions
for improvements. The general approach of ENTRA is based on transformation from source
code to an internal representation for analysis. This presents a challenge, namely that results for
the analysed program has to be directly related back to the source program level.

This topic is dealt with in more detail in Deliverable 2.1 (Common Assertion Language) but
it also concerns the analysis tools directly, since source code position information is retained
throughout the analysis process. In order to explore some of the practical issues we have con-
structed a prototype version of an editor/analyser framework. Key elements of the prototype are

as follows:

e The source code parser will store source file positions such as line and column numbers

for all variables, expressions and statements.

e When programs are translated to intermediate representations the source file positions are

kept, either as comments or as extra values in representation.

e The source file information are merged into the analysis results as assertions (since the
assertion language will have the ability to specify scope).

55

e The editor can display results from the analysis, for example as highlighting, mouse-over

pop-up boxes or textual annotations added to the code.

The overall goal of the analysis tools is to inform the developer of analysis results, such that
the programmer can make immediate use of it in developing energy efficient programs. We in-
tend to continue experimentation with the prototype editor/analyser to investigate the challenges

raised. These include the following:

e The level of detail can be critical: we may be able to extract fine-grained information
about a program’s behaviour but very detailed information may confuse the programmer

and clutter the development process.

e We also need to avoid any negative impact on the performance of analysis tools by the

extra source code information carried into the internal representation.

8 Probabilistic Resource Usage Analysis

Analysis of upper and lower bounds facilitates many optimizations to be performed with respect
to time and energy. For example, we can decide whether to split some code in two parallel
tasks or not by taking into consideration the time and energy spent in both the sequential and
parallel case and composing the results (parallel execution may take less time, but may consume
more energy because it needs to wake up another processor). Tight bounds on the resource
consumption also allows us to perform a better scheduling of tasks in the processor.

However, interval-based resource analysis is too restricted. It will give safe bounds for the
best and worst case, without any information about how many times those cases are to be reached.
So, if we perform a subsequent optimization based on intervals, this will not always give the ideal
results.

For example:

e Error branches are often very expensive. However, the resource analysis takes into con-
sideration all possible paths of execution, including error branches. Given that a developer
typically would want to optimize resource usage for non-error execution, optimizations for

error traces may not be appropriate;

e To perform an optimization that guarantees to give better results in 90 percent of the cases,

may only be interesting if the gain is much larger than the losses in the other 10 percent.

The previous limitations make the case for a more powerful resource analysis, which takes

into consideration not only the bounds in which the resource consumption will appear, but also

56

the frequency with which time or energy value will happen in the measurements. We have called
this extension probabilistic resource usage analysis, because our aim is to model these scenarios
with the help of probability distributions over the variables.

Once we start using probabilities, there is even a larger range of applications in the ENTRA
project. For example, we have used a simple model which assigns a constant cost to each ISA
instruction. If we use a simple Gaussian distribution for each instruction instead, we could get
information about the variability of energy consumption of the whole program. Since an energy
model is inherently uncertain, a more realistic model which includes probability distributions for
each instruction seems a natural step to take.

8.1 The Need for Dependence Analysis

Modelling resources using only upper and lower bounds facilitates simplicity and gives us the
advantage of using a rough approximation. For example, we can be sure that if an upper energy
usage bound for program function p is £, and similarly the bound for g is £, a correct upper
bound for the sequential composition of the program functions is £, + E,, plus possibly some
constant related to the cost of preparing a call.

However, when dealing with probabilistic resources, things are more complicated. If we
know the distribution of energy spent in each of the task executions p and g, namely £, and £,
we cannot directly deduce the distribution of its sequential or parallel composition £, ,, due to a
possible correlation between them.

As an example, consider variables X and Y discrete and uniform over the values {1, 2, 3,4, 5,6},
modelling a dice roll. The distribution of X + Y can differ as described in the following (and
illustrated in Figure 13):

e When X and Y are independent, the distribution of its sum is given convolution of X and
Y:

P(X+Y =2)=) P(X=2)P(Y =z—x)
The more dice that are summed together, the more the shape will look like a bell-like shape
that is found in most maths textbooks.

e When X and Y are strongly dependent on each other, in particular, the outcome of X and
Y are always the same, the distribution of their sum is:

Z even

z odd

PX+Y =2)=

S o=

57

Probability Distribution for Sum of dice

(Two six-sided dice)

B Independent

B Strongly
l L dependent
12 3 4 5 6 7 & 9 10 11 12 13

14

Throws with that sum
(ST R NS T N |

[—

0
sum of dice

Figure 13: The probability distribution for the result differs whether the variables are independent
or strongly dependent.

An example is that the sum 7 can occur 1 in 6 times when the dice are independent and occurs
0 times when the dice are strongly dependent. This example shows that, when dealing with

probabilities, one must be very careful with dependencies between random variables.

In probability theory we know that dependence between variables is relevant. The same is
true for variables in programs: Variables are often dependent on each other, as any assignment
gives rice to dependency (e.g. ina := b + c the value of a is dependent on the value of b
and c) and also any condition can introduce dependence between variables (e.g. in the program

if(x > y) then x else y; the if-condition (x > y) will introduce a dependency
between y and x because only some pairs of x and y values can occur in a branch (have a proba-
bility above 0). We can generalize this to resources: We have two sequential program parts each
with its own distribution of estimated resource usage. If we assume independence of the two
program parts we sum the distributions of the energy estimates (equivalent to the independent
dice). Independence is not safe in the general case as it may be such that if one program part is
slow then the other program part is also slow, and if one program part is fast then the other is as
well. In other words, the resource usage for each program part may depend on each other, and
then the sum will behave like the strongly dependent dice.

A general observation is that the assumption of independence has a tendency to under-
approximate the worst and best cases and over-approximate the rest (equivalent to the dice graph,
where for the independent dice the probability for the sum is equal to 12 is 1:36 and for the
strongly dependent dice the probability is 1:6.

The goal is to decide the exact dependencies between variables. However, that is undecidable

58

when programs contain non-analysable parts as this implies that the probability distribution is
undecidable. Therefore we can only approximate the dependencies, and our work is focused
on producing a safe and sound probabilistic analysis which gives precise and usable probability
distributions, even in those non-analysable cases. Therefore we seek the most precise and still
decidable approximation of the result.

In the next sections we will introduce our research on two different approaches, which both
seek a good representation of variable dependency. In the first section we will present copulas, a
mathematical framework for describing dependencies between random variables without having
to know the distribution of the variables themselves, which allow us to avoid joint distributions.
This representation seems to fit into abstract interpretation because the copulas naturally forms a
lattice. The second section presents a transformation-based approach using a special constraint
function to describe the variable dependencies. This approach uses probability distributions and
transforms the program into a distribution function describing the probability distribution for the
output of the program.

We will explore some of the definitions and results that should be used in a future implemen-

tation of such an analysis, and sketch the challenges and future work to be done in this area.

8.2 Copula-Based Analysis

In this section we will be showing definitions and results mostly from the monograph on copulas
by Nelsen [Nel03]. Formally, a (2-)copula is a function C' : [0, 1] x [0, 1] — [0, 1] such that:

1. Boundary conditions: C'(z,0) = C(0,y) =0,C(z,1) =2,C(1,y) =y Va,y € [0,1]
2. Monotonicity or 2-increasing: for a, b, ¢, d € [0, 1] with a < band ¢ < d,
Ve(la,b] % [e.d]) = C(b,d) — C(a,d) — C(b,) + Cla,c) > 0
Ve is called the C'-volume of the rectangle.

Copulas become very interesting when we look at Sklar’s Theorem (1959): Let H be a two-
dimensional distribution function with marginal distribution functions F' and G. Then there
exists a copula C such that H(x,y) = C(F(z), G(y)). This copula is given by:

C(z,y) = H(F ()G (y))

Conversely, for any distribution functions F and G and any copula C, the function H defined
above is a two-dimensional distribution function with marginals F' and G. Furthermore, if F

and G are continuous, C' is unique.

59

The distribution of F'(x) and G(y) is always uniform. So, in essence, Sklar’s Theorem allows
us to partition a joint distribution into the marginal distribution of each variable in isolation, and

the copula C' with has all the information about dependence.

Examples of copulas arise in many contexts:

e The product copula T1(u,v) = wu - v corresponds to the case of random variables being

independent,

e The comonotonic copula M (u,v) = min{u,v} models a perfectly positive correspon-
dence between variables. It is used in several financial models to derive the maximum risk
of a set of products, which occurs when it is assumed that all of them are correlated. That

is, if one defaults, the other ones have high probability of doing so.

e The countermonotonic copula W (u,v) = max{u + v — 1,0} which models maximal

negative correlation.

There is very strong connection between copulas and dependence measures [OOS13]. We
can partially order the copulas using concordance [Nel03] a copula C'is less concordant than C’,
C =< Cift:

Clu,v) < C'(u,v);Vu,v € [0,1]
An important result of the theory of copulas is that for every copula C' we have:

W(u,v) = max{u+v—1,0} < C(u,v) <min{u,v} = M(u,v)

The functions W and M are called in this context the Fréchet-Hoeffding bounds. Indeed, the
copulas in 2 dimensions form a lattice structure where W and M are the bottom and top element,
respectively. Such a structure is very appealing for an analysis using abstract interpretation.

8.2.1 Application to Resource Usage Analysis

Copulas were previously been used for timing analysis [GBNO5]. Once we have the dependence
information for all points of the program, we can use it to perform a powerful probabilistic
resource analysis, and also to guide some of the optimizations to be performed.

In general, suppose we have a dependency between X,..., X, given by copula C, and
a non-decreasing continuous function ¢(z1, ..., x,). Results from the copula theory makes it
possible to derive bounds for the expected value of ¢(X;,...,X,) from the copula and the

function ¢. In our analysis, these non-decreasing functions are very interesting, because two

scenarios related to resources are modelled this way:

60

e The consumption of energy by two pieces of code (either sequential or parallel) and the

time taken by two sequential program elements use addition, a non-decreasing function;

e The time taken by executing two parts of the program in parallel is roughly the maximum

of the two execution times, again a non-decreasing function.

Thus, we can use this to derive bounds on the mean of both time and energy consumed by a piece

of code. This information is instrumental for many optimizations.

8.2.2 Nested Archimedean Copulas

Within the set of copulas one can define various classes that may form the basis of abstractions.
The Archimedean copulas is a such a class where one can define domains of copulas with finite
height and with the Fréchet-Hoeffding lower and upper bounds as extremal values.

The Archimedean copulas are symmetric so that C'(u,v) = C(v,u). To overcome this limi-
tation, nested or hierarchical Archimedean copulas (HACs) are used. These are n-dimensional
Archimedean copulas where the parameters of some generator can be replace by another nested

copula, and so on recursively, in a tree-like structure.

8.3 Transformation based Probability Analysis

Another approach to deduct probability distribution for the output is based on transformations. In
program analysis dependence between variables has been exemplified in two ways: data depen-
dency, based on assignments, and control dependency, based on whether a condition evaluates to
true. However, when working with probabilities there are further complications; when two vari-
ables have been compared in a condition, then knowledge about one of the variables will allow
us to deduce something more precise about the other. For instance, if X and y are independent,
and there is condition (x=y), then the x and y will be fully dependent on each other in the true

branch.

To keep this information through the rest of the program we propose to use a constraint-based

approach, where we use probability summation in combination with a constraint function C'.

Definition (constraint function). C'(condition) is defined as

1 if condition = true
C(condition) = 0 ({zherwise

A condition could for instance be x < y, z = f(z,y),or 1 <z < n.

61

For a program function f, we would like to find the probability distribution for the output,
Py. The probability distribution for the output is based on the probability distributions for the
input variables. Given a program function f with input parameters = and y, f(z,y), with the
distributions P, and P, respectively, we can define a new random variable z describing the
result of the function z = f(z,y). Then we can describe the distribution of the output of f as a

function on z, Py (z2):
Pr(z) =Y Pel@) - Pyly) - C(z = f(2,)) (11)

We instantiate this expression with the program function and perform a little algebra, which
turns it into a closed form expression describing the distribution of the output. We have found
that using mechanical transformations (assuming that the input is uniformly distributed) we can
transform the following example program into a probability distribution for max, Py .x.

max(x,y) = 1f (x>y) then x else y

Given that P, and P, are independent uniform distributions, where all numbers from 1 to n have
an equal large probability, namely, %:

P, :unif(1,n) P, - unif(1,n)
At first, we insert the program function into the formula (11)
P(z) =) > Pul(@) Pyy) - C(z = max(z,y))
Ty

:ZZPm(x)~Py(y)-C(z:if (r >y) then z else y)

=S S Pa) - Pyly) - (Cla > y) - Clz =) + Cle < y) - Oz =)

We use mechanical rewritings to transform this into a probability distribution describing P, (2):

Poax(z) = %-(22’—1)-0(1 < z<n)

where P,,,.(z) is sound for all z.

8.4 Summary and Future Directions for Probabilistic Analysis

In the previous sections we describe why probabilistic analysis is important for extracting re-
source usage information from programs. The main challenge in this analysis is to handle de-

pendencies between variables and programs parts. As with any powerful program analysis we

62

need a safe and sound approach to approximate information in those situations where program
parts cannot be analysed. We have outlined two approaches to perform probabilistic analysis,

one based on copulas and one using program transformation techniques.

8.4.1 Copula Analysis Using Abstract Interpretation

The idea is to devise an analysis of dependence between numerical variables using abstract
interpretation. The concrete domain will be the one of copulas, which would be abstracted by
nested Archimedean copulas containing the Fréchet-Hoeffding lower and upper bounds.

So far, we have designed an initial probabilistic analysis based on one way to abstract sets of
copulas but further work is needed to assess various ways to make abstractions and ways to use

dependency information in subsequent analysis.

8.4.2 Transformation Based Probabilistic Analysis

The transformational approach to probabilistic analysis uses rewriting techniques known from
computer algebra systems to obtain simplified or closed form expressions that describe proba-
bility distributions for resource usage. In general programs will contains parts that cannot be
analysed and where we need to develop techniques to over and under approximate probability
distributions.

If transformation techniques cannot simplify descriptions of probability distributions we may
use approximation techniques to obtain simpler and safe limits to distributions. One approach
we will explore is to extend probability distributions with constraints on possible relationship

between variables.

8.4.3 Probabilistic Information in Program Development

The aim is to incorporate probabilistic analysis into the analysis framework. The various tech-
niques needs to be explored for the ease of implementation, efficiency, precision and how the
information can be used in program transformations or relayed to a programmer in a way that

can guide the development into more energy efficient solutions.

9 Analysis of Concurrent Programs

The various analysis techniques discussed in previous sections are applicable to both sequential
and concurrent programs, provided that they can be translated to the internal semantic represen-

tation, which consists of constraint Horn clauses (CLP). In Section 9.1 we describe current work

63

in translating XC programs into this form, using the approach described in Section 3.2.4. That is,
the semantics of XC is formulated as small-step operational semantics, from which an interpreter
in CLP is systematically developed. This is partially evaluated to yield a “pure” CLP program
whose variables range over the values underlying the XC program.

This work proceeded in the following stages:

e Modelling semantics of XC programs including aspects concerning concurrency and com-
munication. The purpose was to provide a reference semantics, though not necessarily the
semantics that is partially evaluated. The reference semantics gives a classical interleaving
semantics to parallel threads.

e Using the reference semantics as a starting point, a deterministic “parallel-step” semantics
was developed. This semantics is designed with partial evaluation in mind, in that it is
possible to partially evaluate the semantics with respect to an input program without the
blow-up in program size that the interleaving semantics would give. On the other hand,
the deterministic semantics does not yield information about all possible states that could
arise, but only captures the states that arise at the start and end of each parallel statement.

This is expected to be sufficient for energy usage analysis.

e The deterministic semantics was instrumented with statement counters (see Section 3.2.5)
and partially evaluated using Logen.

In Section 9.2 we introduce another possible approach towards the analysis of multi-threaded
programs using event interaction graphs.

9.1 XC Semantics

In this section we introduce the main features of the XC semantics. The parallel-step semantics
for XC is shown in detail in attachment D3.1.6.

XC is “an imperative programming language with a computational framework based on C”
[Wat09]. (An important difference from C is that there are no pointers.) XC provides features
for creating concurrent threads that can communicate and synchronise with each other using
channels.

The most distinctive semantic features of XC relate to concurrency. One property is that
parallel threads cannot make any updates to shared variables; another is that communication
channels have two ends owned by exactly one thread each, so there is no race on being the first
to send or get on a given channel.

64

9.1.1 Parsing and Abstract Syntax

A parser analyses the structure of an XC program according to the XC grammar, and outputs an
abstract syntax tree (AST) that represents the essential structure of the program. The grammar of
XC is not shown here; a parser is assumed that returns the AST. It is also assumed that the parser
checks types while generating the AST as there is no type checking in the semantics.

Abstract Syntax. The abstract syntax of XC statements S for the present purpose is as follows.

We let x (variable names) range over a set A/ of names.

(Values) V i=n|a«
(Expressions) FE ==V |z |E+Ey| f(E)]|{S}
(Statements) S ::=skip|returnE | x:= FE | S1;S| 51| S2 |
if (n) Sy else Sy | while (n) Sy | letz = EinS
send By Fy | x :=get B

A program consists of a set of function definitions of the form f(x){S}. Functions are assumed
for convenience to have one argument; it is easy to extend to the general case.

The statements send F; F'5 and = := get E are the XC instructions for sending and receiving
data on channels, while the statement S; || Ss represents the XC par statement for creating
concurrent threads. Input and output from and to the external environment (through port I/O
for example) are not explicitly considered in the semantics but again it is straightforward to add
them. The main restriction is that only integer variables are considered; clearly modelling of
arrays will be essential and that is ongoing work.

Note that the statements in the abstract syntax do not directly correspond to the statements
found in the XC Programmer’s Guide. For instance there are no skip or let commands in XC
and there are various assignment operators other than := such as =+, =—, and so on. The inten-
tion is to keep the semantics as simple as possible and it is assumed that the parser transforms
XC statements into the statement forms in the abstract syntax. A detailed justification for the
transformations is not given here and it is assumed that any such transformations have negligible

impact on energy usage’.

2If it turns out that specific XC statements are compiled to more energy-efficient code than the more generic
statements of the abstract syntax, then the abstract syntax and the operational semantics will be extended to handle
such statements explicitly. For example, it is possible that + =-+F can be compiled to more efficient code than
z :=x + E. If so, then the assignment operator =+ will be handled explicitly.

65

9.1.2 Extra Information in the AST

The AST is sufficient for the purposes of program analysis but some information about the con-
crete syntax, such as line and column numbers, needs to be preserved in order to link analysis
results with the source program. It is also necessary to attach labels to some nodes in the AST,
for example to identify statements whose execution tally is being kept. In this section this extra

information is ignored.

9.1.3 The XCore Thread Execution Model

XC is designed to be executed on XCore processors [Wat09]. The way concurrency is handled in
XCore processors is important for the semantics. Each XCore has hardware support for executing
a number of concurrent threads. This includes registers for each thread, and a thread scheduler.
The processor is implemented using a short pipeline and provides deterministic execution of
multiple threads. The threads are executed in a round-robin fashion. The scheduling method used
“allows any number of threads to share a single unified memory system and input-output system
whilst guaranteeing that with n threads able to execute, each will get at least 1/n processor
cycles. In fact, it is useful to think of a thread cycle as being n processor cycles. From a software
design standpoint, this means that the minimum performance of a thread can be calculated by
counting the number of concurrent threads at a specific point in the program” [May13].

Deterministic Thread Semantics. The semantics for thread execution is deterministic, even
though the computation of a parallel program may evolve in many different execution orders
depending on hardware (for example the same multi-threaded program could be run both on
single- and multi-core processors) and the external environment. In this semantics a fixed execu-
tion order for threads is chosen. Due to the properties of XC mentioned above, this choice will
always give the same final state as any other execution order for a terminating program, and for
looping or blocking programs each thread will extend its execution as far as possible. (Note that
programs are often perpetual processes; the term “final state” means the state when exiting from
a parallel statement).

It would be possible to incorporate a scheduler in the semantics, permitting programs to exe-
cute in other orders depending on an extended configuration incorporating (for example) timing
information and more detailed modelling of thread behaviour on processor cores. However our
working assumption is that the energy consumption of a computation can be reasonably well
approximated using the deterministic semantics. The total energy consumed by a set of parallel
threads is assumed to be closely related to the sum of the energy consumed by individual threads,

regardless of their interleaving. The semantics correctly captures synchronisation; thus informa-

66

#include <stdio.h>
#include <xsl.h>

#define SIZE 5 Client Server

void server(chanend chanl, chanend chan2);
void client(chanend chanl, chanend chan2);
int fact(int i);

int data[]={3,6,16,11,15};

int main(){
chan ChanA,chanB;
par{
server (ChanA,chanB) ;
client(ChanA,chanB) ;
>
>

void server(chanend chanl, chanend chan2){
int var;
for(int i=0;i<SIZE;i++){|
chanl :> var;
chan2 <: fact(var);

X
>

int fact(int i) {
if(i<=0) return 1;
return i*fact(i-1);

3

void client(chanend chanl, chanend chan2){

int result = 0; - 2 \\‘\\
for(int i=0;i<SIZE;i++){ ‘ e2:chan2
chanl <: datal[i];

chan2 :> result;
printf("The result is %d\n",result);
>

Figure 14: An example of an EIAG for the factorial server-client program.

tion can be extracted related to the number of active threads and the patterns of communication

among threads, information that can also contribute to more accurate energy estimation.

9.2 Approaches Towards the Analysis of Multi-Threaded Programs

One of the possible approaches for analysing multi-threaded programs is by the use of Event
InterAction Graphs (EIAG). EIAG were introduced by Katayama [KFU96], in the context of
modelling and analysing multi-threaded, message-passing programs for testing. An EIAG con-
sists of Event Graphs and interactions, where an Event Graph (EG) is a control flow graph of a
program unit in a concurrent program (threads in the XCore case), and the interactions represent
interactions between the program units. Nodes in the EG, denote concurrent event statements
and flow control statements , and edges indicate the transfer of control between nodes. An ex-
ample of EIAG for the factorial client server program is shown in Figure 14, where the client
request the factorial of a number from the server, the server calculates it and then sends back the
result to the client. In this graph, the dotted arrows represent the interactions between the server

and client thread.

Moving from single-threaded programs to multi-threaded, analysing and modelling gets an

67

extra level of complexity due to the interactions happening between threads. These interactions
in the case of XC, constitute the communication of programs on channels. The energy consump-
tion of a program is mainly affected by its communication by two factors. Firstly, energy con-
sumption for the communication of two threads depends on the physical distance between them.
Secondly, the synchronization of the communication over a channel will affect the idle time for
threads waiting on a communication point, and therefore the overall energy consumption. By
companying timing analysis using the EIAG and modelling the pipeline behaviour of the XCore
architecture, we believe that it will be possible to statically capture the synchronization behaviour
of a communication in most of the cases. Combining this with our energy models and resource
analysis framework, possibly energy consumption estimations for multi-thread programs can be
retrieved.

During the last months we have developed a method to model and analyse multi-threaded
code of XC programs with EIAG. This work is currently under consideration for publication at
the International Conference on Software Testing (ICST), as a paper entitled A Coverage Model
to Capture the Communication Behaviour of Multi-Threaded Message-Passing Programs, and is
included in this document as attachment D3.1.5. The techniques developed in this paper can be

employed for energy budget verification and energy optimizations in work package 4.

10 Properties used by the State of the Art Energy Optimiza-

tion Techniques

The analysis framework is flexible and powerful enough to infer a wide range of resources and
other (auxiliary/instrumental) program properties. Since we want to focus on those that we
foresee to be used in next stages, we have performed an initial study of power-aware software
optimization techniques to identify the most promising techniques, and the properties that the
analysis should supply to them. Such techniques have been classified into three main groups:
compiler level, OS/middleware level and algorithm level. In this section, the techniques that

need information from static analyses, as well as these static analyses, are summarized.

10.1 Compiler Optimizations for Low Power

Research on power-aware compiler optimizations is not very extensive, mostly due to the lack of
reliable and effective evaluation methods. Thus, an important starting point is to provide ways to

evaluate optimization effects.

68

10.1.1 Power/Energy vs. Performance Optimizations

It has been widely accepted that existing compiler optimizations for improving performance
also achieve lower energy consumption given that higher execution time usually means higher
energy consumption. This is true for some of them, such as dead code elimination, common
subexpression elimination, and in general all those that decrease the amount of workload to be
performed. However, there are optimizations where the conclusion about the decrease in energy

consumption is not so straightforward.

The work of Kandermir et al al. [KVI02] explores the effect of loop optimization techniques
on energy. One possibility presented is to combine loop optimizations, in particular loop fission,
with the possibilities offered by the hardware, in this case the existence of different memory
banks that have different power modes. In a similar fashion, compilers can help operating sys-
tems to decide when to turn on a particular power saving mode by inferring the time during which
particular modules are inactive, so they can be turned off: if the operating system knows when
particular module is to be used, it can start its activation and deactivation in a timely manner.
Example are given in [HPHT02, SCO™pt].

Similarly, when applying Dynamic Voltage and Frequency Scaling (DVES) optimizations,
the compiler can infer the parts of the code for which the processor can be slowed down with
negligible performance loss [HK03]. Another example is presented in [SKLil], where the com-
piler provides an estimation of the execution time of each block. Hence, the static analysis

necessary in this case is timing analysis.

10.1.2 Energy Efficient Compiler-based Task and/or Data Parallelization

Nowadays, having multiprocessors or multiple cores on the same chip in practically the standard,
which provides the possibility of both task and data parallelization. Along with the possibility
of voltage and frequency scaling, as well as turning off unused components, it can bring signif-
icant energy savings. Apart form multicore systems, parallelism is also supported in Very Long
Instruction Word (VLIW) architectures through Instruction Level Parallelism (ILP) [Azeec], or
in Digital Signal Processors (DSP) through ILP or Single Instruction Multiple Data (SIMD)
[LMD™04] instruction format.

The connection between task parallelization, voltage and frequency scaling and selective
turning off of different components on a multicore chip is investigated in the work of Cho and
Melhem [CM10], which derives fundamental formulas to describe the connection between par-

allelizing an application, its performance and energy consumption.

69

10.1.3 Summary of Used Static Analysis Techniques

We will now list all the static analyses used by the above mentioned compilers as inputs to the

optimization step, or identified as a necessity:

e Energy accounting, i.e. providing insight into the amount of energy a piece of code spends,

in order to enable the evaluation of different optimization techniques

e Inferring the time (starting and ending point) the components (e.g. disks) are not active,

which can be used by the OS to turn them on and off in a timely manner

o Identify parts of the code the processor can be slowed down with no performance loss, e.g.

memory access, as an enabler for voltage and frequency scaling
e [oad imbalance analysis, as a special case of the previous item
e Execution time estimation, as another enabler for voltage and frequency scaling

e If there is more than one resource for a certain action, find the shortest path to it (in the
terms of energy)

However, none of the cited works mention the usefulness of the independence analysis, which
is very important when parallelizing a task. One example of the efficient use of abstract interpre-

tation in automatic parallelization is given in [BGdIBH99], and is implemented in CiaoPP.

10.2 Algorithm and Code Energy-aware Optimizations
10.2.1 Re-computation vs. Communication

Technology scaling has been more beneficial to transistors than to wires. For this reason, com-
munication has become the limiting factor of both power and performance [MGO08], especially
having in mind its growing level in today’s multi-core era. Even the introduction of the Network-
on-Chip (NoC) paradigm [BWM™ch] does not solve the problem completely, given the growing
trend of communication requirements.

A solution to this problem is to perform re-computation of a code, rather than fetching it
from a remote place [MG08]. An important enabler for this approach is to develop greater
understanding of algorithms and data structures in order to better manage data movement in
systems. Furthermore, it is important to be able to estimate the cost of both computation and
communication in order to be able to decide which one is more beneficial in particular cases. The
authors believe that the significant work done in VLSI domain in characterizing and predicting

interconnections can be helpful in understanding communications in multi-core processors.

70

10.2.2 Precision (QoS) - Energy Trade-off

In the recent past, researchers have studied energy-accuracy trade-offs [LYeb]. The main con-
clusion is that a significant part of the energy is spent on providing correctness, while there are
many applications that are resilient to errors [LYeb, MSHR10].

This idea is exploited in the design of EnerJ [SDF*11], an extension to Java which provides
a solution for isolating precise parts of the program from the ones that can be approximated
by introducing approximate types, i.e., type qualifiers declaring that the data can be used in
approximate computations. Important contributions to this line of research has been provided
by the Computer Science and Artificial Intelligence Laboratory from MIT [MRR11a, MRR11b,
ZMKR12, MSHR 10, RHMS10].

10.2.3 Summary of Used Static Analysis Techniques

The enabler for all mentioned techniques is again the estimation of the consumed energy. Other

static analysis techniques used to enable the code transformation optimization are the following:

e Understanding communication patterns in order to enable communication - re-computation
trade-off

e Static energy-bounded scalability analysis, which optimizes performance of parallel algo-

rithms given an energy bound

e Static verification of approximate and precise code computation, in order to enable EnerJ-
like applications

e Probabilistic reasoning which justifies that the applied code transformations change the

result within given accuracy bounds, in order to enable approximate computations

10.3 OS/Middleware Level Energy Optimizations

Operating Systems (OS) have many aspects that can provide energy savings. For example, Dy-
namic Power Management (DPM), whose most logical implementation is at OS level since OS
has the ultimate control of all computational, storage and I/O system operations. Other impor-
tant OS aspect is task scheduling, coupled with the hardware possibility of voltage and frequency
scaling, which can minimize energy consumption taking advantage of lower requirements of par-
ticular implementation. In the context of the ENTRA project, we have studied DVFS techniques
and the feasibility and effectiveness of their application to the XMOS architecture. This work

71

has been published in [BLG13], and is included in this document as attachment D3.1.4. The

necessary information for these techniques has already been mentioned in Section 10.1.3.

72

References

[AAGP11]

[Azeec]

[BGdIBH99]

[BHZO08]

[BK96]

[BLG13]

[BLGHO4]

[Bru9l]

[BW11]

E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning, 46(2):161-203, February
2011.

Naeem Zafar Azeemi. Exploiting parallelism for energy efficient source code
high performance computing. In Industrial Technology, 2006. ICIT 2006. IEEE
International Conference on, pages 2741-2746, Dec.

Francisco Bueno, Maria Garcia de la Banda, and Manuel Hermenegildo. Effec-
tivness of abstract interpretation in automatic parallelization: a case study in logic
programming. ACM Trans. Program. Lang. Syst., 21(2):189-239, March 1999.

R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward
a complete set of numerical abstractions for the analysis and verification of hard-

ware and software systems. Science of Computer Programming, 72(1-2):3-21,
2008.

F. Benoy and A. King. Inferring argument size relationships with CLP(R). In
John P. Gallagher, editor, Logic-Based Program Synthesis and Transformation
(LOPSTR’96), volume 1207, pages 204-223, August 1996.

Z. Bankovi¢ and P. Lépez-Garcia. Genetic Algorithm-based Allocation and
Scheduling for Voltage and Frequency Scalable XMOS Chips. In Jeng-
Shyang Pan, MariosM. Polycarpou, Micha Woniak, AndrC.P.L.F. Carvalho, Hctor
Quintin, and Emilio Corchado, editors, Hybrid Artificial Intelligent Systems, vol-
ume 8073 of Lecture Notes in Computer Science, pages 401-410. Springer, 2013.

F. Bueno, P. Lopez-Garcia, and M. Hermenegildo. Multivariant Non-Failure Anal-
ysis via Standard Abstract Interpretation. In 7th International Symposium on
Functional and Logic Programming (FLOPS 2004), number 2998 in LNCS, pages
100-116, Heidelberg, Germany, April 2004. Springer-Verlag.

Maurice Bruynooghe. A practical framework for the abstract interpretation of
logic programs. J. Log. Program., 10(2):91-124, 1991.

A.E. Brown and G. Wilson. The Architecture of Open Source Applications: Ele-
gance, Evolution, and a Few Fearless Hacks. The Achrictecture of Open Source
Applications. CreativeCommons, 2011.

73

[BWMch]

[CCT7a]

[CCT7b]

[CCT9]

[CGJT00]

[CGSS13]

[CH78]

[CM10]

[Cou99]

A. Banerjee, P.T. Wolkotte, R.D. Mullins, S.W. Moore, and G.] M Smit. An
energy and performance exploration of network-on-chip architectures. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 17(3):319-329, March.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceed-
ings of the 4th ACM Symposium on Principles of Programming Languages, Los
Angeles, pages 238-252, 1977.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Robert M. Graham, Michael A. Harrison, and Ravi Sethi, editors, POPL, pages
238-252. ACM, 1977.

Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In Alfred V. Aho, Stephen N. Zilles, and Barry K. Rosen, editors, POPL,
pages 269-282. ACM Press, 1979.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In E. Allen Emerson and
A. Prasad Sistla, editors, Computer Aided Verification, 12th International Confer-
ence, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings, volume 1855
of Lecture Notes in Computer Science, pages 154—169. Springer, 2000.

Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and Roberto Sebas-
tiani. The MathSATS SMT Solver. In Nir Piterman and Scott Smolka, editors,
Proceedings of TACAS, volume 7795 of LNCS. Springer, 2013.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proceedings of the 5th Annual ACM Symposium on
Principles of Programming Languages, pages 84-96, 1978.

Sangyeun Cho and Rami G. Melhem. On the interplay of parallelization, pro-
gram performance, and energy consumption. /EEE Trans. Parallel Distrib. Syst.,
21(3):342-353, March 2010.

P. Cousot. The calculational design of a generic abstract interpreter. In M. Broy
and R. Steinbriiggen, editors, Calculational System Design. NATO ASI Series F.
1OS Press, Amsterdam, 1999.

74

[DAMO6]

[DLGHLY7]

[dMBO8]

[dwal3]

[Gal93]

[GBNO5]

[GLPR12]

[HAH12]

[HBC+12a]

[HBC+12b]

Bruno Dutertre and Leonardo Mendonga de Moura. A fast linear-arithmetic solver
for DPLL(T). In Thomas Ball and Robert B. Jones, editors, Computer Aided
Verification, 18th International Conference, CAV 2006, Seattle, WA, USA, August
17-20, 2006, Proceedings, volume 4144 of Lecture Notes in Computer Science,
pages 81-94. Springer, 2006.

S. K. Debray, P. Lopez-Garcia, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In /1997 International Logic Programming
Symposium, pages 291-305. MIT Press, Cambridge, MA, October 1997.

Leonardo Mendonga de Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In
C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, 14th International Conference, TACAS 2008,
volume 4963 of Lecture Notes in Computer Science, pages 337-340. Springer,
2008.

org dwarfstd. The dwarf debugging standard, October 2013.

J. P. Gallagher. Specialisation of logic programs: A tutorial. In Proceedings
PEPM’93, ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 88-98, Copenhagen, June 1993. ACM Press.

Alan Burns Guillem Bernat and Martin Newby. Probabilistic timing analysis: An
approach using copulas. J. Embedded Computing, 1(2):179-194, 2005.

Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Ry-
balchenko. Synthesizing software verifiers from proof rules. In Jan Vitek, Haibo
Lin, and Frank Tip, editors, ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’12, pages 405-416. ACM, 2012.

J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate amortized resource anal-
ysis. ACM Trans. Program. Lang. Syst., 34(3):14, 2012.

M. V. Hermenegildo, F. Bueno, M. Carro, P. Lépez, E. Mera, J.F. Morales, and
G. Puebla. An Overview of Ciao and its Design Philosophy. Theory and Practice
of Logic Programming, 12(1-2):219-252, January 2012.

M. V. Hermenegildo, F. Bueno, M. Carro, P. Lépez, E. Mera, J.F. Morales,
and G. Puebla. An Overview of Ciao and its Design Philosophy. The-

75

[HBGO7]

[HKO3]

[HPBLGO5]

[HPH02]

[JGS93]

[KFU96]

[KVIO2]

[LAO4]

[LGDB10]

ory and Practice of Logic Programming, 12(1-2):219-252, January 2012.
http://arxiv.org/abs/1102.5497.

Kim S. Henriksen, Gourinath Banda, and John P. Gallagher. Experiments with a
convex polyhedral analysis tool for logic programs. In Workshop on Logic Pro-
gramming Environments, Porto, 2007, 2007.

Chung-Hsing Hsu and Ulrich Kremer. The design, implementation, and evaluation
of a compiler algorithm for cpu energy reduction. SIGPLAN Not., 38(5):38-48,
May 2003.

M. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1-2), 2005.

T. Heath, E. Pinheiro, J. Hom, U. Kremer, and R. Bianchini. Application transfor-
mations for energy and performance-aware device management. In Parallel Ar-
chitectures and Compilation Techniques, 2002. Proceedings. 2002 International
Conference on, pages 121-130, 2002.

N. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Software
Generation. Prentice Hall, 1993.

T. Katayama, Z. Furukawa, and K. Ushijima. A method for structural testing of
Ada concurrent programs using the event interactions graph. In Proceedings of
the Third Asia-Pacific Software Engineering Conference, pages 335 — 364, 1996.

Mahmut Kandemir, N. Vijaykrishnan, and Mary Jane Irwin. Compiler optimiza-
tions for low power systems. In Robert Graybill and Rami Melhem, editors, Power
aware computing, pages 191-210. Kluwer Academic Publishers, Norwell, MA,
USA, 2002.

C. Lattner and V.S. Adve. LLVM: A compilation framework for lifelong program
analysis and transformation. In CGO, pages 75-88, 2004.

P. Lopez-Garcia, L. Darmawan, and F. Bueno. A Framework for Verification and
Debugging of Resource Usage Properties. In M. Hermenegildo and T. Schaub,
editors, Technical Communications of the 26th Int’l. Conference on Logic Pro-

gramming (ICLP’10), volume 7 of Leibniz International Proceedings in Informat-

76

[LJ99]

[LKS*13]

[LMD*+04]

[LYeb]

[May13]

[MGO8]

[MH92]

[MRR1 1a]

[MRR11b]

ics (LIPIcs), pages 104—113, Dagstuhl, Germany, July 2010. Schloss Dagstuhl—

Leibniz-Zentrum fuer Informatik.

M. Leuschel and J. Jgrgensen. Efficient specialisation in Prolog using the hand-
written compiler generator LOGEN. Elec. Notes Theor. Comp. Sci., 30(2), 1999.

U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech, M.V.
Hermenegildo, and K. Eder. Energy Consumption Analysis of Programs based
on XMOS ISA-level Models. In Pre-proceedings of the 23rd International Sym-
posium on Logic-Based Program Synthesis and Transformation (LOPSTR’13),
September 2013.

Markus Lorenz, Peter Marwedel, Thorsten Driger, Gerhard Fettweis, and Rainer
Leupers. Compiler based exploration of dsp energy savings by simd operations. In
Proceedings of the 2004 Asia and South Pacific Design Automation Conference,
ASP-DAC °04, pages 838-841, Piscataway, NJ, USA, 2004. IEEE Press.

Xuanhua Li and D. Yeung. Application-level correctness and its impact on fault
tolerance. In High Performance Computer Architecture, 2007. HPCA 2007. IEEE
13th International Symposium on, pages 181-192, Feb.

D. May. The XMOS XS1 architecture. available online:

http://www.xmos.com/published/xmos-xs1-architecture, 2013.

Simon Moore and Daniel Greenfield. The next resource war: computation vs.

communication. In Proceedings of the 2008 international workshop on System
level interconnect prediction, SLIP *08, pages 81-86, New York, NY, USA, 2008.
ACM.

K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315-347, July 1992.

Sasa Misailovic, Daniel M. Roy, and Martin C. Rinard. Probabilistic and statisti-
cal analysis of perforated patterns. Technical Report MIT-CSAIL-TR-2011-003,
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute

of Technology, Cambridge, Massachusetts, January 2011.

Sasa Misailovic, Daniel M. Roy, and Martin C. Rinard. Probabilistically accurate

program transformations. In Proceedings of the 18th international conference

7

[MSHR10]

[Nel03]

[NMLGHO7]

[NNH99]

[OOS13]

[PP99]

[RHMS10]

[SCO*pt]

[SDF*+11]

[SKLil]

on Static analysis, SAS’11, pages 316-333, Berlin, Heidelberg, 2011. Springer-
Verlag.

Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and Martin Rinard. Quality
of service profiling. In Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 1, ICSE 10, pages 25-34, New York, NY,
USA, 2010. ACM.

Roger B. Nelsen. Properties and applications of copulas: A brief survey. In First
Brazilian Conference on Statistical Modelling in Insurance and Finance, pages
10-28, 2003.

J. Navas, E. Mera, P. Lopez-Garcia, and M. Hermenegildo. User-Definable Re-
source Bounds Analysis for Logic Programs. In International Conference on
Logic Programming (ICLP’07), Lecture Notes in Computer Science. Springer,
2007.

F. Nielson, HR. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

Yarema Okhrin Ostap Okhrin and Wolfgang Schmid. Properties of hierarchical
archimedean copulas. Statistics & Risk Modeling, 30(1):21-54, 2013.

Alberto Pettorossi and Maurizio Proietti. Synthesis and transformation of logic
programs using unfold/fold proofs. J. Log. Program., 41(2-3):197-230, 1999.

Martin Rinard, Henry Hoffmann, Sasa Misailovic, and Stelios Sidiroglou. Patterns
and statistical analysis for understanding reduced resource computing. SIGPLAN
Not., 45(10):806-821, October 2010.

Seung Woo Son, Guangyu Chen, O. Ozturk, M. Kandemir, and A. Choudhary.
Compiler-directed energy optimization for parallel disk based systems. Parallel
and Distributed Systems, IEEE Transactions on, 18(9):1241-1257, Sept.

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. Enerj: Approximate data types for safe and general
low-power computation. SIGPLAN Not., 46(6):164—174, June 2011.

Dongkun Shin, Jihong Kim, and Seongsoo Lee. Intra-task voltage scheduling
for low-energy hard real-time applications. Design Test of Computers, IEEE,
18(2):20-30, March-April.

78

[SLGBH13] A. Serrano, P. Lopez-Garcia, F. Bueno, and M. Hermenegildo. Sized Type Analy-

[SLGH13]

[TMWLO6]

[VBO2]

[Wat09]

[ZMKR12]

[ZNMZ12]

sis for Logic Programs (technical communication). Theory and Practice of Logic
Programming, 29th Int’l. Conference on Logic Programming (ICLP’13) Special
Issue, On-line Supplement, August 2013. To Appear.

Alejandro Serrano, Pedro Lopez-Garcia, and Manuel V. Hermenegildo. Towards
an abstract domain for resource analysis of logic programs using sized types.
CoRR, abs/1308.3940, 2013.

V. Tiwari, S. Malik, A. Wolfe, and M. T. C. Lee. Instruction level power anal-
ysis and optimization of software. In VLSI Design, 1996. Proceedings., Ninth
International Conference on, pages 326-328, 1996.

C. Vaucheret and F. Bueno. More Precise yet Efficient Type Inference for Logic
Programs. In International Static Analysis Symposium, volume 2477 of Lecture

Notes in Computer Science, pages 102—116. Springer-Verlag, September 2002.
Douglas Watt. Programming XC on XMOS Devices. XMOS Ltd., 2009.

Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A. Kelner, and Martin Rinard. Ran-
domized accuracy-aware program transformations for efficient approximate com-
putations. SIGPLAN Not., 47(1):441-454, January 2012.

Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic.
Formalizing the llvm intermediate representation for verified program transfor-
mations. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’12, pages 427-440, New York,
NY, USA, 2012. ACM.

79

Attachments

80

Attachment D3.1.1

Energy Consumption Analysis of
Programs based on XMOS ISA-Level
Models

Published at the 23rd International Symposium
on Logic-Based Program Synthesis and
Transformation (LOPSTR’13)

81

Energy Consumption Analysis of Programs
based on XMOS ISA-Level Models

U. Ligat?, S. Kerrison!, A. Serrano?, K. Georgiou!, P. Lopez-Garcia?3,
N. Grech!, M.V. Hermenegildo?*, and K. Eder!

1 University of Bristol
{steve.kerrison,kyriakos.georgiou,
n.grech,kerstin.eder}@bristol.ac.uk

2 IMDEA Software Institute
{umer.liqat,alejandro.serrano,
pedro.lopez,manuel.hermenegildo}@imdea.org
3 Spanish Council for Scientific Research (CSIC)
* Universidad Politécnica de Madrid (UPM)

Abstract. Energy consumption analysis of embedded programs requires
the analysis of low-level program representations. This is challenging be-
cause the gap between the high-level program structure and the low-
level energy models needs to be bridged. Here, we describe techniques
for recreating the structure of low-level programs and transforming these
into Horn clauses in order to make use of the CiaoPP resource analy-
sis framework. Our analysis framework, which makes use of an energy
model we produce for the underlying hardware, characterizes the energy
consumption of the program, and returns energy formulae parametrised
by the size of the input data. We have performed an initial experimental
assessment and obtained encouraging results when comparing the stati-
cally inferred formulae to direct energy measurements from the hardware
running a set of benchmarks. Static energy estimation has applications
in program optimization and enables more energy-awareness in software
development.

Keywords: energy consumption analysis, energy models, resource usage
analysis, static analysis.

1 Introduction

Energy consumption and the environmental impact of computing technologies
are a major focus. Despite advances in power-efficient hardware, more energy
savings can be achieved by improving the way current software technologies
make use of such hardware. Many optimization techniques that can be used for
producing energy-efficient software need estimations of the energy consumption
of software segments prior to their execution, in order to make decisions about
the optimal way of executing them. These a priori estimations are also very
useful to software engineers to better understand the effect of their designs on the
energy consumption early on during the software development process, and make

more informed design decisions (e.g., using the appropriate data structures), even
when there are parts not developed yet.

In this paper we combine static analysis and low level energy modelling tech-
niques to implement a tool capable of estimating the energy consumption of an
embedded program (and its constituent parts, such as procedures and functions)
as a function on several parameters of the input data (e.g., sizes), and the hard-
ware platform where they are executed (e.g., clock frequency and voltage). We
show the feasibility of our proposal with a concrete case study: analysis of ISA
(Instruction Set Architecture) code compiled from XC [17]. XC is a high-level
C-based programming language that includes extensions for concurrency, com-
munication, input/output operations, and real-time behavior. XC libraries share
a common API with standard C libraries and therefore C code can commingle
with XC code in a single application.

Since energy consumption analysis depends on the underlying hardware, the
analyser requires information expressing the effect of the execution of a software
segment (e.g., an assembly instruction) on the hardware. Such information is
represented using models. In our approach these models express information
using assertions. These are propagated during the static analysis process in order
to infer information for higher-level entities such as functions. For instance, using
assertions we abstract the operations in the language in terms of their effect on
the size of the runtime data and the energy exerted. Energy models at lower
levels (e.g., at the ISA level) are more precise than at higher levels (e.g., XC
source code), since the closer to the hardware, the easier it is to determine the
effect of the execution of the program on the hardware. For this reason, we
have produced models for the ISA level, which we use when analysing ISA code
generated by the XCC compiler.

CiaoPP P Energy
Resource s Consumption
Usage D Functions

ISA-to-Ciag Ciao IR

(Horn clauses)

XC
source

Assembly
(ISA)

Fig. 1. Overview of the analysis framework for XC programs.

Our approach leverages the CiaoPP tool [4], the preprocessor of the Ciao
programming environment [5]. CiaoPP includes a parametric analysis frame-
work for resource usage that can be instantiated to infer bounds on resources of
interest, energy consumption in our case. In CiaoPP, a resource is a user-defined
counter representing a (numerical) non-functional global property, such as exe-
cution time, execution steps, number of bits sent or received by an application
over a socket, number of calls to a predicate, number of accesses to a database,

etc. The instantiation of the framework for energy consumption (or any other
resource) is done by means of an assertion language that allows the user to define
resources and express the resource usage of elementary program operations, cer-
tain program constructs, and library procedures. Based on this information, the
analyser can infer upper and lower bounds on the resource usage of the whole
program. This CiaoPP analysis works on an intermediate block-based repre-
sentation language, which we call the Ciao IR. Each block is represented as a
Horn clause, so that, in essence, the Ciao IR is a logic programming subset of
the Ciao language. To this end we propose a transformation of the ISA program
into Ciao IR (containing Horn clauses and assertions), which allows us to analyse
the transformed program with CiaoPP. The procedural interpretation of these
Ciao IR programs, coupled with resource-related information contained in the
assertions (such as the energy consumption models at the ISA level), allow the
resource analysis to infer static bounds on the energy consumption of the Ciao
programs that are applicable to the original ISA programs.

int fact(int N) {
if (N <= 0) returm 1;
return N * fact(N - 1);
}

Fig. 2. An XC source (factorial) function.

Figure 1 shows the main steps of our approach for energy consumption anal-
ysis, which starts with an XC program (e.g., the fact function in Figure 2). The
ISA program corresponding to it is generated using the XC compiler tool XCC
(left hand side of Figure 3). The resulting ISA program is passed to a translator
which generates the associated Ciao IR program (right hand side of Figure 3).
Such program, together with the information contained in the energy models at
the ISA level (represented using the mentioned assertion language), is passed to
the resource analysis which outputs the energy consumption for all procedures in
the Ciao IR program. In our example, the resource analysis infers an estimation
of the energy consumed by a call to fact as (26.0N + 19.4) nano-Joules. This is
parametric with N, the input argument to fact.

In this work we have successfully bridged the gap between researchers from
two different areas: some closer to the hardware area, needed to produce the
low level energy models, and the others from the software area, with expertise in
static analysis techniques and tools. As a result of this multidisciplinary research,
we have faced some challenges and produced some original contributions that
we describe in this paper and summarize as follows:

1. Production of a low-level energy consumption model at the ISA level for
our case study architecture (XMOS XS1-L) that is also appropriate for the
high-level cost analysis tools.

N OO W N~

11
12
13
14

16
17
18

21
22

1 |fact(RO,R0_3):-
<fact>:
2 entsp (0x2),
001: entsp 0x2
3 stw(RO,SpOx1),
002: stw r0, spl0x1]
4 ldw(Rl,SpOXl) R
003: 1ldw r1, splOox1]
004: 1dc 0. 0x0 5 1dc (RO_1,b0x0),
: ’ 6 1ss(RO_2,bRO_1,R1),
005: 1ss r0, r0, ri1
006: bf 0 <008> Ta bf (R0O_2,0x8),
: ’ 7b fact_aux (RO_2,Sp0Ox1,R0_3,
R1_1).
007: bu <010> 10 | fact_aux(1,Sp0Ox1,R0_4,R1):-
010: ldw 10, spl0x1] 1 bu (0x04),
: » SP 12 1dw(RO_1,SpOx1),
011: sub r0, r0, Ox1
012: bl <fact> 13 sub(RO_2,R0_1,0x1),
: 14a bl(fact),
14 f 2
013: 1dw r1, splOox1] b act (R0O_2,R0.3),
014: mul 10, rl, r0 16 Ldw(R1,SpOx1),
015: rets Oxé ’ 17 mul (RO_4 ,R1,R0_3),
’ P 18 retsp (0x2).
008: mkmsk r0, Oxi 20 | fact_aux(0,SpOx1,R0O,R1) :-
009: retsp 0x2 21 mkmsk (RO ,0x1),
) P 22 retsp (0x2).

Fig. 3. An ISA (factorial) program (left side) and its Ciao IR (right side).

2. Design and implementation of a translation from ISA programs into a Horn
clause representation (Ciao IR).

3. Instantiation of the CiaoPP general resource analysis framework to infer
energy consumption using the low-level energy consumption model.

4. Overall design and implementation of a fully automatic system that statically
estimates the energy consumption of functions and procedures written in a
high-level C-based programming language, giving the results as functions on
input data sizes.

5. Experimental assessment of the developed energy consumption static ana-
lyzer.

Point 4 above may look simple at first sight, given that we have taken advan-
tage of a number of existing tools, mainly the CiaoPP general resource analyzer.
However, in practice the implementation has required the implementation of new
modules and functionalities, as well as interfaces between these existing tools,
all of which posed some design and implementation challenges and problems
that we have successfully solved. For instance, we have improved and extended
CiaoPP to deal with new types of Ciao IR programs coming from the translation
of the generated ISA programs.

In the rest of the paper, energy characterization and modelling for our case
study architecture (XMOS XS1-L) is explained in Section 2. Then, Section 3

describes the translation from ISA programs into Ciao IR, and Section 4 the
instantiation of the CiaoPP general resource usage analysis framework to infer
energy consumption. In Section 5, we have performed an experimental assess-
ment of our approach, showing that the estimation of energy consumption is
reasonably accurate. Section 6 comments on related work. Finally, Section 7
summarises our conclusions and comments on ongoing and future work.

2 Energy Characterization and Modelling

The assertion-based model utilises power consumption data collected during
hardware measurement. We have developed an ISA-level model that provides
software energy consumption estimates based on Instruction Set Simulation
(ISS) statistics. The hardware, the measurement process, as well as the con-
struction of the ISS-driven model, are detailed in [8], with the key components
relevant to this paper explained in the rest of this section.

The practicality and accuracy of our approach to energy consumption analy-
sis relies on a good characterization of energy consumption and generating good
energy consumption models. A trade-off needs to be found between the simplic-
ity of the models, which improves the efficiency of the analysis, and the accuracy
of the models, which improves the accuracy of the global analysis. Although we
analyse single-threaded code, the energy profiling must consider the hardware
multi-threading of the architecture, which has an energy impact even when only
a single thread is executed.

Further, the nature of the architecture requires specific approaches in order to
gather energy profiling data, but these same characteristics preclude certain en-
ergy effects from static analysis. For example, the effects of interleaving instruc-
tions or re-use of operands from the previous instruction become less relevant
in a hardware multi-threaded pipeline, and impossible to determine statically.
Although manifested in a specific way in this particular processor architecture,
such traits also exist in other processors, such as super-scalar designs. In this
paper we describe an initial proposal that offers a good compromise between the
above issues, and also eliminates factors that are determined to be insignificant.

2.1 Energy Profiling Framework and Strategy

An energy profiling framework, xmprofile, is used to generate sequences of in-
structions under various constraints in order to profile the energy characteristics
of the hardware. This data is essential for the accurate application of models at
any analysis level. The hardware used is shown in Figure 4. A master processor
issues test programs to and measures the power used by a slave processor, the
Device Under Test (DUT).

Currently, a subset of the ISA, including arithmetic operations, logic opera-
tions, and condition tests, has been characterized. Other instructions are at the
moment approximated using a single average value, based on typical observed
behaviour.

Core supply

]
Slave processor (DUT)
INA219 |

Power samples | | Testrun Test
kernels
Master processor
Ready /

XMProfile start/
INA219
P }—- control f— stop

software

I
[Test info & Host PC

power data

Power
supply

Fig. 4. Overview of test harness hardware and software structure, with a slave processor
executing test kernels and a master processor collecting power samples.

2.2 ISA-level Model

An ISA-level model, xmmodel, gives an energy estimate for a program based on
ISS output. Data from the measurement framework feeds this model.

Our model is based on that devised by Tiwari [16]. Tiwari’s approach is
shown in Equation 1. The energy of an ISA program, E,, is characterised as the
sum of base energy cost, B;, for all ISA instructions, ¢, multiplied by the number
of executions of each instruction, N;. An inter-instruction overhead energy, O; ;,
is then accounted for by enumerating for all instruction combinations i, j and
their frequency, NV; ;. Finally, additional contributions to program energy can be
accounted for by k external effects, Ej, which may include externally modelled
behaviours such as cache memory.

By =3 icisa (Bi x Ni) + Zi,jEISA (Oij X Nij) + 2 pcext P (1)

The XS1 architecture is hardware multi-threaded. This necessitates a fun-
damental revision of the model equation. In addition, for performance reasons,
the ISS collects instruction statistics rather than a full trace. This reduces the
execution time by an order of magnitude, such that it is approximately 100 times
slower than the hardware when simulation is run on a modern computer.

Equation 2 describes the energy of a program, E,, using a similar method
to Equation 1, but with several key differences. Time is an explicit component,
multiplied by power terms in order to calculate energy. This separation enables
future exploration of idle periods, external event timing, and variable operat-
ing frequencies. Inter-instruction overhead is represented as a single component,
rather than considering it for all possible pairs of instructions, on account of a
statistics-based approach rather than cycle-by-cycle instruction tracing. Finally,
the level of concurrency must be accounted for, something that was not neces-
sary for the architecture targeted by Equation 1. The concurrency level is the
number of threads that are active at a given time. In the case of the XS1-L,
the concurrency level represents how full the pipeline is and therefore how much
activity is generated within it as each stage switches between instructions from

the active threads.
Ep - PbaseNidleTclk + Zi\gl zieISA ((MtPZO + Pbase) Ni,tTCIk) (2)

The base power, Py ase, is present in both active and idle periods. The number
of idle periods, Nigle, is counted and multiplied by the clock period, T., to
account for the energy consumed when no threads are active. For each number
of concurrent threads, ¢, (based on the proportion of time each thread is active),
and for each instruction, 7, in the ISA, the instruction power, P;, is multiplied
by a constant inter-instruction power overhead, O, and a concurrency cost for
the level of concurrency at which the processor is operating, M;. These are all
multiplied by the number of times this instruction occurs at this concurrency
level, N;., and the clock period. Combined with the idle energy, this gives a
total energy estimate for the program run.

In the case where a single thread is running, with no idle periods, then the
above can be simplified to Equation 3. The result is very similar to the single-
threaded Tiwari equation, but with only a single, generic inter-instruction power
overhead component, O, and with no external “k” components as the memory
of the XS1-L is single-cycle with no cache, with no other effects that need to
be considered at this point. There is only ever one active thread, so we use the
concurrency cost for one thread, M;. Again, in Equation 3, time is an explicit
component. The overhead, O, is a constant because the inter-instruction effect
cannot be known statically in the XS1 architecture, and during profiling the
variation in inter-instruction effect was shown to be an order of magnitude less
than the instruction cost and would average out over program runs.

E, =3 cisa (M1PiO + Phase) % (NiTk)) (3)

Our ISS-based model, using the same energy data as the static analysis,
will be used as an additional comparison point between actual hardware energy
measurements and the static analysis results.

3 Transforming ISA Programs into Ciao IR Programs

In this section we describe the transformation from ISA programs into the Ciao
intermediate representation (Ciao IR) mentioned in Such representation consists
of a sequence of blocks (as in Figure 3). Each block is represented as a Horn
clause:

< block id > (< params >) :— Sy, ... ,Sp.

which has an entry point, that we call the head of the block (to the left of the
:— symbol), including a number of parameters < params >, and a sequence
of steps (the body, to the right of the :— symbol), each of which is either, (the
representation of) an ISA instruction, or a call to another (or the same) block.
The analyzer deals with the Ciao IR always in the same way, independently of

its origin. The transformation ensures that the program information relevant
to resource usage is preserved, so that the energy consumption functions of the
Ciao IR programs inferred by the resource analysis are applicable to the original
ISA programs.

ISA programs are expressed using the XS1 instruction set [10]. The transfor-
mation framework currently works on a subset of this instruction set. The ISA
program is parsed and a control flow analysis is carried out, yielding an inter-
procedural control flow graph (CFG). This process starts by identifying control
transfer instructions such as branch or call instructions. Basic blocks are then
constructed, which are annotated with input/output arguments and transformed
into Static Single Assignment (SSA) form. Finally, the target Ciao IR (i.e., Horn
clauses) is emitted.

A basic block over a CFG is a maximal sequence of distinct instructions, S;
through S,,, such that all instructions Si,1 < k < n have exactly one in-edge
and one out-edge (excluding call/return edges), S; has one out-edge, and S,, has
one in-edge. A basic block therefore has exactly one entry point at S; and one
exit point at S,,. All call instructions are assumed to eventually return. Using the
basic block definition a block control flow graph is constructed by the analyser,
where each node represents a block. Edges between the blocks are derived from
calls/jumps between blocks. This process involves iterating through the CFG
of the ISA program and marking block boundaries, which are instructions that
either begin or end a basic block.

Inferring Block Input/Output Parameters. In order to treat each block as
a Horn clause, the block’s input and output arguments need to be inferred. For
the entry block, the input and output arguments are derived from the original
function’s signature. We define the functions params;, and params,,,, which
infer input and output parameters of a block respectively. These perform a
backwards analysis of the program, and are recomputed until a least fixpoint

is reached on these functions.

params ,,, (b) il(b) U Ub,enwt(b) params ., (b')

=k
params;, (b) = gen(b) U Uy ¢ pess () PATaAMS i, (b')

where nezt(b) denotes the set of immediate target blocks that can be reached
from b with a call or jump, while gen(k) and kill(k) are the read and written
variables in a block respectively, which we define as:

Rill(b) = k[_jl def (k) gen(b) = k[_jl{v v € ref (k) AV(< k)v ¢ def(j))

and def (k) and ref (k) denote the variables written or referred to at a node in
the block respectively.

Our approach here is closely related to that of the live variable analysis
(LVA) [13] used in compilers, and in dead code elimination in particular. A
variable is live at a program point if it may get referenced later in the program

(which is decided by considering the whole CFG of the program). In LVA, for
each program point, a set of live variables is computed using functions similar to
our kill and gen functions with data flow equations. In our approach however,
instead of computing liveness information for each program point, we compute a
least fixpoint of our params,,: and params;, functions over the program’s block
control flow graph. This is an efficient solution that safely over-approximates
the set of input/output arguments to each block, so that the extra arguments
inferred for block heads due to such over-approximation do not affect the energy
consumption estimations, since they are not used in the analysis of procedures
corresponding to the original XC code.

Resolving Branching to Multiple Blocks. In the XS1 instruction set, con-
ditional branch instructions (e.g., bt, bf) jump to one of the two target blocks
based on the value of the branching variable. For example, in Figure 3, at line 7
the bf instruction (branch if fail) will jump to address 008 if 70 = 0, otherwise
to address 007. In the Ciao IR this branch needs to be a call to one of the two
blocks.

We use a similar approach to the one described in [11] to resolve branches to
multiple blocks. The multiple target blocks of a jump instruction are assigned
the same head, which essentially are clauses of the same Ciao IR predicate.
This is achieved by merging the heads of the target clauses so that each clause
has the same head. The algorithm is trivial, since we have already inferred the
input/output parameters to each block’s head. The input/output parameters to
the new head of the clauses are the union of the input/output parameters of all
the clauses along with the branching variable. This enables preservation of the
branching semantics of the original ISA program in Ciao IR form.

For example in Figure 3, the bf instruction at line 7 of the ISA program is
changed to a dummy literal at line 7a in the Ciao IR, plus a predicate call to
fact_aux on line 7b. The predicate fact_aux has two clauses, each representing
one of the target blocks of the bf instruction. The dummy literal for the bf
instruction is created so that the resource usage analysis can take it into account
when inferring energy usage functions.

Static Single Assignment form (SSA). The last step is to convert a block
representation into static single assignment (SSA) form, where each variable is
assigned exactly once and multiple assignments to the same variable create new
versions of that variable.

In compilers, the SSA form is generated at the function level (e.g., at LLVM [9]
level) where a function might consist of multiple basic blocks. However, we follow
the approach of generating SSA form at the block level, and therefore we do not
need to generate ¢ nodes. A ¢ node is an instruction used to select a version
of the variable depending on the predecessor of the current block. Since each
block is already annotated with input/output arguments, any predecessor block
will pass the appropriate values as input parameters when making a call to the
target block.

In Figure 3, the Ciao IR (right hand side) is in SSA form, where each variable
is defined exactly once and stack references are transformed to local variables.
Each instruction is transformed into a Ciao IR literal with input/output vari-
ables.

Analysis on low level (ISA) representations, in general, suffers from the prob-
lem of extracting a precise control flow graph in the presence of indirect jumps
and calls. The current implementation of our transformation is restricted to
direct jumps and calls. We plan to integrate other techniques into the transfor-
mation tool to resolve such problems including recognizing code patterns used
by compilers and performing static program analysis (see [19] and its references).

4 General Analysis Framework

In this section we introduce the CiaoPP general resource usage analysis frame-
work and discuss how to instantiate it for the analysis of the Ciao IR programs
resulting from the translation of ISA programs.

CiaoPP includes a global static analyser which is parametric with respect to
resources and type of approximation (lower and upper bounds) [12]. The user
can define the parameters of the analysis for a particular resource by means of
assertions that associate basic cost functions with elementary operations of the
base language and procedures in libraries, thus expressing how they affect the
usage of a particular resource. The global static analysis can then infer bounds
on the resource usage of all the procedures in the program, as functions of input
data sizes. Examples of resources that can be analysed by instantiating the
CiaoPP general framework include execution steps, execution time, number of
accesses to a database, number of bytes sent or received through a socket, etc.

In the rest of the section we use a running example to illustrate the main
concepts and steps of the analysis framework. In particular, and for simplicity,
assume that we are interested in estimating upper bounds on the energy con-
sumed by the Ciao IR program in Figure 3 (right hand side) generated from its
XC code in Figure 2.

4.1 Instantiating the General Framework

Defining Resources. We start by defining the identifier (“counter”) associated
to the energy consumption resource, through the following Ciao declaration:

©T resource energy.

Expressing Energy Models and Resource Usage of Library Functions.
The resource usage of Ciao library predicates is expressed using “trust” asser-
tions (see [5] and its references for a description of the Ciao assertion language).
For example, we can write assertions for each Ciao predicate that represents an
ISA instruction; these constitute the energy models. The following assertions
(for the add and sub instructions) are part of the simple energy model that we

used in the static analysis, which assigns a constant energy amount to each ISA
instruction:

:- trust pred add(X,Y,Z) + resource(avg, energy, 1215439).
:- trust pred sub(X,Y,Z) + resource(avg, energy, 1210759).

Note that the first argument (avg) of the resource property (in the global
computational properties field “+” of the assertions) expresses that the given
energy consumption for the ISA instructions is an average value. This model
is obtained using the measurement process described in Section 2, based on
Equation 3, so that the energy cost for an ISA instruction ¢ is ¢; = (M7 P; O +
Phase) Teik, expressed in the third argument of the resource property in femto-
Joules (fJ, 10715 Joules).

Assertions are also used to express information that is instrumental in the
resource usage analysis. For example, assertion:

:- trust pred sub(X,Y,Z) : (var(X), int(Y), int(Z))
=> (int(X), int(Y), int(Z), size(ub,X,int(Y)-int(Z)),
size(ub,Y,int(Y)), size(ub,Z,int(Z)))
+ (metric(X,int), metric(Y,int), metric(Z,int)).

indicates that if the sub(X, Y, Z) predicate (representing the “substraction”
ISA instruction) is called with X and Y bound to integer numbers and Z an
unbound variable (precondition field “:”), after the successful completion of the
call (postcondition field “=>"), X is an integer number whose size is the size of
Y minus the size of Z. It also expresses that the size metric used for the three
arguments is “int”, the actual value of the integer numbers.

4.2 Performing the Analysis

Once the parameters of the general resource analysis framework have been de-
fined, and assertions for library predicates (including the ones representing en-
ergy models) have been provided, the CiaoPP global static analysis can infer the
resource usage of all the procedures in the program (as functions of input data
sizes). A full description of how this is done can be found in [12].

Mode Analysis. In general, mode analysis determines, for each argument in
each predicate in the block representation (Ciao IR), whether it acts as an in-
put or an output argument. In our context mode analysis is not needed for any
predicate. The modes of some predicates can be extracted from the XC source
code that the Ciao IR is originated from. This is possible because mode (and
type) information is statically known at the XC language level and is propagated
to the Ciao IR (and hence to the mode analyzer) using (trust) assertions. This
means that the analyzer will just trust such mode information and use it without
performing any inference process for the predicates that have an associated asser-
tion containing modes. The rest of the predicates are new predicates generated
by the transformation from ISA programs into Ciao IR (described in Section 3),
and originated from conditional branching, which cannot be directly related to

the XC source code, and, thus, do not have any associated assertion. For such
predicates, CiaoPP uses the results from the transformation phase where the
input/output arguments are inferred for each predicate.

Size Measure Analysis. CiaoPP uses type information to decide which metric
to use to express data sizes from a set of predefined metrics (e.g., the value of
an integer, int, or the depth of a term, depth).

Type analysis is needed because most of that information is lost in the con-
version to assembly. CiaoPP is able to reconstruct almost all that information.
Analysis of the Ciao IR program in Figure 3 (right hand side) infers that fact
will be called with RO bound to an integer and R0_3 a free variable, and will
succeed with R0_3 bound to an integer. Also, fact_aux will be called with the
first two arguments bound to integers, and the rest free, and, upon success, all
of them will be bound to integers. Given that information, the chosen metric for
all the arguments will be int.

Size Analysis. It determines the relative sizes of variable bindings at differ-
ent program points. The size analysis (as well as the resource usage analysis)
is performed for each strongly-connected component of the control flow graph
of the program in reverse topological order. For each clause, size relations are
propagated to express each output data size as a function of input data sizes.
For recursive functions this is done symbolically, creating a set of recurrence
relations that will be solved to get a closed form function.

For our running example, the recurrence relations set up for the size of the
output argument R0_3 of fact as a function of the size of the input argument
RO (denoted factpy 5(R0)) as well as the corresponding one for fact_aux are:

fact gy 5(R0O) = fact_auz gy 4(0 < RO, RO)
_ [RO factpy 3(RO—1) if Bis true (i.e., 0 < RO)
fact-auz go_o(B, R0) = { 1 if B is false (i.e., 0 > RO0)

These inferred recurrence relations/equations are then fed into a computer
algebra system (Mathematica, in the implementation developed in this paper)
that gives the following closed form function for it: fact py 5(R0) = RO!

Resource Usage Analysis. It uses the size information inferred by the size
analysis to set up recurrence equations representing the resource usage of pred-
icates, and computes bounds to their solutions. Remember that c¢; represents
the energy cost of each instruction, taken from the energy model. Let b. denote
the energy consumption function for a predicate (block) b. Then, the inferred
equations for fact are:

fact (RO) = fact_auz,.(0 < RO, RO) + Centsp + Cstw + Cldw + Cide + Ciss + Coy

faCte(RO - 1) + Cou + 2 Cldw + Csub +
fact_auz (B, R0) = + cpl + Comul + Cretsp if B is true
Cmkmsk T Cretsp if B is false

If we assume (for simplicity of exposition) that each instruction has unitary
cost, i.e., ¢; = 1 for all ¢, we obtain (using the mentioned computer algebra
system) the energy consumed by fact as a function of its input data size (R0):
fact,(R0) =13 RO+ 8

Note that our approach based on setting up recurrence equations and sol-
ving them using a computer algebra system allows inferring different types of
(resource usage) functions, such as polynomial, factorial, exponential, logarith-
mic, and summatory.

Note also that using average values in the model implies that the energy
function for the whole program inferred by the upper-bound resource analysis
is an approximation of the actual upper bound that can possibly be below it.
To ensure that the analysis infers a strict upper bound, we would need to use
strict upper bounds as well in the energy models. However, with the current
models such bounds would be very conservative, causing a loss in accuracy that
would make the analysis not useful in practice. Thus, the current approach is a
practical compromise.

5 Benchmarks, Results and Evaluation

The aim of the experimental evaluation is to perform a first comparison of actual
hardware energy measurements, in terms of accuracy, with the values obtained
from both the low-level Instruction Set Simulation (ISS) model and the Static
Resource Analysis (SRA) implemented within the CiaoPP framework, to obtain
an early estimation of the feasibility of the approach. To this end, we describe
a selection of currently analyzable benchmarks, the method by which data was
collected, and an evaluation of the analysis framework accuracy vs. the low-level
ISS model and hardware measurements.

Benchmarks. For this type of evaluation we use as benchmarks mainly small
mathematical functions. The structure of these programs is either iterative or
recursive, with their cost depending on the function argument. For such programs
state of the art solvers can easily provide the cost functions, by solving the
system of recurrence relations provided by the SRA framework. Table 5 shows
the benchmarks used in this comparison, their execution behaviour in relation
to each function’s parameters, and the method by which their cost function was
calculated. Also, some hand-solved examples have been provided in addition to
those that were solved using SRA, both to compare a manual solution to SRA
and to provide an additional set of data points that will, in the future, be solved
automatically.

Experimental method. Hardware energy readings were obtained by repeat-
edly executing a benchmark function over a 0.5 second period, T, collecting a
set of power samples, P, whilst counting the number of executions, Ng,. From

mean(P)XT ¢ calculated. This

this, the energy of a single function call, Fg, = N

Table 1. Description of benchmark functions used in experiments and their corre-
sponding energy functions.

Function name |Description Energy function Calculation
fact (N) Calculates V! 26.0 N +19.4
fibonacci(N) |Nth Fibonacci no. |30.1+ 35.6 ¢~ +11.0 (1 — ¢)™¥ SRA
sqr (\) Computes N? 103.0 N2 +205.8 N + 188.32
poweroftwo (N) |Calculates 27V 62.4-2" —312.3
sumofdigits(N) |Adds all digits in N 84.4[log,, N1 — 78.7
isprime(N) |Checks if N is prime 58.6 N —35.5 By hand
power (base, exp) |Calculates base“”? 6.3 (log, exp + 1) + 6.5

was performed using a similar method to the collection of energy model data de-
scribed in Section 2, but was performed on separate hardware so as to de-couple
modelling from testing.

ISS modelling involved simulating the same function a smaller number of
times than on the hardware in order to keep simulation time adequately low.
The instruction statistics were then processed in order to produce an energy
figure, and then that figure divided by Ng, was used during ISS in order to
extract the energy of a single call. The ISS modelling framework currently has
a less efficient test loop than the hardware, potentially reducing accuracy for
very short function calls. Similarly, if too few function calls are made during the
simulation due to a long-executing function, overrun in the test time may skew
low-level energy figures.

Static resource usage analysis was performed by evaluating the produced cost
function for a given benchmark with respect to the input arguments, immediately
providing the energy cost of a single function call.

Results. Table 5 provides an example of test data for the fact (factorial) func-
tion. The hardware (HW), low-level Instruction Set Simulation model (ISS),
and Static Resource Analysis (SRA) model energy figures are compared. The
relative error of ISS and SRA are compared with respect to the HW energy
and normalised as such. The cost function provided for this particular exam-
ple, demonstrates the relationship between the input parameter, N, and the
SRA estimate of such a call. This, together with data for a number of further
benchmarks are presented in graph form in Figure 5.

In Figure 5, hardware measured energy is compared directly to ISS and SRA
energy predictions for the set of four benchmarks. The relative errors are also
plotted. In all cases, the ISS model is seen to improve in accuracy as the input
parameter N increases, in line with the expected inaccuracies arising from inef-
ficiencies in the modelling loop used in simulation, as described in the previous
subsection. In the case of the poweroftwo function, time limitations prevent the
ISS model from approximating the function above N = 13, approaching which

Table 2. Actual and estimated energy consumption for the fact(N) function over a
range of N.

SRA cost N HW measured| Model energy (nJ) Error vs. HW
function (nJ) energy (nJ) 1SS SRA 1SS SRA
1 53.1 62.8 45.3 1.18 0.85
2 78.0 83.8 71.3 1.07 0.91
4 127.7 125.7 123.1 0.98 0.96
26.0 N +19.4 |8 227.1 209.6 226.8 0.92 1.00
16 426.0 377.4 434.2 0.89 1.02
32 823.8 713.4 849.0 0.87 1.03
64 1690.5 1387.0 1678.4 0.82 0.99

the error begins to increase markedly. The power function behaves in a similar
way and demonstrates the relationship between multiple input arguments.

The SRA CiaoPP model does not suffer the same deficiencies, although it
does incur a greater underestimation of energy for small values of N. The HW
measurements unavoidably contain some loop code beyond the target function
being examined and small NV values will increase the effects of this in the mea-
surement. ISS in fact models this inefficiency directly, whereas SRA does not,
hence the roughly symmetrical relative errors for the two models, particularly
in the fact and fibonacci cases.

Both approaches are reliant on the same underlying instruction energy fig-
ures. Given that some instructions are not directly profiled and, instead, given
an average value, accuracy is reduced when the distribution of instructions in a
given program is such that the number of profiled instructions is low.

Overall, these results demonstrate both models’ capabilities to estimate en-
ergy, with encouraging accuracy that can be improved upon. Further, the SRA
approach is less restrictive, particularly in situations where simulation time
might be prohibitively long.

6 Related Work

Static analysis of energy consumption is still an emerging research field. The
worst-case analysis presented in [7] distinguishes instruction-specific (not pro-
portional to time, but to data) from pipeline-specific (roughly proportional to
time) energy consumption.

A timing analysis based on game-theoretic learning is presented in [15]. The
apprach combines static analysis to find a set of basic paths which are then
tested. In principle, such approach could be adapted to infer energy usage. Its
main advantage is that this analysis can infer distributions on time, not only
average values.

The approach we have followed in this paper, as well as the one in [1], based
on recurrence relations, derives from the seminal works on time analysis of [18]
and [2]. A general framework to deal with user-defined resources was proposed
later in [12]. A different approach is based on the potential method, such as in [6],

1800 Fact(N) 1800 Fibonacci(N)
1600 1600
1.0
1400 1400
1200 0.8 _ 1200 _
= e = <
<1000 @ =10000 I
> 06¢ & 2
2 800] & 2 800 B
fir T O]
& &
600 0.4 600
400 400
0.2
200 200
0 0.0 o
Power(base,exp) le7 PowerOfTwo(N)
2.5
6
1.0 20
5
08 <-4
R <
= s =4 <_<.4-4-<-<-<-<-<--4-< 15 5
£ I} £ - L P
5 062 B ’ e 10 2
2 ® 23 -a-0 -0 -0-0-0-2 s
&] 5,]
04" r =
-) 0.5
0.2 1 0.0
0 o m ~0.5
11 1,129 15,15 15,4000 129,4000 °-° 4 6 8 10 12 14 16 18 20
base,exp N
Energy Relative error

e-e HW v¥ SRA @@ ISS <-4 SRAvs. HW e-e ISSvs. HW

Fig. 5. Hardware energy, estimations and relative errors for (starting top-left, moving
clock-wise) fact, fibonacci, poweroftwo and power.

which is based on a type-and-effect system. However, it is limited to polynomial
bounds, which do not allow expressing some non-polynomial energy functions,
as the ones we show in the experimental results table.

Transformation-based frameworks for program analysis that analyse low level
microprocessor code [3] and Java source and bytecode [1,11] have been proposed.
In [1], cost relations are inferred directly for the bytecode programs, whereas
in [11] the bytecode is first transformed into a Ciao program. Our transforma-
tion framework is closely related to [11] where the Jimple (a typed three-address
code) representation of Java bytecode is transformed into Ciao. However, un-
like Jimple, we employ transformations at lower level (XS1-ISA), irrespective
of source language in general, where much of the program structure and typing
information is trimmed away. Our transformation employs analysis techniques
to reverse engineer ISA programs, which requires control flow graph reconstruc-
tion and transformation into an equivalent Ciao IR that safely approximates the
semantics of the original ISA program.

Instruction Set Simulation can be used to estimate the energy of a program
running on a suitably profiled hardware platform. Simple models for single-

threaded architectures have been demonstrated [16]. These have then been ex-
panded upon, leading to models capable of modelling more complex hardware
such as that used in this paper, which comprise a multi-threaded architecture [8].

7 Conclusions and Future Work

In this paper we introduce an approach for estimating the energy consumption of
programs compiled for the XS1 architecture, based on a Horn clause transforma-
tion and the use of ISA level models that we have produced. We have shown the
feasibility of the approach with a prototype implementation within the CiaoPP
system, which has been successful in statically finding a good approximation of
the energy consumed by a set of selected programs in our experiments.

The XS1 architecture is inherently multi-threaded, and the simulation-based
model is able to provide energy estimates for this. Statically analysing multi-
ple concurrent threads adds a significant new dimension of complexity to the
modelling exercise. This is a goal of further work in order to provide meaningful
analysis for contemporary multi-threaded programs running on this architecture.

We also plan to produce and deal with energy models that take into account
the switching cost among pairs of ISA instructions (i.e., the energy consumed
by bit flipping), since our analysis framework allows it. The improvement in ac-
curacy from this approach can vary between architectures, for example research
such as [14], shows that a simple model can be sufficient in some cases, due to bit
flipping effects averaging out over time. Thus, the impact in the context of any
target architectures must therefore be considered in this future work, in order
to establish whether the increased complexity of analysis delivers a worthwhile
gain in accuracy.

Our analysis accuracy can also be further improved by propagating high-level
program information such as types to the lower-level representations. We also
intend to improve upon the energy measurements of commonly used instruc-
tions, which involves more complex techniques such as linear regression. This
technique can also be used to construct energy models of intermediate compiler
representations such as LLVM IR [9], which would enable us to apply our anal-
ysis techniques to more structured program representations. Another method
for analysing LLVM IR would involve mapping low-level program instruction
segments to LLVM IR segments and reusing the energy models at ISA level.

Acknowledgements: The research leading to these results has received fund-
ing from the European Union 7th Framework Programme under grant agree-
ment 318337, ENTRA - Whole-Systems Energy Transparency, Spanish MINECO
TIN’12-39391 StrongSoft and TIN’08-05624 DOVES projects, and Madrid TIC-
1465 PROMETIDOS-CM project. We also thank John Gallagher for useful and
fruitful discussions and feedback in general, and in particular for his help on
the implementation of a translation for removing multiple recursion of Ciao IR
programs, which is done prior to setting up recurrence equations.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.
18.
19.

E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of
Java Bytecode. In Rocco De Nicola, editor, 16th FEuropean Symposium on Pro-
gramming, ESOP’07, volume 4421 of Lecture Notes in Computer Science, pages
157-172. Springer, March 2007.

. S. K. Debray and N. W. Lin. Cost Analysis of Logic Programs. ACM Transactions

on Programming Languages and Systems, 15(5):826-875, November 1993.

. K. S. Henriksen and J. P. Gallagher. Abstract interpretation of PIC programs

through logic programming. In Sizth IEEE International Workshop on Source
Code Analysis and Manipulation (SCAM 2006), pages 184-196. IEEE Computer
Society, 2006.

. M. Hermenegildo, G. Puebla, F. Bueno, and P. Lépez-Garcia. Integrated Program

Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1-2), 2005.

. M. V. Hermenegildo, F. Bueno, M. Carro, P. Lépez, E. Mera, J.F. Morales, and

G. Puebla. An Overview of Ciao and its Design Philosophy. Theory and Practice
of Logic Programming, 12(1-2):219-252, January 2012.

. J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate amortized resource anal-

ysis. ACM Trans. Program. Lang. Syst., 34(3):14, 2012.

. R. Jayaseelan, T. Mitra, and X. Li. Estimating the worst-case energy consumption

of embedded software. In IEEE Real Time Technology and Applications Sympo-
sium, pages 81-90. IEEE Computer Society, 2006.

. S. Kerrison and K. Eder. Energy modelling and optimisation of software for a

hardware multi-threaded embedded microprocessor. Technical report, University
of Bristol, June 2013.

. C. Lattner and V.S. Adve. LLVM: A compilation framework for lifelong program

analysis and transformation. In CGO, pages 75-88, 2004.

D. May. The Xmos xs1 architecture. available online:
http://www.xmos.com/published /xmos-xsl-architecture.

M. Mendez-Lojo, J.A. Navas, and M.V. Hermenegildo. A flexible, (c)lp-based
approach to the analysis of object-oriented programs. In LOPSTR, pages 154-168,
2007.

J. Navas, E. Mera, P. Lopez-Garcia, and M. Hermenegildo. User-Definable Re-
source Bounds Analysis for Logic Programs. In International Conference on Logic
Programming (ICLP’07), Lecture Notes in Computer Science. Springer, 2007.

F. Nielson, HR. Nielson, and C. Hankin. Principles of Program Analysis. Springer-
Verlag, 1999.

J. T. Russell and M. F. Jacome. Software power estimation and optimization for
high performance, 32-bit embedded processors. In ICCD, pages 328-333, 1998.

S. A. Seshia and J. Kotker. Gametime: A toolkit for timing analysis of software.
In Parosh Aziz Abdulla and K. Rustan M. Leino, editors, TACAS, volume 6605 of
Lecture Notes in Computer Science, pages 388-392. Springer, 2011.

V. Tiwari, S. Malik, A. Wolfe, and M. T. C. Lee. Instruction level power analysis
and optimization of software. In VLSI Design, 1996. Proceedings., Ninth Interna-
tional Conference on, pages 326-328, 1996.

D. Watt. Programming XC on XMOS Devices. XMOS Limited, 2009.

B. Wegbreit. Mechanical program analysis. Commun. ACM, 18(9):528-539, 1975.
L. Xu, F. Sun, and Z. Su. Constructing Precise Control Flow Graphs from Binaries.
University of California, Davis, Tech. Rep, 2009.

Attachment D3.1.2

Sized Type Analysis for Logic Programs

Published as a technical communication in
Theory and Practice of Logic Programming,
29th Int’l. Conference on Logic Programming
(ICLP’13), Special Issue, On-line Supplement.

100

Under constderation for publication in Theory and Practice of Logic Programming 1

Sized Type Analysis for Logic Programs

A. SERRANO! P. LOPEZ-GARCIAY? F. BUENO? M. V. HERMENEGILDO!3 x

LIMDEA Software Institute
(e-mail: alejandro.serrano@imdea.org, pedro.lopez@imdea.org, manuel.hermenegildo@imdea.org)
2 Spanish Council for Scientific Research (CSIC)
3 Universidad Politécnica de Madrid (UPM)
(e-mail: bueno@fi.upm.es, herme@fi.upm.es)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

We present a novel analysis for relating the sizes of terms and subterms occurring at different
argument positions in logic predicates. We extend and enrich the concept of sized type as a
representation that incorporates structural (shape) information and allows expressing both lower
and upper bounds on the size of a set of terms and their subterms at any position and depth.
For example, expressing bounds on the length of lists of numbers, together with bounds on the
values of all of their elements. The analysis is developed using abstract interpretation and the
novel abstract operations are based on setting up and solving recurrence relations between sized
types. It has been integrated, together with novel resource usage and cardinality analyses, in the
abstract interpretation framework in the Ciao preprocessor, CiaoPP, in order to assess both the
accuracy of the new size analysis and its usefulness in the resource usage estimation application.
We show that the proposed sized types are a substantial improvement over the previous size
analyses present in CiaoPP, and also benefit the resource analysis considerably, allowing the
inference of equal or better bounds than comparable state of the art systems.

1 Introduction

Size analysis is the process of assigning numerical metrics to terms appearing in a program
and estimating bounds for these metrics. Such analysis is useful on its own as a source
of information for the developer, and it is also often instrumental to other analyses.
For example, the consumption of resources, such as memory or time, by a program is
usually expressed in terms of the sizes of its arguments. In this paper we focus on the
size analysis of Prolog terms. Our starting point is the methodology outlined by (Debray
et al. 1990; Debray and Lin 1993) and (Debray et al. 1997), characterized by the setting
up of recurrence equations. There, the size analysis is the first of several other analysis
steps ultimately arriving at cost bounds. An important limitation of that analysis is
that it is only able to cope with size information about subterms in a very limited way.
However, dealing fully with subterms is in fact a key issue in the cost analysis of realistic
programs. For example, consider a predicate which computes the factorials of a list:

x This research was supported in part by projects EU FP7 318337 ENTRA, Spanish MINECO TIN2012-
39391 StrongSoft and TIN2008-05624 DOVES, and Madrid TIC/1465 PROMETIDOS-CM.

2 A. Serrano et al.

listfact ([], [1. fact (0, 1).

listfact ([EIR], [FIFR]) :- fact (N, M) :- N1 is N - 1,
fact(E, F), fact (N1, M1),
listfact (R, FR). M is N * M1.

Intuitively, the best bound for the running time over a list L is a+)_ ., (8 + timefact(e))
where o and [are constants related to the unification and calling costs. However, with
no further information, the upper bound for the elements of L. must be co to be on the
safe side, and then the returned overall time bound must also be oo.

Several authors have worked to overcome this limitation. In (Hoffmann et al. 2012) a
system is proposed which is able to analyze 1istfact. This is done within the frame-
work of amortized analysis with the potential method, enriched with fixed polynomials
relating the cost with sizes of contained elements. However, polynomials are not enough
for expressing some kinds of bounds, especially exponential ones.

In (Vasconcelos and Hammond 2003) the authors introduce the idea of sized types to
directly represent information about the upper bounds on sizes within a Hindley-Milner
type system, for functional programs. Our proposal of sized types is related to this idea,
but differs from it in several significant ways:

e We incorporate structural (shape) information expressing both lower and upper
bounds on the sizes of a set of terms and their subterms, at any depth.

e We focus on logic programming, which includes features such as non-determinism
and creation of terms without previously having to define the constructors involved.

e Instead of a Hindley-Milner type system, we use regular types (Dart and Zobel
1992) as the base for sized types. Regular types are structural instead of nominal,
and there is a notion of subtyping based on inclusion, important differences that
the analysis must handle. Furthermore, the sized types are automatically derived.

o We develop the analysis as an abstract interpretation instead of a type and effect
system. To our knowledge, this is the first time a recurrence-based analysis is de-
veloped entirely as an abstract domain. Using abstract interpretation enables us to
integrate the analysis in a standard engine (in our case PLAI within the CiaoPP
analysis framework), which brings in features such as multivariance, accelerated
fixpoint computation, and assertion-based verification and user interaction for free.

e (Vasconcelos and Hammond 2003) allows assigning costs to higher-order functions
based on the cost of other functions. Our system does not yet allow this, but we
believe the extension is not complex.

2 Overview of the Approach
We show the different ideas in our proposal using the classical append predicate:

append ([], S, S).
append ([EIR], S, [EIT]) :- append(R, S, T).

In a first phase we infer types for the predicate arguments by using an existing analysis
for regular types (Vaucheret and Bueno 2002). This analysis infers for instance that if
we call append(X, Y, Z) with X and Y bound to lists of numbers and Z a free variable,

then Z gets bound to a list of numbers upon success.
Even more importantly, the definition of the inferred regular type is the following:

Sized Type Analysis for Logic Programs 3

listnum -> [] | .(num, listnum)

From this inferred definition, or any other expressed as a regular type, we derive the
schema of the corresponding sized type. Such sized types represent the size of a particular
term, i.e., in our case, the sized type listnum-s:

listnum-s — listnum (®?) (num%wli))

represents that the list has between « and 8 elements which are numbers between ~ and
0. The (.,1) below num expresses that this inner size description applies to subterms

occurring at the first parameter of the ./2 functor.
The next phase involves relating the sized types of the different arguments to the

ng’vx>,5x))
o1

predicate using recurrences. Let! sizey = ln(o‘X’BX)(be the sized type of a list

X of numbers. Assume a call append(X, Y, Z). The inequations for the lower bound on
the length of the output argument Z, denoted az, as a function on input data sizes are:

ay if ax =0 (first clause)

oy (oz)mﬁXy’YX,éXy) > <06X17/8X1,’VX,5X,
1+ az

ay, By, vy, 0y if ax > 0 (second clause)
ay, By, Vv, 0y

The whole set of inequations defining all bounds on a sized type is too large. Thus, we
aim for a more compact representation. Our proposal is to write parameters directly as
sized types and group all inequalities (both upper and lower bounds) on a single type in
a expression. We decided to use the symbol < to mean that both types of inequalities
are represented. For example:

ln(al’bl)(n(cl’dl)) § ln(az’bZ)(n(Cz’dQ)) <~ a1 Z ag,bl S b2761 Z Cg7d1 S d2

Using this syntax, the tightest bounds on the entire recurrence relation are:

1

sizey (ln(aX‘BX)(nEjﬁ’éX)), ln(ayyﬁy)(ngj‘i&{;(‘}’))) < ln(ax+ay»ﬁx+5y)(ngmin(’vx»’w)amaxﬁxv5Y)))

3 Sized Types

As shown in the append example, the variables we relate in our inequations come from
sized types. Sized types are representations for summarizing the size of a set of terms,
close to those found in (Hughes et al. 1996) for functional languages. In our approach,
sized types schemas are automatically built from automatically inferred regular types
by analyses present in the CiaoPP system (Vaucheret and Bueno 2002). Among several
representations of regular types used in the literature, we use one based on regular term
grammars, equivalent to (Dart and Zobel 1992) but with some adaptations. A type term
is either a base type «; (taken from a finite set), a type symbol 7; (taken from an infinite
set), or a term of the form f(¢1,...,¢,), where f is a n-ary function symbol (taken from
an infinite set) and ¢1, ..., ¢, are type terms. A type rule has the form 7 — ¢, where 7
is a type symbol and ¢ a type term. A regular term grammar Y is a set of type rules.

In this paper, we introduce the concept of sized type as an abstraction of a set of Her-
brand terms that: 1) are a subset of a set abstracted by some regular type 7, and 2) meet

1 In the examples we will use In and n instead of listnum and num for the sake of conciseness.

4 A. Serrano et al.

¥ (num

@h) = {(neZ:a<n<p}

5 (T(aﬁ)(j) = U Yewaet (7°(7)), if 7 is recursive

if 7 is not recursive

V(7(®) = Yewact (T1())
W(T"Ob(a"s)) = 0

Yexact (TO (j)) = Q)

Yexact (TQ(CE)) = U ’Y'Pule(qs: T, Ts)7 s>0
T—peED
Yrute (0,d, 7°) = ~(d), if o is a type symbol
Yrate (f(o1, .. ,00),Z,7°) = {f(y1,...,Yn): D as =s—1}, f functor
d i ddis; T
where yi = v(d), oi #7and diyq) €7

Yewaer (T9(T)), o3 =7

Fig. 1. Concretization function v for sized types.

some lower- and upper-bound size constraints on the number of type rule applications

(or other metrics for base types). A grammar for the these sized types follows:

sized-type = bounds « base type
| 7Pounds(sized-args) T recursive type symbol
| 7(sized-args) T non recursive type symbol
bounds == nob | (n,m) n,meN,m>n
sized-args = € | sized-arg, sized-args
sized-arg = sized-tYpe,,sition
position == € | (f,n) f functor, 0 < n < arity of f

We say that n and m appearing in the bounds element of this grammar are in bound
positions. The concretization function v given in Figure 1 takes a sized type and returns
the set of terms defined by it. Note that for each type appearing in the right hand side of
a type rule, we include its sized type along with the position (functor and place) where
it appears. In the case of top level types we use €. We use nob as a value for bounds to
prevent the application of a specific type rule.

Other approaches, e.g., the one proposed for CASLOG (Debray et al. 1990; Debray and
Lin 1993) and previous CiaoPP analyses (Lopez-Garcia et al. 1996; Navas et al. 2007),
use a predefined set of size metrics, such as the actual value of a number, the length of a
list, or term depth. In addition, the developer can create new metrics. We only use type
rule applications to bound compound terms. This is not a limitation, since most useful
metrics can be expressed or bounded as sized types. For example, the size of a list of
between a and b elements is list(*+1:2+1) (we have to include the extra [1) and the depth
of a term is bounded by the sum of all numbers appearing in the bound positions.

Sized Type Schemas In our abstract domain, we need to refer to sets of sized types
which satisfy certain conditions on their bounds. For that purpose, we introduce sized
type schemas: a schema is just a sized type with variables in bound positions, along with

Sized Type Analysis for Logic Programs 5

sized(num) = num(®?), a and § fresh
sized(t) = 7P (sized-args(t)), T recursive, o and 8 fresh
sized(t) = 7 (sized-args(T)), T not recursive

sized-args(t) = U sized-rule(¢, T)

T—peD
sized-rule(o,7) = 0, oL
sized-rule(o,7) = {dec:d = sized(o)}, oLt
sized-rule(f(o1,...,0n),7) = U{d(s, @ d € sized(os),0: L T}

Fig. 2. Sized type schema sized() for a regular type 7.

a set of constraints over those variables. We call such variables bound variables. Given a

schema s;, the set of bound variables appearing in it is denoted vars(s;).

For each regular type, we can compute a sized type schema representing the same set
of terms: basically a schema without any constraints on the variables. The algorithm in
Figure 2 generates the mentioned schema for a type 7. Basically, it traverses the set of
rules while keeping track of the last type seen in order to detect where recursion appears
in type rules. If we apply it to the type:

nonemptylistnum -> .(num, listnum)
listnum -> [] | .(num, listnum)

we get as sized type schema: nonemptylistnum (numgaﬁ), listnumg_%;))(numgf‘ ’11;)))

4 The Abstract Domain

To devise the abstract domain we focus specifically on the geneic AND-OR trees procedure
of (Bruynooghe 1991), with the optimizations of (Muthukumar and Hermenegildo 1992).
This procedure is generic and goal dependent: it takes as input a pair (L, \.) representing
a predicate along with an abstraction of the call patterns in the chosen abstract domain
and produces and abstraction A\, which overapproximates the possible outputs, as well as
all different call/success pattern pairs for all called predicates in all paths in the program
and the corresponding abstract information at all other program points. This procedure
is the basis of the PLAT abstract analyzer found in CiaoPP (Hermenegildo et al. 2012),
where we have integrated a working implementation of the proposed analysis.

The full abstract domain is an extension of the sized type schemas to several sized types
corresponding to different predicate variables. Each abstract element is a triple (¢, d,r):

1. tis a set of v — (sized(T),c), where v is a variable, T its regular type and c is its
classification. Subgoal variables can be classified as output, relevant, or irrelevant.
Variables appearing in the clause body but not in the head are classified as clausal;

2. d (the domain) is a set of constraints over the bound variables of relevant variables;

3. 7 (the relations) is a set of relations among bound variables.

The analysis will try to infer a functional relation for the size of output variables in
terms of the sizes of relevant variables output variable < f(relevant variables).

6 A. Serrano et al.

The concretization 7 of the abstract elements comes from that of sized types: we just
need to select the subset of the terms for which domain constraints and relations hold.

ti € v(s:(17)), B = vars(t;),
F(({oi = (si,e)} dyr)) = § Jfvi =t} | 9= (01,0, 00),m = (M,),
o =m k= d(7) Ar(D)

As mentioned before, the analysis comprises two stages. The first stage involves run-
ning a regular (and moded) type analysis over the program, done in our implementation
using (Vaucheret and Bueno 2002). In a second stage we feed this information to the pro-
posed size analysis, which takes such types as fixed, and computes an overapproximation
of the least fixpoint for the set of domains and relations. We will now look at each of the
operations that define this second stage as an abstract domain in CiaoPP’s setting. At
the same time we will analyze our initial “list of factorials” example.

4.1 C, U and L

As mentioned before, these three operations are needed to define the abstract domain
correctly as a join-semilattice and for the computation of fixpoints in the analysis (Cousot
and Cousot 1992). One important remark here is that we do not have a complete definition
for C, because there is no general algorithm for checking the inclusion of sets of integers
defined by recurrence relations. Instead, we simply check whether one set of inequations
is a subset of another one, up to variable renaming (we will denote this syntactic inclusion
as C*®). This check is enough to achieve correctness. Recall that in the size analysis we
see the types as being fixed by a previous type analysis. We define C as follows:

(t,d,ry C{t,d,r'") < t=t' Nd*d ArC°¢

U and L are defined according to this definition of C. For | we need to know the types
of the variables being referred to as extra parameters. Union is done syntactically again,
taking care of renaming variables in inequations to refer to the same terms.

(t,d,r) LU (¢, d/77,,/> = (t,d U’ d,ru T/> Le=(t,0,0)

42)\call to Bentry

This operation abstracts the unification of the subgoal variables (A.q;) onto head vari-
ables for each clause C; (Bentry_i) defining a predicate. This is done in four steps. The first
one is classification of variables, using mode information (also provided by type analysis):
if a variable is unbound at the predicate call and bound to some non-variable term upon
success, the variable is clasified as output. Otherwise, it is classified as relevant.?

The next step is generating the sized type schemas of subgoal variables by applying
the function sized in Figure 2 on their corresponding regular types. Then, we set up
constraints for the domain of the relevant variables in these sized types. For this purpose,
we check if in the clause head the variable is bound to a ground term, in which case

2 As future work, we plan to extend this classifier for the discovery of irrelevant variables which play no
role in the size of outputs.

Sized Type Analysis for Logic Programs 7

unify-sizes takes as input a list of unification equations of the form X =Y, where X is a
subgoal variable and Y a term in the head, and produces a list of assignments. For each
variable X, we denote 7x and sx its regular and sized type, respectively.

unify-sizes(R) = Ux_yecr ({sv < unify-path(p,7x, sx)}>

(V,p)€Epaths(Y,[])

paths(Y,L) = {(Y,L)}, Y variable
paths(f(Y1,...,Yn),L) = Upaths(Ys, L+ [(f,4)]), [functor
wnify-path(,mys) = s
unify-path ([(f,)lr], 7, 7@P(@)) = unify-path(r,oi,s)
where 7= f(o1,...,0n) €D
o rle=bb=U(zy, o =r7
d, O'i;éT,dU’i) (S
unify-path ([(f,9)|r],7,7(z)) = wnify-path(r,os,s'), (s, €T

Fig. 3. Size unification of subgoal and head variables.

we constrain size variables to be bound to concrete numbers, according to the term.
Otherwise, we just impose the constraint that size variables must be positive.

Finally, we need to perform the unification between sizes of subgoal input variables
and sizes of head variables. This is performed using the algorithm in Figure 3. In the
following steps, when a new variable is not found in the first component of the abstract
substitution, a new sized type for it is generated, and it is added as clausal.

In our listfact(L, FL) example, from previous regular type analysis we know that
at call time L is bound to a list of numbers and FL is a free variable, and on success FL is
also bound to a list of numbers. Thus, we classify FL as output and L as relevant. Then,
we generate the sized types for them. So far the procedure is the same for both clauses.

From now on, we will focus on the second clause. In Sepiry 2 We have unifications be-
tween relevant subgoal variables and head variables: L = [E|R]. Following the algorithm
for unify-sizes(|[L = [E|R]]), given in Figure 3, we need to call paths([E|R],[]). We get
as output [E = [{.,,1)], R = [{,,2)]]. In both calls to unify-path we will go to the rule
listnum — .(num,listnum). Since the type of the variable E is not listnum, we just
take the sized type referred to by the position (.,1), in this case n(11:91), For R, s’ is
similar to the initial sized type for L, but with one rule application less.

L — (Int@vP0) (n0190) ‘relevant), FL — (In‘®2:52) (n02:92)) output),
E — (n13%) clausal), R — (In{®P0 (n04:90) clausal) ’ >

Bentry2 = { 5 } n(13:83) < pp(11,61)
a1 > 07 1 >0 ,{

In(@4,84) (n(“/4,54)) < In(ei—=1.81-1) (n("/h(gl))

4.3 The Extend Operation

This operation is responsible for extending the current abstract element with the infor-
mation of a call to a literal. The operation is very simple: include the sized types of any

8 A. Serrano et al.

uni fy-back(R) = U {sx S unify-back'(Y,7y)}

X=Y €R
unify-back’(t,7) = ground-size(t,T), t ground
unify-back’(X,7) = sx, X variable
unify-back’ (f(t1,...,tn),7) = mnone-but(r, f(d1,...,dn))
where d; = unify-back’(t;,o;) and

7= f(o1,...,0n) €D

Fig. 4. Backwards size unification of subgoal and head variables.

variable which was not yet in the first component of the abstract element and add a call
to the equation for the clause referencing the literal.

In our example, we will need to extend Bentry,2 (which will be the first A in the second
clause) with a call to fact. To do so, we add the sized type schema for F' (we already
have information for E) and the call, so the abstract substitution is now:?

o < {,F — (n(%"s"’),clausal)},{...},{ o,nl39) < fact(n3:03)) 4 >

4.4 Bexir to N

This operation abstracts the unification of the execution of an entire clause back with
the subgoal variables. Thus the algorithm needs to do the opposite of Acan t0 Bentry:
deriving the size of a variable from the sizes of its constituent elements. To do so we use
the unify-back algorithm outlined in Figure 4. After this point we have a complete set
of relations defining the output parameters.

For the second clause of listfact we have to call unify-back’([F|FR],listnum). We
need to recursively call unify-back’ with the components F' and FR. The final substitu-
tion for the second clause will be:

{. .., FR — (In(~¢:80) (n(76:36)y, clausal)} Ao

! _ e
A2 < ln(ae,ﬂa)(n(vsﬁe)) < listfact (ln(a4’ﬂ4)(n("4’54)) >
ln(az,ﬁz)(n(“@,%)) < ln(a6+1,56+1)(n(min(“/s,“/a),max(%yés))

4.5 Closed Forms

Even though the analysis works with relations, these are not as useful as functions defined
without recursion or calls to other functions. First of all, developers will get a better idea
of the sizes if presented in this closed form. Second, functions are amenable to comparison
as outlined in (Lépez-Garcia et al. 2010), essential for example in verification.

3 Only additions to the elements will be shown. Three dots (...) will replace previous information.
4 The function none-but returns a sized type restricted to a particular type rule.

Sized Type Analysis for Logic Programs 9

The 1 operator will try to replace relations with a closed form bound. We can see this
operator as overapproximating an abstract element, x C 71 x. In our experiments we have
integrated Mathematica as recurrence solver, and 1 is applied at every U step.

In our example we obtain the following abstract substitution for the first clause:

N {L—%(hﬁ““ﬁ“(nW1ﬁ“)ﬂfkwanﬂ7FL—+(hﬁa”ﬁﬂ(n”%%b,mwpuﬂ},
1 {or =1, 61 = 1}, {In*252) (n02:92)) < I (nne?))

Then, we can bound the joint inequations to get a closed solution:

0 (,\'1 L ,\’2) = < {...},{o, 81 >0}, {ln(QQ’ﬁQ)(n(72’62)) < ln(al,ﬁl)(n(nhﬁ!))} >

5 Refinements in the Analysis

Multivariance and Widenings In the example analysed above there is an implicit
assumption while setting the relations: the recursive call in the body of 1listfact refers
to the same predicate call, so we set up a recurrence equation. This fact is implicitly
assumed in Hindley-Milner type systems. But in logic programming it is usual for a
predicate to be called with different patterns (such as different modes or even types).

The CiaoPP framework allows multivariance (support for different call patterns of the
same predicate) in the analysis. But to do so we cannot just add calls with the bare name
of the predicate, because it will conflate all the existing versions. The proposed solution
adds a new component to the abstract element: a random name given to the specific
instance of the predicate we are analyzing, that is generated in the Acary to Bentry. In the
computation of the fixpoint, the U operator is changed to a widening V which conflates
all different versions of the same predicate. In this way we obtain the recurrences.

Structural Subtyping Another problem that may arise is that a predicate returns a
subtype of the type we were looking for. For example, in:

n_to_zero (0, [0]).
n_to_zero(N, [N|R]) :- N1 is N - 1, n_to_zero(N1, R).

the regular type inferred is nonemptylistnum for the second argument. In this case, in
the backwards unification we have variables of type num and nonemptylistnum but the
rule for the ./2 functor reads .(num, listnum). However, since nonemptylistnum C
listnum we can view the size description as an instance of a description of its supertype.

To do so, we have developed an extended version of the Dart-Zobel algorithm for type
inclusion (Dart and Zobel 1992) which can be found in Appendix B.

6 Cardinality and Resource Analysis

In order to assess the usefulness of the new size analysis in the resource usage estimation
application (which is our main goal), we have also developed an integrated into the
CiaoPP abstract interpretation framework a resource usage analysis and a cardinality
analysis. The latter infers lower and upper bounds on the numbers of solutions produced
by a predicate. We provide below a sketch of these analyses (the full details are beyond
the scope of this paper).

10 A. Serrano et al.

Cardinality has a multiplicative behavior: if we know the number of solutions of ev-
ery literal in a clause, we can bound the number of solutions contributed by it using
Sctause (P(T) 1= q1(T1),- -, qn(Tn)) < H:‘L:1 Spred(‘]i(fi))- Here we are implicitly using
the previously discussed size analysis. The number of solutions of the whole predicate

Spred can be calculated by gathering all the equations and solving the resulting system.

Regarding resources, following (Navas et al. 2007) each resource is defined by its head
cost B, which quantifies the amount of resource used in the unification between a subgoal
and a clause head, and its literal cost §, which quantifies the amount of resource needed for
preparing a call to a predicate. Apart from that, the user can attach directly some resource
usage functions to particular predicates. Using these parameters, we can get a formula
for upper bounding the resource usage of a clause C' = p(Z) : — q1(Z1), .- ., Gn(Tn):

RUciquse (C) < B(p(it)) + Z?:l (1—[;;11 Spred(‘b‘ (:EJ))) (5(‘12’ (@)) + RUpred(qi(i'i)))

The resource usage of a predicate RUp,¢q is calculated in a similar way to Sy cq.

As we have seen, cardinality and resource analyses are tightly related to size analysis.
Consequently, our implementation of these analyses is via an extension of the previously
defined sized types abstract domain:

e The upper and lower bounds, both for the number of solutions and for each resource,
is represented by a pair of bound variables (5;,5,) and (RU;, RU,) respectively,
similarly to those used by the analysis in sized type schemas.

o These variables are initialized in the Ay to Beniry step: S; and S, to 1 (the
cardinality before any literal is called), and RU; and RU, to the corresponding
resource head cost f.

e In each extend step, we need to update the bound variables with new values, given
the cardinality (S}, S;,) and resource usage (RU/, RU,,) of the called literal:

— For upper bounds, the cardinality is updated by the product of the previous
cardinality and the one from the called literal, S, x S.,. For resource usage, the
formula is very similar, RU,, + S, X (6 + RU)).

— The methodology is similar for lower bounds, but we have to take into account
the possibility of failure, as explained in (Debray et al. 1997).

e As aresult of threading the variables through all extend steps, in Be.i¢ the values of
the bound variables for cardinality and resources will be equal to the ones obtained
by the formulas we have previously presented.

7 Experimental Results and Conclusions

We have constructed a prototype implementation in Ciao by defining the abstract op-
erations for sized type analysis that we have described in this paper and plugging them
into CiaoPP’s PLAI implementation. While full benchmarking is beyond the scope of
the paper, we provide preliminary results on two aspects: (a) comparison of the new size
analysis to the existing CiaoPP size analyses (Debray and Lin 1993; Debray et al. 1997;
Navas et al. 2007), and (b) effect of using the new size analysis in the resource usage

analysis application.

Regarding (a), the main advantage of our technique is the richer information about
the size of terms that is inferred by the analysis. As an illustrative example, consider the
predicate insert used in insertion sort of a list of lists. The code we used for analysis is
a direct translation to Prolog of the one in (Hoffmann et al. 2012):

Sized Type Analysis for Logic Programs 11

insert (X, [1,[X]1).

insert (X,[YIYs],[X,Y|Y¥s]) :- leq(X,Y), !.
insert (X,[Y|Ys],[Y|Zs]) :- insert(X,Ys,Zs).
leq([1,_).

leq([XI1Xs],[Y|Ys]) :- X =< Y, leq(Xs,Y¥s).

Given input arguments® (X — In(&® (n(¢:1)) L — 1In(9:P) (In(3) (n(k:D))) | we get as sized
type relation for the third argument I°:

lngmlin(i,C),maX(d,j))(n(min(k,e),max(f,l)))
I — nelln - S . .
lln(<97’2h>) (ln(mm(z,c),max(d,j)) (n(mm(k,e),max(f,l))))

We see that the analysis has correctly inferred that the result will be a non-empty list
and the bounds for all inner elements. For example, the first element of the list of lists
will be either the list X or one list in L, so the bound at that position will be the largest.

Our results show that the new analysis improves on the previous one in 86% (13/15)
of a set of benchmarks and produces the same results in the other 14%.

Regarding (b), we have compared the new CiaoPP lower and upper bound resource
analyses using the new size analysis with the previous CiaoPP analyses (Debray and
Lin 1993; Debray et al. 1997; Navas et al. 2007), and also (upper bounds) with RAML’s
analysis (Hoffmann et al. 2012). The new analyses improve on CiaoPP’s previous resource
analysis and in most cases, and are equal in the rest. RAML only infers polynomial
costs, while our new approach can infer exponential costs and many other types of cost
functions. For predicates with polynomial cost, we get equal or better results than RAML.

8 Other Related Work

Apart from recurrence equations, there are other approaches to size analysis. One popular
one is the use of CLP(R) and convex hulls, such as (Benoy and King 1997). In this case,
the analysis infers a set of linear inequations between sizes of terms. The main advantage
of this proposal is the possibility of relating sizes of several arguments. However, these
approaches are usually limited in the mathematical domain used for abstraction (for
example, linear inequations), whereas recurrence relations allow much richer expressions.

As mentioned in the introduction, (Hoffmann et al. 2012) shows another approach
to size analysis, based on the potential method. Although it allows some costs that we
cannot express in our system (for example, sums over all the elements in a list), it is
limited to polynomial expressions. In our case, not being tied to polynomial bounds
is important, since problems such as the number of solutions usually have exponential
behavior.

Inference of norms for termination analysis is also related to size analysis. For exam-
ple, (Decorte et al. 1994) or (Bruynooghe et al. 2007) use semi-linear norms to prove
termination. These norms define the size of a term as the sum of some of its components,

5 We write lln for listlistnum, the type of lists of lists of numbers, and nelln for its non-empty variant.
6 We are using a condensed version of the abstract element, where we write the results of inequations
directly inside the sized type.

12 A. Serrano et al.

which are later related by linear inequations. This approach summarizes all information
in one number, so it is less convenient for the developer and less useful for other analyses.

References

BENOY, F. AND KING, A. 1997. Inferring Argument Size Relationships with CLP(R). In Work-
shop on Logic-based Program Synthesis and Transformation (LOPSTR’97). Lecture Notes in
Computer Science, vol. 1207. Springer, 204—223.

BRUYNOOGHE, M. 1991. A practical framework for the abstract interpretation of logic programs.
J. Log. Program. 10, 2, 91-124.

BRUYNOOGHE, M., CopisH, M., J. P. GALLAGHER, GENAIM, S., AND VANHOOF, W. 2007.
Termination analysis of logic programs through combination of type-based norms. ACM
Transactions on Programming Languages and Systems 29, 2.

Cousor, P. AND CousoTr, R. 1992. Abstract Interpretation and Applications to Logic Pro-
grams. Journal of Logic Programming 13, 2-3, 103—179.

DART, P. AND ZOBEL, J. 1992. A Regular Type Language for Logic Programs. In Types in
Logic Programming. MIT Press, 157-187.

DEBRAY, S. K. AND LiN, N. W. 1993. Cost Analysis of Logic Programs. ACM Transactions
on Programming Languages and Systems 15, 5 (November), 826-875.

DEBRAY, S. K., LIN, N.-W., AND HERMENEGILDO, M. 1990. Task Granularity Analysis in Logic
Programs. In Proc. PLDI’90. ACM, 174-188.

DEBRAY, S. K., LOPEZ-GARCIA, P., HERMENEGILDO, M., AND LIN, N.-W. 1997. Lower Bound
Cost Estimation for Logic Programs. In 1997 International Logic Programming Symposium.
MIT Press, Cambridge, MA, 291-305.

DECORTE, S., SCHREYE, D. D.; AND FABRIS, M. 1994. Exploiting the power of typed norms in
automatic inference of interargument relations. Tech. rep., TR 246, Dpt CS, , K.U.Leuven.
HERMENEGILDO, M. V., BUENO, F., CARRO, M., LOPEZ, P., MERA, E., MORALES, J., AND
PUEBLA, G. 2012. An Overview of Ciao and its Design Philosophy. Theory and Practice of

Logic Programming 12, 1-2 (January), 219-252. http://arxiv.org/abs/1102.5497.

HorrFMANN, J., AEHLIG, K., AND HOFMANN, M. 2012. Multivariate amortized resource analysis.
ACM Trans. Program. Lang. Syst. 34, 3, 14.

HuGHES, J., PARETO, L., AND SABRY, A. 1996. Proving the correctness of reactive systems
using sized types. In POPL. 410-423.

LOPEZ-GARCIA, P., DARMAWAN, L., AND BUENO, F. 2010. A Framework for Verification and
Debugging of Resource Usage Properties. In Technical Communications of ICLP. LIPIcs,
vol. 7. Schloss Dagstuhl, 104-113.

LO6PEZ-GARCIA, P., HERMENEGILDO, M., AND DEBRAY, S. K. 1996. A Methodology for Gran-
ularity Based Control of Parallelism in Logic Programs. J. of Symbolic Computation, Special
Issue on Parallel Symbolic Computation 21, 715-734.

MUTHUKUMAR, K. AND HERMENEGILDO, M. 1992. Compile-time Derivation of Variable Depen-
dency Using Abstract Interpretation. Journal of Logic Programming 13, 2/3 (July), 315-347.

Navas, J., MERA, E., LOPEzZ-GARciA, P., AND HERMENEGILDO, M. 2007. User-Definable
Resource Bounds Analysis for Logic Programs. In 23rd International Conference on Logic
Programming (ICLP’07). Lecture Notes in Computer Science, vol. 4670. Springer.

VASCONCELOS, P. B. AND HAMMOND, K. 2003. Inferring cost equations for recursive, poly-
morphic and higher-order functional programs. In IFL, P. W. Trinder, G. Michaelson, and
R. Pena, Eds. Lecture Notes in Computer Science, vol. 3145. Springer, 86-101.

VAUCHERET, C. AND BUENO, F. 2002. More Precise yet Efficient Type Inference for Logic
Programs. In International Static Analysis Symposium. Lecture Notes in Computer Science,
vol. 2477. Springer-Verlag, 102-116.

Sized Type Analysis for Logic Programs 13

merge (7'(""6)(3?7),7(“”6)(37)) = T(O‘+“”B+6)(merge—args(§c,y))

merge-args(z,y) = {merge-arg(xi,y:)(sp) : ®i and y; have subscript (f, p)}
merge-arg(c™®,y) = y
merge-arg(z,o™®) = =z

merge-arg (O’<a’6> (2),0® (u’))) g(max(y)min(8:9) (1 erge_args(z, w))

none(t) = T"°b< U none—rule(¢,7))

T—peED
none-rule(f(o1,...,00),7) = {O'Z‘Z;’w co LT}
none-rule(o,7) = {00}, clZT
none-rule(o,7) = 0, cCT
none-but(t, f(di,...,ds)) = merge(r"V(A),fold merge over S)
where (A,S)= U none-but-rule(r, ¢, f(di,...,dn))
TPED

none-but-rule(t, f(o1,...,0n), f(d1,...,dn)) = ({dipiy 00 L 73 {di 50y 100 L T})
none-but-rule(r, ¢, f(d1,...,dn)) = (0,0), ¢ does not start with f
ground-size(n,num) = num™™
ground-size(f(ti,...,tn),7) = mnone-but(r, f(di,...,dn))
where d; = ground-size(t;, o;)

T—= f(o1,...,00) ED

Fig. A 1. Sized types auxiliary functions.

Appendix A Auxiliary Algorithms over Sized Types

In Figure A 1 we describe the auxiliary algorithms used in the operations in the sized types
abstract domain. These algorithms are very similar to the derivation of sized type defi-
nitions. For simplicity, we only give the algorithms for recursive types, the non-recursive
case just does not compute bounds for the number of rule applications.

Appendix B Extended Type Inclusion with Sizes

We do not include the definition of the “plural” functions, which just apply a “singular”
function over a list (for example opens just collects the results of open over every ele-

ment of a list). The auxiliary functions can be found in Figure B1 and the main subset
algorithm is in Figure B 2.

14 A. Serrano et al.

We assume head and tail functions giving the first and rest elements of a list, respectively, and
a —++ list concatenation operator.

{v}, T not a type symbol

{[{¢, expand-size(, s))] + tail(¥) : T — ¢ € D}, T a type symbol
where (7, s) = head(3))

expand(y) = {

expand-size(o, 7% (z)) = o° (¥), if ' (y) € =
expand-size(f(o1,...,00),7P(Z)) = f(dui,...,dn)
(a=1,B-1) (=) .~ _
where d; = 4 @, oi=7 -
Si, ag; #T,SL(]C,Z') S
{¢ € U : head(v)) = (T,s) V head(yp) = (7,s)}, T a type symbol

selects(r, ¥) = {{w €U : head(th) = (T,) V head($) = (F(wr,. .. wn),8)}, 7= f(01,...,0n),n >0
tail(v), 7 is T or a base symbol
(T, T),.... (T, T)] H tail(y), T = f(wi,...,wn), head(yp) = (T,s)
[{o1,81)y. .., (On, s$n)] H tail(yp), 7= f(wi,...,wn),
head(vy) = (f(o1,...,0n), f(81,.-.,8n))

0p6n(<T7 S>7 1/}) =

Fig. B1. Extended type inclusion, auxiliary functions.

subset({L,s),(r,s')) = (true,0)
subset({o,s),{L,s')) = (false,)
subset({o, s),(1,s')) = (b, postprocess(r))
where (b,r) = subsetv([(o, s)], {[{, s')]}, 0)
subsetv(y,0,C) = (false, D)
subsetv([], ¥,C) = (true,0)
subsetv(y, U, C) = subsetv(tail(v),tails(V), C)
if (head(y)),®) € C' A heads(¥) C ©
subsetv(v, ¥,C) = subsetvs(expand(v), ¥,C U {{head (), heads(¥))})
if head(v)) = (1,s), T a type symbol
subsetv(y, ¥,C) = (br,RUTR)

if head(y)) = (r,s),7is T or f(wi,...,wn),n >0
Y = selects(r, expands(¥V))
R = Usez unify(s, head(S))
(br,TR) = subsetv(open((r,s),), opens({t, s), %), C)

subsetvs([], ¥, C) (true, 0)
subsetvs([Y|R]),¥,C) = (by ANbr,7Ty UTR)
where (by,) = subsetv(y, ¥, C)
(br,TR) = subsetvs(R, ¥, C)
postprocess(R) gathers all the unifications in R over the same variable X, and generates the
maximum or minimum expression of it, depending on whether the variable is in an upper or
lower bound position.

Fig. B2. Extended type inclusion, main subset function.

Attachment D3.1.3

Towards an Abstract Domain for
Resource Analysis of Logic Programs
Using Sized Types

Published at the 23rd Workshop on Logic-based
Methods in Programming Environments
(WLPE 2013).

115

Towards an Abstract Domain for Resource
Analysis of Logic Programs Using Sized Types

Alejandro Serrano!, Pedro Lépez-Garcial*? and Manuel Hermenegildo!:3 *
! IMDEA Software Institute
% Spanish Council for Scientific Research (CSIC)
3 Universidad Politécnica de Madrid (UPM)

Abstract. We present a novel general resource analysis for logic pro-
grams based on sized types. Sized types are representations that incor-
porate structural (shape) information and allow expressing both lower
and upper bounds on the size of a set of terms and their subterms at
any position and depth. They also allow relating the sizes of terms and
subterms occurring at different argument positions in logic predicates.
Using these sized types, the resource analysis can infer both lower and
upper bounds on the resources used by all the procedures in a program as
functions on input term (and subterm) sizes, overcoming limitations of
existing analyses and enhancing their precision. Our new resource analy-
sis has been developed within the abstract interpretation framework, as
an extension of the sized types abstract domain, and has been integrated
into the Ciao preprocessor, CiaoPP. The abstract domain operations are
integrated with the setting up and solving of recurrence equations for
both, infering size and resource usage functions. We show that the anal-
ysis is an improvement over the previous resource analysis present in
CiaoPP and compares well in power to state of the art systems.

1 Introduction

Resource usage analysis infers the aggregation of some numerical properties, like
memory usage, time spent in computation, or bytes sent over a wire, throughout
the execution of a piece of code. Such numerical properties are known as re-
sources. The expressions giving the usage of resources are usually given in terms
of the sizes of some input arguments to procedures.

Our starting point is the methodology outlined by [7, 6] and [8], characterized
by the setting up of recurrence equations. In that methodology, the size analysis
is the first of several other analysis steps that include cardinality analysis (that
infers lower and upper bounds on the number of solutions computed by a pedi-
cate), and which ultimately obtain the resource usage bounds. One drawback of
these proposals, as well as most of their subsequent derivations, is that they are

* The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 318337,
ENTRA - Whole-Systems Energy Transparency and the Spanish TIN2012-39391-
C04-01 STRONGSOFT project.

only able to cope with size information about subterms in a very limited way.
This is an important limitation, which causes the analysis to infer trivial bounds
for a large class of programs. For example, consider a predicate which computes
the factorials of a list:

listfact ([], [1). fact (0,1).

listfact ([EIR],[FIFR]) :- fact(N,M) :- N1 is N - 1,
fact(E, F), fact (N1, M1),
listfact (R, FR). M is N * M1.

Intuitively, the best bound for the running time of this program for a list L is a+
Y ecr (B+timegqci(e)), where o and 8 are constants related to the unification
and calling costs. But with no further information, the upper bound for the
elements of L must be co to be on the safe side, and then the returned overall
time bound must also be oco.

In a previous paper [20] we focused on a proposal to improve the size analysis
based on sized types. These sized types are similar to the ones present in [21] for
functional programs, but our proposal includes some enhancements to deal with
regular types in logic programs, developing solutions to deal with the additional
features of logic programming such as non-determinism and backtracking. While
in that paper we already hinted at the fact that the application of our sized types
in resource analysis could result in considerable improvement, no description was
provided of the actual resource analysis.

This paper is complementary and fills this gap by describing a new resource
usage analysis with two novel aspects. Firstly, it can take advantage of the new
information contained in sized types. Furthermore, this resource analysis is fully
based on abstract interpretation, i.e., not just the auxiliary analyses but also the
resource analysis itself. This allows us to integrate resource analysis within the
PLAT abstract interpretation framework [15,18] in the CiaoPP system, which
brings in features such as multivariance, fixpoints, and assertion-based verifica-
tion and user interaction for free. We also perform a performance assessment of
the resulting global system.

In Section 2 we give a high-level view of the approach. In the following section
we review the abstract interpretation approach to size analysis using sized types.
Section 4 gets deeper into the resource usage analysis, our main contribution.
Experimental results are shown in Section 5. Finally we review some related
work and discuss future directions of our resource analysis work.

2 Overwiew of the Approach

We give now an overview of our approach to resource usage analysis, and present
the main ideas in our proposal using the classical append/3 predicate as a run-
ning example:

append ([], S, 8).
append ([EIR], S, [EIT]) :- append(R, S, T).

The process starts by performing the regular type analysis present in the CiaoPP
system [22]. In our example, the system infers that for any call to the predicate
append(X, Y, Z) with X and Y bound to lists of numbers and Z a free variable,
if the call succeeds, then Z also gets bound to a list of numbers. The set of “list
of numbers” is represented by the regular type “listnum,” defined as follows:

listnum -> [] | .(num, listnum)

From this regular type definition, sized type schemas are derived. In our
case, the sized type schema listnum-s is derived from listnum. This schema
corresponds to a list that contains a number of elements between « and 3, and
each element is between the bounds v and 4. It is defined as:

listnum-s — listnum(®?) (numgvg))

From now on, in the examples we will use In and n instead of listnum and
num for the sake of conciseness. The next phase involves relating the sized
types of the different arguments to the append/3 predicate using recurrence
(in)equations. Let sizex denote the sized type schema corresponding to argu-
ment X in a call append(X, Y, Z) (created from the regular type inferred by a

previous analysis). We have that sizex denotes ln(o‘XﬁX)(ngfy_ﬁ’gX)). Similarly,

the sized type schema for the output argument Z is ln(aZﬁZ)(nEjf)’&Z)), denoted
by sizez. Now, we are interested in expressing bounds on the length of the
output list Z and the value of its elements as a function of size bounds for the
input lists X and Y (and their elements). For this purpose, we set up a sys-
tem of inequations. For instance, the inequations that are set up to express a
lower bound on the length of the output argument Z, denoted a7, as a function
on the size bounds of the input arguments X and Y, and their subarguments
(ax, Bx, 7x, 0x, ay, By, Yy, and dy) are:

Qy ifOéX:O

ax, Bx,vx,0x,
@z (ay,ﬁiﬁ’w,(sy > = 1+ay (aX —LAx = 1’7X’5X’> ifax >0
ay, By, vy, oy

Note that in the recurrence inequation set up for the second clause of append/3,
the expression acx — 1 (respectively Sx — 1) represents the size relationship that
a lower (respectively upper) bound on the length of the list in the first argument
of the recursive call to append/3 is one unit less than the length of the first
argument in the clause head.

As the number of size variables grows, the set of inequations becomes too
large. Thus, we propose a compact representation. The first change in our pro-
posal is to write the parameters to size functions directly as sized types. Now,
the parameters to the az function are the sized type schemas corresponding to
the arguments X and Y of the append/3 predicate:

ln(axﬁx)(n(WXﬁx)) Qy ifax =0
(654 51)

, ln(ax—l,ﬁx—l)(n(vxﬁx))
In(ay.By) Yy ,0y) 14+« (-,1) ifay >0
n (n<_,1)) Z ln(ay’ﬁy)(ngj){;sy)) X

In a second step, we group together all the inequalities of a single sized
type. As we always intercalate lower and upper bounds, it is always possible to
distinguish the type of each inequality. We do not write equalities, so that we
do not use the symbol =. However, we always write inequalities of both signs
(> and <) for each size function, since we compute both lower and upper size
bounds. Thus, we use a compact representation < for the symbols > and < that
are always paired. For example, the expression:

ln(OéX Bx) (nE’IY,)l(;‘SX)) § ln(el ,e2) (ngii’»l’;@)

represents the conjunction of the following size constraints:

ax > e, Bx <ez, yx > e3, 0x Jey

After setting up the corresponding system of inequations for the output ar-
gument Z of append/3, and solving it, we obtain the following expression:

) § ln(ax +ay,5x+ﬂy)(ngmin(vx 7’YY)vmaX(6X75Y)))

X

sizey (sizex, sizey

that represents, among others, the relation o, > ax +ay (resp. 8, < 8x + By),
expressing that a lower (resp. upper) bound on the length of the output list
Z, denoted «, (resp. (.), is the addition of the lower (resp. upper) bounds on
the lengths of X and Y. It also represents the relation vz > min(yx,yy) (resp.
0z > max(dx,dy)), which expresses that a lower (resp. upper) bound on the
size of the elements of the list Z, denoted 7, (resp. d.), is the minimum (resp.
maximum) of the lower (resp. upper) bounds on the sizes of the elements of the
input lists X and Y.

Resource analysis builds upon the sized type analysis and adds recurrence
equations for each resource we want to analyze. Apart from that, when consid-
ering logic programs, we have to take into account that they can fail or have
multiple solutions when executed, so we need an auxiliary cardinality analysis
to get correct results.

Let us focus now on cardinality analysis. Let sy and sy denote lower and
upper bounds on the number of solutions respectively that predicate append/3
can generate. Following the program structure we can infer that:

s1, (ln(o’o)(nﬁf)’é)()),sizey >1

SI, (ln(o‘x’ﬁ)‘)(ngjﬁ’é’()),sizey > s, (ln(o‘xfl’ﬁxfl)(ngif;é’()),sizey>

IN

1

< Sy (ln(ax71”8)(71)(%57)1()’6)())7 sizey)

)

ou (l”(o’o)mﬁf’f;é")), sizey

Su (ln(ax Bx) (nETYj(),éX))’ sizey

AN

The solution to these inequations is (sr,sy) = (1,1), so we have inferred that
append/3 generates at least (and at most) one solution. Thus, it behaves like
a function. When setting up the equations, we have used our knowledge that

append/3 cannot fail when given lists as arguments. If not, the lower bound in
the number of solutions would be 0.

Now we move forward to analyzing the number of resolution steps preformed
by a call to append/3 (we will only focus on upper bounds, r,,, for brevity). For
the first clause, we know that only one resolution step is needed, so:

ru (ln(0,0)(nETYT;éX))’ln(ay,ﬁy)(ngjhl/;éy))) <1
The second clause performs one resolution step plus all the resolution steps
performed by all possible backtrackings over the call in the body of the clause.
This number of possible backtrackings is bounded by the number of solutions of
the predicate. So the equation reads:

U (ln(ax7ﬁx)(n8)1‘>7‘sx)), sizey) <14 sy ln(ozx—l,ﬁx—l)(ng’ﬁ%ﬁx))?Sizey
X ry ln(OéX*Lﬁxfl)(ngt}:)l(;(sx))’Sizey

—1+ry ln(ax—l,ﬁx—l)(ngi)fyé)())?SZ'ZGY

Solving these equations we infer that an upper bound on the number of resolution
steps is the (upper bound on the length) of the input list X plus one. This is
expressed as:

Ty (ln(o‘x’ﬁ)‘)(ngjﬁ’éﬂ), ln(ay’BY)(ngfil')’(;Y))) <Bx+1

3 Sized Types Review

As shown in the append example, the (bound) variables that we relate in our
inequations come from sized types, which are ultimately derived from the regu-
lar types previously inferred for the program. Among several representations of
regular types used in the literature, we use one based on regular term grammars,
equivalent to [5] but with some adaptations. A type term is either a base type
a; (taken from a finite set), a type symbol 7; (taken from an infinite set), or a
term of the form f(¢1,...,d,), where f is a n-ary function symbol (taken from
an infinite set) and ¢1,..., ¢, are type terms. A type rule has the form 7 — ¢,
where 7 is a type symbol and ¢ a type term. A regular term grammar T is a set
of type rules.

To devise the abstact domain we focus specifically on the generic AND-OR
trees procedure of [3], with the optimizations of [15]. This procedure is generic
and goal dependent: it takes as input a pair (L, \.) representing a predicate
along with an abstraction of the call patterns (in the chosen abstract domain)
and produces an abstraction)\, which overapproximates the possible outputs.
This procedure is the basis of the PLAT abstract analyzer present in CiaoPP [10],
where we have integrated an implementation of the proposed size analysis.

The formal concept of sized type is an abstraction of a set of Herbrand terms
which are a subset of some regular type 7 and meet some lower- and upper-
bound size constraints on the number of type rule applications. A grammar for
the new sized types follows:

sized-type := qbounds « base type
| rbounds(sized-args) T recursive type symbol
| 7(sized-args) T non-recursive type symbol
bounds ::=nob | (n,m) n,meNm>n
sized-args == € | sized-arg, sized-args
sized-arg = sized-1yYpe,,gition
position =€ | (f,n) f functor, 0 < n < arity of f

However, in our abstract domain we need to refer to sets of sized types which
satisfy certain constraints on their bounds. For that purpose, we introduce sized
type schemas: a schema is just a sized type with variables in bound positions,
along with a set of constraints over those variables. We call such variables bound
variables. We will denote sized(r) the sized type schema corresponding to a
regular type 7 where all the bound variables are fresh.

The full abstract domain is an extension of sized type schemas to several
predicate variables. Each abstract element is a triple (¢, d, r) such that:

1. tis a set of v — (sized(7), ¢), where v is a variable, 7T its regular type and ¢
is its classification. Subgoal variables can be classified as output, relevant, or
irrelevant. Variables appearing in the clause body but not in the head are
classified as clausal;

2. d (the domain) is a set of constraints over the relevant variables;

3. r (the relations) is a set of relations among bound variables.

For example, the final abstract elements corresponding to the clauses of the
listfact example can be found below. The equations have already been nor-
malized into their simplest form for conciseness:

Vo {L N (ln(ahﬁl)(n(’)’lﬁl))’ rel.), FL — (ln(azﬁz)(n(’Y2752))7 out.)}
1= {al =16 = 1}7 {ln(a27/82)(n(’)’2,62)) < ln(l,l)(nnob)}

L — (In(enP) (n(0n00) el), FL — (In(@2:82) (n(02:92)) out.),
E — (n03:98) cl.), R — (In(@4:84) (n(04:90)) ¢l.),
\ = < F — (n0595) cl.), FR — (In@s:88) (n(76:30)) ¢].) >
2= {a1 > 0,81 >0},
{ln(azﬁz)(n(%,@)) < ln(a’+1,ﬁ’+1)(n(min(—yll,'y'),max(él!,6')) }

In(@"F" (n("9) < factlist (inlea=1A=D (p(.00)))

4 The Resources Abstract Domain

We take advantage of the added power of sized types to develop a better resource
analysis which infers upper and lower bounds on the amount of resources used
by each predicate as a function of the sized type schemas of the input arguments
(which encode the sizes of the terms and subterms appearing in such input

arguments). For this reason, the novel abstract domain for resource analysis that
we have developed is tightly integrated with the sized types abstract domain.

Following [16], we account for two places where the resource usage can be
abstracted:

— When entering a clause: some resources may be needed during unification
of the call (subgoal) and the clause head, the preparation of entering that
clause, and any work done when all the literals of the clause have been
processed. This cost, dependent on the head, is called head cost, 3.

— Before calling a literal: some resources may be used to prepare a call to a
body literal (e.g., constructing the actual arguments). The amount of these
resources is known as literal cost and is represented by §.

We first consider the case of estimating upper bounds on resource usages.
For simplicity, assume also that we deal with predicates having a behavior that
is close to functional or imperative programs, i.e., that are deterministic and do
not fail. Then, we can bound the resource consumption of a clause

C= p(.f) T QI(jl)v te vqn(in)v
denoted 7y ciquse using the formula:

TU,clau86<C) < ﬁ@@)) + Z?:l (5((12’(@')) + rU,pred(qi@i)))

As in sized type analysis, the sizes of some input arguments may be explicitly
computed, or, otherwise, we express them by using a generic expression, giving
rise (in the case of recursive clauses) to a recurrence equation that we need to
solve in order to find closed form resource usage functions.

The resource usage of a predicate, 7y preq, depending on its input data sizes,
is obtained from the resource usage of the clauses defining it, by taking the
maximum of the equations that meet the contraints on the input data sizes (i.e.,
have the same domain).

However, in logic programming we have two extra features to take care of:

— We may execute a literal more than once on backtracking. To bound the
number of times a literal is executed, we need to know the number of solutions
each literal (to its left) can generate. Using that information, the number
of times a literal is executed is at most the product of the upper bound on
the number of solutions, sy, of all the previous literals in the clause. We get
then the relation:

TU,clause (p(j) e Q1(j1)7'~) qn(jn))
< 8(p()) + S (T2 sprealas(2,))) (60(20) + 0 prea(as(a)

— Also, in logic programming more than one clause may unify with a given
subgoal. In that case it is incorrect to take the maximum of the resource
usages of clauses when setting up the recurrence equations. A correct solution
is to take the sum of every set of equations with a common domain, but the
bound becomes then very rough. Finer-grained possibilities can be considered
by using different aggregation procedures per resource.

Lower bounds analysis is similar, but needs to take into account the possi-
bility of failure, which stops clause execution and forces backtracking. Basically,
no resource usage should be added beyond the point where failure may happen.
For this reason, in our implementation of the abstract domain we use the non-
failure analysis already present in CiaoPP. Also, the aggregation of clauses with
a common domain must be different to that used in the upper bounds case. The
simplest solution is to just take the minimum of the clauses. However, this again
leads to very rough bounds. We will discuss lower bound aggregation later.

4.1 Cardinality Analysis
We have already discussed why cardinality analysis (which estimates bounds on
the number of solutions) is instrumental in resource analysis of logic programs.
We can consider the number of solutions as another resource, but, due to its
importance, we treat it separately.

An upper bound on the number of solutions of a single clause could be
gathered by multiplying the number of solutions of all possible clauses:

SU,clause (p(:f) 1 ("fl); ey qn(fn)) - H;L:1 sU,pred(qi(fi))

For aggregation we need to add the equations with a common domain, to get a
recurrence equation system. These equations will be solved later to get a closed
form function giving an upper bound on the number of solutions.

It is important to remark that many improvements can be added to this
simple cardinality analysis to make it more precise. Some of them are discussed
in [6], like maintaining separate bounds for the relation defined by the predicate
and the number of solutions for a particular input, or dealing with mutually
exclusive clauses by performing the max operation, instead of the addition oper-
ation when aggregating. However, our focus here is the definition of an abstract
domain, and see whether a simple definition produces comparable results for the
resource usage analysis.

One of the improvements we decided to include is the use of the determi-
nacy analysis present in CiaoPP [13]. If such analysis infers that a predicate is
deterministic, we can safely set the upper bound for the number of solutions to
1, avoiding the setting up of recurrence equations.

In the case of lower bounds, we need to know for each clause whether it
may fail or not. For that reason we use the non-failure analysis already present
in CiaoPP [4]. In case of a possible failure, the lower bound on the number of
solutions is set to 0.

4.2 The Abstract Elements

The abstract elements are derived from sized type analysis by adding some extra
components. In particular, we include four new elements:

. The current variable for solutions, and current variable for each resource.

. A boolean element for telling whether we have already found a failing literal.
. Information about non-failure analysis, coming from its abstract domain.

. Information about determinacy analysis, coming from its abstract domain.

=~ W N =

We will denote the abstract elements by

<(SL7 SU)7 Uresources failed?, d,r, ﬂf, d€t>

where (sp, sy) are the lower and upper bound variables for the number of so-
lutions, Vresources 18 a set of pairs (rp,ry) giving the lower and upper bound
variables for each resource, failed? is a boolean element (either true or false),
d and r are defined as in the sized type abstract domain, and nf and det can
take the values not_fails/fails and non det/is_det respectively.

In this analysis we assume that we are given the definition of a set of re-
sources, which are fixed throughout the whole analysis process. We have already
mentioned three operations, but we need an extra one for having a complete
algorithm. For each resource r we have:

Its head cost, 5,, which takes a clause head as parameter;

Its literal cost, d,., which takes a literal as parameter;

— Its aggregation procedure, I',., which takes the equations for each of the
clauses and creates a new set of recurrence equations from them;

The default upper L,y and lower L, ; bound on resource usage.

To better understand how the domain works, we will continue with the analy-
sis of the 1istfact predicate that we started in the previous section. We assume
that the only resource to be analyized is the “number of steps,” so that we use
the following values for the parameters of the resource analyis:

B=1, 6§=0, In=+, (Lz,Lly)=1(0,0)

4.3 [C,Uand L

We do not have a complete definition for C or L, because there is no general
algorithm for checking the inclusion or union of sets of integers defined by re-
currence relations. Instead, we just check whether one set of inequations is a
subset of another one, up to variable renaming, or perform a syntactic union of
the inequations. This is enough for having a correct analysis.

For 1 we first generate new variables for each of the resources and the solu-
tion. Then, we add relations between them and the default cost for each resource.
For an unknown predicate, the number of solutions could be any natural number,
so we take it as [0, 00). We also assume that the predicate may fail.

As mentioned before, the components for non-failure and determinacy come
from the abstract domains for those analyses.

For example, the bottom element for the “number of steps” resource will be
(where L,y and L 4. are the bottom elements in the non-failure and determinacy
domains respectively):

<(SL’ SU)7 {<nln nU)}7 true, [Z)’ {(Sln SU) § (07 OO), (nLa nU) § (O’ 0)}7 J-nf’ J-det>

4.4 Acall to ﬁentry
In this operation we need to create the initial structures for handling the bounds
on the number of solutions and resources. This implies the generation of fresh
variables for each of them, and setting them to their initial values. In the case of
the number of solutions, the initial value is 1 (which is the number of solutions
generated by a fact, and also the neutral element of the product which appears
in the corresponding formula). For a resource r, the initial value is exactly £,
The addition of constraints over sized types when the head arguments are
partially instantiated is inherited from the sized types domain. Finally, for the
failed? component, we should start with value false, as no literal has been
executed yet, so it cannot fail.

In the listfact example, the entry substitutions are:

Borir 1 = < (sp,1,1550,1,1), {(nr,1,1,nu,1,1) }, false, {a; =0, 81 = 0}, >
entry,1 — {(

sp1,501,1) S (L, 1), (np11,nu11) S (1,1)}, not_fails, is det

(1
B - (s.21,50.21), {(nL,2,1,n02,1)}, false, {a1 > 0,51 > 0},
entry,2 {(sp21,8021) S (1,1),(np21,n021) S (1,1)},not_fails,is_det

4.5 The Extend Operation

In the extend operation we get both the current abstract substitution and the
abstract substitution coming from the literal call. We need to update several
components of the abstract element. First of all, we need to include a call to the
function giving the number of solutions and the resource usage from the called
literal.

Afterwards, we need to generate new variables for the number of solutions
and resources, which will hold the bounds for the clause up to that point. New
relations must be added to the abstract element to give a value to those new
variables:

— For the number of solutions, let sy . be the new upper bound variable, sy,

the previous variable defining an upper bound on the number of solutions,
and sy, an upper bound on the number of solutions for the subgoal. Then
we need to include an assignment: sy < sy, X Sy -
In the case of lower bound analysis, there are two phases. First of all, we check
whether the called literal can fail, looking at the output of the non-failure
analysis. If it is possible for it to fail, we update the failed? component of
the abstract element to true. If after this the failed? component is still
false (meaning that neither this literal nor any of the previous ones may
fail) we include a relation similar to the one for upper bound case: sy, . >
srp X sp.a. Otherwise, we include the relation sz . > 0, because failing
predicates produce no solutions.

— The approach for resources is similar. Let ry . be the new upper bound
variable, ry7;, the previous variable defining an upper bound on that resource
and ry,» an upper bound on resources from the analysis of the literal. The
relation added in this case is 1y < ryp + sup X (6 +7ry)).

For lower bounds, we have already updated the failed? component, so we
only have to work in consequence. If the component is still false, we add a
new relation similar to the one for upper bounds. If it is true, it means that
failure may happen at some point, so we do not have to add that resource
any more. Thus the relation to be included would be rp . > rr .

In our example, consider the extension of listfact after performing the analysis
of the fact literal, whose resource components of the abstract element will look

like:
(sz,sv),{(nc,nv)}, false, {a, 3 > 0} >
{(sr,sv) s (1,1),(np,nu) S (o, 8)},not_fails, is_det

As this literal is known not to fail, we do not change the value of the failed?
component of our abstract element for the second clause. That means that it is
still false, so we add complete calls:

(s£,2,2:50,2,2), {(nr,2,2,nu2,2)}, false, {... }

o
Bentry,2 = < (sp2,2,5022) S (1 Xsp21,1Xsyz21), ,>
(nr22,nu22) S (M +nL21,0 +nu21)
not_fails,is_det

4.6 Begir to N

After performing all the extend operations, the variables appearing in the num-
ber of solutions and resources positions will hold the correct value for their
respective numerical properties. As we did with sized types, we follow now a
normalization step, based on the algorithm described in [6]: we replace each
variable appearing in a expression with its definition in terms of other variables,
in reverse topological order, starting from the desired variables. Following this
process, we should reach the variables in the sized types of the input parameters
in the clause head.

Going back to our listfact example, the final substitutions would be:

r_ (sp,a,1580,1,1), {(ne1,1,n0,1,0)), false, {ar = 0, 81 = 0},

1 {(sp11,5011) S (1,1),(np11,n0u11) S (1,1)},not_fails, is_det
(s1,2,3:50,2,3), {(n1,2,3,nu2,3) }, false, {aqg > 0,81 > 0},

sp23 > 1 x listfactse, p(In(@1= 1A= (n(1:00))),

, B suas < 1 x listfactse (o= 1A=1) (n(01:00))),

My T\) mpog >+ listfactne sieps,n(In(7D (n0n00))
ny,2,3 S 51 + liStfaCtno. steps,L(ln(al_lwgl_l) (n(71,51)))

not_fails,is_det

4.7 Widening V and Closed Forms

As mentioned before, in contrast to previous cost analyses, at this point we bring
in the possibility of allowing different aggregation operators. Thus, when we have

the equations, we need to pass them to each of the corresponding I. per each
resource r. This describes how we get the final equations.

This process can be further refined in the case of solution analysis, using the
information from the non-failure and determinacy analyses:

— If the final output of the non-failure analysis is fails, we know that the only
correct lower bound is 0. So we can just assign the relation sy > 0 without
further recurrence relation setting.

— If the final output of the determinacy analysis is is_det, we can safely set
the relation sy < 1, because at most one solution will be produced in each
case. Furthermore, we can refine the lower bound on the number of solutions
with the minimum between the current bound and 1.

In the example analyzed above there was an implicit assumption while setting
up the relations: that the recursive call in the body of listfact refers to the
same predicate call, so we can set up a recurrence equation. This fact is implicitly
assumed in Hindley-Milner type systems, where each expression and function
receives only one type. But in logic programming it is usual for a predicate to be
called with different patterns (such as different modes). Fortunatelly, the CiaoPP
framework allows multivariance (support for different call patterns of the same
predicate) in the analysis. For the analysis to handle it, we cannot just add calls
with the bare name of the predicate, because it will conflate all the existing
versions. The solution that we propose adds a new component to the abstract
element: a random name given to the specific instance of the predicate we are
analyzing, that is generated in the Acqu to Bentry. Then, in the widening step,
all different versions of the same predicate name are conflated.

Even though the analysis works with relations, these are not as useful as
functions defined without recursion or calls to other functions. First of all, devel-
opers will get a better idea of the sizes if presented in such a closed form. Second,
functions are amenable to comparison as outlined in [14], which is essential for
example in resource usage verification. There are several software packages that
are able to get bounds for recurrence equations: computer algebra systems, such
as Mathematica (the one used in our experiments) or Maxima; and specialized
solvers such as PURRS [2] or PUBS [1]. In our implementation we apply this
overapproximation operator after each widening step. For our example, the final
abstract substitution is:

)\/v)\l — (SLysU)a{(nLynU)}vfalsea{ahﬁl Z O}a
! {(sz,5v) s (1, 1), (nr,nu) s (a171, f101)} ,not fails, is det

5 Experimental results

We have constructed a prototype implementation in Ciao by defining the ab-
stract operations for sized type and resource analysis that we have described in
this paper and plugging them into CiaoPP’s PLAI implementation. Our objec-
tive is to assess the gains in precision in resource consumption analysis.

Table 1. Experimental results.

Program |Resource Analysis (LB)| Resource Analysis (UB)
New Previous New Previous RAML
append « «@ = B8 8 = 8 =
appendAll2| aiaza3 a1 + bibabs oo + bibobs =
coupled I 0 + v oo+ v =
dyade a1y o = BBz fi1f2 = BBz =
erathos « «@ = B2 g% = B2 =
fib o ol = o ¢” = infeasible +
hanoi 1 0 + 2v oo + infeasible +
isort a? a? = B2 g2 = B2 =
isortlist a? a? = b2by o0+ biby =
listfact ary Q@ + B oo + unknown ?
listnum n n = v v = unknown ?
minsort a? o + G2 g = 52 =
nub a1 a1 = by oo + b¥by =
partition « «@ = B8 8 = 8 =
zip3 min(a;) 0 + min(B;) oo + B3 +

Table 1 shows the results of the comparison between the new lower (LB)
and upper bound (UB) resource analyses implemented in CiaoPP, which also
use the new size analysis (columns New), and the previous resource analyses in
CiaoPP [6,8,16] (columns Previous). We also compare (for upper bounds) with
RAML’s analysis [11] (column RAML).

Although the new resource analysis and the previous one infer concrete re-
source usage bound functions (as the ones in [16]), for the sake of conciseness
and to make the comparison with RAML meaningful, Table 1 only shows the
complexity orders of such functions, e.g., if the analysis infers the resource us-
age bound function @, and & € (O(¥), Table 1 shows ¥. The parameters of
such functions are (lower or upper) bounds on input data sizes. The symbols
used to name such parameters have been chosen assuming that lists of num-
bers L; have size In(®:8:) (n(0i:9)) lists of lists of lists of numbers have size
Hin et (11 (e2:02) (1n(as:03) (n(e4:04)))) " and numbers have size n(**). Table 1
also includes columns with symbols summarizing whether the new CiaoPP re-
source analysis improves on the previous one and/or RAML’s: 4+ (resp. —) in-
dicates more (resp. less) precise bounds, and = the same bounds. The new size
analysis improves on CiaoPP’s previous resource analysis in most cases. More-
over, RAML can only infer polynomial costs, while our approach is able to infer
exponential costs (as well as many other types of cost functions), as is shown for
the divide-and-conquer benchmarks hanoi and fib, which represent a large and
common class of programs. For predicates with polynomial cost, we get equal or
better results than RAML.

6 Related work

Several other analyses for resources have been proposed in the literature. Some
of them just focus on one particular resource (usually execution time or heap
consumption), but it seems clear that those analyses could be generalized.

We already mentioned RAML [11] in Section 5. Their approach differs from
ours in the theoretical framework being used: RAML uses a type and effect
system, whereas our system uses abstract interpretation. Another important
difference is the use of polynomials in RAML, which allows a complete method of
resolution but limits the type of closed forms that can be analyzed. In contrast,
we use recurrence equations, which have no complete decision procedure, but
encompass a much larger class of functions. Type systems are also used to guide
inference in [9] and [12].

In [17], the authors use sparsity information to infer asymptotic complexities.
In contrast, we only get closed forms. Similarly to CiaoPP’s previous analysis, the
approach of [1] applies the recurrence equation method directly (i.e., not within
an abstract interpretation framework). [19] shows a complexity analysis based
on abstract interpretation over a step-counting version of functional programs.

7 Conclusions and Future Work

In this paper we have presented a new formulation of resource analysis as a
domain within abstract interpretation and which uses as input information the
sized types that we developed in [20]. We have seen how this approach offers
benefits both in the quality of the bounds inferred by the analysis, and in the ease
of implementation and integration within a framework such as PLAI/CiaoPP.

In the future, we would like to study the generalization of this framework to
allow the analysis of resources with slightly different behaviors regarding aggre-
gation. For example, when running tasks in parallel, the total time is basically
the maximum of both tasks, but memory usage is bounded by the sum of them.
Another future direction is the integration of more of the analyses present in
the CiaoPP analysis system, in order to obtain more precise results. Also, since
we use sized types as a basis, any new research that improves such analysis will
directly benefit the resource analysis. Finally, another planned enhancement is
the use of mutual exclusion analysis (already present in CiaoPP) to aggregate
recurrence equations in a better way.

References

1. E. Albert, S. Genaim, and A. N. Masud. More Precise yet Widely Applicable Cost
Analysis. In Proc. of VMCAI’11, volume 6538 of LNCS, pages 38-53. Springer,
2011.

2. R. Bagnara, A. Pescetti, A. Zaccagnini, and E. Zaffanella. PURRS: Towards
Computer Algebra Support for Fully Automatic Worst-Case Complexity Analysis.
Technical report, 2005. arXiv:cs/0512056 available from http://arxiv.org/.

3. Maurice Bruynooghe. A practical framework for the abstract interpretation of logic
programs. J. Log. Program., 10(2):91-124, 1991.

4. F. Bueno, P. Lépez-Garcia, and M. Hermenegildo. Multivariant Non-Failure Anal-
ysis via Standard Abstract Interpretation. In 7th International Symposium on
Functional and Logic Programming (FLOPS 2004), number 2998 in LNCS, pages
100-116, Heidelberg, Germany, April 2004. Springer-Verlag.

5. P.W. Dart and J. Zobel. A Regular Type Language for Logic Programs. In Types
in Logic Programming, pages 157-187. MIT Press, 1992.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. S. K. Debray and N. W. Lin. Cost Analysis of Logic Programs. ACM Transactions

on Programming Languages and Systems, 15(5):826-875, November 1993.

S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic
Programs. In Proc. of the 1990 ACM Conf. on Programming Language Design and
Implementation, pages 174-188. ACM Press, June 1990.

S. K. Debray, P. Lépez-Garcia, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In 1997 International Logic Programming
Symposium, pages 291-305. MIT Press, Cambridge, MA, October 1997.

Bernd Grobauer. Cost recurrences for DML programs. In International Conference
on Functional Programming, pages 253-264, 2001.

M. V. Hermenegildo, F. Bueno, M. Carro, P. Lépez, E. Mera, J.F. Morales,
and G. Puebla. An Overview of Ciao and its Design Philosophy. The-
ory and Practice of Logic Programming, 12(1-2):219-252, January 2012.
http://arxiv.org/abs/1102.5497.

Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate amortized re-
source analysis. ACM Trans. Program. Lang. Syst., 34(3):14, 2012.

Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. In Symposium on
Principles of Programming Languages, pages 331-342, 2002.

P. Lépez-Garcia, F. Bueno, and M. Hermenegildo. Automatic Inference of Determi-
nacy and Mutual Exclusion for Logic Programs Using Mode and Type Information.
New Generation Computing, 28(2):117-206, 2010.

P. Lopez-Garcia, L. Darmawan, and F. Bueno. A Framework for Verification and
Debugging of Resource Usage Properties. In Technical Communications of ICLP,
volume 7 of LIPIcs, pages 104-113. Schloss Dagstuhl, July 2010.

K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315-347, July 1992.

J. Navas, E. Mera, P. Lépez-Garcia, and M. Hermenegildo. User-Definable Re-
source Bounds Analysis for Logic Programs. In 23rd International Conference on
Logic Programming (ICLP’07), volume 4670 of Lecture Notes in Computer Science.
Springer, 2007.

Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl. Automatic complexity
analysis. In Furopean Symposium on Programming, pages 243261, 2002.

G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Anal-
ysis of Logic Programs. In International Static Analysis Symposium (SAS 1996),
number 1145 in LNCS, pages 270-284. Springer-Verlag, September 1996.

M. Rosendahl. Automatic Complexity Analysis. In 4th ACM Conference on
Functional Programming Languages and Computer Architecture (FPCA’89). ACM
Press, 1989.

A. Serrano, P. Lopez-Garcia, F. Bueno, and M. Hermenegildo. Sized Type Analysis
for Logic Programs (technical communication). Theory and Practice of Logic Pro-
gramming, 29th Int’l. Conference on Logic Programming (ICLP’13) Special Issue,
On-line Supplement, August 2013. To Appear.

Pedro B. Vasconcelos and Kevin Hammond. Inferring cost equations for recur-
sive, polymorphic and higher-order functional programs. In Philip W. Trinder,
Greg Michaelson, and Ricardo Pena, editors, IFL, volume 3145 of Lecture Notes
in Computer Science, pages 86—101. Springer, 2003.

C. Vaucheret and F. Bueno. More Precise yet Efficient Type Inference for Logic
Programs. In International Static Analysis Symposium, volume 2477 of Lecture
Notes in Computer Science, pages 102—-116. Springer-Verlag, September 2002.

Attachment D3.1.4

Genetic Algorithm-based Allocation and
Scheduling for Voltage and Frequency
Scalable XMOS Chips

Published at Hybrid Artificial Intelligent
Systems (HAIS 2013).

131

Genetic Algorithm-based Allocation and
Scheduling for Voltage and Frequency Scalable
XMOS Chips

Zorana Bankovié¢! and Pedro Lopez-Garcia'-2
! IMDEA Software Institute, Madrid, Spain

2 Spanish Council for Scientific Research (CSIC), Spain
{zorana.bankovic, pedro.lopez}@imdea.org

Abstract. In this work we present a novel approach, based on genetic
algorithms, for automatic scheduling and allocation of tasks in a multi-
processor multi-threaded architecture, together with an assignment of
the appropriate voltage and frequency of each processor in a way the over-
all energy consumption is optimized and all task deadlines are met. The
approach deals with scheduling, allocation and voltage and frequency as-
signment at the same time, and provides good solutions in a very short
time. As far as we know, this is the first approach that supports two
levels of parallelism: multi-processor and multi-thread.

1 Introduction

Dynamic power consumption due to switching activity in digital CMOS circuits
can be expressed with the following formula: P = aC,rsV?f, where C,yy is the
effective capacitance, V' is the operating voltage, f is the operating frequency,
and « the switching factor. If we can decrease the voltage supply and the operat-
ing frequency, the dynamic power will decrease significantly. On the other hand,
static power which is the result of the leakage currents also decreases quadrati-
cally with voltage [7]. Thus, voltage decrease can achieve significant power and
energy savings. This process is known as Dynamic Voltage and Frequency Scal-
ing (DVFS). However, it slows down the operation of the circuit, and has to be
applied in a way the required deadlines are still fulfilled. Furthermore, the pro-
cess introduces additional latencies, so we have to develop a set of requirements
that define the applicability of this approach.

The objective of this work is to optimize energy consumption through op-
timal scheduling and allocation for a set of tasks on XMOS chips, which are
multiprocessor and multithreaded voltage and frequency scalable architecture.
In XMOS chips threads are pipelined in a four-stage pipeline, where in each
stage one instruction from different thread is executed, so in essence we can say
that the threads also run in parallel. Thus, we deal here with two levels of par-
allelism. We assume that different processors can have different (V) f) setting,

while the threads running on the same processor at the same time must have
the same (V, f) setting.

Given a set of tasks and their corresponding deadlines, the objective is to
provide a scheduling and allocation, and also assign voltage and frequency for
each processor that would optimize the energy, while respecting the deadlines.
The tasks are heterogeneous, and they in general have different starting time
and deadline. We assume that there is no precedence between tasks, and no
preemption. In order to solve the problem, we need to have safe estimates of
power consumption of each task, as well as its execution time. Since this work
falls into ENTRA project [1], whose main task is to provide the programmer
the estimation of the energy consumption of his/hers program at compile time,
we assume that there exists an analysis that would give us this information, as
necessary input. On the other hand, there is a great body of work about time
analysis, so we assume that the analyzer will provide us this information as well.

The general problem of scheduling and allocation is NP-hard. In order to solve
it, different heuristic algorithms have been developed since they are capable of
obtaining sub-optimal solutions in real time. Many of them use genetic algorithm
(GA) [3,4,9] due to its fast exploration of the search space, which allows it to
quickly find acceptable solutions. For this reason, our scheduler will also be based
on GA. We will provide appropriate solution representation that captures the
two levels of parallelism, i.e. at both processor and thread level, and in the same
run performs allocation and scheduling and identifies appropriate (V, f) setting
in real time. As far as we know, this is the only solution for this type of problems.

The rest of the work is organized as follows. Section 2 details the sources of
power consumption, while Section 3 explains the problem that is being solved
and draws the constraints that are the basis for generating the solution. Section 4
details the implemented solution, while Section 5 explains the experimentation
environment and presents the most significant results. Section 6 presents the
most relevant related work, and finally, Section 7 draws the most important
conclusions.

2 CPU Power Consumption
The energy required to complete a (set of) task(s) in time 7" on one processor,
given the frequency f and voltage V is defined by:
to+T
Eopusv = [P (Ol 1)
to

where Pepy, g,y is the time varying XCore power at (V,f) setting. This power can
be calculated as:

Pepupv () =PI + Puaie pv + Past v (t) (2)

where P/ is the portion of the power that includes PLL and leakage [7], which

cpu
is the part that only depends on voltage, not on frequency. P;qe,f,v is the power

spent when the processor is not executing any application. For a certain fixed
(V,f) setting, the sum of these two does not change in time, so in the further text
we will call it standing power consumption, Pj;iu £ This power can be easily
obtained by measuring the CPU power when there are no running applications
for each (V,f) setting. On the other hand, Pc‘ﬁ v (t) is the active power spent
on switching activity during the execution of the application(s). Finally, we can

write:

Pepu, v (t) = Poyit 1y + Pt 5 (t) (3)
which put in 1 gives the energy consumed during time T :
M
Eepugv = Poa s vT + Z P rvT; (4)

i=1

where P; ;v is the power spent by the application 4, which is executed during
time of T;, and M is the number of threads, i.e. the maximal number of appli-
cations that can be executed on one processor at certain moment. In the cases
when the threads can finish more than one application within time T, formula 4
would have the following form:

M K
Bepupyv = Pitd (vT+> 3 " Py v T (5)

i=1j=1

where K is the maximal number of applications a thread can execute in time 7.

3 Problem Description

Problem Definition
Given a set of concrete tasks, provide optimal scheduling and (V,f) pair(s)
for each processor in order to optimize energy consumption.
Input
— Set of tasks with their corresponding deadlines.
— Set of possible (V,f) pairs.
— Available hardware: n - number of processors, m - number of threads per

processor.
Output
Viable scheduling and allocation that optimizes energy.

In the following text we assume the notation where variables are expressed using
upper case letters, while constants are expressed using lower case letters.

3.1 Timing Constraint
In general case, for each new frequency F,c., ; of each processor 4, the following
should remain valid:

Cyi
Vi € [1,n],Vj € [L,m], Ton:+ I < Dy (6)

where T, is the time overhead introduced by DVFS and Cj; is the number
of clock cycles needed to execute the application j on processor ¢, giving its
execution time to be & . This is reasonable to assume, given that in XMOS

there are no pipeline stalls nor cache misses, since there is no cache memory.
We further have:

10 2

Vi € [L TlL Toh,i = tohv + Toh_f,i ~ tohv + m Fnew,i

(7)

where t,p,,, is the time overhead of performing voltage scaling (assumed to be
constant), while To,, if the time overhead of performing frequency scaling, which
takes 10 clock cycles at most of the old clock, and two cycles of the new clock [6].
Finally, from 6 and 7 we get the timing constraints set:

Vi € [1,n],v_] S [1,m], Fnew,i . (CZJ =+ 2) < Dij — tohv — 10/Fold,i (8)

where we consider that we know t,p, , and both F,4 and F., can take one
value from the finite set of the pre-established values (V.f).

3.2 Energy Minimization Constraint

The second set of requirements is derived from the condition of reducing the total
energy during some known time ¢, high enough so that it permits the termination
of all the applications. This implies the following condition:

Vi€ [1,n],Vj € [1,m], t > max D;; 9)
iJ

Thus, for each processor, we have:

n n
Z Eold > ZEnew =
=1 =1

n
std b+) C,'j >

Pi,cpu, Fora,i,Voua,i Pij,\Voia,i,Fora,i Foai = (10)

i=1 =1 j=1 ola,r
n m
+ std St B . Cij
eoh pz DU Frcw,isView, i PijVaew,i-Faewi "
i=1 j=1 new,i

where e, is the energy spent on voltage and frequency scaling, pi; v, Foa
and Pij Ve i Frew.s ar€ estimated total power consumptions of the application
j on XCore 4 in the different (V, f) settings, while pﬁf{i is the standing power

explained in Section 2 in different settings. Finally, from 10, we get:

Z Z pw Vncw i Fnew,i _ Pij,Vora,i, Fola,i). Cy <

= 17 1 newz Foldz

(11)

std
t Z pl CP“ Ford,isVold,i pi,cpu,Fncw,hVnEwyi) — TN+ €oh

where the only unknown parameters are Cj;.

4 Proposed Solution

Our solution for optimal scheduling and allocation is based on GA. We have
used steady-state GA, where the number of individuals of the population is
the same in every generation and in every generation 60% of the population
with lowest objective values is replaced with newly created individuals. Custom
roulette wheel selector is used for the selection process. In the following text we
will explain other important aspects of its implementation in more detail.

Individual. The starting point, and one of the most important parts, in design-
ing a GA-based solution is always a representation of a solution, i.e. individual.
In our case, the solution contains information about temporal and spatial allo-
cation of each task. In other words, for each processor and each of its threads
we should have an ordered (in time) set of tasks. However, since in this work we
deal with DVFS, we have to add the information about the (V, f) state of each
processor. All the threads on the same processor have the same (V, f) setting
in the same moment, but we assume that different processors can have different
(V, f) setting, in order to solve the most general problem.

We can look at a solution to the scheduling problem as a permutation of
the task identifiers, where their order also stands for the order of their temporal
execution, assuming that each task has a unique identifier. On the other hand, in
order to solve the allocation problem, i.e. on which thread (and which processor)
each task is executed, we can add delimiters to the permutation of the task IDs
that would define where the tasks are being executed, i.e. processor, thread and
(V, f) setting (the tasks between two delimiters are executed on the right-side
one). In order to be able to distinguish delimiters from the task, they are used as
negative three-digit numbers, where the first digit stands for the processor, the
second for the thread on that processor, and the third for the processor (V, f)
setting (there is a finite number of settings). Part of a solution is depicted in
Fig. 1, where tasks with IDs 1, 2, 5 and 7 are executed in that order on the thread
4 of the core 2, with the (V, f) setting marked as 4. In the most general case,
the order of delimiters is random. However, if two consecutive delimiters that
belong to the same processor have different settings, this means that they are
not being executed in parallel, since the state has to be changed. Representing
solution in the described way has provided us with a relatively simple solution,
which will not introduce great overhead when executing GA.

-125 1 2 5 7 -244

Fig. 1. Solution Representation

Population Initialization. We have used a heuristics when initializing the
population in order to provide some good quality individuals from the begin-
ning. According to it, the task is added to the thread in the way the total
resulting energy up to the moment is minimal. However, the total energy is cal-
culated for the time equal to the farthest deadline for each thread. In this way,
more weight is given to the static power overhead. Thus, the objective of this
heuristic is to promote delaying the execution of each task towards its deadline
through minimizing the energy overhead. However, since in general GAs benefits
from great variety of solutions, we also introduce random solutions. During the
initialization process, each individual randomly chooses between heuristics and a
randomly generated solution, where the heuristics has slightly bigger possibility
to be chosen (0.6).

Solution Perturbations. Given that all the tasks and all the delimiters are
different, different solutions are always a permutation of a set of tasks and the set
of delimiters. This gives us the opportunity to use some of the permutation-based
crossover operator, and in this case we are using the partial match crossover, since
it performed better in the terms of objective function than the cycle crossover,
and slightly better than order crossover in the terms of objective function and
execution time. Since the order of delimiters is not important in the most general
case, this operator provides at the same time variety in consecutive changes of
(V, f) settings, as well as moving tasks from one thread to another. Regarding
mutation, it is implemented in the way that two random threads exchange two
random tasks with a small probability.

Objective Function. Since the aim is to the minimize total energy, the objec-
tive function is the total energy consumed for executing the given set of tasks
and it is calculated as presented in Section 2. However, the execution time for
each thread is taken as the farthest deadline of its tasks, in order to take full
advantage of the DVFS possibility. Furthermore, we have to be sure that the so-
lution is viable, i.e. that all given deadlines are met. We deal with this problem
through the penalization of the inviable solutions by multiplying their energy by
10. In this way, viable solutions will always have higher objective function and
thus higher probability of surviving to the next generation.

5 Experimental Evaluation

5.1 Testing Environment

XMOS Chips. The target architecture for this work are XMOS chips. However,
the same approach can be followed for any kind of DVFS-enabled multi-processor
architectures. In the case of XMOS chip, both voltage and frequency scaling are
possible and both introduce time overhead. All their chips provide the possibility
of frequency scaling due to the existence of a programable frequency divider. The

time overhead introduced when changing frequency is not more than 10 cycles
of the old clock, plus two more cycles of the new clock.

On the other hand, only XS1-SU01A-FB96 [8] chip provides the possibility
of voltage scaling due to the existence of two DC-DC converters whose output
voltage can belongs to the range (0.6V, 1.3V). In order to apply DVSF, we should
have a list of Voltage-Frequency (V,f) pairs or ranges that provide correct chip
functioning. The latency in this case is not controllable, and can be estimated
in the following way. Since the switching frequency of the converter is 1MHz,
and assuming we have linear control, the bandwidth should be 1/10 to 1/7 of
it, i.e. 150kHz in the best case. Thus, the time it takes for the output voltage to
stabilize is 1/150kHz, which is around 6us.

We have experimentally concluded that the XMOS chips can function prop-
erly in six (V, f) settings given in the first two columns of Table 1. In order to
include the possibility of shutdown, we could include the state (0(V),0(MHz))
and take the wake-up time as the latency of changing the state, and proceed in
the same way. For the purpose of this experiment, we assume that we have four
different processors, where each processor has eight different threads.

Task Set For the purpose of this initial experiment we have used the tasks from
the well known SPECCPU2006 [2] benchmark. The input dataset is composed
of 200 tasks randomly chosen, where each is one from the benchmarks. Each
task is independent. The same reasonable deadline is assigned to each task, so
it provides the possibility of applying DVFS. Their execution time is measured
on a general purpose computer, and the execution time on an XMOS chip is
estimated to be Theasured iji‘#os. This estimation is based on the assumption
that the total number of execution cycles is the same in both cases, and that it
is representative of the total execution time. While this is true for the XMOS, in
the general purpose computer this is not the case due to cache misses, pipeline
stalls, etc. Thus, in the future we would have to profile the tasks on the XMOS
chips, or use static analysis. It is important to point out that the duration of
the tasks, as well as their energy, are much bigger than both time and energy
overhead of DVFS scaling, so in this experiment the overhead will not be a
limiting factor.

Table 1. Typical power consumption for each processor state

V(V) f(MHZ) Payn(mW) Ps(mW)

0.95 500 117.325 18.05
0.87 400 78.7176 15.138
0.8 300 49.92 12.8
0.8 150 24.96 12.8
0.75 100 14.625 11.25

0.7 50 6.37 9.8

Since this work represents an initial study of the approach, we have taken
that the power consumption of each task is typical XMOS power consumption
given in [7]. The estimations for different (V, f) settings are estimated by scaling
with voltage and frequency in the case of dynamic power, while the static power
Phase.f V2 phase. /2

v and Py = ety new, These

dyn
Foase Vit e e

values are given in Table 1 for each (V, f) setting. However, it is assumed that

in the future the analyzer will give us an estimation of power consumption of

each task.

is scaled with voltage, i.e. Py, =

5.2 Obtained Results and Discussion

Genetic algorithm is executed on 500 individuals, during 100 generations. Greater
number of individuals does not provide significantly better solution. In Fig. 2
we can see that the best objective value does not significantly change during
the last iterations. The objective value is given in Wh. Under these settings, the
total execution time of the algorithm is around six minutes on an Intel Dual
Core machine, with 2.4GHz clock.

Energy(kh)

Fig. 2. Evolution of the best, the average and the maximum objective value

The average savings achieved in this way are 33.94%, with standard deviation
of 0.56%, compared to the same scheduling and allocation without the DVFS.
Speaking in the terms of statistical significance, we can be 95% sure that the
obtained savings will belong to the interval (33.02%,34.86%). A typical solution
is presented in Fig. 3. Separate (V, f) settings are distinguished with different
colors, where the settings 1-6 correspond to the ones given in Table 1, and one
time unit corresponds to one task. As we can observe, the majority of the tasks
are executed in low power settings 4, 5 and 6.

6 Related Work

Since DVFS can provide significant energy savings, its optimal usage has been
extensively studied. Some examples divide scheduling and allocation in two sep-

Thread ID Core 2

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18

Thread ID Core 3 Thread IpTme unit Core 4 Time unit

[SIEENATOE

0123455789101!!!!3|4

Time unit Time unit

Fig. 3. A Scheduling and Allocation Solution per Core with Assigned DVFS setting

arate tasks, such as the one given in [11], where in the first step the allocation
problem is solved using Linear Programming, while in the second the scheduling
problem is solved for separate processors using Bin Packing. Another solution [3]
solves the scheduling problem using GA, while it integrates DVFS in the fitness
function. However, we believe that more optimal solutions could be achieved
when solving scheduling and allocation at the same time, while also accounting
for the DVFS. There is one example of GA-based scheduling [4] that combines
scheduling, allocation and power management in one task. However, it deals only
with voltage scaling.

There is also a significant group of publications on using GAs for optimal
scheduling and allocation in multiprocessor systems with DVFS possibility. An
example given in [9] treats the problem as bi-objective, where they want to
minimize both energy and make span. The same objective is solved in another
work [10], but using the island model of parallel GA populations. Yet, in this
work our aim is to optimize the energy while meeting the deadlines, but our
approach can easily be adapted to work as multi-objective. Another solution [5]
treats the problem from two opposite points of view: in the first one, optimizes
the energy given the scheduler length, while in the other optimizes the scheduling
length given the energy bound. Finally, none of the solutions does not include the
possibility of two levels of parallelism, where each processor can have a number
of different threads executing in parallel.

7 Conclusions

In this work we have presented a solution for optimizing energy consumption for a
multiprocessor and multithreaded architecture. The solution performs scheduling

and allocation as one task, and deals with two levels of parallelism, which is the
only solution of this kind as far as we know.

The solution will form part of the tool developed within the ENTRA project,
when we will be able to include the power and time estimates provided by the
ENTRA static analyzer. There are also possibilities to further improve the per-
formances of the solution. For example, XMOS chips have the possibility to
automatically reduce the frequency of the processor if all of its threads are wait-
ing for an event, and in this way decrease the energy consumption even further.
This feature will be included into future versions of our scheduler, as well as the
possibility of shutting off separate components while they are not active.

Acknowledgements. The research leading to these results has been supported
by the European FP7,/2007-2013 318337 ENTRA project, and the Spanish TIN2012-
39391-C04-01 STRONGSOFT project.

References

1. Entra project. http://entraproject.eu/, 2013.

Speccpu2006. http://wuw.spec.org/cpu2006/, 2013.

3. Ying Chang-tian and Yu Jiong. Energy-aware genetic algorithms for task schedul-
ing in cloud computing. In ChinaGrid Annual Conference (ChinaGrid), 2012 Sev-
enth, pages 43-48, 2012.

4. V. Kianzad, S.S. Bhattacharyya, and Gang Qu. Casper: an integrated energy-
driven approach for task graph scheduling on distributed embedded systems.
In Application-Specific Systems, Architecture Processors, 2005. ASAP 2005. 16th
IEEE International Conference on, pages 191-197, 2005.

5. P.R. Kumar and S. Palani. A dynamic voltage scaling with single power supply and

varying speed factor for multiprocessor system using genetic algorithm. In Pattern

Recognition, Informatics and Medical Engineering (PRIME), 2012 International

Conference on, pages 342-346, 2012.

XMos Ltd. Xsl-1 active energy conservation, april 2010.

XMos Ltd. Estimating power consumption for xs1-1 devices, may 2012.

XMos Ltd. Xsl-su0la-fb96 datasheet, november 2012.

M. Mezmaz, Young Choon Lee, N. Melab, E. Talbi, and A.Y. Zomaya. A bi-

objective hybrid genetic algorithm to minimize energy consumption and makespan

for precedence-constrained applications using dynamic voltage scaling. In Evolu-

tionary Computation (CEC), 2010 IEEE Congress on, pages 1-8, 2010.

10. M.-S. Mezmaz, Y. Kessaci, Y.C. Lee, N. Melab, E.-G. Talbi, A.Y. Zomaya, and
D. Tuyttens. A parallel island-based hybrid genetic algorithm for precedence-
constrained applications to minimize energy consumption and makespan. In Grid
Computing (GRID), 2010 11th IEEE/ACM International Conference on, pages
274-281, 2010.

11. F. Paterna, A. Acquaviva, A. Caprara, F. Papariello, G. Desoli, and L. Benini.
An efficient on-line task allocation algorithm for qos and energy efficiency in mul-
ticore multimedia platforms. In Design, Automation Test in Europe Conference
Ezhibition (DATE), 2011, pages 1-6, March.

N

© X N>

Attachment D3.1.5

A Coverage Model to Capture the
Communication Behaviour of
Multi-Threaded Message-Passing
Programs

Submitted to International Conference on
Software Testing (ICST 2014).

142

A Coverage Model to Capture the Communication
Behaviour of Multi-Threaded Message-Passing
Programs

Kyriakos Georgiou
Department of Computer Science
University of Bristol
Bristol,UK
Email: KyriakosGeorgiou@bristol.ac.uk

Abstract—Concurrency related bugs are reportedly the most
difficult to catch during testing of multi-threaded programs.
It is therefore important to ensure that the tests run during
verification fully exercise the scenarios where threads interact.
Traditional code coverage models such as statement coverage are
inherently weak for this purpose. This paper presents a new
coverage model that complements existing ones. It is designed
specifically to capture the communication between threads in
message-passing programs. Static code analysis is used to extract
the coverage model from a multi-threaded program. Our model
is more fine grained than traditional code coverage models
because the coverage criteria incrementally capture all aspects
of the communication in a program. The model has strongly
defined mathematical properties which allow the detection of
communication bugs already during static model extraction,
leaving specific protocol-related bugs for dynamic detection. The
added value of this coverage model is demonstrated in a case
study using a prototype tool for the multi-threaded programming
language XC.

I. INTRODUCTION

The significant shift towards multi-core designs during
the last decade has lead to a surge of attention towards
multi-threaded software, in order to exploit the processing
power available on these systems. Introducing concurrency
in software increases its complexity and the responsibility
on developers to manage it. Concurrency introduces an extra
source of bugs that are known to be the most difficult to catch,
therefore effective testing for multi-threaded programs plays an
important role in the development life cycle of multi-threaded
programs.

Code and structural coverage tools are provided for both
software and hardware languages. Such tools analyze the code
and automatically generate coverage tasks to be achieved for a
target coverage model. For example, a code coverage tool gen-
erates coverage tasks for statements or branches in the code,
while a structural coverage tool may generate coverage tasks
related to Finite State Machines. Coverage data is collected at
runtime and coverage reports summarize the coverage achieved
during testing. Coverage data informs test engineers of the
diversity of the tests and gives an indication of the degree of
completeness of the testing. The process of coverage closure
can expose bugs. Achieving full coverage, i.e. 100% coverage,

Mike Bartley
Test and Verification Solutions
Bristol, UK
Email: mike @testandverification.com

Kerstin Eder
Department of Computer Science
University of Bristol
Bristol,UK
Email: kerstin.eder @bristol.ac.uk

requires considerable effort; especially for the more complex
coverage models. In practice, engineers compromise by settling
for less than 100% coverage to meet their schedule. This leaves
code unexercised and can leave bugs undetected.

In a study conducted on message-passing programs [11],
communication related bugs were the most common to cause
runtime errors, with a share of almost 25%. Analysis revealed
that stray and missing messages resulted in communication
protocol violations which in turn caused deadlocks, livelocks
and other erroneous program behaviour. Considering that such
a large proportion of bugs is caused by inter-thread com-
munication, and that conventional code coverage models are
inherently weak at exposing concurrency scenarios, priority
during testing of multi-threaded programs should be given to
exercising these, striving for 100% coverage of these critical
parts of the code.

A significant amount of work has been done in defining
new concurrent coverage metrics to improve the testing effec-
tiveness without increasing the test suite size in comparison to
traditional approaches [5]. Although for most of them their
effectiveness still heavily depends on generating large test
suites or applying constraints to the program structure to gain
testability.

This paper presents a new coverage model that comple-
ments existing ones, but focuses on a set of bugs that can
be easily captured statically prior to executing any tests, due
to its expressiveness. It is designed specifically to capture the
communication between threads in message-passing programs.
The new coverage model is structured over several layers,
increasing in expressive power and complexity. It starts with
covering the basic communication channels and builds up
towards full communication protocols at the top layer. Static
code analysis is used to extract the coverage model from a
multi-threaded program prior to running tests. Our model is
more fine grained than traditional coverage models, in the
sense that the coverage criteria are incrementally capturing
all the components of the communication in a program and
it has strongly defined mathematical properties that allows the
capture of bugs both statically and dynamically.

A prototype tool has been implemented for XC, the con-
current and real-time programming language designed for the
XMOS XCore processor [15]. The new coverage model has

been evaluated on XC programs containing communication
bugs. The evaluation provides evidence that the new coverage
model adds value to the verification process in practice; a set of
bugs were captured statically by just extracting the coverage
tasks. The effectiveness of the model over existing conven-
tional coverage models is also demonstrated. While evaluation
has been performed on the XC language, the proposed new
coverage model and the static analysis techniques employed
to extract the model from the source code are both generally
transferable to other languages that support message-passing.

This paper is organized as follows. Section II discusses
the background and related work on coverage models for
concurent programs, focusing on the message passing pro-
gramming model. Section III describes the proposed coverage
model alongside with the 7 coverage criteria and their hierar-
chy and the methodologies proposed to extract the coverage
tasks. Section IV describes the experimental evaluation of the
proposed coverage model. A case study is used to demonstrate
the bug exposure capabilities of the model. Section V presents
our conclusion and future work.

II. BACKGROUND AND RELATED WORK
A. Coverage-Based Testing

Testing is still dominant in industry, even though it is
often ad hoc, erratically effective and extremely expensive [3].
Studies estimate that 50%, and in some cases even more, of
the total software development costs are spent on testing [2].
The definition of measurable criteria is critical to assess the
quality and the completeness of the testing. A variety of
conceptually very similar coverage models are used during
hardware [13] and software [3] development. In general, the
most tricky bugs to find often reside in highly concurrent
code parts. It is therefore important to ensure these are
covered during testing. Coverage models based on source
code, such as statement, branch and expression coverage, are
inherently weak for this purpose. Implicit structures in the
code, such as flow graphs or state machines can be captured
in structural coverage models; these are more effective than
pure code coverage for concurrent programs. To complement
existing coverage models, a coverage model that is increasingly
popular in hardware verification is cross-product functional
coverage [14]. These coverage models are Cartesian products
over strategically selected design signal domains defined by
experienced verification engineers. The target coverage space
is represented by individual tuples, each of which is a coverage
task. It is the engineer’s responsibility to apply constraints
to this coverage space to identify only those tuples that are
intended to be feasible; these constitute the valid coverage
tasks. Cross-product functional coverage is also adopted as
part of our model as explained later in Section III.

B. Coverage in the Context of Concurrent Programs

In recognition of the lack of coverage models specifically
targetting concurrent or multi-threaded software, four require-
ments have been identified [2] for such coverage models to
gain acceptance as follows:

1) The model should be created statically from the code
prior to the testing, and each task must be well
understood by the user [4].

2) Almost all coverage tasks must be coverable and, for
the few that are not, due to practical limitations of
testing, a review process should be used.

3) Every uncovered task should yield an action item:
either a bug in a program that needs to be fixed, or
missing tests that need to be written.

4) Some action is taken upon reaching 100% coverage
for the model (e.g. the testing phase is complete).

The synchronization coverage model proposed in [2] cap-
tures the synchronization primitives in shared memory con-
current programs, with 100% synchronization coverage giving
developers confidence in the correctness of thread interaction.
The new coverage model presented here complements this
model, as it is designed specifically to capture the commu-
nication between threads in multi-threaded message-passing
programs. It also satisfies all four acceptance criteria.

C. Related work on Coverage for Message-Passing Programs

The most popular programming models for concurrency,
the shared-memory and the message-passing models [7], both
enjoy popularity today. The latter uses message passing for
communication of threads and is typically associated with
distributed-memory applications. Message passing programs
comprise of a collection of communication objects which
synchronize and communicate with each other by sending and
receiving messages.

The main difference compared to a sequential program that
determines the overall result of the computation is that the final
output does not only depend on the program code and the
external input but also on the thread interactions. Specifically,
in a message-passing program, race conditions may occur
due to unintended process scheduling and unpredictable vari-
ations in message delays [8]. These race conditions can cause
different synchronization sequences even when executing the
program with the same input, and may lead to the production
of different results, and undesirable program behaviour such as
deadlocks or livelocks. Due to this non-deterministic behavior
of a message-passing program, testing becomes significantly
more difficult than that of a sequential program.

A widely used strategy to test sequences of thread
interactions is based on synchronization sequences (SYN-
sequence) [1]. A SYN-sequence refers to the execution of a
sequence of totally or partially ordered synchronized events; it
captures the execution of a parallel program with given input.
In the context of message-passing programs, a synchronization
event (SYN-event) is defined by a pair that consists of a
send event and its corresponding receive event. The set of
feasible SYN-sequences consitute the coverage tasks in such a
coverage model. SYN-sequences can be classified into feasible
and valid SYN-sequences [9], where all SYN-sequences that
can be executed are termed feasible, and all SYN-sequences
that are intended according to the specification of the program
are termed valid.

A framework for non-deterministic testing of message-
passing programs based on a SYN-event coverage model
is introduced in [8]. SYN-sequences and SYN-events are
recorded; testing is stopped when coverage closure has been
achieved on all SYN-events and all send/receive statements
have been covered.

Atomic SYN-event testing [9] relies on linearization of
SYN-events within SYN-sequences, thus each SYN-sequence
consists only of serial atomic SYN-events. This ensures that
only one feasible SYN-sequence exists for each program input.
The number of feasible SYN-sequences is thus drastically
reduced at the cost of severely restricting the level of con-
currency in the program, while gaining testability.

One way to extract SYN-sequences is based on traversing
a reachability graph of a concurrent program [17], where each
node in the graph represents a statement. To reduce complexity,
the concurrency graph, which is a simplified reachability graph
containing only synchronization related statements, can be
traversed.

An alternative, simpler technique is based on Event Inter-
Actions Graphs (EIAGs) [6]. An EIAG is a combination of
Event Graphs (EG), which are control flow graphs of program
units such as threads, with InterActions between these program
units. The EIAG model was used to direct test generation for
structural testing of concurrent Ada programs. The set of SYN-
sequences is defined in terms of copaths, where each copath is
generated by combining selected paths from individual threads
based on the program’s EIAG.

Although much effort has been invested towards finding
a strategy for generating effective sets of SYN-sequences for
testing on parallel programs, there is still a lot of work to been
done to achieve a complete, practical solution.

We identified three key points that need to be addressed
towards that solution as follows:

1) How to define a coherent, incremental coverage
model of coverage criteria that gives control to the
programmer in terms of the level of complexity of
the testing?

2) How to automatically extract the coverage model
from a message-passing program without limiting the
programmer to restricted forms of concurrency?

3) How to automatically generate coverage tasks from
the source code?

Note that all the techniques reviewed so far require running
tests prior starting capturing any bugs. They do not take
advantage of the fact that some concurrency bugs in syntac-
tically correct programs can be identified statically, during
coverage model extraction. This is also a weakness in the
structure and expressiveness of the existing coverage models.
Our model is more fine grained in the sense that the coverage
criteria are incrementally capturing all the components of the
communication in a program and they have strongly defined
mathematical properties that allow the capture of bugs both
statically and dynamicaly. Extracting the communication of
the program under test also provides the ability to compare it
to the initial communication specifications.

III. THE PROPOSED COVERAGE MODEL

A. The Seven Coverage Criteria

A criterion contains two parts, program properties, like
program statements and branches, and a property satisfaction
function which is used to choose proper test cases needed to
exercise a certain program property [10]. A criterion measures

the quality of testing by checking how many program prop-
erties are satisfied. In order to have complete testing under
a criterion, the testing must achieve complete coverage by
satisfying all program properties.

The two metrics to evaluate a coverage criterion are its cost
and bug-exposing capability. The cost of a coverage criterion
depends on the amount of test cases needed in order to satisfy
all the program properties [16]. Bug-exposing capabilities
clearly depend on what set of program properties a coverage
criterion aims to test. Achieving a good balance between both
metrics is the critical part of setting a criterion. Hierarchical
families of coverage criteria offer increasingly more complex
coverage criteria and hence offer choice to the test engineer.

In this section we propose a hierarchy of seven coverage
criteria. In addition to this we also express our criteria using
mathematical properties. This will enable the capture of bugs
statically when extracting the coverage model, prior to running
any test, as is demonstrated in Section IV.

Let P be a multi-threaded program consisting of a set of threads
T = {T1,...,T}. The set of communication channels that are
declared in PP is defined as

C = {c|cisacommunication channel declared in P }
= {Cla"'vcl}’ (D

Send and receive statements on a channel c; are denoted by
o snc?m and . rcvy, respectjvely, where x represents a uniqqe
identifier such as the location of the statement in a thread in
terms of a line number or statement index.

Criterion 1, Channel: The most basic criterion captures
channel usage between threads. A channel c; has been ex-
ercised when at least one send and one receive on c; have
been executed. Full coverage is achieved when all channels
c1,...,¢ in C have been covered.

Criterion 2, snd-statement: This criterion captures all send
statements in T. For a channel c;, the set of all send statements
is denoted by:

S., =

= { andJC

{ g;snd$ | ¢, sndy is a send statement in T € T }
: TeT} 2)

The number of send statements on channel c¢; is ‘Scj| = N,

Full coverage is achieved when for all ¢; in C' all n.; send
statements have been covered.

Criterion 3, rcv-statement: This criterion captures all receive
statements in T. For a channel c;, the set of all receive
statements is denoted by:

R., =

= { Cf?ﬂcvm

{ g;rcvm | ¢, TV is a receive statement in T € T }
:TeT} (3)

The number of receive statements on channel c; is |RC7.| =
Me; . Full coverage is achieved when for all ¢; in C all M,
receive statements have been covered.

Criterion 4, SYN-event: In analogy to [12], [1] and [8], SYN-
events are ordered pairs of send and receive statements per
channel, each representing a potential thread interaction. For a
channel c;, the set of all SYN-events is defined as the Cartesian

product over the send statements S, and receive statements
R, as follows:

SYN—event., = Sc; X Re;

’ 17 ! "
={ (stndgc,chrcvy) | stndgc €S, N TCJ rcvy € Re, }

“4)

Note that for XC programs, where channels are uni-directional
and shared between two threads only, for each channel c; we
establish the property that the SYN-events (ZI sndm,TC: TCUy)
in SYN—event,, relatate to exactly two threads 7" and 7"
such that 7" # T"" and each 7" and T" is used for either send
or receive only. This property will be used to capture potential

bugs, as demostrated in Section IV-A

The total number of SYN-events on a channel c; is
‘S YN—event,, | = n,; M, . Full coverage is achieved when for
all ¢; in C' all valid SYN-events have been covered. Note that,
as a consequence of program control flow, not all SYN-events
in each S YN—eventcj may be feasible in practice; likewise,
not all may be valid, i.e. intended. In a bug free program,
all valid SYN-events should be feasible, while invalid SYN-
events should be infeasible. Figure III-A visualize the SYN-
event conditions for a bug free program. Same conditions must
apply for the SYN-sequence criterion.

Valid Invalid
Feasible v X
Infeasible X v

Fig. 1. SYN-event and SYN-sequence conditions for a bug free program.

Criterion 5, SYN-sequence: As first proposed in [12], SYN-
sequences capture traces of synchronization events between
threads. Let SYN—F be the set of all SYN-events in P. A
SYN-sequence is formally denoted by (e, ..., e;) where e; €
SYN—E. Feasible SYN-sequences can be extracted from P
using static analysis as described in Section III-C. The valid
SYN-sequences represent intended communication protocols
between threads in P. Full coverage is achieved when all valid
SYN-sequences have been covered.

An interesting property that applies to the SYN-sequence is
the prefix closedness property. For a SYN-sequence coverage
task (eq,...,e;), all prefixes (e1), (e1,e2), etc. are also cov-
erage targets. A coverage tool can use this to track progress
along the SYN-sequence.

Criterion 6, Internal-Order (I0) SYN-event: To increase
scrutiny, thread interleaving could be taken into account when
covering thread interactions at the level of SYN-events. Thus,
for a channel c;, the IO SYN-events are defined as follows:

10 SYN—event., = S x Re; UR; x Se; (&)

IO SYN-events capture the order in which threads arrive at
matching send and receive statements. The total number of IO
SYN-events on a channel c¢; is thus 2n.,m.,.

Criterion 7, Internal-Order Based (IOB) SYN-sequence: In
analogy to Criterion 5, SYN-sequence, IOB SYN-sequences
are traces of synchronization events between threads that

distinguish the order in which treads arrive at matching send
and receive statements. Thus, let JOSYN—E be the set of
all IO SYN-events in P. An IOB SYN-sequence is formally
denoted by (e, ..., e;) where ¢; € IOSYN—E. This criterion
combines Criterion 5 with Criterion 6.

In the scope of this paper coverage analysis is performed
up to and including Criterion 5. The XC language supports
synchronous message-passing, where threads block to wait for
each other before engaging in communication. Recording the
order of reaching the send and receive statements adds more
value when asynchronous communication is used. Criteria 6
and 7 are therefore shown in gray in Figure 2.

B. The Coverage Model Hierarchy

The seven criteria for coverage models introduced in the
previous section form a hierarchy of coverage models as
depicted in Figure 2. Solid arrows indicate inclusion of a
lower-level criterion in an upper-level criterion in terms of
coverage achieved, i.e. if full SYN-event coverage (Criterion
4) is achieved, then full coverage is also guaranteed for all
criteria below Criterion 4, likewise, full IO SYN-event cover-
age (Criterion 6) implies full SYN-event coverage (Criterion
4) etc. Dotted arrows indicate that the upper-level criterion
is defined in terms of the Cartesian product over several
lower-level criteria. The higher the level of a criterion in the
hierarchy, the larger the size of the coverage space. Criteria on
the higher levels are therefore stronger in terms of the testing
thoroughness required to close them.

Criterion 7 IOB

SYN-sequence
Criterion 5 Criterion 6 10

SYN-sequence SYN-event

Criterion 4
SYN-event
7 ~

s N
s N

Criterion 2 Criterion 3
snd-statement rcv-statement

Criterion 1
channel

The hierarchy of coverage models

Fig. 2.

C. Proposed Coverage Tasks Generation

During the testing stage, a coverage report is created
addressing missing coverage tasks, where a coverage task
denotes a boolean function on a test. The outcome of a
boolean function on a test is the result of the function. For
example, in statement coverage, “‘statement 5 is a coverage
task and “statement 5 was not executed” is an outcome of the
coverage task “statement 5”. To denote missing coverage, is a
comparison between coverage tasks in the coverage list and the
actually exercised coverage tasks after test runs, is performed.
The coverage list containing all valid coverage tasks can be
created manually or automated by the use of a specialised
tool. Finally when coverage holes are found, new test cases
are generated in order to cover them. If the need for quality

of a program increases, a new coverage model or criterion can
be applied and the whole procedure run again.

In this section we introduce the two phases adopted for
coverage tasks generation. The first phase was based on code
coverage method and the second one on the structural coverage
method. Both of them use static analysis.

1) Phase 1 - Extracting Coverage Tasks for Code Coverage
Criterion: This approach was introduced to produce coverage
tasks of channel, rcv-statement and snd-statement criterion.
They belong to code coverage criteria because they relate to
statements in the source code and they can be extracted from
it directly. The main idea is to traverse the abstract syntax
tree of programs and search for particular nodes, including the
corresponding statements for each one of the three criteria.
After snd-statements and rcv-statements have been extracted,
SYN-events are obtained for free as they form the Cartesian
product of the previous two.

2) Phase 2 - Extracting Coverage Tasks for Structural
Coverage Criterion: Our method for generating tasks of
SYN-sequence criterion is based on EIAG program model
proposed by Katayama [6]. Katayama used this model for
Ada concurrent programs, which apply to message-passing
communication. This makes the model easily adaptable for
use by any other message-passing parallel programs, written
in other programming languages. An EIAG consists of EGs
and interactions between threads. An EG is a control flow
graph of a programming unit in a concurrent program, where
program units can be procedures, functions and task-types.
Nodes in the EG denote concurrent event statements and
flow control statements which include the concurrent event
statements. Edges in the EG indicate the transfer of control
between nodes. The formal steps of creating an EIAG can be
found in Katayama [6].

Figure 3(a) shows an example of an EIAG. As
Katayama [6] describes their model, node with the number
“0” is the start node and node with the number “-1” is the end
node of a thread. Moreover the solid line denotes the control
flow in a thread, and the dotted line represents an interaction
between any two threads. In our work, an interaction is a SYN-
event (Criterion 4). The SYN-events in the graph are numbered
from the top most left EG to the down most right. Direction of
the dotted arrows indicates the direction of messages passed.
SYN-events are also distinguished in two cases:

a) Straightforward SYN-events on an EIAG : SYN-
events do not have alternatives, which are due to multiple
paths of a thread. Figure 3(a) demonstrates a simple EIAG
with straightforward SYN-events.

b) Alternative SYN-events on an EIAG : Result from
multiple paths of threads. Figure 3(b) demonstrates an EIAG
with alternative SYN-events.

In phase 1, the set of SYN-events created might contain a
number of infeasible SYN-events. By creating the EIAG of a
program, some of the infeasible SYN-events are eliminated us-
ing data flow and control flow analysis. This can be done up to
a certain point, due to the lack of the program semantics. User
input will be required to eliminate any remaining infeasible
SYN-events. The same applies for generating feasible SYN-
sequences. Data flow and control flow analysis is applied on

the EIAG to find all the possible combinations of SYN-events
that might happen. Then again the user will determine the
feasible SYN-sequences. Using the EIAG of Figure 3(a) the
only feasible SYN-sequence extracted by the static analysis is
(es3, €1, e2). Thus, the coverage task of SYN-sequence criterion
in this case is SYN-seq (1) =(es, e1, e2) only.

In the case of Figure 3(b), an EIAG with alternative
SYN-events, ej, es are alternatives because they cannot occur
during the same execution, both (e, e1) and (es, e3) sequences
can be taken as feasible. Thus, the coverage task of SYN-
sequence criterion in this case is SYN-seq (1) =(es, e1) and
SYN-seq (2) =(eg, e3).

Finally, after eliminating the infeasible SYN-sequences, we
have to eliminate all the remaining feasible ones which are
invalid. This is highly depended on the programs semantics
(i.e., its control and data flow) [8] which to some extent can
be extracted by using static analysis, but user input is also
needed in most cases to recognize all the feasible valid ones
acording to the specifications of the program.

IV. EXPERIMENTAL EVALUATION

A prototype tool was developed to implement the two
methods proposed in the previous section, for the extraction of
the coverage tasks. The tool was able to automatically create up
to the 4th stage of coverage tasks (SYN-event). As previously
stated, user input is required for the creation of the coverage
tasks for valid SYN-sequences due to the lack of semantic
information in the source code. These valid sequences are
defined from the protocol the programmer creates to specify
the communication that is allowed to happen between the
parallel threads in his program. The tool provides on the same
screen all the information needed (SYN-Events and the Event
Graph of the program under examination) for the user to create
the valid SYN-sequences.

A. Case Study

This section illustrates step by step how the new coverage
criteria can be applied to a small multi-threaded XC program
with communication bugs.

XC is a concurrent and real-time programming language
intended for targeting XMOS multi-threaded real-time proces-
sors. XC applies the message-passing paradigm for commu-
nication between concurrent threads running on the same or
different processors. Communication is achieved over channels
where each channel provides a synchronous, point-to-point
connection between two threads over which data may be
exchanged.

Table I summarizes the the concurrency and the commu-
nication statements of XC programming language, that are
relevant to the scope of this work. A channel is declared using
the keyword chan. A channel is used in two threads and each
use implicitly refers to one of its two channel ends. Data is
output to a channel using the output operator <: and input from
a channel using the input operator :>. Channels are lossless,
in the sense that data output in one thread is guaranteed to be
delivered for input by another thread. This stalls a program if
one output in one thread does not have a corresponding input
in another, or if the amount of data output on one end of the

T1 T2 T3

(a)
Fig. 3.

TABLE 1.

(d)

Example (a) of EIAG with Straightforward SYN-events and (b) with alternative SYN-events

STATEMENTS OF XC PROGRAMMING LANGUAGE, PROVIDING THE CONCURRENCY AND THE COMMUNICATION BETWEEN THREADS, NEEDED

TO BE EXTRACTED FROM THE AST

Functionality Expression

Description

Declaration of channel channel C;

C is the name of the channel

Pass channel parameter to a function

void Function (chanend C)

C is the name of the channel

Sending data through a channel cout <: X;

cout is the name of the channel, X can be
a variable or constant value

Receiving data through a channel cin > X;

cin is the name of the channel, X can be a
variable or a data type (e.g. int)

channel, does not equal the amount of data consumed at the
input end [15].

In this test case, our aim is to demonstrate the full bug
exposure capability of the proposed coverage metric using
the prototype tool. Another contribution of this example is
to show the added value of this coverage metric over the
existing conventional ones. A bug free program written in
XC is introduced. The specifications for the communication
between the threads of the program will be given. Then we
introduce bugs into the program to change its communication
protocol. Then the program will be given as an input to our
prototype tool and the coverage tasks will be collected. Based
on the collected coverage tasks, test cases will be created to
capture the introduced bugs and also check for communication
protocol compliance.

Four threads are used in this test case and two global
variables choice and selectEvent to control all the if
branches in the program. The values of these two global
variables determine the control flow during execution time and
hence the SYN-sequences executed each time.

Figure 4 shows the initial versions of Thread 1 and
Thread 2. No bugs were indroduced in these threads.

Thread 1 uses only two channels to communicate with
Thread 2, by sending data to it. There are three sending
events and one branch (line 3—6) which will affect the SYN-
sequences of the program. Thread 2 uses five channels.
Channels ¢; and c4 are used to receive data from threadl,
channels ¢y and ¢y are used to send data to Thread 3 and
finally channel cg is used to send data to Thread 4. The
if statement on lines 4-7 affects the communication and the
SYN-sequences of the program. Similarly this happens with
the if statement on lines 18—-19. The if statement at lines 8—
15 is not affecting the communication of the program but
it adds more test cases when validating the program using
conventional coverage metrics, such as statement coverage.
This will be used later to compare existing conventional criteria

with our new coverage metric.

Figure 5 compares the initial and the buggy version of
Thread 3.Thread 3 uses 5 channels. In the initial version,
channels ¢y and c¢5 are used to receive data from Thread 2
and channels c3, ¢7 and cg are used to send data to Thread 4.
The if statement in lines 8-9 affects the communication of the
program and thus the SYN-sequences that can be executed.
In the buggy version a bug is introduced at line 9. One
of the most common sources of errors in programming is
mistyping and sometimes it is difficult to locate such errors.
Here we change cg <: s; to ¢y :> s;. This change leaves
the receive statement on channel cg in Thread 4, without a
corresponding send statement, so if that receive statement is
reached the input of the channel will be waiting for data that
will never come. This will finally crash the whole program
execution. To understand the effect of this change we have to
examine the initial and the buggy version of Thread 4 also.

Figure 6 compares the initial and the buggy version of the
Thread 4.Thread 4 uses4 channels. In the initial version,
channels c3, ¢; and cg are used to receive data from Thread
3 and channel cg is used to receive data from Thread 2.
The if statements in lines 6-9 affects the communication and
the SYN-sequences of the program. According to the value
of the variable choice, either receive event cg or cg will be
executed. In the buggy version of the program we change the
receive statement cg :> int; to a send statement cg <: 4;,
and the structure of the if statements as shown in lines 6-13
in order to have both events regarding channels cg and cg in
both branches of the if statement. The first change introduces a
logical error because the send event in Thread 2 on channel
cg, will be left without a corresponding receive statement.
This will also crash the program when this send statement is
reached. The second change on the structure of the if statement
will introduce a functional error because the program no longer
complies with the initial communication protocol. In other
words feasible invalid SYN-sequences will be introduced.

Thread 1 — Bug-Free Version

Thread 2 — Bug-Free Version

1. void helloO(chanend cl,chanend c4){
2. c4<:0:;//comms T2

3. if(selectEvent=1)

4 cl <: 1; //comms T2
5. else
6

7

cl <: 2; //comms T2

1. void hellol(chanend cl, chanend ¢2,chanend
c4,chanend c5,chanend c6){

2. int i=0, k=1:

3. c4:>i;//comms T1

4. if(selectEvent=l)

5. cl:>i;//commsTI

6. else if(selectEvent==0)

7. cl:>k;//commsTI

8. if (k==0) //test cases that do not affect comm
9. k=k+1:

10. else if(k=2)

1. k=k+2:

12. else if(k=3)

13. k=k+3:

14. else

15. k=k+4:

16. c2<:1;//comms T3

17. ¢5<:3;//comms T3

18. if (choice==1)

19. c6<:4;//comms T4

Fig. 4. The initial versions of the thread 1 and 2 of the program under test.

Thread 3 - Bug-Free Version Thread 3 — Buggy Version
1. void hello2(chanend c2, chanend c3,chanend 1. void hello2(chanend c2, chanend c3,chanend
2 c5,chanend c7,chanend c8){ 2 c5.chanend c7,chanend c8){
3. ints=-1; 3. ints=-1:
4. c2 :>s; //comms T2 4. c2:>s;
5. ¢5 =>int;//comms T2 5. c¢5:>int;
6. c7 <:2;//comms T4 6. c7<:2:
7. ¢3 <: 1; //comms T4 7. if(choice=1)
8. if(choice=l) 8. c7 > int;
9 c8 <:s; //comms T4 9. ¢3 <:1; //no protocol compliance
10. } 10. }
Fig. 5. The initial and the buggy version of the thread3 of the program under test.
Thread 4 — Bug-Free Version Thread 4 — Buggy Version
1. vold hello3(chanend c3.chanend c6.chanend 1. vold hello3(chanend c3.chanend c6.chanend
2. c7.chanend c8){ 2. c7.chanend c8){
3. Intz=0; 3. intz=0;
4. c7:>int;//comms T3 4. c7:>int;
8. c¢3:>z //comms T3 5. 3=z
6. If (choice=1) 6. if(choice==1){
7. c6:>Int; /comms T2 7. b4
8. else If (choice==2) 8. &>z
9. c8 :>z; //comms T3 9.}) .)
10.} 10. else if (choice==2){//no protocol compliance
11, c6<:4;
12. c8:>z;
13. |
14.)
Fig. 6. The initial and the buggy version of the Thread 3 of the program under test.

The EIAG of the initial version of the program is demon-
strated in Figure 7. The valid SYN-sequences of the program
was extracted by contacting control flow analysis on the EIAG
as described at section III-C and shown in table II.

B. Coverage Tasks collection of the buggy version of the
Program under test

The buggy version of the program under test was first
compiled using our tool (customized version of the propri-
etary XC compiler) to extract the information needed for the
generation of the coverage tasks. The collected coverage tasks
were checked against the coverage criteria properties, defined

TABLE II. THE SYN-SEQUENCES SPECIFIED BY THE
COMMUNICATION PROTOCOL OF THE INITIAL VERSION OF THE PROGRAM
UNDER TEST.

SYN-sequences

S1 | (e1,e2,eaq,6e5,¢7,e8)

Sy | (e1,e3,eq,e5,€7,¢€8)

S3 | (e1,e2,e4,e5,¢€7,€s,€6)
(e1,e2,¢4,¢e5,€7,¢€8,€9)

S5 | (e1,e3,eq,e5,€7,¢€8,¢€6)
(e1,e3,¢e4, €5, €7, €5, €9)

in Section III-A, to assess their validity. Table III shows all the
extracted coverage tasks. For the convenience of presentation

the notation of coverage tasks is linearised e.g. 7;: snd,, will

Fig. 7. The EIAG of the initial version of the program.

now be cj (snd’?). The cells coloured in light grey indicate
that those coverage tasks are not conforming to their criteria
properties and they possibly reveal potential bugs in the code.

First we start looking at coverage tasks generated from
the criteria higher in the hierarchy and then move to the
lower levels, until clarifying the source of the problem for
each case. Starting with the SYN-event, the Cartesian product
generated for channel cg is empty. This indicates either a
channel declared and never used (dead code) either a channel
that only one of its endpoints is used (either receive or
corresponding send statement is missing). Moving to Criteria
2 and 3 for channel 6, there is an empty set of rcv-statements
and a non-empty set of send-statements, indicating a clear case
of faulty communication. These can cause the program to stall
if one of the unmatched send-statements is executed. Using the
same approach the unmatched receive statements on channel
8 (cg(rcv0), cg(rcvl)) are captured.

In the case of SYN-event ¢/ and using the property of
SYN-events that an event must happen in two different threads,
a potential bug is captured, since its send and corresponding
receive statement are in the same thread. Although the com-
piler allows this case, is usually meaningless because there is
no reason to send data from a thread and receive that same data
in the same thread through a channel and typically indicates a
typing mistake.

The two events ef, e} coloured in dark gray color should
not be valid according to the program specifications. This is
dependent upon the program semantics and only the user can
exclude from the coverage tasks as not feasible and invalid
events.

It is important to note that the buggy version of the program
is executed exactly the same as the initial version without any

TABLE III. THE COVERAGE TASKS COLLECTED BY THE CREATED
PROTOTYPE TOOL FOR THE PROGRAM UNDER TEST.
Channel snd-statements | rcv-statements SYN-events
c4 ca(sndlt) ca(revd?) el : ca(sndlt, revd?)
/ T1 T2
el s ci(sndy *,revg ©)
c1(sndlt) c1(revd?) ll (%1’ ;2
e5 s c1(sndy ,revy ©)
c1
1 (sndTt) 1 (revl?)
co ca(sndl?) ca(revd®) el i ca(sndl?, revd®)
cs cs(sndl?) s (revd®) el : cs(sndl?, revd®)
ce(sndl?)
Ce ce(sndt®)
co(sndl®)
T3 cr(revd®) el : cs(sndl®, revd®)
cr er(sndy) T4 7 T3 T4
cr(revy ™) eg : cs(sndg”,revy ©)
c3 c3(sndl?®) cs(revd™®) el : ca(sndl®, reod®)
cs(revd™)
c8
cg(revi®)

defects caused by the existence of the bugs. The reason is
that the bugs are guarded by the if statements and they will
only be executed when their if branch is reached. Consider
a huge program composed of hundreds of lines of code,
and somewhere in the middle is an if statement guarding
an unmatched send or receive statement. The code of the if
statement will only be executed when a variable takes a specific
value with a probability of 1/100. Using conventional coverage
criteria will be very difficult to detect and will need to check
all the 100 possible values of the variable. On the other hand
using our coverage metric and our tool this bug can be captured
by just collecting the coverage tasks and before even running
any test cases.

C. Correction of the potential bugs and checking the protocol
compliance

Up to this point the tool was able to create all the coverage
tasks up to Criterion 4 automatically and also capture a number
of potential bugs. In order to be able to move forward by
collecting the coverage tasks for the last criterion of SYN-
sequence, the user has to correct all the bugs identified by ap-
plying the earlier criteria. Then all the feasible SYN-sequence
coverage tasks can be collected by the tool. SYN-sequences
are related to the communication protocol of a program. By
collecting them the user is able to compare them to those
intended by the program specifications, which are feasible and
valid. The process followed by the user is:

1) Create the set V' of all the user intented SYN-
sequences using the specifications for the program
under test. This must be the set of feasible, valid in
the program written by the programmer.

2) Extract the set F' of all the feasible SYN-sequences
from the implemented program, as demonstrated in
Section III-C.

3) Compare the two sets. If the program is bug free, then
those that should be feasible are the same as those
that are feasible in the actual code and so V = F. If
the program is buggy, then that is not the case and
one of the following cases applies:

e VNF ={},V and F have no elements in
common thus all of the SYN-sequences are
invalid.

e VU C F, Feasible, invalid SYN-sequences
exist in the implementation.

e F C V, Some valid SYN-sequences are
missing from the implementation.

e VNF #{}, Some valid SYN-sequences are
also feasible. The SYN-sequences outside the
intersection of V with F need to be further
investigated.

This process requires the user input due to a lack of
program semantics (i.e. its control and data flow). The user will
also repeat the above process as many times as needed until
the two sets are equal. During this process, a number of EIAGs
will be produced for each of the intermediate revised program
versions, to be used by static analysis for the feasible SYN-
sequences extraction and also to assist the user in comparing
the two sets V and F. Test generation is outside the scope of this
paper. The user may utilize existing test generation techniques
to target the coverage tasks in this process.

In our test case, after correcting the initial bugs captured
statically by the extraction of the coverage tasks up to criterion
SYN-event in the hierarchy, the EIAG is created as given in
Figure 8. Comparing this graph with the one of the correct
version of the program in Figure 7 the changes introduced in
the original code to introduce communication protocol incom-
pliance can be seen. Events e7, ;0 and e;1 in Figure 8, do
not conform to the initial communication protocol. Moreover,
e10 can cause a deadlock if the branch on node 4 of thread
T3 is taken. This is a case of out of order, crossing events
creating cyclic dependencies on their execution. An EIAG
has the property of exposing whenever this occurs and is an
indication for the either existance of deadlocks or a dead code

in the program if the code is not reachable. Static analysis on
the the graph can reveal these cases.

D. Comparison of the new coverage metric proposed with the
existence conventional coverage metrics

Thread 2 of the program under test introduces an if
statement (lines 8-15) with four branches. The purpose of
this if statement is to demonstrate some of the added value
of our coverage metric over the old conventional ones. Our
coverage model specifically extracts the communication of
a message-passing multi-threaded program and allows the
user to check the correct communication by using only the
test cases affecting the communication. In our case, there
is no need to examine the 4 extra branches under that if
statement to fully test the communication of the program.
Using the conventional statement coverage metric a larger
set of test cases will be needed to achieve 100% testing for
the program communication than our coverage model. While
the example used to illustrate the expressive power of the
proposed coverage criteria is clearly small, this difference can
be large for complex programs, significantly increasing testing
complexity.

V. CONCLUSION

In this work, we have proposed a coverage model that
complements existing ones, but is designed to capture the
communication behaviour of multi-threaded message-passing
programs. The new coverage model is structured over several
layers, increasing in expressive power and complexity.

A prototype tool was developed, implementing the new
coverage model, targeted on the XMOS XC language, to eval-
uate its bug capturing capabilities. The prototype tool offers
100% extraction of the communication of a multi-threaded
message-passing program and at the same time the coverage
tasks for the first 5 criteria in the hierarchy can be automat-
ically extracted. By just extracting the coverage tasks before
running any test cases on the program, some bugs are captured,
such as unmatched send or receive statements or SYN-events
happening in the same thread. Finally communication protocol
compliance testing can be conducted by the user, by comparing
the feasible SYN-sequences extracted by the tool with the
valid SYN-sequences stated in the program specifications. This
process might be repeated until the program is 100% bug
free. The use of the EIAG graph also enables the detection of
the deadlocks in the program. Moreover, an added value over
the conventional existing coverage metrics, such as statement
coverage, is that this coverage metric is specific for the
communication in a program. Achieving 100% communication
coverage requires fewer tests than 100% conventional code
coverage.

The coverage model is transferable to any programming
language that uses message passing. As future work we will
try to apply this model to a different message-passing language
such as MPI. An extension to the current implementation is
also needed to cover the full spectrum of the XC language,
e.g. considering loops.

Fig. 8.

The EIAG after correcting the statically captured bugs up to SYN-event crterion.

ACKNOWLEDGMENTS

The research leading to these results has received funding

from
grant

the European Union 7th Framework Programme under
agreement 318337, ENTRA - Whole-Systems Energy

Transparency. The authors would also like to thank Xiaorong
Yu for her initial work leading to the establishment of the
coverage models as presented in this paper.

(1

(2]

(3]
[4]

[3]

[6]

(71

REFERENCES

B. Alessio, C. John, and A. Cosimo. A tool for testing of parallel and
distributed programs in message-passing environments. In Proceedings
of 9th IEEE Mediterranean Electrotechnical Conference, pages 1308 —
1312. MELECON, 1998.

B. Arkady, F. Eitan, M. Yonit, N. Yarden, and U. Shmuel. Applications
of synchronization coverage. In Proceedings of the tenth ACM SIG-
PLAN symposium on Principles and practice of parallel programming,
pages 206 — 212. ACM, 2005.

B. Beizer. Software testing techniques. Van Nostrand Reinhold, 1990.

H. Chockler, O. Kupferman, and M. Vardi. Coverage metrics for formal
verication. In Springer-Verlag, editor, In 12th Advanced Research Work-
ing Conference on Correct Hardware Design and Verication Methods,
volume 2860, pages 111 — 125, 2003.

S. Hong, M. Staats, J. Ahn, M. Kim, and G. Rothermel. The impact of
concurrent coverage metrics on testing effectiveness. Software Testing,
Verification, and Validation, 2008 International Conference on, 0:232
— 241, 2013.

T. Katayama, Z. Furukawa, and K. Ushijima. A method for structural
testing of Ada concurrent programs using the event interactions graph.
In Proceedings of the Third Asia-Pacific Software Engineering Confer-
ence, pages 335 — 364, 1996.

T. LeBlanc and E. Markatos. Shared memory vs. message passing in
shared-memory multiprocessors. In Proceedings of the Fourth IEEE
Symposium/Parallel and Distributed Processing, pages 254 — 263, New
York, NY, USA, 1992. IEEE.

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

Y. Lei, E. Wong, and A. Novel. Framework for non-deterministic testing
of message-passing programs. In Proceedings of the Ninth IEEE In-
ternational Symposium on High-Assurance Systems Engineering, pages
66 — 75, New York, NY, USA, 2005. IEEE.

Y. Liang, S. Li, H., C. Zhang, and H. Chengde. Timing-sequence testing
of parallel programs. Journal of Computer Science and Technology,
15(1):84 — 95, 2002.

S. Lu, W. Jiang, and Y. Zhou. A study of interleaving coverage criteria.
In In FSE, pages 533 — 536, 2007.

J. Pedersen. Classification of programming errors in parallel message
passing systems. In Proceedings of Communicating Process Architec-
tures, pages 363 — 376. 10S Press, 2006.

K. Tai and R. Carver. Testing of Distributed Programs. Parallel and
Distributed Computing Handbook. Van Nostrand Reinhold, 1996.

S. Tasiran and K. Keutzer. Coverage metrics forx functional validation
of hardware designs. IEEE Design and Test of Computers, page 36 45,
2001.

S. Ur and A. Ziv. Off-the-shelf vs. custom made coverage models, which
is the one for you? In In proceedings of STAR9S: the 7th international,
1998.

D. Watt. Programming XC on XCore XS1Devices. XMOS, 1st edition,
2009.

E. J. Weyuker. More experience with data flow testing. IEEE Trans.
Softw. Eng., 19(9):912 — 919, Sept. 1993.

W. Wong, Y. Lei, and X. Ma. Effective generation of test sequences for
structural testing of concurrent programs. In Proceedings of the 10th

IEEE International Conference on Engineering of Complex Computer
Systems, pages 539 — 548, 2005.

Attachment D3.1.6

Operational Semantics for XC.

Technical Report.

153

Operational Semantics for XC

Technical Report

Nina Bohr

Roskilde University

1 Operational Semantics for XC

The intension in this semantics is that in each transition step (e-transition)
for the program we progress all possible threads. All threads which can in
themselves make a transition step (an e-transition) will do that and at the
same time all communications where both send and get are offered on the
same channel will do a communicating step.

1.1 Syntax

This semantics is closely tied to the XC language as it builds on the properties
that in XC 1) parallel threads cannot make any updates to shared variables
and 2) in (at least the subset of XC we look at) communication channels
have two ends owned by exactly one thread each, so there is no race on being
the first to send/get on a given channel.

A parallel program may evolve in many different execution orders de-
pending on hardware and program external properties. In this semantics a
given execution order is chosen building on the not very realistic assumption
that each basic statement takes the same time. Due to the properties of
XC mentioned above, this choice will always give the same final state as any
other execution order for a terminating program, and for looping or blocking
programs each thread will extend its execution as far as possible (OBS needs
to be proven — if it is what we want to prove). It is possible to change the
semantics to execute in other orders by adding timing to basic steps maybe
depending on an extended description of state.

We let x (variable names) range over a set N/ of names.

2

(Values) V i=n|a«

(Expressions) E ==V |z | E1+Ey | f(E) | {S}

(Statements) S =skip | returnE | z:=F | 51;S52 | S1 || S2 |

letz = EinS |sendE1 Ey | x :=get E
(Labels) L == Val!|a?
(Label-List) La=[]P|L:L
(MLabels) L™ ::= a!V | a?V (understood as match labels)
(MLabel-Lists) L™ == []™ | L™ : L™
(Transition-Possibility-Marker) tx=0]1
)

(Transition-labelling L =€ | L™ (obs: the same as € | a!lV | a?V not a list)

Label-lists are intended to express all communication-offerings to the
statement-external surroundings present in a given statement at a given time
in execution. Transition-possibility-markers are intended to indicate by 0/1
whether the statement is capable of making an e-transition, that is a tran-
sition not communicating with the outside surroundings. Two mlabel-lists
for two sides in a given par-statement are intended to contain all communi-
cations possible between the two sides at a given time of execution. Hence,
they will always have the same length.

For the XC Language there can never be more than two labels using the
same channel in a label-list. In erroneous programs it is possible to have two
gets or two sends on the same channel, this will block further progress of
the involved two threads. In an mlabel-list there cannot be more than one
mlabels using the same channel.

For mlabels L1 = a?V and L, = alV we deﬁPe an erasure function by
overbar to derive associated labels L; = a? and Ly = Va!. This extends to
mlabel-lists £™.

For two label-lists we define a function Match which will find all matching
sends and gets on the same channel and add the value from the send-label

3

to the get-mlabel. Match(Lq, L2) = (L, LS, L7, L5') such that (= meaning
contains the same labels):

(L1~ LYW L) and (Lo ~ LW L) and

(Vale Lyna? € Ly=alV e LT ANa?V € L) and

(Vale Lona? e L1 = alV € LT ANa?V € L) and

(Val e Ly Na? ¢ Ly = aV!e L)) and

(Vale Lona? ¢ L = aV!e L)) and

(a?e LiANVal ¢ Lo = a? € L)) and

(a? e LonVal ¢ Ly = a? e L)) and

the Match function must derive the list in an order-specific way to ensure
uniqueness (e.g. left-to-right, the actual choice of order is irrelevant).

We let V denote the set of values. A store o is a finite mapping from N
to V, written as {z1=V4, -+ ,2,=V,}. We let @ denote the disjoint union
on stores.

We let V| range over V U {L}. We write (in rule ex-let-2-step)

o=d®{z=V,}

when either (1) x ¢ dom(o) and V) =1 or (2) 0 = d’'®{z=V}and V| =V
for some ¢’ and V.

In this version we apply £™ mlabel-list from left to right when we derive
the result on statement and store. This is however arbitrary, as any order
will give the same result. An order is chosen to ensure it is done in only one
way.

R(E, o0, L, t) relates expressions, stores, label-lists and transition-possibility-
markers and R(S, o, L, t) relates statements, stores, label-lists and transition-
possibility-markers. The meaning of the R relation is intended to be that a
given statement or expression in a given store is offering all and only the com-
munications in £ to the surroundings and ¢ express whether the statement
is capable of making any e-transition. Defined below.

(01 ®09 | o) is used in rules where there are two parallel threads, o is the
original store before a transition, o; is a modification of o by one thread and
09 is the modification of ¢ by the other thread. For a wellformed XC-program
the first three implications below are enough as parallel threads cannot make

4

updates to shared variables. The last two rules are added for completeness,
the last rule gives more than one possibility for the value of x in the derived
store. It is the let-rule than ensures, that o, o; and o, all have the same
domain. By the let-rule local variables are not visible to the surroundings.
That allocation always will choose a fresh location is implicit.

(01 ® 09 | 0) is defined by:

domain((cy ® o9 | 0)) = domain(o) = domain(o1) = domain(os)
{z=V}eon{z=V}ea A{z=V}€c0y) = {z=V}€ (01 ®02 | 0)
{z=V}eon{z=} ey AN {z=V} € 0y) = {z=Vi} € (61 ® 0y | 0)
{z=V} e o A{z=V} € o1 ANM{az=Va} € 09) = {a=V1} € (01 ® 09 | 0)

{z=V}eon{z=V'} ey AN{a=V"} €0y) = {a=V'} € (1 ® 02 | 0)
{xz=V} € o AMa=V1} € o1 AMa=Va} € 09) = ({x=W1} € (01 ® 09 |
o) V{z=V2} € (1 ®02 | 0))

1.2 Small-step semantics
1.2.1 Transition rules

Comment: In many of the following rules transitions are label with £ which
can by either € or one of the mlabels a!V and a?V. The transitions with
mlabels are only used to derive the result of transitions over a list of mlabels
L™ in rules (ex-sync-11), (ex-sync-10) and (ex-sync-01) where we search for
a derivation of one label at a time (rule ex-£™). The R relation takes care
of most of finding out the basis for which transitions are possible.

Comment: A value is not related by R, skip is not related by R.

(ev-var)

(z,08{z=V}) — (V.0)

£ / /
E E
(Ey,0) — (E},0) (ev-add-1-step)

(Ey+Ey,0) = (B} + By, 0")
(Es,0) =5 (B, 0")

(ev-add-2-step)

(n1+ Ey, 0) = (ny+ E}, o)

5

- (ev-add)
<7”L1 +n2,a) — <TL1 + 7’L2,0’>

f(z){S} is a global function
(f(E),0) — ({letx = Ein S},0)

(ev-call)

- (ev-stm-return)
({retunV}, 0) — (V,0)

(S,0) =25 (S, o)
({S},0) = ({S'},0")

(ev-stm-step)

(E,0)
(return E, o)

(E',0")
(return E', o")

I3
=

< (ex-return-1-step)
=

£ o
(S1,0) T (51,07) (ex-seq-1-step)
—

<Sl;5270> <Si;S27OJ>

- ex-seq-1-ski
<Skip;8270> — <8270> (p)

(ex-seq-1-return)

€

(returnV'; Sy, 0) — (return'V, o)

(E,0) 5 (E',0")

=
(v :=FE,0) £ (¢ = E', o) (ex-asg-1-step)

(@ = V, oo {a=V"}) —= (skip, o {z=V'}) (ex-asg)

(E,0) = (E',0")

(letz = EinS,0) - (letx = E'in S, 0")

(ex-let-1-step)

£

(S, 00{z=V}) = (5§, d’®{z=V"})

(letz = VinS,oo{z=V.}) - (letz = V'in S, o’®{z=V.})
(ex-let-2-step)

— - - (ex-let-2-skip)
(letx = Vinskip, o) — (skip, o)

— - - - (ex-let-2-return)
(letx = Vinreturn V', o) — (return V', o)

- ex-par-skip-skip
(skip || skip, o) — (skip, o) ()

(S2,0) — <Sé> 0/>
(skip || Sz, 0) = (skip || S3,0")

(ex-par-skip-left)

<Sl7a> é <Si7al>
(S || skip, o) — (S} || skip, o”)

(ex-par-skip-right)

Notice in the rules below that a transition labeled with a match-label-
LIST can possibly be doing nothing, if the list is empty (rules (ex-[]™) and
(ex-L™))

The following rule has the side condition: Match(Ly, Ls) = (L4, L, L7, L5")

R(Shaa £171> R(82707 £271) <Sl70'> é <S170€> <827U> _€> <Sé70—é>
;o AT "oo_n ;o EE "oo_n
(S1,01) — (S7,07) (93,09) — (55, 03)
(S1 || Sa,0) —= (ST || S5, (o] @ 05 | 0))

(ex-sync-11)
The following rule has the side condition: Match(Ly, Lo) = (L, L5, LT, L")

R(Sl,O',[,l,l) R(SQ,O’,ﬁQ,O) <S1,0'>;>< 1,0”1>
Ly "o_n n L9 "no_n
(S1,01) —> (51, 01) (S2,01) — (5%, 0%)
(S || Sa,0) == (S || 83, (07 ® 05 | o))

(ex-sync-10)

The following rule has the side condition: Match(Ly, Lo) = (LY, L5, L7, L5Y)
R(Slvga 'Clao) R(SQ>U7 £27 1) <8270> ;> <S§70—é>
(S1.03) =5 (S, 01) {Sh0) = (5F.0%)
(Su |l Sz, 0) == (ST || 83, (0f @ 03 | 0))

(ex-sync-01)

7

R(S1,0'7 El,O) R(SQ7U7 [:2,0)
Ly o Ly /!
<S170-> — <Slvo-1> <‘S’270> — <S2702>

(S1 || S2,0) = (S1 || S5, (01 @ 0% | 0)

MatCh(‘Clv ‘CQ) = ('Cll) ‘CI27 £71na 'Cgl) A [’71n 7& H
(ex-sync-00)

<E1a >

4 (Ey,0")
(send Ey E5, 0)

(send F] By, 0')

<
—

< (ex-send-1-step)
s

(Es,0) 5 (B, 0")

(send ¢ Es, o) —= (send ¢ E}, o)

(ex-send-2-step)

Comment: Recall a!V and a?V are mlabels

N (ex-send-m)
(send a V, o) — (skip, o)

£
E El /
(Ey,0) 2>< 1,0") (ex-get-1-step)
=

o
(v :=getEy,0) (v :=get B}, o)

—— (ex-get-m)
(v := geta,c@{x=V"}) — (skip, cB{z=V})

(E,0) = (E,d')
(if (E) Sy else Sy, 0) —=» (if (E') Sy else Sy, ")

(ex-ifnz-1-step)

- n # 0 (ex-ifnz-true)
(if (n) Sy else Sy, 0) — (S1,0)

. (ex-ifnz-false)
(if (0) Sy else Sy, 0) — (S5, 0)

_ — _ . (ex-while)
(while (E)) S,0) — (if (e) S ; while (E) S else skip, o)

Comment. Recall L™ is a!V or a?V. The following two rules are only
used to find the result of transition over an £™ and should not be the reason
for any nondeterminism as it is only used in the rules (ex-sync-11), (ex-sync-
10) and (ex-sync-01) where we are searching for a derivation for one L™ at a
time (rule ex-L£™).

(S1,0) 7 (S1,0) (ex-par-1-m)

(S1 || Sa,0) = (S || Sa,0)

Lm 1

<Sg,0'> ;) <5270> (ex-par—Q—m)

(S1 || Sa,0) = (St || Sh, o)
- (ex{17)

<S, U> — <Sv O->

Ly "

(S,0) — (S1,01) (S1,01) c (S2,02) (ex-L™)

Lr.cm
<S, 0'> — <S27 0'2>

1.2.2 R rules

Comment: A value is not related by R, skip is not related by R

The following two rules express that for each e-transition-rule with empty
premiss, there is a corresponding instance of the R-relation. The two rules
may be replaced by a larger number of R-rules with empty premiss.

((E, o) = <E’,U’>>

R(E,o,[]F,1) (R-e-step)
((S, o) == (S, g/>>
R(S,0,[]7,1) (R-s-step)
R(Ey,0,L,1)

-add-1-st
R(El +E270_7 ‘C>t> (R : i ep)

9

R(EQ, o, L, t)
R(ni+Es,0,L,t)

(R-add-2-step)

f(z){S} is a global function

R-ev-call
R(f(E),0,[]7,1) ()
R(S,0,L,1)
R({S}.0.L.1) (R-stm-step)
R(E,0,L,1)
R(return E, 0, L, 1) (R-return-1-step)
R(S1,0,L,1)

R(S1;852,0,L,1t) (R-seg-1-step)

R(E,o0,L,t)
R(z:=FE,o0,L,1)

(R-asg-1-step)

R(E,st, L,t)
R(letx = EinS,0, L, t)

(R-let-1-step)

R(S,cd{xz=V}, L 1)
R(letz =VinS,oo{z=V,},L,t

(R-let-2-step)

R(SQ, g, ﬁ, t)
R((skip || S2),0, L, 1)

(R-par-skip-left)

R(Sl, g, £, t)
R((Sl H Skip)a g, ‘Cv t)

(R-par-skip-right)

R(Sl,a, El,O) R(SQ,O’, EQ,O)
R((Sl H SQ), g, El S [,2, 0)

Match(ﬁl, ,CQ) = (£1, £2, H, H) (R—par—())

R(Shaaﬁhtl) R(SQ707£27t2)
(th =1Via =1V L™ #]])

RS [Sao Ly Matehlln La) = (L), L L7, £5)

(R-par-1)

10

R(E,,0,L,1)
R(send El EQ, a, ;C, t)

R(E% g, £> t)
R(sendc Ey, 0, L,1)

Comment: Recall Va! and a7 are labels

R(sendaV,o,{Val},0)

R(Ey,0,L,1)
R(x:=getEy,0,L,t

R(x :=geta,o®{z=V"},{a?},0)

R(E,o,L,t)
R(if (E) Sy else Sy, 0, L, 1)

1.2.3 Multi-step reduction

(skip, o) —"(skip, o) /0

<So,00> e <51,U1> <51701>—>*<52,02>/7”2
(So, 00)—"(Sa,09) /11 + 13

11

(R-send-1-step)

(R-send-2-step)

(R-send)

(R-get-1-step)

(R-get)

(R-ifnz-1-step)

(step-skip)

(step-trans)

