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Short description:
This deliverable describes a preliminary instantiation of the general resource analysis framework
for energy consumption estimation. It includes a prototype implementation demonstration as
well. The deliverable is an indicator (together with deliverable D2.2) that Milestone 2 (First
Integration of Energy Models with Analysis) has been reached. As planned in the DOW, such
milestone has concluded at month 18, with the lower level energy models of WP2 connected to
the higher level analysis of WP3, and the first energy consumption estimations for XC programs
inferred. An experimental study of such energy consumption estimations has been performed,
which is also reported in this deliverable. The deliverable includes the following attachments:

• D3.2.1. Probabilistic Output Analysis. Submitted to the 21st International Static Analysis
Symposium (SAS 2014).

• D3.2.2: Tools for Constrained Horn Clause Verification. Accepted for publication as a
technical communication in Theory and Practice of Logic Programming, 30th Int’l. Con-
ference on Logic Programming (ICLP’14) Special Issue, On-line Supplement.

• D3.2.3. Resource Usage Analysis of Logic Programs via Abstract Interpretation Using
Sized Types. Accepted for publication as a paper in Theory and Practice of Logic Pro-
gramming, 30th Int’l. Conference on Logic Programming (ICLP’14), Special Issue.

• D3.2.4. Inferring Energy Consumption at Different Software Levels: ISA vs. LLVM IR.
Technical Report.

• D3.2.5. Static energy consumption analysis of LLVM IR programs. Submitted to the In-
ternational Conference on Compilers, Architectures and Synthesis of Embedded Systems
(CASES 2014).
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1 Introduction

This deliverable is an indicator (together with deliverable D2.2) that Milestone 2 (First Integra-
tion of Energy Models with Analysis) has been reached. As planned in the DOW, such milestone
has concluded at month 18, with the lower level energy models of WP2 connected to the higher
level analysis of WP3, and the first energy consumption estimations for XC programs inferred.

Deliverable D3.1 described the general resource analysis framework we developed, and
pointed out that there are many ways of instantiating such framework for energy consumption
estimation, depending on the implementation of the main components of the framework, such as
the analysers and transformations to the internal representation, as well as the levels at which the
analysis is performed and the energy models defined.

A preliminary instantiation that used energy models defined at the Instruction Set Architec-
ture level (ISA, or just assembly) and performed the analysis at the ISA level was also reported
in deliverable D3.1 and published in [LKS+13]. In this deliverable we focus on the description
of preliminary instantiations of the framework that perform the analysis at the LLVM IR level
and use energy models defined at the ISA level. First, the mapping tool to propagate the energy
model from the ISA level up to the LLVM IR level is described in Section 2. The analysis ap-
proaches are described in Section 3. The ISA level energy model used in these instantiations
is described in Deliverable D2.2 (Low-Level Energy Models). A preliminary instantiation of
an analysis framework for the internal representation is presented in Section 3.3 along with the
report in Attachment D3.2.2. Its purpose is to allow the analysis of relationships between pro-
gram state variables and resource usage, by abstract interpretation of the models of the internal
representation language.

A description of our investigation into the foundations of probabilistic resource usage analy-
sis was included in Deliverable D3.1 [LG13] since supporting probabilistic resource usage anal-
ysis was a requirement of our general resource analysis framework. In this deliverable we have
developed an approach to derive a probability distribution of output values for a program from
a probability distribution of its input, which can be used to perform resource usage analysis by
instrumenting it with step-counters, or by integrating it in other energy consumption analyses
based on size measures [LKS+13]. This is explained in Section 4. In Section 5 we briefly set
out the foundations upon which we intend to further develop analysis approaches for concurrent
programs. Finally, Section 6.1 provides demonstrations of prototype implementations.
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Figure 1: LHS: Analysis on the ISA level (D3.1). RHS: Mapper enables analysis at the LLVM
IR level.

2 Enabling Analysis at a Higher Level via Mapping Tech-
niques

Prior to discussing the different approaches of analysis, we introduce here the mapping tech-
niques developed to enable the low level energy model, introduced in Deliverable D2.2, to be
used for analysis at a higher level, namely the LLVM IR code. These mapping techniques have
been implemented in a mapper tool (an LLVM pass) that can be used to support different analy-
sis. Figure 1 indicates how the mapper tool is used in both of the analysis approaches described
in Section 3.1 and Section 3.2, respectively, to associate higher level code segments at the LLVM
IR level with values from an energy model established at the ISA level.

To enable analysis at the LLVM IR level, taking an existing energy model at the ISA level
as starting point, a mechanism is needed to propagate the ISA-level energy information up to the
LLVM IR level. A set of mapping techniques have been developed to serve this purpose. These
techniques create a fine-grained mapping between segments of ISA instructions and LLVM IR
code segments, in order to enable the energy characterization of each LLVM IR instruction in a
program. An example of this mapping is shown in Figure 2.

Our mapping technique leverages the existing debug mechanism in the XMOS compiler
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Figure 2: An example of mapping ISA to LLVM-IR code, obtained by the mapper tool.

toolchain. This mechanism is originally meant to facilitate the debugging process of an ap-
plication, particularly when stepping through a program line by line. During the lowering phase
of the compilation process, the LLVM IR code is transformed to the specific ISA code by the
compiler backend. The debug information (DI) is also stored alongside with the ISA code using
the DWARF standard [DWA13], a standardized debugging data format used by many compilers
and debuggers to support source level debugging. By tracking this information we can extract
an n:m relationship between the two levels, because one source code instruction can be related
to many different sequences of LLVM IR instructions and therefore many different sequences of
ISA instructions. This n:m relation complicates static analysis.

To address this issue, we created an LLVM pass that traverses the LLVM IR and replaces the
Source Location Information with LLVM IR location information, right after all the optimiza-
tion passes and just before emitting the ISA code. In this way, we can extract a 1:m relationship
between the mapping of LLVM IR instructions and ISA instructions. Also, by doing it after
the LLVM optimization passes the optimized LLVM IR is closer to the ISA code than the un-
optimized one, which will go through a series of transformations. There are optimizations that
happen during the lowering phase, such as peephole optimizations and some late target spe-
cific optimizations that can affect the mapping. However, the effect of these optimizations on
the structure of the code is not as profound as those applied to LLVM IR. After a mapping is
extracted for a particular program, the associated energy values for the ISA instructions corre-
sponding to a specific LLVM IR instruction are aggregated and then associated with the LLVM
IR instruction, and finally to every LLVM IR block.

Although we use the XMOS tool-chain for the mapper tool, the approach is generic and
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transferable, due to the use of the common LLVM optimizer and code generator, and the use
of the DWARF standardized debugging data format, used by many compilers and debuggers to
support source layer debugging.

One of the recently published works for LLVM IR energy modeling is [BCF11]. The authors
employed a statistical analysis and characterization of LLVM IR code together with instrumen-
tation and execution on the host machine, to estimate performance and energy requirements in
embedded software. In their case, porting the LLVM IR energy model to a new platform re-
quires performing the statistical analysis again. Our mapping technique requires only to adjust
the LLVM IR mapping pass for the new architecture based on an existing ISA level model for
this architecture.

The mapping tool is still a prototype and a more detailed description of the techniques em-
ployed in it can be found here [GE14]. The tool will be fully described in deliverable D2.3
(High-level energy models). A brief description of the mapping techniques and tool is also con-
tained in Attachment D3.2.4 and D3.2.5.

3 Preliminary Instantiations of the General Resource Analy-
sis Framework

In this section we report on the different preliminary instantiations of the general analysis frame-
work that we have performed.

Both the prototypes described in Sections 3.1 and 3.2 are based on a well-developed approach
in which recursive equations (cost relations) are extracted from a program, representing the cost
of running the program in terms of its input [Weg75, Ros89, DLH90, DLGHL97, AAGP11,
AAGP09].

These cost relations are converted to closed-form, i.e. without recurrences, by means of a
solver. The analysis automatically infers an approximate upper (and lower) bound of the energy
consumed by programs compiled ISA or to LLVM IR. An energy model defined at the ISA level
is used; for LLVM IR analyses the model is propagated to the LLVM IR level via the mapping
techniques described in Section 2 for the analysis of XC programs. In Section 3.2 the prototype
is also applied to analysing C programs running on an ARM Cortex-M3, using an energy model
for LLVM IR for that platform.
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3.1 Instantiation based on HC IR Transformation and the CiaoPP Ana-
lyzer

This instantiation allows the analysis of XC programs both at the ISA and LLVM IR levels,
using an energy model at the ISA level. The analysis of an XC program at the ISA (resp. LLVM
IR) level consists of: 1) generating the ISA (resp. LLVM IR) code for such program using
the XMOS xcc compiler, 2) transforming the ISA (resp. LLVM IR) into an intermediate block
representation based on Horn Clauses (HC IR), 3) using an existing, parametric resource usage
analyzer (CiaoPP) to infer energy consumption functions (which depend on input data sizes) for
each block in the Horn Clause representation, and 4) mapping the analysis results back to the XC
source code.

The instantiation that performs the analysis at the ISA level, using an energy model at the
same level, was reported in deliverable D3.1 and published in [LKS+13]. The instantiation that
performs the analysis at the LLVM IR level, using the same energy model at the ISA level,
together with a mapping tool to propagate the energy model from the ISA level up to the LLVM
IR level is fully described in Attachment D3.2.4 in this deliverable. Attachment D3.2.4 also
reports on an experimental study of the accuracy and efficiency of this instantiation, comparing
it with the one performing the analysis at the ISA level previously mentioned [LKS+13].

These experimental results (described in detail in Attachment D3.2.4, in particular in Tables
1 and 2) show that:

• On average, the analysis performed at either level is reasonably accurate and the relative
error between the two analysis at different levels is small.

• ISA-level estimations are slightly more accurate than the ones at the LLVM IR level (3.5%
vs. 6.46 % error on average with respect to the actual energy consumption measured on
the hardware respectively). This is because the ISA-level analysis uses accurate energy
models at the same level, whereas at the LLVM IR level, such ISA-level model needs to
be propagated up to the LLVM IR level using (approximated) mapping information, which
causes a slight loss of accuracy.

• The LLVM IR level analysis is more powerful than the one at the ISA level. This is
because typing information is preserved at the LLVM IR level, which allows the analysis
of programs using data structures (such as arrays) that could not be analyzed at the ISA
level, without a significantly more complex representation of memory in the Horn clause
representation.
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We can conclude that performing the static analysis at the LLVM-IR level is a good compro-
mise, since 1) LLVM-IR is close enough to the source code level to preserve most of the program
information needed by the static analysis, and 2) LLVM-IR is close enough to the ISA level to
allow the propagation of the ISA energy model up to the LLVM-IR level without significant loss
of accuracy.

3.1.1 Improvements to the Resource Usage Analysis of CiaoPP

In the instantiation process, we also have developed a new resource usage analyzer within CiaoPP
to overcome some important limitations of the existing analyses. This novel general resource
analysis for HC IR programs is based on sized types. Sized types are representations that incor-
porate structural (shape) information and allow expressing both lower and upper bounds on the
size of a set of terms and their subterms at any position and depth. They also allow relating the
sizes of terms and subterms occurring at different argument positions in logic predicates. Using
these sized types, the resource analysis can infer both lower and upper bounds on the resources
used by all the procedures in a program as functions on input term (and subterm) sizes, over-
coming limitations of existing resource analyses, in particular the resource analyses present in
CiaoPP, and enhancing their precision. Our new resource analysis has been developed within the
abstract interpretation framework offered by CiaoPP, as an extension of the sized types abstract
domain. The abstract domain operations are integrated with the setting up and solving of recur-
rence equations for inferring both size and resource usage functions. The experimental results
for this new analysis are very encouraging, showing that the analysis represents an improvement
over the previous one present in CiaoPP and compares well in power to state of the art systems.

A full description of this work has been accepted for publication in [SLGH14], and can be
found in attachment D3.2.3 to this document.

3.2 Instantiation based on Direct Analysis of LLVM IR

This instantiation performs energy consumption analysis directly at the LLVM IR level. LLVM
IR is an intermediate representation used by modern compilers, including Clang and the XMOS
xcc compiler. The analysis approach described in Section 3.1 translates LLVM IR into HC IR
in order to benefit from the well developed features of a generic resource analyser, i.e. CiaoPP.
Performing the analysis directly on the LLVM IR means that no transformation to a different
representation is necessary; instead, the analysis can be applied directly to the LLVM IR blocks.
An advantage of this approach is that the analysis tools can be integrated seamlessly into the
LLVM toolchain. To illustrate the versatility of this analysis approach we target two different
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platforms, the XMOS XS1-L and the ARM Cortex-M3, using two different compilers, Clang
and xcc.

The approach has been validated using a set of single threaded, open source benchmarks
representative for deeply embedded applications as detailed in Section 5 of Attachment D3.2.5,
compiled using optimization level O2 with two compilers. The detailed results for the XMOS
XS1-L and the ARM Cortex-M3 processors are shown in Figures 4 and 5 in Appendix D3.2.5,
respectively. The graphs show three benchmarks, insertion sort, matrix multiplication and mac,
with data series for the static analysis results and actual energy measurements. It can be seen that
the static analysis closely fits the empirical results, validating our approach. Table 2 in Attach-
ment D3.2.5 shows the energy consumption formulae and final errors for all seven benchmarks.

Overall, the final error is typically less than 10% and 20% on the XMOS and ARM platforms
respectively, showing that the general trend of the static analysis results can be relied upon to give
an estimate of the energy consumption accurate enough to inform software design decisions.

Section 6.2 presents the prototype tool for direct static analysis at the LLVM IR level.

3.3 Instantiation of the Model-Based Static Analysis Framework

In this subsection we report on prototype tools developed to analyse CLP programs based on
their models, which is one of the techniques for analysis and verification explored in the ENTRA
project. The approach was explained in Deliverable 3.1 [LG13]. It was shown how imperative
program code can be mapped, via a specification of the operational semantics, to CLP programs.
Furthermore it was shown how resource variables could be embedded in the semantics and thus in
the resulting CLP programs. The obtained CLP programs typically have runj predicates whose
arguments are divided into two parts.

runj(

program state variables︷ ︸︸ ︷
X1, . . . , Xjn ,

resource variables︷ ︸︸ ︷
E0, . . . , Ek ).

Here the predicate runj represents the program state at some program point j. The program
behaviour is represented as a transition system modelled by CLP clauses of the following form.

runj(X1, . . . , Xjn , E0, . . . , Ek)← C, runk(X
′
1, . . . , X

′
jn , E

′
0, . . . , E

′
k)

where C is a constraint relating the variables of the two states j and k.
Analysis of the model of the CLP program yields information about the possible states of the

program at each selected program point, including the relationship between program state vari-
ables and resource variables. The precise state at each program point is in general not computable
and we have to resort to approximations. Let P be a CLP program. An over-approximation of
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Figure 3: Over-approximation of relationship between program and resource variables

the model of P is a set of variable-free facts M of the form rj(v1, . . . , vjn , e0, . . . , ek) such that
for all facts A, P |= A implies A ∈M . In other words M contains at least all the atomic logical
consequences of the program P , which capture all possible states of the program.

The relationship between resource variables and program variables at specific program points
can be obtained from the over-approximation as illustrated in the Figure 3. The diagram shows
two dimensions – one program state variable and one resource variable – but more complex rela-
tionships can be handled. The cloud-shaped region represents the actual points relating the vari-
ables, which in general is an uncomputable set. The analysis computes a convex polyhedron (or
more generally a finite set of convex polyhedra) that includes the actual points. From this we can
deduce information such as upper and lower bounds of resource usage with respect to the values
of program variables. We can also use the approximation to verify invariants on the state, includ-
ing invariants relating resource variables to program variables. This is the focus of the paper in
Attachment D3.2.2 in which we give details of a toolset for the verification of Horn clause prop-
erties. The aim in this work is to investigate the use of a combination of off-the-shelf techniques
from the literature in analysis and transformation of Constraint Logic Programs (CLPs) to solve
Horn clause verification problems. We find that many problems can be solved using a combina-
tion of tools based on well-known techniques from abstract interpretation, semantics-preserving
transformations, program specialisation and query-answer transformations. This gives insights
into the design of automatic, more general verification tools based on a library of components.
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Suppose that we wish to verify a property c(X,R) at some program point k, where c(X,R)

is a constraint expressing the invariant to be verified. In the assertion language of the ENTRA
project [EG13] this is represented in the following form.

:- check pred run_j(...,X,...,R,...): c(X,R).

In the model-based verification framework the property to be verified is stated as a Horn
clause whose head is false. Such a clause is known as an integrity constraint. Then the integrity
constraint representing the property is as follows.

false← ¬c(X,R), runj(. . . , X, . . . , R, . . .).

The task of the verification tools is in general to show that the integrity constraints are satisfied,
or equivalently that the predicate false is not derivable from the Horn clauses.

The full article in Attachment D3.2.2 describes a number of tools. The core is an abstract
interpretation procedure for building a convex polyhedral approximation of the model of the
program. The other tools are transformations of the input Horn clause program that enhance the
efficiency or precision of the analysis while preserving the derivability of false.

4 Probabilistic Output Analysis

The aim of a probabilistic analysis is to derive a probability distribution for output values from
a probability distribution for input to a program. We can analyse resource usage in this way by
instrumenting programs with step-counters for complexity analysis [Ros89] or energy consump-
tion measures [LKS+13]. Since resource usage is an internal property, we externalise the time
or energy consumption so that it is a denotational property of the analysed program.

When analysing energy consumption, probability distributions may provide more useful in-
formation than boundaries. Wierman et al. states that “global energy consumption is affected by
the average case, rather than the worst case“ [WAT08]. Also in scheduling “an accurate mea-
surement of a tasks average-case execution time (ACET) can assist in the calculation of more
appropriate deadlines” [GBMH07]. For a subset of programs a precise average case execution
time can be found using static analysis [FSZ91, Sch08, Gao13]. In some cases the probabilistic
analysis delivers not only an accurate output average but the more descriptive accurate output
distribution. In other cases the probabilistic analysis must over-approximate the probability dis-
tribution and the expected value (average case result) will be approximated safely as a range.
Another application area for such analyses is in temperature management, where worst-case
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bounds are important [SBYT12]. Because the analysis return distributions it can be used to cal-
culate the probability energy consumptions above a certain limit, and thereby indicating the risk
of over-heating.

When analysing probabilities the main challenge is to maintain the dependencies through-
out the program. Schellekens defines this as Randomness preservation [Sch08] (or random bag
preservation) which in his (and Gao’s [Gao13]) case enables tracking of certain data structures
and their distributions. They use special data structures as they find these suitable to derive the
average number of basic operations. In another approach [Weg75, PCG09], tests in programs
has been assumed to be independent of previous history, also known as the Markov property (the
probability of true is fixed). As Wegbreit remarked, this is true only for some programs (e.g. lin-
ear search for repeating lists) and others, this is not the case (linear search for non-repeating lists).
The Markov property is the foundation in Markov decision processes which is used in proba-
bilistic model-checking [FKNP11]. Cousot et al. presents a probabilistic abstraction framework
where they divide the program semantics into probabilistic behaviour and (non-)deterministic
behaviour. They propose handling of tests when it is possible to assume the Markov property,
and handle loops by using a probability function describing the probability of entering the loop
in the ith iteration. Monniaux propose another approach for abstracting probabilistic semantics
[Mon00]; he first lifts a normal semantics to a probabilistic semantics where random generators
are allowed and then uses an abstraction to reach a closed form. Monniaux’s semantic approach
uses a backward probabilistic semantics operating on measurable functions. This is closely re-
lated to the forward probabilistic semantics proposed earlier by Kozen [Koz79, Koz81].

We will here give a short outline of the probabilistic analysis and refer to the paper in Attach-
ment D3.2.1 for further details.

Probabilistic analysis of a first-order functional language

Normal dataflow analysis will propagate abstract descriptions of the set of possible data through
the program. A probabilistic analysis uses probability distributions so that we not only describe
possible values but also the likelihood of a variable having a specific value. Program analysis
requires a method for approximating such a description since the precise analysis is typically
undecidable. In a dataflow analysis a standard approach is to over-approximate the set of possible
values. In a probabilistic analysis we will use over-approximations of probability distributions
such that the sum of probabilities might be greater than one.

Our analysis is based on a first order functional language but as we will discuss in the next
section, it can be used to analyse resource usage of XC programs. Our approach is based on
program transformation rather than direct abstraction of the individual constructs in the language.
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We will here only give an outline of the approach and refer to the full paper in Attachment D3.2.1
for further details.

We assume that the program to be analysed is a mapping f from a vector of input values
~x ∈ X to a vector of output values ~z and that we have a probability distribution for input values
Px : X → {v | 0 ≤ x ≤ 1}.

The output probability distribution Pf can be defined as

Pf (~z) =
∑

~x

Px(~x) · C(~z = f1(~x))

where C(v) = 1 if v = true, otherwise 0.

The aim of the analysis is to obtain a closed form expression from the output probability
distribution. The developed method uses a number of stages of transformations

• Unfolding. The probability distributions are propagated through the program by function
calls in the program. The aim is to remove functions from the original program in the
output probability function.

• Symbolic summation. The probability function may contain recursion that correspond to
finite sums and we rewrite the expressions correspondingly.

• Approximation. If the previous stages did not provide a closed form expression we can use
various techniques to over-approximate the probability distribution

Example As an example let us consider a recursive addition function. We shall see how the
original program is inserted into the probability formula, expanded and reduced to a closed form
function expressing the probability distribution for the output. Recall an add-program:

add(x,y) = if(x=0) then y else add(x-1,y+1)

Let us consider the addition of two independent integer values x and y, where both input vari-
ables x and y have a uniform distribution from 1 to a number n.

Propagating probability functions through the program by unfolding function calls will give
us the following output probability function

Padd(z) =
∑

x

∑
y Px(x) · Py(y)·∑

i=0

∏i−1
j=0C(¬b(h′(j, x, y))) · C(b(h′(i, x, y))) · C(z = g(h′(i, x, y))
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where
b(x, y) = x = 0

g(x, y) = y

h(〈x, y〉) = 〈x− 1, y + 1〉
h′(i, 〈x, y〉) = if (i = 0) then 〈x, y〉 else h′(i− 1, 〈x− 1, y + 1〉)

= 〈x− i, y + i〉
The next stage is to use symbolic summation and algebraic rewriting rules to obtain an ex-

pression in closed form.

Padd(z) =
∑

x

∑

y

Px(x) · Py(y)·
∑

i=0

i−1∏

j=0

C(¬(x− j = 0)) · C(x− i = 0) · C(z = y + i)

=
∑

x

∑

y

Px(x) · Py(y) ·
∑

i=0

C(x = i) · C(z = y + i)

=
∑

x

∑

y

Px(x) · Py(y) · C(z = y + x)

=
∑

x

∑

y

1

n
· C(1 ≤ x ≤ n) · 1

n
· C(1 ≤ y ≤ n) · C(z = y + x)

=
∑

y

1

n
· C(z − n ≤ y ≤ z − 1) · 1

n
· C(1 ≤ y ≤ n))

=
1

n2
·max(min(n, z − 1)−max(1, z − n) + 1, 0)

=
1

n2
· (C(n < z ≤ 2n) · (2n− z + 1) + C(1 ≤ z ≤ n) · (z − 1))

The final expression is the output probability distribution for addition program (in a closed
form). The distribution has the well-known pyramid shape as expected.

Future work

The approach described here can be extended in a number of ways to improve the analysis of
energy consumption in XC programs. Some of the main areas of further research are outlined
below.

Approximation techniques At the core of useful program analysis techniques are the approach
it uses to approximate values. The transformation method we use is not guaranteed to produce
probability functions in closed form and further methods may be used to simplify and approxi-
mate expressions. The crude approach is to overapproximate probabilities as one whenever we
cannot obtain a closed form expression but techniques using copulas can give more precise re-
sults. Copulas uses the theory of comonotonicity [DDG+02] for distributions that may depend
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on a common (possibly unknown) random variable and makes it possible to give tighter bounds
when subexpressions may be dependent but the approximations have removed precise informa-
tion about the dependencies.

Composite data structures The approach is not restricted to tuples of simple values but can
also be used when data is structured as lists and arrays. We are, however, working on techniques
for improving the precision of analysis that uses composite data structures.

Implementation and experiments We have a basic implementation of the core concepts in
the analysis. We will, however, extend the implementation so as to obtain further results from
larger examples and integrate the analysis into a common framework where XC programs can be
analysed directly or after translation into CLP form.

5 Towards the Analysis of Concurrent Programs

In deliverable D3.1 [LG13] approaches for the analysis of concurrent programs have been de-
scribed. The focus of our research over the coming project period is to explore these further and
to develop energy consumption analysis techniques for multi-threaded programs.

It is important to note that the energy models (deliverable D2.2 [EKG14]) that underpin our
analysis are inherently multi-threaded to reflect the processor architecture that they represent.
As such, the currently utilised energy models remain useful as we progress towards energy con-
sumption analysis of multi-threaded programs.

Looking towards the target of analysis, one of the primary languages under inspection, XC,
is inherently multi-threaded, with multi-threading and inter-process communication semantics
forming first-class components of the language. As such, structural information on the threading
and communication of programs written in XC, is available at various stages in compilation for
exploitation by our analysis.

Further work is required in the area of modelling communication in order to better support
accurate analysis of communicating multi-threaded programs. This is serviced by Task 2.3,
which commences as this deliverable is concluded.

Considering targets for analysis, a number of the benchmarks delivered in D5.1 have multi-
threaded implementations. A variety of communication methods (synchronised and unsynchro-
nised) as well as numbers of threads and cores utilised are covered in the benchmarks, some of
which have multiple implementations, including sequential versions for comparison.
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6 Prototype Implementation Demonstration

This section provides demonstrations of the prototype tools developed as part of this work pack-
age, contributing to this deliverable. The first demonstration shows a prototype implementation
of software analysis based on HC IR transformation, and the second demonstrates static analysis
directly applied to LLVM IR.

6.1 Demonstration of the Prototype Implementation based on HC IR Trans-
formation

In this section we demonstrate the prototype implementation described in Section 3.1. It makes
use of CiaoPP, a system that offers a framework for performing program analysis, verification
and optimization, based on modular, incremental abstract interpretation.

The role of CiaoPP in the ENTRA project is to allow experimentation with energy analysis at
different levels of abstraction. During later stages of the project, when experimental studies have
stabilised, functionality from the CiaoPP system can be integrated with a compiler tool-chain. In
other words, the prototype presented here is intended for use by the ENTRA project developers
rather than XC developers.

CiaoPP is the preprocessor of the Ciao program development system [HBC+12]. Ciao is a
multi-paradigm programming system, allowing programming in logic, constraint, and functional
styles (as well as a particular form of object-oriented programming). At the heart of Ciao is
an efficient logic programming-based kernel language. This allows the use of the very large
body of approximation domains, inference techniques, and tools for abstract interpretation-based
semantic analysis which have been developed to a powerful and mature level in this area. These
techniques and systems can approximate at compile-time, always safely, and with a significant
degree of precision, a wide range of properties which is much richer than, for example, traditional
types. This includes data structure shape (including pointer sharing), independence, storage
reuse, bounds on data structure sizes and other operational variable instantiation properties, as
well as procedure-level properties such as determinacy, termination, non-failure, and bounds on
resource consumption.

CiaoPP [HPBLG05] is a standalone preprocessor to the standard clause-level compiler. It
performs source-to-source transformations. The input to CiaoPP are logic programs (option-
ally with assertions and syntactic extensions). The output are error/warning messages plus the
transformed logic program, with:

• Results of analysis (as assertions).
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• Results of static checking of assertions.

• Assertion run-time checking code.

• Optimizations (specialization, parallelization, etc.)

By design, CiaoPP is a generic tool that can be easily customized to different programming
systems and dialects and allows the integration of additional analyses in a simple way. As a
particularly interesting example, in the ENTRA project, the preprocessor has been adapted to
perform energy consumption analysis of XC Programs, allowing rapid prototyping of XC re-
source analysis tools.

6.1.1 Getting Started

A CiaoPP session consists in the preprocessing of a file. A session using the graphical user
interface is governed by a menu, where you can choose the kind of preprocessing you want to
be done to your file among several analyses and program transformations available. Clicking

on the icon in the buffer containing the file to be preprocessed displays the menu, which
will look (depending on the options available in the current CiaoPP version) something like the
“Preprocessor Option Browser” shown in Figure 5.

Except for the first and last lines, which refer to loading or saving a menu configuration (a
predetermined set of selected values for the different menu options), each line corresponds to
an option you can select, each having several possible values. In the Action Group line you
can select either analysis (analyze), assertion checking (check assertions), certificate
checking (check certificate) or program optimization (optimize), and you can later
combine the four kinds of preprocessing. The relevant options for the Action Group selected
are then shown, together with the relevant flags. In this document we focus on the analyze
option, since our goal is to perform energy consumption analysis.

6.1.2 Performing Energy Consumption Analysis of XC Programs

In order to analyze an XC program using the CiaoPP graphical interface, we first open it in a
buffer, as shown in Figure 4. Then we select the menu options depicted in Figure 6 (marked
with a red arrow to ease identification in this document): analyze, for Action Group,
res plai, for Resource Analysis (which will select the new analysis we have developed,
described in Section 3.1.1 (fully described in [SLGH14], attachment D3.2.3). After clicking on
the Apply button (marked with a red oval) below the menu options, the analysis is performed,
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Figure 4: XC source of a factorial program.

producing the results as depicted in Figure 7 (marked with a red arrow). Such results are ex-
pressed in the front end aspect of the common assertion language, as explained in Deliverables
D2.1 [EG13] and D3.1 [LG13]. We can see that the energy consumption of the factorial pro-
gram is given as a linear function on the size of the input argument to the program, A, namely
21469718 ∗ A+ 16420396 nJ .

Besides the graphical user interface that has been illustrated so far, CiaoPP also offers a
command line interface to perform the analysis (and other actions) for more advanced users and
analysis tool developers.

It is also possible to visualize a number of files that contain useful information for the devel-
opers of the analysis tools of the ENTRA project. For example, the ISA code generated by the
xcc compiler corresponding to the XC source program is shown in Figure 8; the energy model at
the ISA level, expressed in the Internal Assertion Language (IAL) [EG13] used by the analyzer
is shown in Figure 9; and part of the Horn Clause representation of the ISA code together with
an assertion in the IAL expressing analysis results is shown in Figure 10.
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Figure 5: CiaoPP menu.

Figure 6: CiaoPP menu with options selected for resource analysis.
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Figure 7: Analysis results (in the front end assertion language).

Figure 8: Assembly code for the factorial program.
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Figure 9: Energy model at the ISA level (in the Internal Assertion Language).

Figure 10: HC IR for factorial and analysis results (in the Internal Assertion Language).
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6.2 Demonstration of prototype tool for direct static analysis of LLVM IR

The implementation of this tool, along with the theory and research relating to it, is described in
Section 3.2. The workflow of this tool is as follows:

1. Compile source code using LLVM, producing an LLVM bitcode (bc) file.

2. Execute static analysis tool, inferCR.py, to produce Cost Relations (CRs), optionally
providing a mapped energy model (Section 2), which will provide CRs in terms of energy
consumption, or simply instruction counts otherwise.

3. Solve CRs, using a solver such as PUBS, in order to produce a bounded resource consump-
tion estimation for the analysed code.

6.2.1 Prerequisites and installation

The tool inferCR.py is implemented in Python and utilises various modules that are part of
the core Python installation. In addition, the python-llvm module, version 3.2, is used.

Installing llvm-3.2 with RTTI LLVM must be compiled with Run-Time Type Information
(RTTI) enabled. This can be done either by obtaining an appropriate build of llvm-3.2 from
a suitable repository, or by building LLVM from source with REQUIRES RTTI=1 set in the
environment during make.

Installing llvm-py Once LLVM is installed, llvm-py can be installed, which can be ob-
tained from http://www.llvmpy.org/, wherein installation instructions can also be found.
If the llvm.test() suite can be run successfully, as per the llvm-py installation instruc-
tions, then inferCR.py should also run correctly.

6.2.2 Running the tool

The following demonstration shows how the tool can be used, taking a simple function accumulate
as an example, which produces the result x, which is a sum N , of a list of numbers, A, in the
form x =

∑N
i

(
Ai=0 +

∑N
j=0 Aj

)
, implemented as the following code sample:

int accumulate(int numbers[], int size) {

int i, j, temp=0;

for (i = size-1; i > 0; i--) {
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temp+=numbers[i];

for (j = size-1; j > 0; j--) {

temp+=numbers[j];

}

temp+=numbers[i];

}

return temp;

}

Note that in this example, the equation and implementation are equivalent in result, but the
code implements the solution by iterating over the array of numbers in reverse.

Compilation The code must be compiled to a bitcode file. In the case of this XC source and
appropriate build of the XMOS tools can be used as follows:

$ xcc -target=XK-1A -emit-llvm -c accumulate.xc -o accumulate.bc

Analysis Next, run inferCR.py against the bitcode file and a mapping between the LLVM
IR and underlying ISA energy model (Section 2):

$ inferCR.py accumulate.bc accumulate-mapping.json

eq(accumulate(In0,In1,In2),0,[f0allocas(In0,In1,In2)],[]).

eq(f0allocas(In0,In1,In2),52,[f0ifdone],[]).

eq(f0allocas(In0,In1,In2),52,

[f0loopbody(In1 + -1,In1 + -1),f0ifdone],[In1 + -1 >= 1]).

eq(f0ifdone,58,[],[]).

eq(f0loopbody(Vboptmp,Vi0),104,[f0ifdone9(Vboptmp,Vi0)],[]).

eq(f0loopbody(Vboptmp,Vi0),104,

[f0loopbody15(Vboptmp,Vboptmp,Vi0),

f0ifdone9(Vboptmp,Vi0)],[]).

eq(f0ifdone9(Vboptmp,Vi0),97,[],[]).

eq(f0ifdone9(Vboptmp,Vi0),97,

[f0loopbody(Vboptmp,Vi0 + -1)],[Vi0 + -1 >= 1]).

eq(f0loopbody15(Vboptmp,Vj0,Vi0),130,[],[]).

eq(f0loopbody15(Vboptmp,Vj0,Vi0),130,

[f0loopbody15(Vboptmp,Vj0 + -1,Vi0)],[Vj0 + -1 >= 1]).

22



This output can then be used with a solver, for example PUBS, to yield the upper bound of the
cost function for the code, in terms of any input parameters. In this example, shown in Figure 11,
only parameter B, the size of the list of numbers to accumulate, influences the cost. This is an
intuitive example, as the cost of accumulating a list of values will be correlated to the length of
that list.

Figure 11: Upper bound solution for the accumulate example.

6.2.3 Estimating costs for a range of inputs

With the cost function provided by the solver, an estimation of the energy cost of a function
over a range of values for the relevant input parameters can be given. This may be a line/curve
for single parameter cost functions, or a multidimensional surface for multi-parameter cases. A
sample set of results in this form, along with an evaluation of the accuracy of the analysis when
combined with energy models for two architectures, is given in Section 3.2.
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Abstract. The aim of a probabilistic output analysis is to derive a prob-
ability distribution of possible output values for a program from a prob-
ability distribution of its input. We present a method for performing the
output analysis, based on program transformation techniques. It gener-
ates a probability function as a possibly uncomputable expression and
transforms that into a closed form expression. The probability functions
are viewed as programs in a separate language in which they may be
analysed, transformed, and approximated. We focus on programs in a
deterministic language where the possible input follows a known prob-
ability distribution. Tests in programs are not assumed to satisfy the
Markov property of having fixed branching probabilities independently
of previous history.

1 Introduction

The aim of a probabilistic output analysis (POA) is to derive a probability
distribution for output values from a probability distribution for input to a
program. Internal properties of a program can also be analysed in this way by
instrumenting programs with step-counters for complexity analysis [21] or energy
consumption measures [15]. When we analyse programs for this type of property
we should externalise the resource usage so that it is a denotational property of
the analysed program.

When analysing energy consumption, probability distributions may provide
more useful information than boundaries. Wierman et al. states that “global en-
ergy consumption is affected by the average case, rather than the worst case“
[27]. Also in scheduling “an accurate measurement of a tasks average-case exe-
cution time (ACET) can assist in the calculation of more appropriate deadlines”
[9]. For a subset of programs a precise average case execution time can be found
using static analysis [6, 23, 8]. In some cases the POA delivers not only an ac-
curate output average but the more descriptive accurate output distribution. In
other cases the POA must over-approximate the probability distribution and the

⋆ The research was partially funded by Danish National Science Foundation: Numeric
and Symbolic Abstractions in Software

⋆⋆ The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 318337,
ENTRA - Whole-Systems Energy Transparency.
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expected value (average case result) will be approximated safely as a range. An-
other application area for POA is in temperature management, where worst-case
bounds are important [24]. Because POA return distributions it can be used to
calculate the probability energy consumptions above a certain limit, and thereby
indicating the risk of over-heating.

When analysing probabilities the main challenge is to maintain the depen-
dencies throughout the program. Schellekens defines this as Randomness preser-
vation [23] (or random bag preservation) which in his (and Gao’s [8]) case enables
tracking of certain data structures and their distributions. They use special data
structures as they find these suitable to derive the average number of basic op-
erations. In another approach [26, 20], tests in programs has been assumed to be
independent of previous history, also known as the Markov property (the proba-
bility of true is fixed). As Wegbreit remarked, this is true only for some programs
(e.g. linear search for repeating lists) and others, this is not the case (linear search
for non-repeating lists). The Markov property is the foundation in Markov de-
cision processes which is used in probabilistic model-checking [7]. Cousot et al.
presents a probabilistic abstraction framework where they divide the program
semantics into probabilistic behaviour and (non-)deterministic behaviour. They
propose handling of tests when it is possible to assume the Markov property,
and handle loops by using a probability function describing the probability of
entering the loop in the ith iteration. Monniaux propose another approach for
abstracting probabilistic semantics [17]; he first lifts a normal semantics to a
probabilistic semantics where random generators are allowed and then uses an
abstraction to reach a closed form. Monniaux’s semantic approach uses a back-
ward probabilistic semantics operating on measurable functions. This is closely
related to the forward probabilistic semantics proposed earlier by Kozen [11, 12].

The method in this paper is inspired by the techniques used in automatic
complexity analysis. Wegbreit’s Metric system [26] laid the ground work for many
later systems with an aim of deriving least, worst and average case complexity
measures. Later works in this area have focused on worst case complexity [21,
1, 16] with advanced systems that can analyse realistic programs. The approach
in this paper uses an approach similar to [21] in that we derive the probability
function without approximations but only in the last phase introduce approxi-
mations. We transform the original program into a program that computes the
probability distribution. The intermediate stage is then a potential subject of
further analysis based on abstract interpretation. This program can be analysed,
transformed, and approximated. It is thus an alternative to deriving cost rela-
tions directly from the program [1, 16] or expressing costs as abstract values in
a semantics for the language.

To increase the expressiveness of the analysis, we can handle symbolic in-
put distributions; e.g. it is possible to define the input distribution as uniform
distribution from m to n, and where the output distribution is then expressed
symbolically in terms of m and n. As a small example let us consider the addi-
tion add of two independent integer values x and y evenly distributed from 1 to
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n. It is a tail-recursive program where the output distribution is well-known to
be a pyramid shaped distribution.

add(x,y) = if(x=0) then y else add(x-1,y+1)

Our probabilistic output analysis returns a function describing the probability
distribution of the output:

Padd(z) =
1

n2
· max(min(n, z − 1) − max(1, z − n) + 1, 0)

The analysis can also be used for more complex input distributions and programs
but it will not always be able to reduce it to closed form. If this is not possible
we will approximate the distribution and thus get an over approximation of the
extreme cases and a range for the expected value.

2 Probability distributions

The analysis presented here is based on using a discrete set of values for input
and output. The set will be finite or countable and we will use discrete proba-
bility distributions. It is also possible to use an uncountable set of values or a
combination of discrete and continuous random variables if one uses cumulative
probability measures in the analysis. This will be discussed further later in the
paper.

We consider the input to a program as a discrete random variable and the
input probability distribution is then a probability measure that to an event
of input having a given value assigns a value between 0 and 1. This is also
often referred to as the probability mass function in the discrete case, and in
the continuous case one will use a probability density functions. We will use
the phrase probability function to denote mappings from single values (input or
output) to a probability or number between 0 and 1, and we will use upper case
P letters to denote such functions.

Definition 1 (input probability). For a countable set X an input probability
function is a mapping PX : X → {r ∈ IR | 0 ≤ r ≤ 1}, where

∑

x∈X

PX(x) = 1

We define the output probability distribution for a program p in a forward
manner. It is the weight or sum of all probabilities of input values where the
program returns the desired value z as output.

Definition 2 (output probability). Given a program, p : X → Z and a
probability distribution for the input, PX , the output probability function, Pp(z),
is defined as:

Pp(z) =
∑

x∈X∧p(x)=z

PX(x)
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Note that Kozen also uses a similar forward definition [11, 12], whereas Monniaux
constructs the inverse and express the relationship in a backwards style [17].

Lemma 1. The output probability distribution, Pp(z), satisfies

0 ≤
∑

z

Pp(z) ≤ 1

The program may not terminate for all input and this means that the sum
may be less than one. If we expand the domain Z with an element to denote
non-termination, Z⊥, the total sum of the output distribution Pp(z) would be 1.

An analysis may not be able to derive the exact output probability for all
programs but we can always derive over and under approximations of the dis-
tribution.

Definition 3 (over and under approximation). For a distribution Pp an
over and under approximation (P ♯ and P ♭) of the distribution satisfies the con-
ditions:

P ♯
p :∀z.Pp(z) ≤ P ♯

p (z) ≤ 1 P ♭
p : ∀z.0 ≤ P ♭

p (z) ≤ Pp(z)

The notation is naturally inspired by Alan Mycroft’s strictness analysis. The
aim of the output analysis is to derive as tight approximations P ♭ and P ♯ as
possible.

Lemma 2. Given the definition for over and under approximation they will have
boundaries for their total weights as

0 ≤
∑

z

P ♯
p (z) ≤ ∞ 0 ≤

∑

z

P ♭
p (z) ≤ 1

When P ♭
p = P ♯

p the total weight for each function will be equal to the total weight
of Pp, according to definition 3. For terminating programs the total weight is 1.

Expected value. Provided that the output from the program is numerical, one
may be interested in the average output value of the program. In this context
this is the expected value of the output distribution. If the program does not
terminate for all input it is not clear how to define the expected value because
non-termination may indicate a possibly infinite output value. As part of the
further analysis we need a guarantee that the program terminates. If the sum of
the P ♭

p is one then we know that the program terminates for all possible input
(i.e. input with probability greater than zero). We may be able to guarantee
termination of the program without being able to derive a tight bound for the
under approximation P ♭

p .

Lemma 3. The under approximation of a probability distribution satisfies

∑

z

P ♭
p (z) = 1 ⇒

∑

z

Pp(z) = 1
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The expected value of the output distribution is defined as the weighted average
of the distribution.

Definition 4 (expected value). The expected value of the output distribution
is defined as

Ep =
∑

z

z · Pp(z)

If we cannot analyse the program precisely, we can use the over approximation
to compute an interval for the expected value. Using P ♯

p we can create two new
probability distributions, each with a total weight of 1. One that favours the
lower values, and one that favours the higher values. These two can then be
used to calculate a lower and an upper bound for the expected values.

Definition 5 (expected value interval). For an over approximation of a
probability distribution P ♯

p we define an over and under accumulation (F ↑ and

F ↓) and over and under expected value (E↑ and E↓).

F ↑(z) = min(
∑

v≤z

P ♯
p (v), 1) F ↓(z) = max(1 −

∑

v≥z

P ♯
p (v), 0)

E↑ =
∑

z

z · (F ↑(z) − F ↑(dec(z))) E↓ =
∑

z

z · (F ↓(z) − F ↓(dec(z)))

dec(z) = max{v ∈ Z | v < x}

Lemma 4 (expected value interval). For a terminating program the expected
value can be approximated by an interval from the over approximation of the
probability distribution.

E↓ ≤ Ep ≤ E↑

Externalise resource usage. The output analysis can be used to analyse in-
ternal properties of the program provided these properties are externalised. As in
automatic worst case complexity analysis [21], this may be done by instrument-
ing the program with step counting information. Similarly we might instrument
programs with energy consumption based on low level energy models for opera-
tions [15] to be able to analyse programs for average energy consumption.

The challenge of approximation. Analysis of probabilistic behaviour intro-
duces some new challenges compared to worst case analysis. It is well known
that a function of expected values is not necessarily the same as the expected
value of the function. There are a number of other potential pitfalls when mak-
ing approximations in a probabilistic setting. One might assume that conditions
in a program can be assigned a fixed probability of being true independently of
previous execution paths in the program. One might also assume that variables
have independent probability distributions. An unfortunate effect of using inde-
pendence as an approximation is that it tends to under approximate the extreme
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cases. In a throw of two dice the sum of 12 has probability 1/36 if we can assume
independence. If (by some magic) they always showed the same the probabil-
ity increases to 1/6. The situation is well-known in the insurance industry and
for financial risk management (valuation of derivatives) where one may want to
over approximate the risk of extreme event when events are not guaranteed to
be independent. One approach to handle such situations is the use of copulas [2]
and comonotonicity of probability measures [5].

3 Transformation Based Analysis

Our analysis is based on a small first order functional language with primitive
recursion. The first step of the analysis is to translate programs into a new
language of probability distribution programs. We will then use analysis and
transformation techniques to transform the probability distributions into closed
form. Failing that, we may approximate the distribution with an upper and lower
approximation (P ♯ and P ♭).

Programs have the form of a collection of functions

f1( x⃗) = e1

...

fn( x⃗) = en

The language uses a base set D of values for simple expressions, and functions in
a program denotes mappings from tuples of values to tuples of values D∗ → D∗.
Parameters that represent tuples are written with an arrow symbol x⃗ or as list
of variable names in angled brackets ⟨x1, . . . , xn⟩. We do not distinguish between
singleton tuples and values and may view a function argument tuple as multiple
arguments. The base set of values will not be further restricted here, nor do we
specify the exact set of basic operations in the language. The first function in the
program is called externally and for that function we have an input probability
distribution Px specified as a symbolic expression ex.

3.1 Probability distribution program

When constructing the probability distribution program, in its raw form, we use
two new language constructs: A sum over the (possibly) infinite set of all input
values and a constraint function C. The constraint function eases the handling
of boundaries and is defined as

C(condition) =

{
1 if condition = true
0 otherwise

Given an output value tuple, the distribution program sums the probabilities for
all input value tuples that the original program maps to the output value tuple.
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The probability distribution program is defined as follows.

Pf ( z⃗) =
∑

x⃗

Px( x⃗) · C( z⃗ = f1( x⃗))

Px( x⃗) = ex

f1( x⃗) = e1

...

fn( x⃗) = en

We interpret a probability distribution program as a program that can be trans-
formed and analysed. The second phase is to unfold function calls and the fol-
lowing phase is to try to remove the infinite summations.

3.2 Unfolding

The this phase we unfold function calls in the program. For simplicity we assume
functions in the original program to have one of the following five forms:

f( x⃗) = e

f( x⃗) = ⟨e1, . . . , en⟩
f( x⃗) = g(h( x⃗))

f( x⃗) = if (b(x)) then g( x⃗) else h( x⃗)

f( x⃗) = if (b(x)) then g( x⃗) else f(h( x⃗))

where b, g, and h are functions in the program, and other expressions e are
simple expressions that do not contain function calls. The only way recursion
can appear is through primitive recursion in the fifth and last form. We assume
that b evaluates to a boolean value. In the following we will introduce the central
transformation rules for unfolding calls to function in the original program.

Tuples. For tupling expressions we separate the tests into the elements of the
tuple. The transformation is

∑

x⃗

P ( x⃗) · C( z⃗ = ⟨e1, . . . , en⟩) =
∑

x⃗

P ( x⃗) · C(z1 = e1) · · · C(zn = en)

where z⃗ = ⟨z1, . . . , zn⟩ and P is a probability function in the program.

Function composition. For function compositions we rewrite the program as
follows

∑

x⃗

P ( x⃗) · C( z⃗ = g(h( z⃗))) =
∑

x⃗

PhP ( x⃗) · C( z⃗ = g( x⃗))

where

PhP ( z⃗) =
∑

x⃗

P ( x⃗) · C( z⃗ = h( x⃗))

7



This rule extends the program with an extra probability function PhP . As we
assume the programs do not have unrestricted recursion we will only generate a
bounded number of extra probability functions.

Conditional expressions. For conditional expressions we use the following
rule

∑

x⃗

P ( x⃗) · C( z⃗ = if (b( x⃗)) then g( x⃗) else h( x⃗))

=
∑

x⃗

P ( x⃗) · (PbP (true) · PgP ( x⃗) + PbP (false) · PhP ( x⃗))

where PbP , PgP , and PhP are output probability functions for b, g, and h with
input probability P . If b, g, and h are all defined as simple expressions e1, e2,
and e3, respectively, this may be simplified as

∑

x⃗

P ( x⃗) · C( z⃗ = if (e1) then e2 else e3)

=
∑

x⃗

P ( x⃗) · (C(e1) · C( z⃗ = e2) + C(¬e1) · C( z⃗ = e3))

Unfolding primitive recursion. For primitive recursion we collect the prob-
ability of a given result being returned for any number of recursive calls. Fol-
lowing the fifth of the allowed program forms, a primitive recursive function,
f , calls itself recursively when the condition is false and it terminates the first
time the condition evaluates to true. The condition may never evaluate to true
for a certain input (non-termination), and in that situation the sum of output
probabilities will be less than 1.

The transformation for the primitive recursion form is
∑

x⃗

P ( x⃗) · C ( z⃗ = if (b( x⃗)) then g( x⃗) else f(h( x⃗)))

=
∑

x⃗

P ( x⃗)
∞∑

i=0

i−1∏

j=0

C(¬b(h′(j, x⃗))) · C(b(h′(i, x⃗))) · C( z⃗ = g(h′(i, x⃗)))

where

h′(i, x⃗) = if (i = 0) then x⃗ else h′(i − 1, h( x⃗))

In the transformed expression we introduce two variables: i that represents the
number of recursive calls, and j that represents all previous recursions for the
i under investigation (when i is 0 the term

∏i−1
j=0 C(¬b(h′(j, x⃗))) evaluates to

1). The new function h′(i, x⃗) relates to h( x⃗) and corresponds to calling h on
itself i times (e.g. h(2, x⃗) = h(h( x⃗))). The result can be given to b and allows
us to evaluate the condition for the ith and jth recursive call. Only when the
ith condition is true (C(b(h′(i, x⃗))) = 1) and all previous conditions are false

(
∏i−1

j=0 C(¬b(h′(j, x⃗))) = 1), then can the expression evaluate to a probability
above 0 (when z = g(h′(i, x⃗))).
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3.3 Symbolic summation

In the previous phase we unfolded calls to functions in the original program.
The aim of the next phase use algebraic transformation techniques to remove
summations. The methods we use are similar to the transformations used in
worst case execution time system for solving recurrence equations [22, 16] or
symbolic summation techniques in loop bound computations [10]. Some of the
central transformation rules we use in this phase are listed below. In the follow-
ing transformations the expressions e1 and e2 are assumed not to contain the
summation variable x.

∑

x

C(x = e1) · f(x) = f(e1)

∑

x

C(e1 ≤ x ≤ e2) = (e2 − e1 + 1) · C(e1 ≤ e2)

∑

x

x · C(e1 ≤ x ≤ e2) =

(
e2 · (e2 + 1)

2
− e1 · (e1 − 1)

2

)
·C(e1 ≤ e2)

One could also use computer algebra systems in the reduction process but some
of the rules are quite specific to way we handle the boundaries of summations
with the special constraint function.

C(e1 ≤ x ≤ e2) · C(e3 ≤ x ≤ e4) = C(max(e1, e3) ≤ x ≤ min(e2, e4))

C(max(e1, e2) ≤ e3) = C(e1 > e2)·C(e1 ≤ e3) + C(e1 ≤ e2)·C(e2 ≤ e3)

There are similar rules for removing the minimum function and for isolating
variables.

Max example. As a small example, let us look at the simple non-recursive
program max, which given two values return the largest. It is chosen because it
only makes use of the symbolic summation rules and that the output follows a
non-uniform distribution even if the input variables are uniformly distributed.
The program is defined as

max(x,y) = if (x>y) then x else y

The input probabilities are independent, each is a uniform distribution from 1
to n and can be defined as

Px(x) =
1

n
· C(1 ≤ x ≤ n) and Py(y) =

1

n
· C(1 ≤ y ≤ n)

9



The following example uses the conditional transformation rule and the symbolic
summation rules.

Pmax(z) =
∑

⟨x,y⟩
P⟨x,y⟩(⟨x, y⟩) · C(z = max(x, y))

=
∑

x

∑

y

Px(x) · Py(y) · C(z = if (x > y) then x else y)

=
1

n2
·
( ∑

y

(
C(1 ≤ z ≤ n) · C(1 ≤ y ≤ n) · C(y ≤ (z − 1))

)

+
∑

x

(
C(1 ≤ x ≤ n) · C(1 ≤ z ≤ n) · C(x ≤ z)

))

=
1

n2
· (2z − 1) · C(1 ≤ z ≤ n)

Add example. The recursive addition function was used as an example in
the introduction. We shall see how the original program is inserted into the
probability formula, expanded and reduced to a closed form function expressing
the probability distribution for the output. Recall the program:

add(x,y) = if(x=0) then y else add(x-1,y+1)

and that we assume independence between the input variables and for the sake
of simplicity we let both input variables x and y have a uniform distribution
from 1 to a number n.

Padd(z) =
∑

x

∑

y

Px(x) · Py(y)·

∑

i=0

i−1∏

j=0

C(¬b(h′(j, x, y))) · C(b(h′(i, x, y))) · C(z = g(h′(i, x, y))

where

b(x, y) = x = 0

g(x, y) = y

h(⟨x, y⟩) = ⟨x − 1, y + 1⟩
h′(i, ⟨x, y⟩) = if (i = 0) then ⟨x, y⟩ else h′(i − 1, ⟨x − 1, y + 1⟩)

= ⟨x − i, y + i⟩
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Padd(z) =
∑

x

∑

y

Px(x) · Py(y)·

∑

i=0

i−1∏

j=0

C(¬(x − j = 0)) · C(x − i = 0) · C(z = y + i)

=
∑

x

∑

y

Px(x) · Py(y) ·
∑

i=0

C(x = i) · C(z = y + i)

=
∑

x

∑

y

Px(x) · Py(y) · C(z = y + x)

=
∑

x

∑

y

1

n
· C(1 ≤ x ≤ n) · 1

n
· C(1 ≤ y ≤ n) · C(z = y + x)

=
∑

y

1

n
· C(z − n ≤ y ≤ z − 1) · 1

n
· C(1 ≤ y ≤ n)

)

=
1

n2
· max(min(n, z − 1) − max(1, z − n) + 1, 0)

=
1

n2
·
(
C(n < z ≤ 2n) · (2n − z + 1) + C(1 ≤ z ≤ n) · (z − 1)

)

3.4 Expected value

If we have derived a probability program, we may also derive an expression that
computes the expected value of the distribution.

Ep =
∑

x

x · Pp(x)

For the add program this gives

Eadd =
n∑

z=1

z · (z − 1) +
2n∑

z=n+1

z · (2n − z + 1)

which, of course, can be reduced further.

4 Composite Types

In the approach we have presented the base domain is a countable set and
not necessarily just numbers. We only need to be able to define a probability
distribution for values in the domain.

For lists of length k > 0 where elements are uniformly distributed over the
interval 1 to n we can use the probability function

PL(L) =
1

nk
· C(length(L) = k ∧ ∀j : 0 ≤ j ≤ k − 1 ∧ 1 ≤ hd(tlj(L)) ≤ n)

We assign the probability 1/nk to any list of length k where all elements are in
the interval from 1 to n.

If we consider the member function for non-empty lists, it can be written as
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member(X,L) = if(tl(L)=[] || hd(L)=X) then hd(L)=X

else member(X,tl(L))

The function will follow the pattern of primitive recursion as described earlier
and the output probability function for the member function is then

Pmember(z) =
∑

X

∑

L

PX(X) · PL(L) · C(z = member(X,L))

We can then use the unfolding rules to simplify the expression further.
The lists were here assumed to contain possibly repeating elements in the list.

We could also use a different probability measure to restrict lists to non-repeating
lists of values. This restriction is made by Wegbreit [26] in his examples, where
the probability is derived as 1 − (1 − (1/n)k), which is the correct result for
repeating lists of values. His technique is valid for programs where one can safely
assume the Markov property (that probability of conditions are fixed). Wegbreit
observes that this is not always true even in very simple cases, e.g. in nested
conditionals where the outcome of the first condition influences the probability
of the outcome for the subsequent condition.

It should be noted that conditions existing inside a recursive structure of-
ten invokes dependencies between variables. This occur when there is a gain of
knowledge: For instance in the union function for two repeating lists; if the head
of the list is not in the second list, the likelihood of the next element not being
in the second list increases slightly.

5 Approximation Techniques

The probability distribution program expresses the probability distribution for
output values. Our aim is to transform it into a closed form but this may not
always be possible. Failing that, we can instead use approximation techniques to
obtain an upper bound for the probability distribution. We have referred to this
as the over approximation of the probability distribution, P ♯. The techniques
we may apply here are similar to automatic worst case complexity analysis [21]
where the aim is to obtain a closed form expression for the complexity of pro-
grams but failing that may obtain an over approximation.

Cumulative distribution functions. Cumulative probabilities will in some
cases be more useful and expressive than probability distributions: Cumulative
probabilities can be used in both the discrete and the continuous case, and in
some cases approximations can be described more precisely using accumulated
probabilities than with ordinary distributions.

Definition 6. Given a program output probability distribution, Pp(z), the cu-
mulative program output probability distribution, Fp(z), is defined as

Fp(z) =
∑

w≤z

Pp(w)
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Definition 7 (over and under-approximation). Given an accumulated out-
put probability of a program P, Fp, the over-approximation, F ♯

p , and the under-

approximation, F ♭
p , are defined as

F ♯
p :∀z.Fp(z) ≤ F ♯

p (z)

F ♭
p :∀z.F ♭

p (z) ≤ Fp(z)

where for each approximation it must always hold that

∀z.0 ≤ F ♯
p (z) ≤ 1

∀z.0 ≤ F ♭
p (z) ≤ 1

When we can deduce that a program may return one of two values, but
not which one, then the cumulative probability can be used for a more pre-
cise description. Such a program could be if x = 1 then 1 else (if x = 4

then 4 else (if (unanalysable) then 2 else 3)) and 1 ≤ x ≤ 4 with the
probability distribution Px(x) = 1/4 · C(1 ≤ x ≤ 4).

3/4

1/2

1/4

1

3/4

1/2

1/4

1

F (z)b

F (z)#

P (z)b

P (z)#

0 1 2 3 4 5 0 1 2 3 4 5

Here, the under approximating and over approximating distributions will assign
0 and 1/2 for both 2 and 3, respectively. In contrast, the under-approximating
cumulative distribution can express that if the program-output is not 2 it must
be 3.

P ♭
p and P ♯

p can be used to derive F ♭
p and F ♯

p . However, these may not be as
precise as cumulative distributions derived directly.

Approximations for accumulated probability functions.
When approximating accumulated probability functions the techniques are

different from probability mass functions. Instead one may use copulas [2] to
over and under approximate dependencies between subexpressions. Copulas are
based on the theory of comonotonicity [5] for distributions that may depend on
a common (possibly unknown) random variable.

6 Related Work

Probabilistic analysis is different from analysis of probabilistic programs. Proba-
bilistic analysis is analysis of programs with a normal semantics where the input
variables are interpreted over probability distributions. Analysis of probabilistic
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programs analyse programs with probabilistic semantics where the values of the
input variables are unknown (e.g. flow analysis [19]).

In probabilistic analysis it is important to determine how variables depend on
each other, but already in 1976 Denning proposed a flow analysis for revealing
whether variables depend on each other [4]. This was presented in the field
of secure flow analysis. Denning introduced a lattice-based analysis where she,
given the name of a variable, that should be kept secret, deducted which other
variables those should be kept secret in order to avoid leaking information. In
1996, Denning’s method was refined by Volpano et al. into a type system and
for the first time, it was proven sound [25].

Reasoning about probabilistic semantics is a closely related area to probabilis-
tic analysis, as they both work with nested probabilistic influence. The proba-
bilistic analysis work on standard semantic and analyse it using input probability
distributions, where a probabilistic semantics allow for random assignments and
probabilistic choices [11] and is normally analysed using any expanded classical
analysis or verification method [3].

Probabilistic model checking is an automated technique for formally verifying
quantitative properties for systems with probabilistic behaviours. It is mainly
focused on Markov decision processes, which can model both stochastic and
nondeterministic behaviour [7, 13, 14]. It differs from probabilistic analysis as it
assumes the Markov property.

In 2000, Monniaux applied abstract interpretation to programs with prob-
abilistic semantics and gained safe bounds for worst case analysis [17]. Pierro
et al. introduce a linear mapping structure, a Moore-Penrose pseudo-inverse,
instead of a Galois connection. They use the linear structures to compare ’close-
ness’ of approximations as an expression using the average approximation error.
Pierro et al. further explores using probabilistic abstract interpretation to calcu-
late the average case analysis [18]. In 2012, Cousot and Monerau gave a general
probabilistic abstraction framework [3] and stated, in section 5.3, that Pierro et
al.’s method and many other abstraction methods can be expressed in this new
framework.

7 Conclusion

Probabilistic analysis of program have a renewed interest for analysing programs
for energy consumptions. Numerous embedded systems and mobile applications
are limited by restricted battery life on the hardware. In this paper we present
a technique for extracting a probability distribution for programs from symbolic
distributions of the input. It is a transformation based method, where we anal-
yse a first order language with primitive recursion. From the original program
we generate an equivalent probability distribution program, and transform this
program into closed form. We present the essential transformation rules for un-
folding calls to the original program and removing infinite sums. The transformed
program may then be analysed and approximated using program analysis and
transformation techniques known from automatic complexity analysis. The core
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elements of the analysis have been implemented in a prototype system with the
aim of using it to improve energy efficiency of systems. The central challenges
of approximating in a probabilistic setting are discussed and we describe some
advantages of using cumulative distributions along with copulas to achieve a
tighter approximation.
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Pedro López-Garćıa, Alejandro Serrano Mena and other collegues in Madrid,
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Abstract

Several techniques and tools have been developed for verification in Horn clauses with constraints
over some background theory (CHC). Current CHC verification tools implement intricate al-
gorithms and are limited to certain subclasses of CHC problems. Our aim in this work is to
investigate the use of a combination of off-the-shelf techniques from the literature in analysis
and transformation of Constraint Logic Programs (CLPs) to solve challenging CHC verifica-
tion problems. We find that many problems can be solved using a combination of tools based
on well-known techniques from abstract interpretation, semantics-preserving transformations,
program specialisation and query-answer transformations. This gives insights into the design of
automatic, more general CHC verification tools based on a library of components.

KEYWORDS: Constraint Logic Program, Constrained Horn Clause, Abstract Interpretation,
Software Verification.

1 Introduction

CHCs provide a suitable intermediate form for expressing the semantics of a variety

of programming languages (imperative, functional, concurrent, etc.) and computational

models (state machines, transition systems, big- and small-step operational semantics,

Petri nets, etc.). As a result it has been used as a target language for software verification.

Recently there is a growing interest in CHC verification from both the logic programming

and software verification communities, and several verification techniques and tools have

been developed for CHC.

Pure CLPs are syntactically and semantically the same as CHC. The main differ-

ence is that sets of constrained Horn clauses are not necessarily intended for execution,

but rather as specifications. From the point of view of verification, we do not distin-

guish between CHC and pure CLP. Much research has been carried out on the analysis
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Programme under grant agreement no. 318337, ENTRA - Whole-Systems Energy Transparency and
the Danish Natural Science Research Council grant NUSA: Numerical and Symbolic Abstractions for
Software Model Checking.
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and transformation of CLP programs, typically for synthesising efficient programs or for

inferring run-time properties of programs for the purpose of debugging, compile-time

optimisations or program understanding. In this paper we investigate the application of

this research to the CHC verification problem.

In Section 2 we define the CHC verification problem. In Section 3 we define a number

of basic transformation and analysis components drawn from or inspired by the CLP lit-

erature. Section 4 discusses the role of these components in verification, illustrating them

on an example problem. In Section 5 we construct a tool-chain out of these components

and test it on a range of CHC verification benchmark problems. The results reported in

this section represent one of the main contributions of this work. In Section 6 we propose

possible extensions of the basic tool-chain and compare them with related work on CHC

verification tool architectures. Finally in Section 7 we summarise the conclusions from

this work.

2 Background: The CHC Verification Problem

A CHC is a first order predicate logic formula of the form ∀(φ∧B1(X1)∧ . . .∧Bk(Xk)→
H(X)) (k ≥ 0), where φ is a conjunction of constraints with respect to some background

theory, Xi, X are (possibly empty) vectors of distinct variables, B1, . . . , Bk, H are pred-

icate symbols, H(X) is the head of the clause and φ ∧ B1(X1) ∧ . . . ∧ Bk(Xk) is the

body. Sometimes the clause is written H(X)← φ∧B1(X1), . . . , Bk(Xk) and in concrete

examples it is written in the form H :- φ, B1(X1),. . .,Bk(Xk). In examples, predicate

symbols start with lowercase letters while we use uppercase letters for variables.

We assume here that the constraint theory is closed with respect to negation and

that there is a distinguished predicate symbol false which is interpreted as false. In

practice the predicate false only occurs in the head of clauses; we call clauses whose

head is false integrity constraints, following the terminology of deductive databases.

Thus the formula φ1 ← φ2 ∧ B1(X1), . . . , Bk(Xk) is equivalent to the formula false ←
¬φ1 ∧ φ2 ∧ B1(X1), . . . , Bk(Xk). The latter might not be a CHC but can be converted

to an equivalent set of CHCs by transforming the formula ¬φ1 and distributing any dis-

junctions that arise over the rest of the body. For example, the formula X=Y :- p(X,Y)

is equivalent to the set of CHCs false :- X>Y, p(X,Y) and false :- X<Y, p(X,Y).

Integrity constraints can be viewed as safety properties. If a set of CHCs encodes the

behaviour of some system, the bodies of integrity constraints represent unsafe states.

Thus proving safety consists of showing that the bodies of integrity constraints are false

in all models of the CHC clauses.

The CHC verification problem. To state this more formally, given a set of CHCs P ,

the CHC verification problem is to check whether there exists a model of P . In every

interpretation of P , the predicate false is interpreted as false; hence P |= false if and only

if P has no model. Equivalently P has a model if and only if P 6|= false. It is clear that

any model of P assigns false to the bodies of integrity constraints.

The verification problem can be formulated deductively rather than model-theoretically.

Let the relation P ` A denote that A is derivable from P using some proof procedure.

If the proof procedure is sound and complete then P 6|= A if and only if P 6` A. So the

verification problem is to show (using CLP terminology) that the computation of the
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goal ← false in program P does not succeed using a complete proof procedure. Although

in this work we follow the model-based formulation of the problem, we exploit the equiv-

alence with the deductive formulation, which underlies, for example, the query-answer

transformation and specialisation techniques to be presented.

2.1 Representation of Interpretations

An interpretation of a set of CHCs is represented as a set of constrained facts of the

form A ← C where A is an atomic formula p(Z1, . . . , Zn) where Z1, . . . , Zn are distinct

variables and C is a constraint over Z1, . . . , Zn. If C is true we write A ← or just A.

The constrained fact A ← C is shorthand for the set of variable-free facts Aθ such that

Cθ holds in the constraint theory, and an interpretation M denotes the set of all facts

denoted by its elements; M assigns true to exactly those facts. M1 ⊆ M2 if the set of

denoted facts of M1 is contained in the set of denoted facts of M2.

Minimal models. A model of a set of CHCs is an interpretation that satisfies each clause.

There exists a minimal model with respect to the subset ordering, denoted M [[P ]] where

P is the set of CHCs. M [[P ]] can be computed as the least fixed point (lfp) of an immediate

consequences operator, T C
P , which is an extension of the standard TP operator from logic

programming, extended to handle constraints. Furthermore lfp(T C
P ) can be computed

as the limit of the ascending sequence of interpretations ∅, T C
P (∅), T C

P (T C
P (∅)), . . .. For

more details, see (Jaffar and Maher 1994). This sequence provides a basis for abstract

interpretation of CHC clauses.

Proof by over-approximation of the minimal model. It is a standard theorem of CLP that

the minimal model M [[P ]] is equivalent to the set of atomic consequences of P . That is,

P |= p(v1, . . . , vn) if and only if p(v1, . . . , vn) ∈ M [[P ]]. Therefore, the CHC verification

problem for P is equivalent to checking that false 6∈M [[P ]]. It is sufficient to find a set of

constrained facts M ′ such that M [[P ]] ⊆ M ′, where false 6∈ M ′. This technique is called

proof by over-approximation of the minimal model.

3 Relevant tools for CHC Verification

In this section, we give a brief description of some relevant tools borrowed from the

literature in analysis and transformation of CLP.

Unfolding. Let P be a set of CHCs and c0 ∈ P be H(X) ← B1, p(Y ),B2 where B1,B2
are possibly empty conjunctions of atomic formulas and constraints. Let {c1, . . . , cm} be

the set of clauses of P that have predicate p in the head, that is, ci = p(Zi) ← Di,

where the variables of these clauses are standardised apart from the variables of c0 and

from each other. Then the result of unfolding c0 on p(Y ) is the set of CHCs P ′ =

P \ {c0} ∪ {c′1, . . . , c′m} where c′i = H(X) ← B1, Y = Zi,Di,B2. The equality Y = Zi

stands for the conjunction of the equality of the respective elements of the vectors Y

and Zi. It is a standard result that unfolding a clause in P preserves P ’s minimal model

(Pettorossi and Proietti 1999). In particular, P |= false ≡ P ′ |= false.
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Specialisation. A set of CHCs P can be specialised with respect to a query. Assume A is

an atomic formula; then we can derive a set PA such that P |= A ≡ PA |= A. PA could

be simpler than P , for instance, parts of P that are irrelevant to A could be omitted in

PA. In particular, the CHC verification problem for Pfalse and P are equivalent. There

are many techniques in the CLP literature for deriving a specialised program PA. Partial

evaluation is a well-developed method (Gallagher 1993; Leuschel 1999).

We make use a form of specialisation know as forward slicing, more specifically redun-

dant argument filtering (Leuschel and Sørensen 1996), in which predicate arguments can

be removed if they do not affect a computation. Given a set of CHCs P and a query A,

denote by P raf
A the program obtained by applying the RAF algorithm from (Leuschel and

Sørensen 1996) with respect to the goal A. We have the property that P |= A ≡ P raf
A |= A

and in particular that P |= false ≡ P raf
false |= false.

Query-answer transformation. Given a set of CHCs P and an atomic query A, the query-

answer transformation of P with respect to A is a set of CHCs which simulates the

computation of the goal ← A in P , using a left-to-right computation rule. Query-answer

transformation is a generalisation of the magic set transformations for Datalog. For each

predicate p, two new predicates pans and pquery are defined. For an atomic formula A,

Aans and Aquery denote the replacement of A’s predicate symbol p by pans and pquery
respectively. Given a program P and query A, the idea is to derive a program P qa

A with

the following property P |= A iff P qa
A |= Aans. The Aquery predicates represent calls in the

computation tree generated during the execution of the goal. For more details see (Debray

and Ramakrishnan 1994; Gallagher and de Waal 1993; Codish and Demoen 1993). In

particular, P qa
false |= falseans ≡ P |= false, so we can transform a CHC verification problem

to an equivalent CHC verification problem on the query-answer program generated with

respect to the goal ← false.

Predicate splitting. Let P be a set of CHCs and let {c1, . . . , cm} be the set of clauses in P

having some given predicate p in the head, where ci = p(X)← Di. Let C1, . . . , Ck be some

partition of {c1, . . . , cm}, where Cj = {cj1 , . . . , cjnj
}. Define k new predicates p1 . . . pk,

where pj is defined by the bodies of clauses in partition Cj , namely Dj = {pj(X) ←
Dj1 , . . . , pj(X) ← Djnj

}. Finally, define k clauses Cp = {p(X) ← p1(X), . . . , p(X) ←
pk(X)}. Then we define a splitting transformation as follows.

1. Let P ′ = P \ {c1, . . . , cm} ∪ Cp ∪D1 ∪ . . . ∪Dk.

2. Let P split be the result of unfolding every clause in P ′ whose body contains p(Y )

with the clauses Cp.

In our applications, we use splitting to create separate predicates for clauses for a

given predicate whose constraints are mutually exclusive. For example, given the clauses

new3(A,B) :- A=<99, new4(A,B) and new3(A,B) :- A>=100, new5(A,B), we produce

two new predicates, since the constraints A=<99 and A>=100 are disjoint. The new pred-

icates are defined by clauses new31(A,B) :- A=<99, new4(A,B) and new32(A,B) :-

A>=100, new5(A,B), and all calls to new3 throughout the program are unfolded using

these new clauses. Splitting has been used in the CLP literature to improve the precision

of program analyses, for example in (Serebrenik and De Schreye 2001). In our case it

improves the precision of the convex polyhedron analysis discussed below, since separate
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polyhedra will be maintained for each of the disjoint cases. The correctness of splitting can

be shown using standard transformations that preserve the minimal model of the program

(with respect to the predicates of the original program) (Pettorossi and Proietti 1999).

Assuming that the predicate false is not split, we have that P |= false ≡ P split |= false.

Convex polyhedron approximation. Convex polyhedron analysis (Cousot and Halbwachs

1978) is a program analysis technique based on abstract interpretation (Cousot and

Cousot 1977). When applied to a set of CHCs P it constructs an over-approximation M ′

of the minimal model of P , where M ′ contains at most one constrained fact p(X) ← C
for each predicate p. The constraint C is a conjunction of linear inequalities, representing

a convex polyhedron. The first application of convex polyhedron analysis to CLP was

by Benoy and King (Benoy and King 1996). Since the domain of convex polyhedra

contains infinite increasing chains, the use of a widening operator is needed to ensure

convergence of the abstract interpretation. Furthermore much research has been done on

improving the precision of widening operators. One techniques is known as widening-upto,

or widening with thresholds (Halbwachs et al. 1994). A threshold is an assertion that is

combined with a widening operator to improve its precision. Recently, a technique for

deriving more effective thresholds was developed (Lakhdar-Chaouch et al. 2011), which

we have found to be effective in experimental studies.

4 The role of CLP tools in verification

The techniques discussed in the previous section play various roles. The convex polyhe-

dron analysis, together with the helper tool to derive threshold constraints, constructs

an approximation of the minimal model of a set of CHCs. If false (or falseans) is not in

the approximate model, then the verification problem is solved. Otherwise the problem is

not solved; in effect a “don’t know” answer is returned. We have found that polyhedron

analysis alone is seldom precise enough to solve non-trivial CHC verification problems;

in combination with the other tools, it is very effective.

Unfolding can improve the structure of a program, removing some case of mutual

recursion, or propagating constraints upwards towards the integrity constraints, and can

improve the precision and performance of convex polyhedron analysis.

Specialisation can remove parts of theories not relevant to the verification problem,

and can also propagate constraint downwards from the integrity constraints. Both of

these have a beneficial effect on performance and precision of polyhedron analysis.

Analysis of a query-answer program (with respect to false) is in effect the search for a

derivation tree for false. Its effectiveness in CHC verification problems is variable. It can

sometimes worsen performance since the query-answer transformed program is larger and

contains more recursive dependencies than the original. On the other hand, one seldom

loses precision and it is often more effective in allowing constraints to be propagated

upwards (through the ans predicates) and downwards (through the query predicates).

4.1 Application of the tools

We illustrate the tools on a running example (Figure 1), one of the benchmark suite of the

VeriMAP system (De Angelis et al. 2013). The result of applying unfolding is shown in
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new6(A,B) :- B=<99.

new5(A,B) :- B>=101.

new5(A,B) :- B=<100, new6(A,B).

new4(A,B) :- C=1+A, A=<49, new3(C,B).

new4(A,B) :- C=1+A, D=1+B, A>=50, new3(C,D).

new3(A,B) :- A=<99, new4(A,B).

new3(A,B) :- A>=100, new5(A,B).

false :- A=0, B=50, new3(A,B).

Fig. 1. The example program MAP-disj.c.map.pl

false :- A=0, B=50, new3(A,B).

new3(A,B) :- A=<99, C = 1+A, A=<49, new3(C,B).

new3(A,B) :- A=<99, C = 1+A, D = 1+B, A>=50, new3(C,D).

new3(A,B) :- A>=100, B>=101.

new3(A,B) :- A>=100, B=<100, B=<99.

Fig. 2. Result of unfolding MAP-disj.c.map.pl

Figure 2 (omitting the definitions of the unfolded predicates new4, new5 and new6, which

are no longer reachable from false. The unfolding strategy we adopt is the following:

the predicate dependency graph of a program consists of the set of edges (p, q) such that

there is clause where p is the predicate of the head and q is a predicate occurring in the

body. We perform a depth-first search of the predicate dependency graph, starting from

false, and identify the backward edges, namely those edges (p, q) where q is an ancestor

of p in the depth-first search. We then unfold every body call whose predicate is not at

the end of a backward edge. In Figure 1, we thus unfold calls to new4, new5 and new6.

The query-answer transformation is applied to the program in Figure 2, with respect

to the goal false resulting in the program shown in Figure 3. The model of the predicate

new3 query corresponds to those calls to new3 that are reachable from the call in the

integrity constraint. Explicit representation of the query predicates permits more effective

propagation of constraints from the integrity clauses during model approximation.

The splitting transformation is now applied to the program in Figure 3. We do not

show the complete program, which contains 30 clauses. Figure 4 shows the split definition

of new3 query, which is split since the last two clauses for new3 query in Figure 3 have

mutually disjoint constraints, when projected onto the head variables.

A convex polyhedron approximation is then computed for the split program, after

computing threshold constraints for the predicates. The resulting approximate model is

shown in Figure 5 as a set of constrained facts. Since the model does not contain any

false ans :- false query, A=0, B=50, new3 ans(A,B).

new3 ans(A,B) :- new3 query(A,B), A=<99, C = 1+A, A=<49, new3 ans(C,B).

new3 ans(A,B) :- new3 query(A,B),A=<99,C is 1+A,D is 1+B, A>=50, new3 ans(C,D).

new3 ans(A,B) :- new3 query(A,B), A>=100, B>=101.

new3 ans(A,B) :- new3 query(A,B), A>=100, B=<100, B=<99.

new3 query(A,B) :- false query, A=0, B=50.

new3 query(A,B) :- new3 query(C,B), C=<99, A = 1+C, C=<49.

new3 query(A,B) :- new3 query(C,D), C=<99, A = 1+C, B = 1+D, C>=50.

false query.

Fig. 3. The query-answer transformed program for program of Fig. 2
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new3 query 1(A,B) :- false query 1, A=0, B=50.

new3 query 1(A,B) :- new3 query 1(C,B), C=<99, A = 1+C, C=<49.

new3 query 1(A,B) :- new3 query 2(C,B), C=<99, A = 1+C, C=<49.

new3 query 2(A,B) :- new3 query 1(C,D), C=<99, A = 1+C, B = 1+D, C>=50.

new3 query 2(A,B) :- new3 query 2(C,D), C=<99, A = 1+C, B = 1+D, C>=50.

Fig. 4. Part of the split program for the program in Fig. 3

false query 1 :- []

new3 query 1(A,B) :- [1*A>=0,-1*A>= -50,1*B=50]

new3 query 2(A,B) :- [1*A>=51,-1*A>= -100,1*A+ -1*B=0]

Fig. 5. The convex polyhedral approximate model for the split program

constrained fact for false ans we conclude that false ans is not a consequence of the

split program. Hence, applying the various correctness results for the unfolding, query-

answer and splitting transformations, false is not a consequence of the original program.

Discussion of the example. Application of the convex polyhedron tool to the original,

or the intermediate programs, does not solve the problem; all the transformations are

needed in this case, apart from redundant argument filtering, which only affects efficiency.

The model of the query-answer program is finite for this example. However, the problem

is essentially the same if the constants are scaled; for instance we could replace 50 by 5000,

49 by 4999, 100 by 10000 and 101 by 10001, and the problem is essentially unchanged.

We noted that some CHC verification tools applied to this example solve the problem,

but essentially by enumeration of the finite set of values encountered in the search. Such

a solution does not scale well. On the other hand the polyhedral abstraction shown above

is not an enumeration; an essentially similar polyhedron abstraction is generated for the

scaled version of the example, in the same time. The VeriMAP tool (De Angelis et al.

2013) also handles the original and scaled versions of the example in the same time.

RAF – Redundant Argument Filtering

FU – Forward Unfolding

QA – Query Answer Transformation

PS – Predicate Splitting

TC – Threshold Constraint
CHA – Convex Hull Analyzer

CHC Program P

RAF FU QA PS TC
Safe

unknown

CHA

Fig. 6. The basic tool chain for CHC verification.

5 Combining off-the-shelf tools: Experiments

The motivation for our tool-chain, summarised in Fig. 6, comes from our example pro-

gram, which is a simple yet challenging program. We applied the same tool-chain to a
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number of benchmarks from the literature, taken mainly from the repository of Horn

clause benchmarks in SMT-LIB21 and other sources including (Gange et al. 2013) and

some of the VeriMap benchmarks (De Angelis et al. 2013). Many of these problems are

considered challenging because they cannot be solved by one or more of the state-of-the-

art-verification tools. Programs taken from the SMT-LIB2 repository are first translated

to CHC form. The results are summarised in Table 1.

In Table 1, columns Program and Result respectively represent the benchmark program

and the results of verification using our tool combination. Problems marked with (*)

could not be handled by our tool-chain since they contain numbers which does not fit

in 32 bits, the limit of our Ciao Prolog implementation. Whereas problems marked with

(**) are solvable by our modified tool-chain. Problems such as systemc-token-ring.01-

safeil.c contain complicated loop structure with large strongly connected components

in the predicate dependency graph and our convex polyhedron analysis tool is unable

to derive required invariant. However overall result shows that our simple tool-chain

begins to compete with advanced tools like HSF (Grebenshchikov et al. 2012), VeriMAP

(De Angelis et al. 2013), TRACER (Gange et al. 2013), etc. We do not report timings,

though all these results are obtained in a matter of seconds, since our tool-chain is not

at all optimised, relying on file input-output and the individual components are often

prototypes.

Table 1. Experiments results on CHC benchmark program

SN Program Result SN Program Result

1 MAP-disj.c.map.pl verified 17 MAP-forward.c.map.pl verified
2 pldi12.pl verified 18 tridag.smt2 verified
3 t1.pl verified 19 qrdcmp.smt2 verified
4 t1-a.pl verified 20 choldc.smt2 verified
5 t2.pl verified 21 lop.smt2 verified
6 t3.pl verified 22 pzextr.smt2 verified
7 t4.pl verified 23 qrsolv.smt2 verified
8 t5.pl verified 24* crank.smt2 NOT
9 MAP-disj.c.map-scaled.pl verified 25* bandec.smt2 NOT
10 INVGEN-id-build verified 26** amebsa.smt2 verified
11 INVGEN-nested5 verified 27 sshsimpl-s3-srvr-1b-safeil.c NOT
12 INVGEN-nested6 verified 28* sshsimpl-s3-srvr-1a-safeil.c NOT
13 INVGEN-nested8 verified 29** DAGGER-barbr.map.c verified
14 INVGEN-svd-some-loop verified 30 INVGEN-apache-escape-absolute verified
15 INVGEN-svd1 verified 31 systemc-token-ring.01-safeil.c NOT
16 INVGEN-svd4 verified 32 TRACER-testabs15 verified

1 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/
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PA – Predicate AbstractionCHC Program P

RAF

FU QA PS TC CHA
Safe

CEx.

props

unknown

PA

Fig. 7. Future extension of our toolchain.

6 Discussion and Related Work

The most similar work to ours is by De Angelis et al. (De Angelis et al. 2013) which

is also based originally on CLP program transformation and specialisation. They con-

struct a sequence of transformations of P , say, P, P1, P2, . . . , Pk; essentially if Pk contains

no clause with head false the problem is solved. A proof of unsafety is obtained if Pk

contains a clause false ←. In contrast to their approach, we believe that our tool-chain-

based approach gives more insight into the role of each transformation. Work by Gange

et al. (Gange et al. 2013) is a top-town evaluation of CLP programs which records certain

derivations and learns only from failed derivations. This helps to prune further derivations

and helps to achieve termination in the presence of infinite executions. HSF(C) (Greben-

shchikov et al. 2012) and Duality2 are examples of the CEGAR approach (Counter-

Example-Guided Abstraction Refinement). This approach can be viewed as property-

based abstract interpretation based on a set of properties that is refined on each itera-

tion. The refinement of the properties is the key problem in CEGAR; an abstract proof

of unsafety is used to generate properties (often using interpolation) that prevents that

proof from arising again. Thus more and more abstract counter-examples are successively

eliminated. The relatively good performance of our tool-chain, without any refinement

step at all, suggests that finding the right invariants is aided by a tool such as the convex

polyhedron solver and the pre-processing steps we applied. In any case, property-based

abstractions could easily be added to the tool-chain, perhaps using properties generated

by the convex polyhedron solver. In Figure 7 we sketch possible extensions of our basic

tool-chain, incorporating a refinement loop and property-based abstraction.

It should be noted that the query-answer transformation, predicate splitting and un-

folding may all cause an increase in the program size. The convex polyhedron analysis

becomes more effective as a result, but in the worst case the program size might restrict

the applicability of the analysis. In future work, more sophisticated heuristics controlling

these transformations, especially unfolding and splitting, are needed.

2 http://research.microsoft.com/en-us/projects/duality/



10 John P. Gallagher and Bishoksan Kafle

7 Concluding remarks and future work

We have shown that a combination of off-the-shelf tools from CLP transformation and

analysis, combined in a sensible way, is surprisingly effective in CHC verification. The

component-based approach allowed us to experiment with the tool-chain until we found

an effective combination. This experimentation is continuing and we are confident of

making improvements by incorporating other standard techniques and by finding bet-

ter heuristics for applying the tools. Further we would like to investigate the choice of

chain suitable for each example since more complicated problems can be handled just

by altering the chain. We also suspect from initial experiments that an advanced partial

evaluator such as ECCE (Leuschel et al. 2006) will play a useful role. Our results give

insights for further development of automatic CHC verification tools. We would like to

combine our program transformation techniques with abstraction refinement techniques

and experiment with the combination.
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Abstract

We present a novel general resource analysis for logic programs based on sized types. Sized types
are representations that incorporate structural (shape) information and allow expressing both
lower and upper bounds on the size of a set of terms and their subterms at any position and
depth. They also allow relating the sizes of terms and subterms occurring at different argument
positions in logic predicates. Using these sized types, the resource analysis can infer both lower
and upper bounds on the resources used by all the procedures in a program as functions on input
term (and subterm) sizes, overcoming limitations of existing resource analyses and enhancing
their precision. Our new resource analysis has been developed within the abstract interpretation
framework, as an extension of the sized types abstract domain, and has been integrated into
the Ciao preprocessor, CiaoPP. The abstract domain operations are integrated with the setting
up and solving of recurrence equations for inferring both size and resource usage functions. We
show that the analysis is an improvement over the previous resource analysis present in CiaoPP
and compares well in power to state of the art systems.

1 Introduction

Resource usage analysis infers the aggregation of some numerical properties (named

resources), like memory usage, time spent in computation, or bytes sent over a wire,

throughout the execution of a piece of code. The expressions giving the usage of resources

are usually given in terms of the sizes of some input arguments to procedures.

Our starting point is the methodology outlined by (Debray et al. 1990; Debray and Lin

1993) and (Debray et al. 1997), characterized by the setting up of recurrence equations. In

that methodology, the size analysis is the first of several other analysis steps that include

cardinality analysis (that infers lower and upper bounds on the number of solutions

computed by a predicate), and which ultimately obtain the resource usage bounds. One

∗ This research was supported in part by projects EU FP7 318337 ENTRA, Spanish MINECO TIN2012-
39391 StrongSoft and TIN2008-05624 DOVES, and Madrid TIC/1465 PROMETIDOS-CM.
† A. Serrano performed this work during his former affiliation to the IMDEA Software Institute.
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drawback of these proposals, as well as most of their subsequent derivatives, is that they

are able to cope with size information about subterms in a very limited way. This is an

important limitation, which causes the analysis to infer trivial bounds for a large class

of programs. For example, consider a predicate which computes the factorials of a list:

% listfact (+L, -FL).

listfact ([], []).

listfact ([E|R],[F|FR]) :-

fact(E, F),

listfact(R, FR).

% fact(N, F).

fact (0 ,1).

fact(N,M) :- N1 is N - 1,

fact(N1 , M1),

M is N * M1.

Intuitively, the best bound for the running time of this program for a list L is c1 +∑
e∈L (c2 + timefact(e)), where c1 and c2 are constants related to unification and calling

costs. But with no further information, the upper bound for the elements of L must be

∞ to be on the safe side, and then the returned overall time bound must also be ∞.

In a previous paper (Serrano et al. 2013) we focused on a proposal to improve the

size analysis based on sized types. These sized types are similar to the ones present

in (Vasconcelos and Hammond 2003) for functional programs, but our proposal includes

some enhancements to deal with regular types in logic programs, developing solutions

to deal with the additional features of logic programming such as non-determinism and

backtracking. While in that paper we already hinted at the fact that the application of our

sized types in resource analysis could result in considerable improvement, no description

was provided of the actual resource analysis.

This paper is complementary and fills this gap by describing a new resource usage

analysis with two novel aspects. Firstly, it can take advantage of the new information

contained in sized types. Furthermore, this resource analysis is fully based on abstract in-

terpretation. In the past, only auxiliary analyses were developed using abstract interpre-

tation, whereas the core resource analysis was outside this framework. This allows us to

integrate resource analysis within the PLAI abstract interpretation framework (Muthuku-

mar and Hermenegildo 1992; Puebla and Hermenegildo 1996) in the CiaoPP system,

which brings in features such as multivariance, fixpoints, and assertion-based verifica-

tion and user interaction for free. We also perform an assessment of the accuracy and

efficiency of the resulting global system.

In Section 2 we give a high-level view of the approach. In the following section we

review the abstract interpretation approach to size analysis using sized types. Section 4

gets deeper into the resource usage analysis, our main contribution. Experimental results

are shown in Section 5. Finally we review some related work and discuss future directions.

2 Overview of the Approach

We give now an overview of our approach to resource usage analysis, and present the

main ideas in our proposal using the classical append/3 predicate as a running example:

append ([], S, S).

append ([E|R], S, [E|T]) :- append(R, S, T).

The process starts by performing the regular type analysis present in the CiaoPP sys-

tem (Vaucheret and Bueno 2002). In our example, the system infers that for any call

to the predicate append(X, Y, Z) with X and Y bound to lists of numbers and Z a free
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variable, if the call succeeds, then Z also gets bound to a list of numbers. The set of “list

of numbers” is represented by the regular type listnum, defined as follows:

listnum := [] | [num | listnum ].

From this regular type definition, sized type schemas are derived. The sized type

schema listnum-s is derived from listnum. This schema corresponds to a list whose

length is between α and β, containing numbers between γ and δ.

listnum-s→ listnum(α,β)(num(γ,δ))

From now on, in the examples we will use ln and n instead of listnum and num for

the sake of conciseness. The next phase involves relating the sized types of the different

arguments to the append/3 predicate using recurrence (in)equations. Let sizeX denote

the sized type schema for argument X in a call append(X, Y, Z) (from the regular

type inferred by a previous analysis). We have that sizeX denotes ln(αX ,βX)(n(γX ,δX)).

Similarly, the sized type schema for the output argument Z is ln(αZ ,βZ)(n(γZ ,δZ)), denoted

by sizeZ . We are interested in expressing bounds on the length of the output list Z and

the value of its elements as a function of size bounds for the input lists X and Y (and their

elements). For this, we set up a system of inequations. For instance, the inequations that

are set up to express a lower bound on the length of the output argument Z, denoted αZ ,

as a function on the size bounds of the input arguments X and Y, and their subarguments

(αX , βX , γX , δX , αY , βY , γY , and δY ) are:

αZ

(
αX , βX , γX , δX ,
αY , βY , γY , δY

)
≥





αY if αX = 0

1 + αZ

(
αX − 1, βX − 1, γX , δX ,

αY , βY , γY , δY

)
if αX > 0

Note that in the recurrence inequation set up for the second clause of append/3, the

expression αX − 1 (respectively βX − 1) represents the size relationship that a lower

(respectively upper) bound on the length of the list in the first argument of the recursive

call to append/3 is one unit less than the length of the first argument in the clause head.

As the number of size variables grows, the set of inequations becomes too large. Thus,

we propose a compact representation, which allows us to grasp all the relations in one

view. The first change in our proposal is to write the parameters to size functions directly

as sized types. Now, the parameters to the αZ function are the sized type schemas

corresponding to the arguments X and Y of the append/3 predicate:

αZ

(
ln(αX ,βX )(n(γX ,δX ))

ln(αY ,βY )(n(γY ,δY ))

)
≥





αY if αX = 0

1 + αZ

(
ln(αX−1,βX−1)(n(γX ,δX ))

ln(αY ,βY )(n(γY ,δY ))

)
if αX > 0

In a second step, we group together all the inequalities of a single sized type. As we

always alternate lower and upper bounds, it is always possible to distinguish the type

of each inequality. We do not write equalities, so that we do not use the symbol =.

However, we always write inequalities of both signs (≥ and ≤) for each size function,

since we compute both lower and upper size bounds. Troughout this paper we use a

representation using ≶ for the symbols ≥ and ≤ that are always paired. For example,

the expression ln(αX ,βX)(n(γX ,δX)) ≶ ln(e1,e2)(n(e3,e4)) represents the conjunction of the
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following size constraints:αX ≥ e1, βX ≤ e2, γX ≥ e3, δX ≤ e4. In the implementation,

constraints for each variable are kept apart and solved separatedly.

After setting up the corresponding system of inequations for the output argument Z

of append/3, and solving it, we obtain the following expression:

sizeZ (sizeX , sizeY ) ≶ ln(αX+αY ,βX+βY )(n(min(γX ,γY ),max(δX ,δY )))

that represents, among others, the relation αz ≥ αX+αY (resp. βz ≤ βX+βY ), expressing

that a lower (resp. upper) bound on the length of the output list Z, denoted αz (resp.

βz), is the addition of the lower (resp. upper) bounds on the lengths of X and Y. It also

represents the relation γZ ≥ min(γX , γY ) (resp. δZ ≤ max(δX , δY )), which expresses that

a lower (resp. upper) bound on the size of the elements of the list Z, denoted γz (resp.

δz), is the minimum (resp. maximum) of the lower (resp. upper) bounds on the sizes of

the elements of the input lists X and Y.

Resource analysis builds upon the sized type analysis and adds recurrence equations

for each resource we want to analyze. Apart from that, when considering logic programs,

we have to take into account that they can fail or have multiple solutions when executed,

so we need an auxiliary cardinality analysis to get correct results.

Let us focus on cardinality analysis. Let sL and sU denote lower and upper bounds on

the number of solutions for append/3. Following the program structure we can infer:

sL
(
ln(0,0)(n(γX ,δX )), sizeY

)
≥ 1

sL
(
ln(αX ,βX )(n(γX ,δX )), sizeY

)
≥ sL

(
ln(αX−1,βX−1)(n(γX ,δX )), sizeY

)

sU
(
ln(0,0)(n(γX ,δX )), sizeY

)
≤ 1

sU
(
ln(αX ,βX )(n(γX ,δX )), sizeY

)
≤ sU

(
ln(αX−1,βX−1)(n(γX ,δX )), sizeY

)

Since sL ≤ sU , the solution to these inequations must be (sL, sU ) = (1, 1). Thus, we have

inferred that append/3 has at least (and at most) one solution: it behaves like a function.

When setting up the equations, we use the result of the non-failure analysis to see that

append/3 cannot fail when given lists as arguments. If not, the lower bound is 0.

Now we move forward to analyzing the number of resolution steps performed by a call

to append/3 (we will only focus on upper bounds, rU , for brevity). For the first clause,

we know that only one resolution step is needed, so:

rU
(
ln(0,0)(n(γX ,δX )), ln(αY ,βY )(n(γY ,δY ))

)
≤ 1

The second clause performs one resolution step plus all the resolution steps performed

by all possible backtrackings over the call in the body of the clause. This number can be

bounded as a function of the number of solutions. Thus, the equation reads:

rU
(
ln(αX ,βX )(n(γX ,δX )), sizeY

)
≤ 1 + sU

(
ln(αX−1,βX−1)(n(γX ,δX )), sizeY

)

× rU
(
ln(αX−1,βX−1)(n(γX ,δX )), sizeY

)

= 1 + rU
(
ln(αX−1,βX−1)(n(γX ,δX )), sizeY

)

Solving these equations we infer that an upper bound on the number of resolution steps

is the (upper bound on) the length of the input list X plus one. This is expressed as:

rU
(
ln(αX ,βX )(n(γX ,δX )), ln(αY ,βY )(n(γY ,δY ))

)
≤ βX + 1
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3 Sized Types Review

As shown in the append example, the variables that we relate in our inequations come

from sized types, which are ultimately derived from the regular types previously inferred

for the program. Among several representations of regular types used in the literature,

we use one based on regular term grammars, equivalent to (Dart and Zobel 1992) but

with some adaptations. A type term is either a base type ηi (taken from a finite set), a

type symbol τi (taken from an infinite set), or a term of the form f(φ1, . . . , φn), where

f is a n-ary function symbol (taken from an infinite set) and φ1, . . . , φn are type terms.

A type rule has the form τ → φ, where τ is a type symbol and φ a type term. A regular

term grammar Υ is a set of type rules.

To devise the abstract domain we focus specifically on the and-or trees procedure of

(Bruynooghe 1991), with the optimizations of (Muthukumar and Hermenegildo 1992).

This procedure is generic and goal dependent: it takes as input a pair (L, λc) representing

a predicate along with an abstraction of the call patterns (in the chosen abstract domain)

and produces an abstraction λo which overapproximates the possible outputs. This pro-

cedure is the basis of the PLAI abstract analyzer present in CiaoPP (Hermenegildo et al.

2012), where we have integrated an implementation of the proposed size analysis.

The formal concept of sized type is an abstraction of a set of Herbrand terms which are

a subset of some regular type τ and meet some lower- and upper-bound size constraints

on the number of type rule applications needed to generate the terms. A grammar for

the new sized types follows:

sized-type ::= ηbounds η base type

| τ bounds(sized-args) τ recursive type symbol

| τ(sized-args) τ non-recursive type symbol

bounds ::= nob | (n,m) n,m ∈ N,m ≥ n
sized-args ::= ε | sized-arg, sized-args

sized-arg ::= sized-typeposition
position ::= ε | 〈f, n〉 f functor, 0 ≤ n ≤ arity of f

However, in our abstract domain we need to refer to sets of sized types which satisfy

certain constraints on their bounds. For that purpose, we introduce sized type schemas:

a schema is just a sized type with variables in bound positions, i.e., where n and m in the

pair (n,m) defining the symbol bounds in the grammar above are variables (called bound

variables), along with a set of constraints over those variables. We call such variables

bound variables. We will denote sized(τ) the sized type schema corresponding to a regular

type τ where all the bound variables are fresh.

The full abstract domain is an extension of sized type schemas to several predicate

variables. Each abstract element is a triple 〈t, d, r〉 such that:

1. t is a set of v → (sized(τ), c), where v is a variable, τ its regular type and c is its

classification. Subgoal variables can be classified as output, relevant, or irrelevant.

Variables appearing in the clause body but not in the head are classified as clausal ;

2. d (the domain) is a set of constraints over the relevant variables;

3. r (the relations) is a set of relations among bound variables.
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For example, the final abstract elements corresponding to the clauses of the listfact

example can be found below. The equations have already been normalized into their

simplest form, and the variables refer to the predicate arguments in normal form. listfact

refers implicitly to the solution of the joint equations: it is the recurrence we need to solve.

In order to enhance readability, we have dropped the position element 〈., 1〉 from ln.

λ′1 =

〈 {
L→ (ln(α1,β1)(n(γ1,δ1)), rel.), FL→ (ln(α2,β2)(n(γ2,δ2)), out.)

}

{α1 = 1, β1 = 1}, {ln(α2,β2)(n(γ2,δ2)) ≶ ln(1,1)(nnob)}

〉

λ′2 =

〈





L→ (ln(α1,β1)(n(γ1,δ1)), rel.), FL→ (ln(α2,β2)(n(γ2,δ2)), out.),

E → (n(γ3,δ3), cl.), R→ (ln(α4,β4)(n(γ4,δ4)), cl.),

F → (n(γ5,δ5), cl.), FR→ (ln(α6,β6)(n(γ6,δ6)), cl.)





{α1 > 0, β1 > 0},{
ln(α2,β2)(n(γ2,δ2)) ≶ ln(α′+1,β′+1)(n(min(γ1!,γ

′),max(δ1!,δ
′))

ln(α′,β′)(n(γ′,δ′)) ≶ listfact
(
ln(α1−1,β1−1)(n(γ1,δ1))

)
}

〉

4 The Resources Abstract Domain

We take advantage of the added power of sized types to develop a better resource analysis

which infers upper and lower bounds on the amount of resources used by each predicate

as a function of the sized type schemas of the input arguments (which encode the sizes of

the terms and subterms appearing in such input arguments). For this reason, the novel

abstract domain for resource analysis that we have developed is tightly integrated with

the sized types abstract domain. Following (Navas et al. 2007), we account for two places

where the resource usage can be abstracted:

• When entering a clause: some resources may be needed during unification of the

call (subgoal) and the clause head, the preparation of entering that clause, and

any work done when all the literals of the clause have been processed. This cost,

dependent on the head h, is called head cost, ϕ(h).
• Before calling a literal q: some resources may be used to prepare a call to a body

literal (e.g., constructing the actual arguments). The amount of these resources is

known as literal cost and is represented by ω(q).

We first consider the case of estimating upper bounds on resource usages. For simplicity,

assume first that we deal with predicates having a behavior that is close to functional

or imperative programs, i.e., that are deterministic and do not fail. Then, we can bound

the resource consumption of a clause C ≡ p(x̄) :− q1(x̄1), . . . , qn(x̄n), denoted rU,clause:

rU,clause(C) ≤ ϕ(p(x̄)) +
∑n
i=1 (ω(qi(x̄i)) + rU,pred(qi(x̄i)))

As in sized type analysis, the sizes of some input arguments may be explicitly com-

puted, or, otherwise, we express them by using a generic expression, giving rise (in the

case of recursive clauses) to a recurrence equation that we need to solve in order to find

closed form resource usage functions.

The resource usage of a predicate, rU,pred, depending on its input data sizes, is obtained

from the resource usage of the clauses defining it, by taking the maximum of the equation

expressions that meet the constraints on the input data sizes (i.e., have the same domain).

In addition, we need to deal with two extra features of logic programming:
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• We may execute a literal more than once on backtracking. To bound the number

of times a literal is executed, we need to know the number of solutions each literal

(to its left) can generate. Using the information provided by cardinality analysis,

the number of times a literal is executed is at most the product of the upper bound

on the number of solutions, sU , of all the previous literals in the clause. We get:

rU,clause (p(x̄) :− q1(x̄1), . . . , qn(x̄n))

≤ ϕ(p(x̄)) +
∑n
i=1

(∏i−1
j=1 spred(qj(x̄j))

)
(ω(qi(x̄i)) + rU,pred(qi(x̄i)))

• Also, in logic programming more than one clause may unify with a given subgoal. In

that case it is incorrect to take the maximum of the resource usages of each clause

when setting up the recurrence equations (whereas this was valid in size analysis).

A correct solution is to take the sum of every set of equations with a common

domain, but the bound becomes then very rough. Finer-grained possibilities can

be considered by using different aggregation procedures per resource.

Lower bounds analysis is similar, but needs to take into account the possibility of

failure, which stops clause execution and forces backtracking. Basically, no resource usage

should be added beyond the point where failure may happen. For this reason, in our

implementation we use the non-failure analysis already present in CiaoPP. Also, the

aggregation of clauses with a common domain must be different to that used in the upper

bounds case. The simplest solution is to just take the minimum of the clauses. However,

this again leads to very rough bounds. We will discuss lower bound aggregation later.

Cardinality Analysis. We have already discussed why cardinality analysis (which es-

timates bounds on the number of solutions) is instrumental in resource analysis of logic

programs. We can consider the number of solutions as another resource, but, due to its

importance, we treat it separately.

An upper bound on the number of solutions of a single clause could be gathered by

multiplying the number of solutions of its body literals:

sU,clause (p(x̄) :− q1(x̄1), . . . , qn(x̄n)) =
∏n
i=1 sU,pred(qi(x̄i))

For aggregation we need to add the equations with a common domain, to get a recurrence

equation system. These equations will be solved later to get a closed form function giving

an upper bound on the number of solutions.

It is important to remark that many improvements can be added to this simple car-

dinality analysis to make it more precise. Some of them are discussed in (Debray and

Lin 1993), like maintaining separate bounds for the relation defined by the predicate and

the number of solutions for a particular input, or dealing with mutually exclusive clauses

by performing the max operation, instead of the addition operation when aggregating.

However, our focus here is the definition of an abstract domain, and see whether a simple

definition produces comparable results for the resource usage analysis.

One of the improvements we decided to include is the use of the determinacy analysis

present in CiaoPP (López-Garćıa et al. 2010). If such analysis infers that a predicate is

deterministic, we can safely set the upper bound for the number of solutions to 1.

In the case of lower bounds, we need to know for each clause whether it may fail or

not. For that reason we use the non-failure analysis already present in CiaoPP (Bueno

et al. 2004). In case of a possible failure, the lower bound on cardinality is set to 0.
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The Abstract Elements. Within the PLAI abstract interpretation framework (Muthuku-

mar and Hermenegildo 1992; Puebla and Hermenegildo 1996) an analysis is defined by

the abstract elements involved in it and a set of operations. We refer the reader to the

Appendix A for an overview of the overall framework. In our case, the abstract elements

are derived from sized type analysis by adding some extra components. In particular:

1. The current variable for solutions, and current variable for each resource.

2. A boolean element for telling whether we have already found a failing literal.

3. An abstract element from the non-failure domain.

4. An abstract element encoding information about determinacy.

We will denote the abstract elements by 〈(sL, sU ), vresources, failed?, d, r, nf, det〉 where

(sL, sU ) are the lower and upper bound variables for the number of solutions, vresources
is a set of pairs (rL, rU ) giving the lower and upper bound variables for each resource,

failed? is a boolean element (true or false), d and r are defined as in the sized type

abstract domain, and nf and det can take values not fails/fails and non det/is det

respectively, as explained in (López-Garćıa et al. 2010; Bueno et al. 2004). Appendix B

gives some more details of the domain.

We assume that we are given the definition of a set of resources, which are fixed

throughout the whole analysis process. We assume that for each resource r we have: its

head cost, ϕr, which takes a clause head as parameter; its literal cost, ωr, which takes

a literal as parameter; its aggregation procedure, Γr, which takes the equations for each

of the clauses and creates a new set of recurrence equations from them; and the default

upper ⊥r,U and lower ⊥r,L bound on resource usage.

To better understand how the domain works, we will continue with the analysis of

listfact that we started in the previous section. We assume that the only resource to

be analyzed is the “number of resolution steps,” which uses the following parameters:

ϕ = 1, ω = 0, Γr = +, (⊥L,⊥U ) = (0, 0)

The v, t Operations and the ⊥ Element. We do not have a decidable definition for

v or t, because there is no general algorithm for checking the inclusion or union of sets

of integers defined by recurrence relations. Instead, for the inequation components we

just check whether one is a subset of another one, up to variable renaming, or perform a

syntactic union of the inequations. The ordering is finished by taking the product order

with the non-failure and determinacy parts. This is enough for having a correct analysis.

For the bottom element, ⊥, we first generate new variables for each of the resources and

the solution. Then, we add relations between them and the default cost for each resource.

For an unknown predicate, the number of solutions should be [0,∞) and it may fail. For

example, the bottom element for the “number of resolution steps” resource will be:

〈(sL, sU ), {(nL, nU )}, true, ∅, {(sL, sU ) ≶ (0,∞), (nL, nU ) ≶ (0, 0)}, fails, non det〉
where fails and non det are the bottom elements of their respective domains.

The λcall to βentry Operation. In this operation we need to create the initial structures

for handling the bounds on the number of solutions and resources. This implies the

generation of fresh variables for each of them, and setting them to their initial values. In

the case of the number of solutions, the initial value is 1 (which is the number of solutions
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generated by a fact). For a resource r, the initial value is exactly ϕr. We will name new

fresh variables by adding an integer subscript. For example, sL,1,1 will be the first fresh

variable related to the lower bound on solutions on first clause.

The addition of constraints over sized types when the head arguments are partially

instantiated is inherited from the sized types domain. Finally, for the failed? component,

we should start with value false, as no literal has been executed yet, so it cannot fail.

In the listfact example, the entry substitutions are:

βentry,1 =

〈
(sL,1,1, sU,1,1), {(nL,1,1, nU,1,1)}, false, {α1 = 0, β1 = 0},

{(sL,1,1, sU,1,1) ≶ (1, 1), (nL,1,1, nU,1,1) ≶ (1, 1)}, not fails, is det

〉

βentry,2 =

〈
(sL,2,1, sU,2,1), {(nL,2,1, nU,2,1)}, false, {α1 > 0, β1 > 0},

{(sL,2,1, sU,2,1) ≶ (1, 1), (nL,2,1, nU,2,1) ≶ (1, 1)}, not fails, is det

〉

The Extend Operation. In the extend operation we get both the current abstract sub-

stitution and the substitution from the literal call. We need to update several components

of the abstract element. First of all, we need to include a call to the function giving the

number of solutions and the resource usage from the called literal.

Afterwards, we need to generate new variables for the number of solutions and re-

sources, which will hold the bounds for the clause up to that point. New relations must

be added to the abstract element to give a value to those new variables:

• For the number of solutions, let sU,c be the new upper bound variable, sU,p the

previous variable defining an upper bound on the number of solutions, and sU,λ an

upper bound on the number of solutions for the subgoal. Then we need to include

a constraint: sU,c ≤ sU,p × sU,λ.

In the case of lower bound analysis, there are two phases. First of all, we check

whether the called literal can fail, looking at the output of the non-failure analysis. If

it is possible for it to fail, we update the failed? component of the abstract element

to true. If after this checking the failed? component is still false (meaning that

neither this literal nor any of the previous ones may fail) we include a relation

similar to the one for the upper bound case: sL,c ≥ sL,p × sL,λ. Otherwise, we

include the relation sL,c ≥ 0, because failing predicates produce no solutions.

• The approach for resources is similar. Let rU,c be the new upper bound variable,

rU,p the previous variable defining an upper bound on that resource and rU,λ an

upper bound on resources from the analysis of the literal. The relation added in

this case is rU,c ≤ rU,p + sU,p × (ω + rU,λ).

For lower bounds, we have already updated the failed? component, so we only

have to work in consequence. If the component is still false, we add a new relation

similar to the one for upper bounds. If it is true, it means that failure may happen

at some point, so we do not have to add that resource any more. Thus the relation

to be included is rL,c ≥ rL,p.
In our example, consider the extension of listfact after performing the analysis of the

fact literal, whose resource components of the abstract element will be:
〈

(sL, sU ), {(nL, nU )}, false, {α, β ≥ 0}
{(sL, sU ) ≶ (1, 1), (nL, nU ) ≶ (α, β)}, not fails, is det

〉
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This literal is known not to fail, so we do not change the value of failed? in our abstract

element for the second clause. That means that it is still false, so we add complete calls:

βentry,2 =

〈 (sL,2,2, sU,2,2), {(nL,2,2, nU,2,2)}, false, {. . . }



. . . ,
(sL,2,2, sU,2,2) ≶ (1× sL,2,1, 1× sU,2,1),

(nL,2,2, nU,2,2) ≶ (γ1 + nL,2,1, δ1 + nU,2,1)



 ,

not fails, is det

〉

The βexit to λ′ Operation. After all the extend operations, the variables appearing

in the number of solutions and resources positions will hold the correct value for their

properties. As we did with sized types, we follow now a normalization step, based on

(Debray and Lin 1993): replace each variable appearing in an expression with its definition

in terms of other variables, in reverse topological order. Following this process, we should

reach the variables in the sized types of the input parameters in the head.

Going back to listfact, the final substitutions are as follows. s′L, s
′
U , n

′
L and n′U refer

to number of solutions and resolution steps from the recursive call to listfact.

λ′1 =

〈
(sL,1,1, sU,1,1), {(nL,1,1, nU,1,1)}, false, {α1 = 0, β1 = 0},

{(sL,1,1, sU,1,1) ≶ (1, 1), (nL,1,1, nU,1,1) ≶ (1, 1)}, not fails, is det

〉

λ′entry,2 =

〈
(sL,2,3, sU,2,3), {(nL,2,3, nU,2,3)}, false, {α1 > 0, β1 > 0},




sL,2,3 ≥ 1× s′L(ln(α1−1,β1−1)(n(γ1,δ1))),

sU,2,3 ≤ 1× s′U (ln(α1−1,β1−1)(n(γ1,δ1))),

nL,2,3 ≥ γ1 + n′L(ln(α1−1,β1−1)(n(γ1,δ1))),

nU,2,3 ≤ δ1 + n′U (ln(α1−1,β1−1)(n(γ1,δ1)))




,

not fails, is det

〉

The Widening Operator ∇ and Closed Forms. As mentioned before, in contrast

to previous cost analyses, at this point we bring in the possibility of different aggregation

operators. Thus, when we have the equations, we need to pass them to each of the

corresponding Γr per each resource r to get the final equations.

This process can be further refined in the case of solution analysis, using the informa-

tion from the non-failure and determinacy analyses. If the final output of the non-failure

analysis is fails, we know that the only correct lower bound is 0. So we can just assign

the relation sL ≥ 0 without further relations. Conversely, if the final output of the de-

terminacy analysis is is det, we can safely set the relation sU ≤ 1, because at most one

solution will be produced in each case. Furthermore, we can refine the lower bound on

the number of solutions with the minimum between the current bound and 1.

In the example analyzed above there was an implicit assumption while setting up the

relations: that the recursive call in the body of listfact refers to the same predicate

call, so we can set up a recurrence. This fact is implicitly assumed in Hindley-Milner type

systems. But in logic programming it is usual for a predicate to be called with different

patterns (for example, modes). Fortunately, the CiaoPP framework allows multivariance

(support for different call patterns of the same predicate). For the analysis to handle it,

we cannot just add calls with the bare name of the predicate, because it will conflate all

the versions. The solution is to add a new component to the abstract element: a random

name given to the specific instance of the predicate, and generated in the λcall to βentry.

In the widening step, all different versions of the same predicate are conflated.
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Even though the analysis works with relations, these are not as useful as functions

defined without recursion or calls to other functions. First of all, developers will get a

better idea of the sizes presented in such a closed form. Second, functions are amenable

to comparison as outlined in (López-Garćıa et al. 2010), which is essential in verification.

There are several packages able to get bounds for recurrence equations: computer algebra

systems, such as Mathematica (which has been integrated to get a fully automated anal-

ysis) or Maxima; and specialized solvers such as PURRS (Bagnara et al. 2005) or PUBS

(Albert et al. 2011). In our implementation we apply this overapproximation operator

after each widening. For our example, the final abstract substitution is:

λ′1∇λ′2 =

〈
(sL, sU ), {(nL, nU )}, false, {α1, β1 ≥ 0},

{(sL, sU ) ≶ (1, 1), (nL, nU ) ≶ (α1γ1, β1δ1)} , not fails, is det

〉

Table 1. Experimental results.

Program Resource A. (LB) Resource A. (UB) A. Times (s)
New Prev. New Prev. RAML New Prev.

append α α = β β = β = 0.999 0.530
appendAll2 a1a2a3 a1 + b1b2b3 ∞ + b1b2b3 = 2.408 0.668
coupled µ 0 + ν ∞ + ν = 1.365 0.644
dyade α1α2 α1α2 = β1β2 β1β2 = β1β2 = 1.658 0.620
erathos α α = β2 β2 = β2 = 2.251 0.772
fib φµ φµ = φν φν = infeasible + 1.064 0.671
hanoi 1 0 + 2ν ∞ + infeasible + 0.819 0.603
isort α2 α2 = β2 β2 = β2 = 1.675 0.617
isortlist a21 a21 = b21b2 ∞ + b21b2 = 2.546 0.669
listfact αγ α + βδ ∞ + unknown ? 1.387 0.644
listnum µ µ = ν ν = unknown ? 1.189 0.581
minsort α2 α + β2 β2 = β2 = 1.938 0.671
nub a1 a1 = b21b2 ∞ + b21b2 = 3.614 0.910
partition α α = β β = β = 1.698 0.647
zip3 min(αi) 0 + min(βi) ∞ + β3 + 2.484 0.570

5 Experimental results

We have constructed a prototype implementation in Ciao by defining the abstract opera-

tions for sized type and resource analysis that we have described and plugging them into

CiaoPP’s PLAI. Our objective is to assess the gains in precision in resource analysis.

Table 1 shows the results of the comparison between the new lower (LB) and upper

bound (UB) resource analyses implemented in CiaoPP, which also use the new size

analysis (columns New), and the previous resource analyses in CiaoPP (Debray and Lin

1993; Debray et al. 1997; Navas et al. 2007) (columns Prev.). We also compare (for upper

bounds) with RAML (Hoffmann et al. 2012). Although the new resource analysis and the

previous one infer concrete resource usage bound functions, for the sake of conciseness

and to make the comparison with RAML meaningful, Table 1 only shows the complexity

orders of such functions, e.g., if the analysis infers the resource usage bound function

Φ, and Φ ∈ Θ(Ψ), Table 1 shows Ψ. The parameters of such functions are (lower or

upper) bounds on input data sizes. The symbols used to name such parameters have
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been chosen assuming that lists of numbers Li have size ln(αi,βi)(n(γi,δi)), lists of lists of

lists of numbers have size llln(a1,b1)(lln(a2,b2)(ln(a3,b3)(n(a4,b4)))), and numbers have size

n(µ,ν). The calling modes are the usual ones with the last argument as output.

Table 1 includes columns with symbols summarizing whether the new CiaoPP resource

analysis improves on the previous one and RAML’s: + (resp. −) indicates more (resp.

less) precise bounds, and = the same. The new resource analysis improves on CiaoPP’s

previous analysis. Moreover, RAML can only infer polynomial costs, while our approach

is able to infer other types of functions, as shown for the divide-and-conquer bench-

marks hanoi and fib, which represent a common class of programs. For predicates with

polynomial cost, we get equal or better results than RAML.

The last two columns show the times (in seconds) required by both lower and upper

bound analysis together for the new resource analysis, and for the previous resource

analysis in CiaoPP (Ciao/CiaoPP version 1.15-2124-ga588643, on an Intel Core i7 2.4

GHz, 8 GB 1333 MHz DDR3 memory, running MAC OS X Lion 10.7.5). These times

include also the auxiliary non-determinism and failure analyses. The resulting times are

encouraging, despite the currently relatively inefficient implementation of the interface

with the Mathematica system which is used for solving recurrence equations.

6 Related work

Several other analyses for resources have been proposed in the literature. Some of them

just focus on one particular resource (usually execution or heap consumption), but it

seems clear that they could be generalized. We already mentioned RAML (Hoffmann

et al. 2012) in Section 5. Their approach differs from ours in the theoretical framework

being used: RAML uses a type and effect system, whereas we use abstract interpretation.

Another difference is the use of polynomials in RAML, which allows a complete method

of resolution but limits the type of closed forms that can be analyzed. In contrast, we use

recurrence equations, which have no complete decision procedure, but encompass a much

larger class of functions. Type systems are also used to guide inference in (Grobauer 2001)

and (Igarashi and Kobayashi 2002). In (Nielson et al. 2002), the authors use sparsity in-

formation to infer asymptotic complexities, instead of recurrences. Similarly to CiaoPP’s

previous analysis, the approach of (Albert et al. 2011) applies the recurrence equation

method directly (i.e., not within an abstract interpretation framework). (Rosendahl 1989)

shows a complexity analysis based on abstract interpretation over a step-counting ver-

sion of functional programs. (Giesl et al. 2012) uses symbolic evaluation graphs to derive

termination and complexity properties.

7 Conclusions

We have presented a new formulation of resource analysis as a domain within abstract

interpretation and which uses as input information the sized types that we developed

in (Serrano et al. 2013). Our approach overcomes important limitations of existing re-

source analyses and enhances their precision. It also benefits from an easier implementa-

tion and integration within an abstract interpretation framework such as PLAI/CiaoPP,

which brings in useful features such as multivariance for free. Finally, the results of our

experimental assessment regarding accuracy and efficiency are quite encouraging.
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Appendix A The Abstract Interpretation Framework

Abstract interpretation (Cousot and Cousot 1992) is a framework for static analysis.

Execution of the program on a concrete domain is simulated in an abstract domain,

simpler than the former one. Both domains must be lattices, 〈P(Σ),⊆〉 and 〈∆,v〉. To

go from one to another we use a pair of functions, called abstraction α : P(Σ)→ ∆ and

concretization γ : ∆→ P(Σ), which should form a Galois connection:

〈P(Σ),⊆〉 −−−→←−−−α
γ 〈∆,v〉 if and only if α(x) v y ⇐⇒ x ⊆ γ(y)

Intuitively α(σ) generates the smallest element in ∆ that contains all the elements in σ,

and γ(δ) computes all the concrete elements represented by δ.

The methodology is very general, so we focus specifically on the generic and-or

trees procedure of (Bruynooghe 1991), with the optimizations of (Muthukumar and

Hermenegildo 1992). This procedure is generic in the sense that it separates the ab-

straction of program execution flow (the and-or trees), from other (mainly data-related)

abstractions, which are encoded as one or more abstract domains. It is also goal depen-

dent: it takes as input a pair (L, λc) representing a predicate along with an abstraction

of the call patterns (in the chosen abstract domain) and produces an abstraction λo
which overapproximates the possible outputs, as well as all different call/success pattern

pairs for all called predicates in all paths in the program and the corresponding abstract

information at all other program points. This procedure is the basis of the PLAI ab-

stract analyzer found in CiaoPP (Hermenegildo et al. 2012), where we have integrated

a working implementation of the proposed resource analysis. In PLAI, abstract domains

are pluggable units which need to define implementations of v, least upper bound (t),

bottom (⊥), and a number of other operations related to predicate calls and successes.

For any clause h :− q1, . . . , qn., let λi and λi+1 be the abstract substitutions to the

left and to the right of literal qi, and λcall i and λsuccess i their projections onto the

variables of qi respectively. λ1 and λn+1 are the entry and exit substitutions of the

clause respectively, denoted also as βentry and βexit. We can show this graphically as

follows:

λcall p λsuccess

β1,entry h1 β1,exit . . . βm,entry hm βm,exit

βentry h βexit

λ1 p1 λ2 . . . λn pn λn+1

To compute λsuccess from λcall of a generic (sub)goal p(x̄) with predicate p:

1. Generate a βentry i from λcall for each of the m clauses Ci defining the predicate

p. This transfers the unification of the subgoal and head variables into ∆.

2. For each clause Ci, compute βexit i from βentry i, and then project βexit i back

again onto the subgoal variables, obtaining λ′i.

3. Aggregate all the exit substitutions using the least upper bound, λsuccess =
m⊔
i=1

λ′i.

Computing βexit from βentry is straightforward: set βentry as λ1. Then, project it onto

the variables appearing in the call to the first literal q1, obtaining λcall 1 for q1, and

compute λsuccess 1 from it using the procedure mentioned above. Now λ1 is integrated

with this success substitution, referred to as extending λ1 with λsuccess 1. The result is
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set as λ2, for which the same series of steps is performed with respect to the second

literal q2. The process continues until λn+1 is obtained, which is actually βexit.

In the process, more than one call substitution may appear for the same predicate.

This is called multivariance of predicates. Furthermore, if the predicate is recursive, a

fixpoint needs to be computed. To do so, the process above is iterated starting from

the bottom element of the lattice, ⊥. (Muthukumar and Hermenegildo 1992; Puebla and

Hermenegildo 1996) describe performant algorithms for this purpose, which are imple-

mented in CiaoPP.

Appendix B The Abstract Elements, Redux

Because of space constraints, in the main part of the paper the concrete and abstract

domains have not been described in full. In this section we aim to give a more precise

definition of both elements within the framework of abstract interpretation.

In the concrete domain, the resource usage of a predicate p with respect to a set

of resources ri is given by a set of triples (t, s, rp,i), where t is a tuple of terms. The

interpretation of such set is that for a call to p with arguments bound to t, the number

of solutions is exactly s and the resource usage of each ri is exactly rp,i. Note that s and

rp,i are actual values, not equations or recurrences. The resource usage is computed by

adding the head cost at the point of entering a clause and the literal cost at the point

of calling a literal in the body, using the usual SLD resolution semantics. This definition

follows closely the one in (López-Garćıa et al. 2010), but extended to support several

resources and cardinality.

Let dom(e) be the set of tuples of terms t for which a concrete element e has information

over its resource usage. We define e vc e′ if and only if dom(e) ⊆ dom(e′) and for each

t ∈ dom(e), (p(t), s, rU,i) = (p(t), s′, r′U,i). That is, the set of terms of the smaller element

must be a subset of the larger one, and the cardinality and resource usage must coincide

in the common part of their domains.

This concrete domain is abstracted in three different ways, to get a compound domain.

Two of them have already been discussed in the literature: the non-failure and determi-

nacy analyses. Those components of the abstract domain correspond to abstracting the

set of elements t using a regular type abstract domain and then summarizing for those

elements whether s = 0 or s > 0 (for the non-failure domain) and whether s = 1 or

s 6= 1 (for the determinacy one). The failed? component of the abstract elements follows

closely the non-failure analysis, keeping different information during the analysis, but

with the same result.

For the recurrences part, we perform several abstractions. First of all, we move from

strict values for the number of solutions and resource usage to value bounds. Thus, the

elements are sets of triples (t, (sL, sU ), (rL,i, rU,i)). The ordering is now given by:

e v1 e
′ ⇐⇒ dom(e) ⊆ dom(e′)

and for each t ∈ dom(e), (sL, sU ) ⊆ (s′L, s
′
U ) and (rL,i, rU,i) ⊆ (r′L,i, r

′
U,i)

The abstraction function in this case is very simple, we just need to send each value to

an interval with it as only point:

α1({(t, s, rp,i)}t) = {(t, (s, s), (rp,i, rp,i))}t
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The second abstraction involves summarizing the domain of each α1(e) using the sized

types abstract domain. As discussed in (Serrano et al. 2013), a set of terms is described

via sized types using sized type schemas along with a domain d which tells which are the

values of the bound variables which are covered by the abstract element, and a set of

recurrences r which defines the relations that bound variables must satisfy between them.

When adding resource usage information, apart from the bounds from sized types we can

refer to new variables: sL and sU refer to the upper and lower bound in the number of

solutions, and vresources contains such variables for each resource in the system.

In this case, it is easier to give the concretization function to move from an abstract

element e to one in the intermediate abstract domain:

γ2(〈d, (sL, sU ), vres, r)〉) =
⋃

t∈ γsized types(〈d,r〉)
(t, bound(sL,sU )(t, r), boundvres(t, r))

where boundv(t, r) returns the upper and lower numerical bounds for the variables v as

given in the recurrences r for the tuple of values t. In few words, γ2 takes all the possible

tuples of values given by the sized type we refer to, and computes the cardinality and

resource usage of each of them as given by the recurrence equations.

The intermediate domain and this concretization function allows us to define an or-

dering v in the abstract elements. But, as stated in the main part of the paper, doing so

would entail knowing whether some recurrences define a set that is larger or smaller than

another one. This is an undecidable problem, and thus we need to resort to other checks

which, while being correct, are not complete. In our case, we chose to use a syntactic

check.

From α1 we can obtain the corresponding concretization function γ1, and from γ2 we

can do the same to obtain an α2. By composition we obtain the abstraction αr = α2 ·α1

and concretization γr = γ1 · γ2 functions that define the Galois connection between

concrete resource usage triples and the abstract domain of recurrence equations.

As stated before, our complete abstract elements:

〈(sL, sU ), vresources, failed?, d, r, nf, det〉

are the combination of that given by 〈αr, γr〉 with those of non-failure (which give the

failed? and nf components) and determinism (which gives the det component), which

abstract information about s over all possible values. For an abstract element a to be

smaller than b, it must be smaller in all of the three domains at the same time.
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ABSTRACT
The static estimation of the energy consumed by program
executions is an important challenge, which has applications
in program optimization and verification, and is instrumen-
tal in energy-aware software development. Our objective is
to estimate such energy consumption as functions on the
input data sizes of programs. We build on our previously
developed analysis which is based on transforming the as-
sembly code corresponding to a given program into a Horn
Clause representation that is supplied, together with an en-
ergy model of individual assembly instructions, to an exist-
ing resource analysis tool. In this work we aim at increasing
the power of the energy analysis by transforming and ana-
lyzing instead the intermediate compiler representation (in
particular, the LLVM IR) in order to take advantage of the
program information present at this level, often needed by
the analysis. To this end, we use the same energy model de-
fined at the assembly level, together with a mapping mecha-
nism for propagating this energy model up to the LLVM IR
level. The approach has been applied to programs written in
the XC language running on XCore architectures, but is gen-
eral enough to be applied to other languages. Experimental
results show that our LLVM IR level analysis is reasonably
accurate and more powerful than our previous analysis at
the assembly level.

1. INTRODUCTION
Energy consumption and the environmental impact of com-

puting technologies have become a major worldwide con-
cern. It is a major issue in high-performance computing,
distributed applications, and data centers. There is also in-
creased demand for complex computing systems which have
to operate on batteries, such as implantable/portable med-
ical devices or mobile phones. Despite advances in power-
efficient hardware, more energy savings can be achieved by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

improving the way current software technologies make use
of such hardware.

The process of developing energy-efficient software can
benefit greatly from static analyses that estimate the energy
consumed by program executions without actually running
them. Such estimations can be used for different applica-
tions, such as performing automatic optimizations, verify-
ing energy-related specifications, and helping system devel-
opers to better understand the impact of their designs on
energy consumption. These applications usually operate at
the source code level. On the other hand, energy consump-
tion analysis must typically be performed at lower levels in
order to take into account the effect of compiler optimiza-
tions, which make it difficult or impossible to find precise
enough mappings between segments of the source code and
segments of the code actually executed. Thus, some mecha-
nism is required to propagate the information about the en-
ergy consumed at the hardware level up to the source code
level. Moreover, the inference of energy consumption infor-
mation for lower levels such as the Instruction Set Architec-
ture (ISA) or intermediate compiler representations (such as
LLVM IR [17]) is also fundamental for two reasons: 1) It is
an intermediate step that allows easy propagation of energy
consumption information from such lower levels up to the
source code level; and 2) it enables optimizations or other
applications at the ISA and LLVM IR levels. It is also de-
sirable that the static analysis handle (or at least, be easily
adaptable to) different programming languages in the same
framework.

In this paper we propose a static analysis system that in-
fers energy consumption information at the ISA, LLVM IR,
and source code levels, and provides this information in the
form of functions on input data sizes. The results of anal-
ysis are expressed by means of assertions that are inserted
in the program representation at each of these levels. The
user (i.e., the energy-efficient software developer) can cus-
tomize the system by selecting the levels for which energy
information will be inferred. As we will show, such selection
has an impact on the analysis accuracy and on the class of
programs that can be analyzed.

To show the feasibility of our approach, in this paper we
focus on the energy analysis of programs written in XC [28]
running on the XMOS XS1-L architecture. XC is a high-
level C-based programming language that includes exten-
sions for concurrency, communication, input/output opera-
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Figure 1: Overview of the analysis/modeling level choices.

tions, and real-time behavior. However, our ideas are gen-
eral enough to be applied to the analysis of other program-
ming languages (and associated lower level program repre-
sentations) and architectures as well.

The requirement of supporting different programming lan-
guages and different program representations at different
levels of compilation (e.g., LLVM IR and ISA) in the same
framework leads us to differentiate between the input lan-
guage (which can be XC source, LLVM IR, or ISA) and
the intermediate semantic program representation that the
resource analysis takes as input. The latter is a series of
connected code blocks, represented by Horn Clauses, that
we will refer to as “HC IR” from now on. The approach
we propose is based on performing a transformation from
each input language into the HC IR and passing it to the
CiaoPP [12] resource analyzer. This analyzer deals with the
HC IR always in the same way, independently of where it
comes from, inferring energy consumption information for all
procedures in the HC IR program. The main reason for chos-
ing Horn Clauses as the intermediate representation is that
it offers a good number of features that make it very conve-
nient for the analysis [19]. For instance, it supports naturally
Static Single Assignment (SSA) and recursive forms, as will
be explained later. Moreover, many tools are available that
use Horn Clauses as intermediate representation for anal-
ysis, including the above-mentioned CiaoPP analyzer that
we have extended and used in this paper. In fact, currently,
there is a trend to use Horn Clause programs as intermediate
representation in analysis and verification tools [2].

In our approach the HC IR also includes an energy model,
represented by means of trust assertions (see [13] and its
references for a description of the Ciao assertion language).
The role of the energy model is to express the effect, in terms
of energy consumption, of the execution of a software seg-

ment (e.g., an assembly instruction) on the hardware. Such
information is required by the analyzer, which propagates it
during the static analysis of a program (expressed in the HC
IR) through code segments, conditionals, loops, recursions,
etc., in order to infer information (the analysis results) for
higher-level entities such as functions or procedures in the
program.

In principle, analysis can be performed (and the energy
models defined) at any language level, e.g., XC source, LLVM
IR, ISA, etc. Performing the analysis of a program at a given
level means that it is the representation of the program at
that level that is transformed into the HC IR, and it is the
execution of the program instructions at that level that the
analyzer “mimics” according to the semantics of interest, in-
ferring information (in our case, energy) also for that level.
The energy model provides basic information on the energy
cost of instructions (in principle, also at the same level) that
the analysis will just trust. It is also possible to reflect the
analysis results upwards to a higher level after analysis. For
example, inferring energy consumption for XC source pro-
grams can also be achieved by analyzing the corresponding
ISA or LLVM IR programs (as generated using the XC com-
piler tool, XCC) and mapping the results back to the source
code. Furthermore, it is also possible to perform analysis at
a given level with an energy model for a lower level. In this
case the energy model must somehow be reflected up to the
analysis level.

Our hypothesis is that going down through the hierarchy
of levels will affect the accuracy of the energy models and
the precision of the analysis in opposite ways: energy models
at lower levels (e.g., at the ISA level) will be more precise
than at higher levels (e.g., XC source code), since the closer
to the hardware, the easier it is to determine the effect of
the execution on the hardware. However, at lower levels
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Figure 2: An overview of the analysis at the LLVM IR level using ISA models.

more program structure and data type/shape information
is lost due to lower-level representations, and we expect a
corresponding loss of accuracy (and restricted scalability) in
the analysis. This analysis/modeling level trade-off is illus-
trated in Figure 1. The possible choices are classified into
two groups: those that analyze and model at the same level,
and those that operate at different levels. For the latter,
the problem is finding good mappings between software seg-
ments from the level at which the model is defined up to the
level at which the analysis is performed, in a way that does
not lose accuracy in the energy information.

In [18], we explored the choice of analysing the generated
ISA program using models defined at the ISA level that ex-
press the energy consumed by the execution of individual
ISA instructions [15] (choice 1). We showed that precise en-
ergy models can be constructed at the ISA level (because of
its proximity to the hardware), which when used in the static
analysis resulted in reasonably accurate energy consumption
estimations for some programs. However, we also experi-
enced that due to the loss of information related to program
structure and types of arguments at the ISA level, the power
of the analysis was limited, identifying some classes of pro-
grams that could not be analyzed.

In this paper we explore an alternative approach: the anal-
ysis of the generated LLVM IR (which preserves much more
of the program information needed by the analyzer) using
the same ISA-level energy model [15], together with tech-
niques that map segments of ISA instructions to LLVM IR
blocks [10] (choice 2). This mapping is used to propagate
the energy model information defined at the ISA level up to
the level at which the analysis is performed, the LLVM IR
level. In order to complete the LLVM IR-level analysis, we
have also developed and implemented a transformation from
LLVM IR into HC IR (Constraint Horn Clauses) and used

the CiaoPP resource analyzer. Finally, we have performed
an experimental comparison of the two choices above. Our
results support the idea that choice 2 can be a good compro-
mise within the level hierarchy, since it broadens the class
of programs that can be analyzed without significant loss of
accuracy.

2. OVERVIEW OF THE ANALYSIS AT THE
LLVM IR LEVEL

An overview of the proposed analysis system at the LLVM
IR level using models at the ISA level is depicted in Figure 2.
The system takes as input a source program that can (op-
tionally) contain assertions (used to provide useful hints and
information to the analyzer), from which a Transformation
and Mapping process (dotted red box) generates first its as-
sociated LLVM IR using the xcc compiler. Then, a transfor-
mation from LLVM IR into HC IR is performed (explained in
Section 3) obtaining the intermediate representation (green
box) that is supplied to the CiaoPP analyzer. This represen-
tation includes assertions that express the energy consumed
by the LLVM IR blocks, generated from the information
produced by the mapper tool (as explained in Section 4).
The CiaoPP analyzer (blue box, described in Section 5)
takes the HC IR, together with the assertions which ex-
press the energy consumed by LLVM IR blocks, and possibly
some additional (trusted) information, and processes them,
producing the analysis results, which are expressed also us-
ing assertions. The procedural interpretation of these HC
IR programs, coupled with the resource-related information
contained in the assertions, together allow the resource anal-
ysis to infer static bounds on the energy consumption of the
HC IR programs that are applicable to the original LLVM
IR and, hence, to their corresponding XC programs. The



analysis results include energy consumption information ex-
pressed as functions on data sizes for the whole program and
for all the procedures and functions in it. Such results are
then processed by the CiaoPP printer (purple box) which
is in charge of showing the information to the program de-
veloper in a user-friendly format.

3. LLVM IR TO HC IR TRANSFORMATION
In this section we describe the LLVM IR to HC IR trans-

formation that we have developed in order to achieve the
complete analysis system at the LLVM IR level proposed in
the paper (as already mentioned in the overview given in
Section 2 and depicted in Figure 2).

The HC IR representation consists of a sequence of blocks
where each block is represented as a Horn clause:

< block id > (< params >) :− S1, . . . , Sn.
Each block has an entry point, that we call the head of the
block (to the left of the :− symbol), with a number of pa-
rameters < params >, and a sequence of steps (the body,
to the right of the :− symbol). Each of these Si steps
(or literals) is either (the representation of) an LLVM IR
instruction, or a call to another (or the same) block. The
analyzer deals with the HC IR always in the same way, in-
dependently of its origin. The transformation ensures that
the program information relevant to resource usage is pre-
served, so that the energy consumption functions of the HC
IR programs inferred by the resource analysis are applicable
to the original LLVM IR programs.

The transformation also generates on the fly energy mod-
els for the LLVM IR level for different programs based on
the ISA/LLVM IR mapping information, as explained in
Section 4. Furthermore it translates assertions in the XC
source code into the HC IR.

LLVM IR programs are expressed using typed assembly-
like instructions. Each function is in SSA form, represented
as a sequence of basic blocks. Each basic block is a sequence
of LLVM IR instructions that are guaranteed to be executed
in the same order. Each block ends in either a branching or
a return instruction. In order to represent each of the basic
blocks of the LLVM IR in the HC IR, we follow a similar
approach as in our previous ISA-level transformation [18].
However, the LLVM IR includes an additional type trans-
formation as well as better memory modeling. The main
aspects of this process are the following:

1. Infer input/output parameters to each block, removing
the need for φ (phi) nodes.

2. Transform LLVM IR types into HC IR types.

3. Represent each LLVM IR block as an HC IR block and
each instruction in the block as a literal (Si).

4. Resolve branching to multiple clauses with the same
block name, where each clause denotes one of the blocks
the branch may jump to.

These steps will be described further in the following 3
sections. The transformation is implemented as an LLVM
pass within the LLVM Pass Framework (LPF), which allows
easily plugging such user-defined transformation passes over
the LLVM IR. It allows us to reuse some of the existing anal-
ysis and transformation passes over the LLVM IR to aid our
transformation and also hopefully makes the implementa-
tion forward compatible as far as LLVM IR is concerned.

3.1 Inferring Block Arguments
As described before, a block in the HC IR has an entry

point (head) with input/output parameters, and a body con-
taining a sequence of instructions (LLVM IR instructions in
this case). Since the scope of the variables in LLVM IR
blocks is at the function level, the blocks are not required to
pass parameters while making jumps to other blocks. Thus,
in order to represent LLVM IR blocks as HC IR blocks, we
need to infer input/output parameters for each block.

The entry block in the LLVM IR is always alloca, where
the program variables are allocated. The input/output ar-
guments to the corresponding HC IR entry block are same
as the input/output arguments to the function under trans-
formation. We define the functions paramin and paramout

which infer input and output parameters to a block. These
are recomputed until a fixpoint is reached.

paramsout(b) = (kill(b) ∪ paramsin(b))

∩
⋃

b′∈next(b)

paramsout(b
′)

paramsin(b) = gen(b) ∪⋃b′∈next(b) paramsin(b′)

where next(b) denotes the set of immediate target blocks
that can be reached from b with a jump instruction, while
gen(k) and kill(k) are the read and written variables in a
block respectively, which are defined as:

kill(b) =
n⋃

k=1

def (k)

gen(b) =
n⋃

k=1

{v | v ∈ ref (k) ∧ ∀(j < k).v /∈ def (j)}

where def (k) and ref (k) denote the variables written or re-
ferred to at a node in the block, respectively.

Note that the LLVM IR is in SSA form at the function
level. This means that blocks may have φ nodes which are
created while transforming the program into SSA form. A
φ node is essentially a function defining a new variable by
selecting one of the multiple instances of the same variable
coming from multiple predecessor blocks:

x = φ(x1, x2, ..., xn)

def and ref for this instruction are {x} and {x1, x2, ..., xn}
respectively. Once the input/output parameters are inferred
for each block, a post-process removes all the φ nodes and
modifies the block input arguments such that it receives x
directly as an input and an appropriate xi is passed by the
call site.

Consider the example in Figure 5, where the LLVM IR
block looptest is defined. The body of the block reads from
2 variables without previously defining them in the same
block. The fixpoint analysis would yield:

paramsin(looptest) = {Arr, I}
which is used to construct the HC IR representation of the
looptest block shown in Figure 6, line 4.

3.2 Translating LLVM IR Types into HC IR
Types

Since LLVM IR is a typed representation, these types
are transformed as well into their counterparts in HC IR.
The LLVM type system defines primitive and derived types.
The primitive types are the fundamental building blocks of



struct mystruct{
int x;
int arr [5];

};

void print( struct mystruct [] Arg , int N)
{

...
}

Figure 3: Example of types in a XC program to be
translated into HC IR.

the type system. Primitive types include label, void, inte-
ger, character, floating point, x86mmx, and metadata. The
x86mmx type represents a value held in an MMX register on
an x86 machine and the metadata type represents embed-
ded metadata. The derived types are created from primitive
types or other derived types. They include array, function,
pointer, structure, vector, opaque. Since XC does not sup-
port pointers nor floating point data types, the LLVM IR
code generated from XC programs uses only a subset of the
LLVM types.

At the HC IR level we use regular types, one of the type
systems supported by CiaoPP. Translating LLVM IR prim-
itive types into regular types is straightforward. The inte-
ger and character types are represented as num, whereas
the label, void, and metadata types are represented as atm
(atoms). LLVM supports several integer types of differing
bit widths. While it is possible to support such types in HC
IR, we currently abstract for simplicity all integers to num.

For derived types, corresponding non-primitive regular
types are constructed during the transformation phase. Sup-
porting non-primitive types is important because it enables
the analysis to infer energy consumption functions that de-
pend on the sizes of internal parts of complex data struc-
tures. For example, the benchmark sum facts (Table 1)
computes the sum of the factorials of the numbers in a list.
The energy function depends not only on the size of the list
(that controls the iteration of the outer loop traversing the
list) but also on the sizes of the elements of the list (that
control the iteration of the inner loop computing the facto-
rial). The array, vector, and structure types are represented
as follows:

array type→ (nested)list(s)
vector type→ (nested)list(s)
structure type→ functor term

Both the array and vector types are represented by the
list type in CiaoPP which is a special case of compound
term. The type of the elements of such lists can be again
a primitive or a derived type. The structure type is repre-
sented by a compound term which is composed of an atom
(called the functor, which gives a name to the structure) and
a number of arguments, which are again either primitive or
derived types. LLVM also introduces pointer types in the
intermediate representation, even if the front-end language
does not support them (as in the case of XC, as mentioned
before). Pointers are used in the pass-by-reference mecha-
nism for arguments, in memory allocations in alloca blocks,
and in memory load and store operations. The types of these
pointer variables in the HC IR are the same as the types of
the data these pointers point to.

:- use_package(regtypes).

:- regtype array1 /1.
array1 := [] | [∼struct|array1 ].

:- regtype struct /1.
struct := mystruct(∼num,∼array2).

:- regtype array2 /1.
array2 := [] | [∼num|array2 ].

Figure 4: Regular type definitions in HC IR.

Consider for example the types in the XC program shown
in Figure 3. The type of argument Arg of the print func-
tion is an array of mystruct elements. mystruct is further
composed of an integer and an array of integers. The LLVM
IR declaration of the function print in Figure 3 is:

define void @print( [0×{i32, [5× i32]}]* noalias nocapture)

The function argument type in the LLVM IR ([0×{i32, [5×
i32]}]) is the typed representation of the argument Arg to
the function in the XC program. It is read as an array of
arbitrary length with elements of {i32, [5 × i32]} structure
type which is further composed of an i32 integer type and a
[5× i32] array type, i.e., 5 elements of i32 integer type.1

This type is represented in the HC IR using the set of reg-
ular types illustrated in Figure 4. The regular type array1,
is a list of struct elements (which can also be simply written
as array1 := list(struct)). Each struct type element is
represented as a functor mystruct/2 where the first argu-
ment is a num and the second is another list type array2.
array2 is defined to be a list of num (which, again, can also
be simply written as array2 := list(num)).

3.3 Transforming LLVM IR Blocks/Instruc-
tions into HC IR

Each function’s body in LLVM IR is defined by a set of
basic blocks which may jump to other blocks. Each function
has an entry and an exit block (exit block only for the ter-
minating functions). A basic block is simply a container of
LLVM IR instructions that execute sequentially. In order to
represent an LLVM IR function by an HC IR function, we
need to represent each LLVM IR block by an HC IR block
(i.e., a Horn clause) and hence each LLVM IR instruction
by an HC IR literal.

Consider the LLVM IR block looptest in Figure 5, it has
3 LLVM IR instructions. The first instruction is a phi (φ)
assignment. The φ instruction assigns either %N or %I1 to
%I based on the predecessor LLVM IR block used to reach
the current block, %alloca and %loopbody respectively. The
second instruction at line 5 is a comparison instruction that
assigns the result of the test “%I 6= 0” to a boolean variable
%Zcmp. The last instruction of the block is a conditional
jump to one of the two blocks defined at lines 8 and 14 based
on the boolean value of the variable %Zcmp.

In Figure 6, the block looptest is represented as an HC IR
block. Each of the LLVM IR instructions is transformed into
an equivalent HC IR literal. The φ instruction is removed
from the HC IR block. The semantics of the φ instruction

1[0× i32] is read as an arbitrary length array of i32 integer
type elements.



1 alloca:

2 br label looptest

3 looptest:

4 %I=phi i32 [%N,% alloca ],[%I1 ,% loopbody]

5 %Zcmp = icmp ne i32 %I, 0

6 br i1 %Zcmp , label %loopbody , label
%loopend

7

8 loopbody:

9 %Elm = getelementptr [0xi32]* %Arr , i32
0, i32 %I

10 ... // process array element ‘Elm ’

11 %I1 = sub i32 %I, 1

12 br label %looptest

13

14 loopend:

15 ret void

Figure 5: LLVM IR blocks example: Array traver-
sal.

1 alloca(N, Arr):-

2 looptest(N, Arr).

3

4 looptest(I, Arr):-

5 icmp_ne(I, 0, Zcmp),

6 loopbody_loopend(Zcmp , ...).

7

8 icmp_ne(X, Y, 1):- X \= Y.

9 icmp_ne(X, Y, 0):- X = Y.

10

11 loopbody_loopend(Zcmp , I, Arr):-

12 Zcmp=1,

13 nth(I, Arr , Elm),

14 ... // process list element ‘Elm ’

15 I1 is I - 1,

16 looptest(I1, Arr).

17

18 loopbody_loopend(Zcmp , I, Arr):-

19 Zcmp =0.

Figure 6: HC IR representation of LLVM IR blocks
in Figure 5

is preserved on the call sites of the looptest (lines 2 and 16).
The call sites alloca and loopbody pass the corresponding
value as an argument to looptest, which is received in I. The
conditional instruction on line 5 in Figure 5 is translated into
a literal icmp ne/3 in Figure 6. The icmp ne/3 predicate is
defined during the transformation to represent the semantics
of the conditional instruction on lines 8 and 9.

The branching instruction at line 6 in Figure 5, which
jumps to one of the two blocks loopbody or loopend based on
the boolean variable Zcmp, is transformed into a call to a
predicate with two clauses. The name of the predicate is the
concatenation of the names of the two LLVM IR blocks. The
two clauses of the predicate on lines 11 and 18 in Figure 6
represent the LLVM IR blocks loopbody and loopend respec-
tively. The test on the conditional variable is placed in both
clauses to preserve the energy consumption semantics of the
conditional jump.

Consider also the memory instruction getelementptr on
line 9 in Figure 5, which accesses an element of an array
%Arr indexed by %I and assigns it to a variable %Elm.

Such a memory instruction is represented by a call to the
library predicate nth/3, when it extracts an element from a
list. However if the getelementptr instruction extracts an el-
ement from a user-defined data type (e.g., a structure) rather
than an array, an abstract predicate is generated and used.
In any case, the effect of the execution of the instructions
represented by those predicates on the energy consumption,
as well as the relationships between the sizes of their input
and output arguments, are described using trust assertions.
These trust assertions are instrumental in the resource usage
analysis. For example, the assertion:

:- trust pred nth(I, L, Elem)
:(num(I), l i s t (L,num), var(Elem))
=> ( num(S), l i s t (L,num), num(Elem),

rsize (S,num(SL,SU)),
rsize (L, l i s t (C, D, num(E, F))),
rsize (Elem , num(E, F)) )
+ (resource(avg , energy , 1215439) ).

indicates that if the nth(I, L, Elem) predicate (represent-
ing the elementptr LLVM IR instruction) is called with I

and L bound to an integer and a list respectively, and Elem

an unbound variable (precondition field “:”), after the suc-
cessful completion of the call (postcondition field“=>”), Elem
is an integer number and the upper and lower bounds on its
size are equal to the upper and lower bounds on the sizes
of the elements of the list L. The sizes of the arguments to
nth/3 are expressed using the property rsize in the asser-
tion language. The upper and lower bounds on the length
of the list L are C and D respectively. Similarly, the lower
and upper bounds on the elements of the list are E and F
respectively, which are specified to be the same for Elem.

4. OBTAINING THE ENERGY CONSUMP-
TION OF LLVM IR BLOCKS

As mentioned before, our approach requires producing as-
sertions that express the energy consumed by each call to
an LLVM IR block (or parts of it) when it is executed. To
this end we take as starting point the energy consumption
information available from the XS1-L ISA Energy Model
(Section 4.1) and use a mapper tool to reflect it up to the
LLVM IR level (Section 4.2).

4.1 XS1-L ISA Energy Model
An ISA energy model characterises the energy consump-

tion of a processor based on observation of the sequence of
instructions executed by the processor and a representation
of how the processor behaves given this sequence. This can
be achieved at various levels, from gate or transistor level
simulation of the device [5], up to empirical measurement of
real hardware, with trade-offs in speed of simulation/mea-
surement, accuracy and access to required processor infor-
mation. In the case of the XS1-L energy model, the proces-
sor is characterised using empirical measurements obtained
from a series of tests.

The simplest form of ISA modelling from empirical mea-
surement, demonstrated by [26], attempts to capture three
characteristics, the base energy cost of executing an instruc-
tion, the cost of the overhead of switching from one instruc-
tion to the next, and any external effects such as cache ac-
tivity. In Equation 1, this is represented by the base cost,
Bi, for an ISA instruction, i, counted Ni times, the number
of times the instruction is executed. The overhead, Oi,j , of



switching between instructions i and j, and the sum of all
k external effects, Ek, are added to the base cost, resulting
in an energy estimate for the program, Eprog that is repre-
sented as a sequence of instructions.

Eprog =
∑

i∈ISA

(BiNi) +
∑

i,j∈ISA

(Oi,jNi,j) +
∑

k∈ext

Ek (1)

More complex representations of a processor’s behaviour
have been demonstrated in [25], where this style of equation
is extended with additional terms and a larger number of
parameters. For the XS1-L, a similar extension approach is
used to consider two key characteristics of the architecture,
namely its hardware multi-threading and its event-driven
nature. The processor can have idle periods in which no
instructions are executed. The number of active threads
governs how full the pipeline will be. This, in turn, has an
effect on energy consumption beyond simply the sequence of
instructions in a program.

Research into these behaviours and their impact on the
XS1-L’s energy characteristics [15] has produced the model
Equation 2. This equation considers a base power, Pbase

that is separated from instruction execution, and thus can
be counted during a number of idle cycles, Nidle, multiplied
by the cycle time, Tclk, to give the energy cost of idle time.
During instruction execution, sequences of instructions are
considered at the various levels of concurrency (or the num-
ber of active threads), t. Due to multi-threaded interleaved
instructions, the overhead, O, is simplified to a constant, as
the next instruction in the processor’s pipeline may be from
a different thread. The instruction power, Pi, is in addition
to the base power, Pbase, and is multiplied by a concurrency
scaling term, Mt, which is governed by the number of ac-
tive threads, t. Finally, as with idle time, this power figure
is multiplied by the number of times the instruction is exe-
cuted at the concurrency level t, Ni,t and the cycle time, Tclk.
Summing this over all executed instructions and utilised con-
currency levels produces an energy estimate, Eprog.

Eprog = PbaseNidleTclk

+

Nt∑

t=1

∑

i∈ISA

((MtPiO + Pbase)× (Ni,tTclk)) (2)

In cases where a single-threaded program is executed on the
XS1-L, as is the case in this paper, the architecture’s multi-
threaded pipeline must still be considered, but the equation
can be simplified. If there are no idle periods, for example
due to not waiting for inter-thread communication, the equa-
tion can be simplified further. Equation 3 combines these
simplifications, removing the idle component of the previous
equation and considering only one concurrency level, t = 1.

Eprog =
∑

i∈ISA

((M1PiO + Pbase)× (NiTclk)) (3)

In the experiments performed in this paper, with single-
threaded programs, an energy value Ei is assigned to each
instruction i in the ISA. Such value is used to obtain energy
values for LLVM IR blocks, as explained in Section 4.2, and
is related to Equation 3 in the following way:

Ei = (M1PiO + Pbase)× Tclk (4)

The detailed study of the XS1-L architecture, containing a
description of the test and measurement process along with

the construction of the model, is performed in [15].

4.2 Propagating the ISA-level energy model
up to the LLVM IR Level

To enable the analysis at the LLVM IR level, taking an
existing energy model at the ISA level (described in Sec-
tion 4.2) as starting point, a mechanism is needed to prop-
agate the ISA-level energy information up to the LLVM IR
level. A set of mapping techniques serve this purpose by
creating a fine-grained mapping between segments of ISA
instructions and LLVM IR code segments, in order to en-
able the energy characterization of each LLVM IR instruc-
tion in a program. An example of this mapping is shown in
Figure 7.

Figure 7: An example of mapping ISA to LLVM IR
code, obtained by the mapper tool.

Our mapping technique leverages the existing debugging
mechanism in the XMOS compiler tool chain. This mecha-
nism supports the debugging process used by a programmer
to investigate and fix a crashing application or any other
kind of faulty program behavior. The main idea is to find
which ISA instructions correspond to each LLVM IR in-
struction. During the lowering phase of the compilation,
the LLVM IR code is transformed to the specified architec-
ture ISA code by the back-end of the compiler. The debug
information is also stored alongside with the ISA code using
the DWARF standard format [2]. Tracking this information
can result in an n:m relationship between the two levels, be-
cause one source code command can be translated to many
LLVM IR instructions and therefore to many ISA instruc-
tions. This n:m relation is not adequate to provide the static
analysis with precise energy values and there is a clear need
for a more fine-grained mapping.

To address this issue, we created an LLVM pass that tra-
verses the LLVM IR and replaces the Source Location In-
formation with LLVM IR location information, right after
all the optimization passes and just before emitting the ISA
code. In this way, we achieved a 1:m relation in the map-
ping of LLVM IR instructions to ISA instructions. Also, by
performing the process after the LLVM optimization passes,
the optimized LLVM IR is closer to the ISA code than the
un-optimized one, which still has to go through a series of
transformations. There are also some optimizations happen-
ing during the lowering phase, such as peephole optimiza-
tions and some late target-specific optimizations, that can
affect the mapping, but not to the same degree as the LLVM
optimizations. After the mapping is done for a specific pro-
gram, the associated energy values for the ISA instructions
(value Ei in Equation 4 for ISA instruction i) corresponding
to an LLVM IR instruction are aggregated and then associ-
ated with the LLVM IR instruction. Afterwards, an energy



value is assigned to each LLVM IR block by aggregating the
energy values of its LLVM IR instructions by the mapper.

Although we use the XMOS tool-chain for the mapper
tool, the approach and techniques employed are generic and
transferable, due to the use of the common LLVM optimizer
and code generator, and the use of the DWARF standard-
ized debugging data format [1], used by many compilers and
debuggers to support source-level debugging. A full descrip-
tion of the mapping techniques is given in [10].

5. RESOURCE ANALYSIS WITH CIAOPP
Finally, in order to perform the global energy consump-

tion analysis, our approach leverages the CiaoPP tool [12],
the preprocessor of the Ciao programming environment [13].
CiaoPP includes a global static analyzer which is parametric
with respect to resources and type of approximation (lower
and upper bounds) [21, 23]. The framework can be instan-
tiated to infer bounds on a very general notion of resources,
which we adapt in our case to the inference of energy con-
sumption. As mentioned before, the resource analysis in
CiaoPP works on the intermediate block-based representa-
tion language, which we have called HC IR in this paper.
Each block is represented as a Horn Clause, so that, in
essence, the HC IR is a pure horn clause subset (pure logic
programming subset) of the Ciao programming language. In
CiaoPP, a resource is a user-defined counter representing a
(numerical) non-functional global property, such as execu-
tion time, execution steps, number of bits sent or received
by an application over a socket, number of calls to a predi-
cate, number of accesses to a database, etc. The instantia-
tion of the framework for energy consumption (or any other
resource) is done by means of an assertion language that al-
lows the user to define resources and other parameters of the
analysis by means of assertions. Such assertions are used to
assign basic resource usage functions to elementary opera-
tions and certain program constructs of the base language,
thus expressing how the execution of such operations and
constructs affects the usage of a particular resource. The re-
source consumption provided can be a constant or a function
of some input data values or sizes. The same mechanism is
used as well to provide resource consumption information
for procedures from libraries or external code when code is
not available or to increase the precision of the analysis.

For example, in order to instantiate the CiaoPP general
analysis framework for estimating bounds on energy con-
sumption, we start by defining the identifier (“counter”) as-
sociated to the energy consumption resource, through the
following Ciao declaration:

:- resource energy.

We then provide assertions for each HC IR block express-
ing the energy consumed by the corresponding LLVM IR
block, determined from the energy model, as explained in
Section 4. Based on this information, the global static anal-
ysis can then infer bounds on the resource usage of the whole
program (as well as procedures and functions in it) as func-
tions of input data sizes. A full description of how this is
done can be found in [23].

Consider the example in Figure 6. Let Pe denote the
energy consumption function for a predicate P in the HC
IR representation (set of blocks with the same name). Let
cb represent the energy cost of an LLVM IR block b (which
is obtained as described in Section 4.2). Then, the inferred

equations for the HC IR blocks in Figure 6 are:

allocae(N) = calloca + loopteste(N)

loopteste(N) = clooptest + loopbody loopende(0 6= N,N)

loopbody loopende(B,N) =





loopteste(N − 1) if B is true

+ cloopbody

cloopend if B is false

If we assume (for simplicity of exposition) that each LLVM
IR block has unitary cost, i.e., cb = 1 for all LLVM IR
blocks b, solving the above recurrence equations, we obtain
the energy consumed by alloca as a function of its input
data size (N):

allocae(N) = 2×N + 3

Note that using average values in the model implies that
the energy function for the whole program inferred by the
upper-bound resource analysis is an approximation of the
actual upper bound (possibly below it). Thus, theoretically,
to ensure that the analysis infers an upper bound, we need
to use upper bounds as well in the energy models. However,
such bounds would be very conservative, causing a loss in
accuracy that would make the analysis impractical.

6. EXPERIMENTAL EVALUATION
We have performed an experimental evaluation of our

techniques on a number of selected benchmarks. Power mea-
surement data was collected for the XCore platform by using
appropriately instrumented power supplies, a power-sense
chip, and an embedded system for controlling the measure-
ments and collecting the power data.

6.1 Power Monitoring Setup
Figure 8 demonstrates the power monitoring setup used to

run our benchmarks and measure their energy consumption.
The most widely used methodology for measuring power
consumption, is the use of a shunt resistor. As shown in the
figure, the power measurement board places a shunt resistor
between the power supply and the monitored board, which
runs the benchmarks. Since the resistor value is known, we
can easily and accurately calculate the current using Ohm’s
law, by measuring the voltage drop across the shunt resis-
tor. The power samples are then sent to the control board
which processes them and then sends the power data to the
host pc. The control board also controls the running of in-
dividual benchmarks on the target board by sending control
signals for starting and stopping the individual runs and
power sampling.

6.2 Results
Table 1 lists the benchmarks we analyzed at the LLVM

IR level along with the average error over the input for
each benchmark compared to the actual energy consump-
tion measured on the hardware (in the llvm column). Also,
for comparison purposes the column isa provides the same
information for the analysis at the ISA level, as obtained
in previous work [18]. The last row of the table shows the
average error over the number of benchmarks analyzed at
each level.

In Table 2, more detailed data are presented. Column SA
energy function shows the energy consumption functions,



Figure 8: The power monitoring setup.

Program Error vs. HW ISA/LLVM
llvm isa

fact 4.5% 2.86% 0.94
fibonacci 11.94% 5.41% 0.92
sqr 9.31% 1.49% 0.91
power_of_two 11.15% 4.26% 0.93
reverse 2.18% N/A N/A
concat 8.71% N/A N/A
mat_mult 1.47% N/A N/A
sum_facts 2.42% N/A N/A
Average 6.46% 3.50% 0.92

Table 1: LLVM IR- vs. ISA-level analysis accuracy.

which depend on input data sizes, inferred for each program
both at the ISA and LLVM IR levels (denoted with sub-
scripts isa and llvm respectively). Column HW shows the
actual energy consumption measured on the hardware cor-
responding to the execution of the programs with input data
of different sizes (shown in column Input Data Size). The
Estimated and Error vs. HW columns present the esti-
mated energy consumption inferred by the static analysis at
the LLVM IR and ISA levels and their error with respect to
the actual energy consumption measured on the hardware,
respectively.

The experimental results show that:

• On average, the analysis performed at either level is
reasonably accurate and the relative error between the
two analysis at different levels is small.

• ISA-level estimations are slightly more accurate than
the ones at the LLVM IR level (3.5% vs. 6.46 % error
on average with respect to the actual energy consump-
tion measured on the hardware respectively). This is
because the ISA-level analysis uses very accurate en-
ergy models, obtained from measuring directly at the
ISA level, whereas at the LLVM IR level, such ISA-
level model needs to be propagated up to the LLVM
IR level using (approximated) mapping information,
which causes a slight loss of accuracy.

• The LLVM IR level analysis is more powerful than
the one at the ISA level. This is because typing in-
formation is preserved at the LLVM IR level, which
allows analyzing programs using data structures (such
as arrays) that could not be analyzed at the ISA level,
without a significantly more complex representation of
memory in the Horn clause representation.

7. RELATED WORK
Few papers can be found in the literature focusing on

static analysis of energy consumption. As mentioned be-
fore, the approach presented in this paper builds on our
previously developed analysis of XC programs [18] based
on transforming the corresponding ISA code into a Horn
Clause representation that is supplied, together with an ISA-
level energy model, to an existing resource analysis tool.
In this work we have increased the power of the analy-
sis by transforming and analyzing the corresponding LLVM
IR, and using techniques for reflecting the ISA-level energy
model at the LLVM IR level. We also offer novel results
supported by our experimental study that shed light on
the trade-offs implied by performing the analysis at each
of these two levels. Finally, we study a larger set of bench-
marks, obtaining promising results for a good number of
them for which [18] was not able to produce useful en-
ergy functions. A similar approach was proposed for upper-
bound energy analysis of Java bytecode programs in [20],
where the Jimple (a typed three-address code) representa-
tion of Java bytecode was transformed into Horn Clauses,
and a simple energy model at the Java bytecode level [16]
was used. However, this work did not compare the results
with actual, measured energy consumptions. In all the ap-
proaches mentioned above, instantiations for energy con-
sumption of general resource analyzers are used, namely [21]
in [20] and [18], and [23] in this report. Such resource analyz-
ers are based on setting up and solving recurrence equations,
an approach proposed by Wegbreit [29] that has been devel-
oped significantly in subsequent work [22, 7, 8, 27, 21, 3,
23]. Other approaches to static analysis based on the trans-
formation of the analyzed code into another (intermediate)
representation have been proposed for analyzing low-level
languages [11] and Java (by means of a transformation into
Java bytecode) [4]. In [4], cost relations are inferred directly
for these bytecode programs, whereas in [20] the bytecode is
first transformed into Horn Clauses. The worst-case analysis
presented in [14], which is not based on recurrence equation
solving, distinguishes instruction-specific (not proportional
to time, but to data) from pipeline-specific (roughly pro-
portional to time) energy consumption. A number of static
analyses are aimed at worst case execution time (WCET),
usually for imperative languages in different application do-
mains (see e.g., [9] and its references). However, in contrast
to the work presented here, WCET methods do not infer
cost functions on input data sizes but rather absolute maxi-
mum execution times, and they generally require the manual
annotation of loops to express an upper-bound on the num-
ber of iterations. A timing analysis based on game-theoretic
learning is presented in [24]. The approach combines static
analysis to find a set of basic paths which are then tested.
In principle, such approach could be adapted to infer energy
usage. Its main advantage is that this analysis can infer
distributions on time, not only average values.

Although substantial effort has been devoted to ISA en-
ergy modeling, there is not a lot of work done at higher levels
of the software stack. This is mostly because precision de-
creases as you move further away from the hardware. One
of the most recently pertinent works for LLVM IR energy
modeling is [6]. The authors, employed a statistical analysis
and characterization of LLVM IR code together with instru-
mentation and execution on the host machine, to estimate
performance and energy requirements in embedded software.



SA energy
Input Data Size

HW (nJ) Estimated (nJ) Error vs. HW isa/llvm
function (nJ) llvm isa llvm isa
Factisa(N)= N = 2 78 75 70 -3.40% -9.63% 0.94
26.0 N + 19.4 N = 4 128 129 121 1.34% -4.79% 0.94

N = 8 227 237 223 4.59% -1.48% 0.94
Factllvm(N)= N = 16 426 453 428 6.52% 0.49% 0.94
28.4 N + 22.4 N = 32 824 886 836 7.58% 1.57% 0.94

N = 64 1690 1751 1654 3.59% -2.15% 0.94

Fibonacciisa(N)= N = 2 75 74 69 -1.16% -7.88% 0.93
31.62 + 36.6× 1.62N +

11.4× (−0.62)N
N = 4 219 241 221 10% 0.93% 0.92

N = 8 1615 1951 1693 14.75% 4.81% 0.91
Fibonaccillvm(N)= N = 15 47× 103 57× 103 50× 103 16.47% 6.33% 0.91

37.53 + 42.3× 1.62N +
11.68× (−0.62)N

N = 26 9.30× 106 11.5× 106 9.9× 106 17.31% 7.09% 0.91

Sqrisa(N)= N = 9 1242 1302 1209 4.86% -2.66% 0.93
9.02 N2 + 51.29 N + 16.5 N = 27 8135 8734 7979 7.36% -1.92% 0.91

N = 73 52× 103 57× 103 52× 103 8.51% -1.58% 0.91
Sqrllvm(N)= N = 144 19.7× 104 21× 104 19.4× 104 8.89% -1.47% 0.90

10.52 N2 + 55.79 N + 16.5 N = 234 51× 104 55× 104 50× 104 9.61% -0.91% 0.90
N = 360 11.89× 105 13× 105 11.87× 105 10.49% -0.17% 0.90
N = 400 14.65× 105 16× 105 14.64× 105 10.58% -0.10% 0.90

N = 3 326 344 322 5.68% - 1.10% 0.94
Poweroftwoisa(N)= N = 6 2729 2965 2770 6.59% 1.49% 0.93
10.9× 2N+2 − 27.29 N = 9 21.9× 103 23.9× 103 22.3× 103 6.61% 1.81% 0.93

Poweroftwollvm(N) = N = 12 17.57× 104 19.1× 104 17.9× 104 6.62% 1.85% 0.93
49.2× 2N − 31.5 N = 15 13.8× 105 15.3× 105 14.3× 105 6.62% 3.71% 0.93

N = 57 1138 1179 N/A 3.60% N/A N/A
reversellvm(N)= N = 160 3125 3185 N/A 1.91% N/A N/A
20.50 N + 72.98 N = 320 6189 6301 N/A 1.82% N/A N/A

N = 720 13848 14092 N/A 1.76% N/A N/A
N = 1280 24634 24998 N/A 1.48% N/A N/A
N = 10 49.77× 103 49.88× 103 N/A 0.22% N/A N/A

matmultllvm(N)= N = 15 15.79× 104 15.96× 104 N/A 1.03% N/A N/A
44.71N3 + 72.47N2 +

52.52N + 25.49
N = 20 36.29× 104 36.84× 104 N/A 1.51% N/A N/A

N = 25 69.56× 104 70.79× 104 N/A 1.77% N/A N/A
N = 31 13.07× 105 13.78× 105 N/A 1.98% N/A N/A

N = 50; M = 154 14.8× 103 13.5× 103 N/A 8.67% N/A N/A
concatllvm(N,M)= N = 131; M = 69 14.5× 103 13.2× 103 N/A 8.65% N/A N/A

69.14N + 69.14M + 14.12 N = 170; M = 182 25.44× 103 23.25× 103 N/A 8.60% N/A N/A
N = 188; M = 2 13.8× 103 12.6× 103 N/A 8.59% N/A N/A
N = 13; M = 134 10.7× 103 9.79× 103 N/A 8.74% N/A N/A
N = 15; M = 7.6 4097 4196 N/A 2.40% N/A N/A

sum factsllvm(N,M †)= N = 40; M = 7.4 10.7× 103 10.96× 103 N/A 2.45% N/A N/A
28.45 N ×M + 76.71 N +

22.50
N = 80; M = 8 22.7× 103 23.3× 103 N/A 2.52% N/A N/A

N = 160; M = 7.8 44.3× 103 45.4× 103 N/A 2.45% N/A N/A

Table 2: Comparison of the accuracy of energy analyses at the LLVM IR and ISA levels.
† The argument M refers to the estimated size of an element of the array (which controls the inner loop/recursion).



In their case, retrieving the LLVM IR energy model to a new
platform requires performing the statistical analysis again.
Our mapping technique requires only to adjust the LLVM
IR mapping pass for the new architecture.

8. CONCLUSIONS AND FUTURE WORK
We have presented techniques for adapting to the LLVM

IR level our tool chain for estimating energy consumption
as functions on program input data sizes. The approach
uses a mapping technique that leverages the existing debug-
ging mechanisms in the XMOS XCore compiler tool chain to
propagate an existing ISA-level energy model to the LLVM
IR level. A second transformation constructs a block rep-
resentation that is supplied, together with the propagated
energy values, to a parametric resource analyzer that infers
the program energy cost as functions on the input data sizes.

Our results show that performing the static analysis at
the LLVM IR level is a good compromise, since 1) LLVM IR
is close enough to the source code level to preserve most of
the program information needed by the static analysis, and
2) the LLVM IR is close enough to the ISA level to allow
the propagation of the ISA energy model up to the LLVM
IR level without significant loss of accuracy.

Regarding future work, the experimental results show that
the mapping technique can propagate the existing ISA en-
ergy model to the LLVM IR level and that analysis can be
done with acceptable error levels. However, we have already
identified some cases where the mapping is not as precise
as expected, which we are planning to address. The map-
ping technique currently does not take into consideration
the FNOPS introduced in the pipeline under some instruc-
tion scheduling scenarios that create inaccuracies. Another
source of inaccuracies is due to the code lowered from φ (phi)
nodes.

Using this mapping technique we plan to obtain an LLVM
IR standalone energy model by applying it to a large set of
programs and performing a regression analysis to identify
energy values for each LLVM IR instruction. Finally, we
plan to extend the idea of mapping energy values from the
ISA level to the LLVM IR level to also map timing infor-
mation. This will allow us to incorporate timing analysis in
our existing analyses.

LLVM IR is in partial Static Single Assignment (SSA)
form (up to the variable names only), which makes it diffi-
cult to model memory operations in the presence of derived
types (arrays, structures etc.) as well as pointer arithmetic.
Particularly in programs where memory locations of a de-
rived type change the control flow of the program and at the
same time get updated more than once during program exe-
cution. A possible solution to be explored in these scenarios
is to convert LLVM IR to hashed SSA.

Finally, the transformation-based analysis approach as well
as the mapping techniques showed promising results for se-
quential programs, however, we plan to extend our tech-
niques to concurrent programs.
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E. Mera, J. Morales, and G. Puebla. An Overview of
Ciao and its Design Philosophy. Theory and Practice
of Logic Programming, 12(1–2):219–252, January 2012.

[14] R. Jayaseelan, T. Mitra, and X. Li. Estimating the
worst-case energy consumption of embedded software.
In IEEE Real Time Technology and Applications
Symposium, pages 81–90. IEEE Computer Society,
2006.

[15] S. Kerrison and K. Eder. Energy modelling and



optimisation of software for a hardware
multi-threaded embedded microprocessor. Technical
report, University of Bristol, June 2013.

[16] S. Lafond and J. Lilius. Energy consumption analysis
for two embedded Java virtual machines. J. Syst.
Archit., 53(5-6):328–337, 2007.

[17] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis and
transformation. In CGO, pages 75–88, 2004.

[18] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou,
P. Lopez-Garcia, N. Grech, M. Hermenegildo, and
K. Eder. Energy Consumption Analysis of Programs
based on XMOS ISA-level Models. In Pre-proceedings
of LOPSTR, September 2013.

[19] M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A
Flexible (C)LP-Based Approach to the Analysis of
Object-Oriented Programs. In 17th International
Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR 2007), number 4915 in
LNCS, pages 154–168. Springer-Verlag, August 2007.

[20] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Safe
Upper-bounds Inference of Energy Consumption for
Java Bytecode Applications. In The Sixth NASA
Langley Formal Methods Workshop (LFM 08), April
2008. Extended Abstract.

[21] J. Navas, E. Mera, P. López-Garćıa, and
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Abstract
Energy models can be constructed by characterizing the energy
consumed by executing each instruction in a processor’s instruction
set. This can be used to determine how much energy is required to
execute a sequence of assembly instructions.

However, statically analyzing low-level program structures is
hard, and the gap between the high-level program structure and
the low-level energy models needs to be bridged. We have devel-
oped techniques for performing a static analysis on the interme-
diate compiler representations of a program. Specifically, we tar-
get LLVM IR, a representation used by modern compilers, includ-
ing Clang. Using these techniques we can automatically infer an
approximate upper bound of the energy consumed when running
a function under different platforms, using different compilers –
without the need of actually running it.

One of the challenges in doing so is that of determining an en-
ergy cost of executing LLVM IR program segments, for which we
have developed two different approaches. When this information is
used in conjunction with our analysis, we are able to infer energy
formulae that characterize the energy consumption for a particular
program. This approach can be applied to any languages targeting
the LLVM toolchain, including C and XC or architectures such as
ARM Cortex-M or XMOS xCORE. Our techniques are validated
on these platforms by comparing the static analysis results to the
physical measurements taken from the hardware. Static energy con-
sumption estimation enables energy-aware software development.

1. Introduction
In embedded systems, low energy consumption is a very impor-
tant requirement. The software running on these systems has a pro-
found effect on the energy consumed. The design of software and
algorithms, the programming language and the compiler together
with its optimization level all contribute towards energy consump-
tion of an application. Estimations of energy consumption of pro-
grams are very useful to software engineers, so that these can un-
derstand the effect of their code on the energy consumption of the
final system. Accurate energy consumption and timing analysis of
programs involves analyzing low-level machine code representa-
tions. However, programs are written in high-level languages with
rich abstraction mechanisms, and the relation between the two is
often blurred. For instance, optimizations such as dead code elimi-

[Copyright notice will appear here once ’preprint’ option is removed.]

nation, various kinds of code motion, inlining and other clever loop
optimization techniques obfuscate the structure of the program and
make the resultant code difficult to analyze.

In this paper, we develop a static analyzer that works on the
intermediate compiler representation of the program (LLVM IR).
Our analysis is based on a well-developed approach in which re-
cursive equations (cost relations) are extracted from a program,
representing the cost of running the program in terms of its in-
put [2, 6, 7, 25, 31]. Finally, these cost relations are converted to
closed-form, i.e. without recurrences, by means of a solver. For ex-
ample, we can analyze the following program.

1 void proc(int v[], int l)
2 {
3 for (int i = 0; i < l; i++)
4 if(v[i] & 1)
5 odd();
6 else
7 even();
8 }

The following CRs are extracted from the program,

(a) Cproc(l) = k1 + Cfor(l, 0) if l ≥ 0

(b) Cfor(l, i) = k2 if i ≥ l ∧ l ≥ 0

(c) Cfor(l, i) = k3 + Codd() + Cfor(l, i+ 1) if i ≤ l ∧ l ≥ 0

(d) Cfor(l, i) = k4 + Ceven() + Cfor(l, i+ 1) if i ≤ l ∧ l ≥ 0

where l denotes the length of the array v, i stands for the counter of
the loop and Cproc, Codd and Ceven approximate, respectively, the
costs of executing their corresponding methods. The constraints,
denoted on the right hand side of the relations, specify a condition
that must be true for the cost relation to be applicable. For instance,
relation (a) corresponds to the cost of executing proc with an array
of length greater than 0 (stated in the condition l > 0), where cost
k1 is accumulated to the cost of executing the loop, given by Cfor .
Note that the transition into (c) and (d) is non deterministic. The
constants k1, . . . , k4 take different values depending on the cost
model that one adopts. In this paper, our cost model focuses on
energy. These constants are obtained from energy models created
at the Instruction Set Architecture (ISA) level [13]. Such models
have previously been applied to analysis at the same level [15, 18],
and in this paper we propagate this up to the LLVM level.

Many modern compilers such as Clang or XCC are built us-
ing the LLVM framework. These internally transform source pro-
grams into intermediate compiler representations, which are more
amenable to analysis than either source or machine level programs.
We show how resource consumption analysis techniques can be
adapted and applied to programming languages targeting LLVM
IR (such as C or XC [30]) by reusing some of the existing ma-
chinery available in the compiler framework (for instance LLVM
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analysis passes). We show how cost relations can be extracted from
programs, such that these can be solved using PUBS (practical up-
per bounds solver) [2]. Specifically, we focus on optimized LLVM
IR, that has been compiled with optimization levels O2 or higher.
This ensures that the experiments we perform are realistic and that
the techniques can be used for real-world applications.

Time is a significant component of energy consumption, in that
a program that computes its result quicker will typically consume
less energy by virtue of a shorter run-time. However, the corre-
lation between time and energy varies between architectures, and
is related to the complexity of the processor’s pipeline [23]. For
example, one of the target architectures for this paper exhibits an
approximately 2× difference in energy depending on the instruc-
tions that are executed, with a similar relationship for the number
of threads executed upon it [13]. Analysis of system energy and
not just of execution time will therefore garner better information
on the energy characteristics of a program.

Figure 1. Illustration of the analysis toolchain.

Energy models can be constructed for a processor’s instruction
set, however this information needs to be constructed, or propa-
gated to a higher level program representation in order to bene-
fit our analysis mechanism. We propose two different techniques
(Section 4), for assigning energy to a higher level program repre-
sentation (LLVM IR). We first propose a mechanism for mapping
program segments at ISA level to program segments at LLVM IR
level. Using this mapping, we can perform a multi level program
analysis where we consider the LLVM IR for the structure and se-
mantics of the program and the ISA instructions for the physical ef-
fect on the hardware. We also propose an alternative technique, of
determining the instruction energy model directly at the LLVM IR
level. This is based on empirical data and domain knowledge of the
compiler backend and underlying processor. The analysis toolchain
is illustrated in Figure 1. The static resource analysis mechanism is
described in Section 3. Parts of this mechanism perform a sym-
bolic execution of LLVM IR, which is described in Section 2. The
techniques described are built into a tool, which can be integrated
into the build process and statically estimates the energy consump-
tion of an embedded program (and its constituent parts, such as
procedures and functions) as a function on several parameters of
the input data. Our approach is validated in Section 5 on a number

of embedded systems benchmarks, on both xCORE and Cortex-M
platforms. Finally, we describe related work in Section 6 and con-
clude in Section 7.

2. Structure and interpretation of LLVM IR
In this section we describe the core language and an important tech-
nique we utilize in the resource analysis mechanism (Section 3),
which infers energy formulae given an LLVM IR program.

2.1 The LLVM IR language
LLVM IR is a Static Single Assignment (SSA) based representa-
tion. This is used in a number of compilers, and is designed to
represent high-level languages. For presentation purposes, we first
formalize a simple calculus of LLVM IR, based on the following
syntax:

inst = br p BB1 BB2 (conditional branch)
| x = op a1..an (generic op., no side-effects)
| x = φ 〈BB1, x1〉..〈BBn, xn〉 (phi nodes)
| x = call f a1 .. an

| x = memload (dynamic memory load)
| memstore (dynamic memory store)
| ret a

We use metavariable names p, f, a, x to describe predicates, func-
tion names, generic arguments and variables respectively. The in-
struction semantics are modeled on the actual LLVM IR semantics
[33]. Instruction op represents any side effect free operation such as
icmp or add in LLVM. The φ instruction takes a list of pairs as ar-
guments, with one pair for each predecessor basic block of the cur-
rent block. Each pair contains a reference to the predecessor block
together with the variable that is propagated to the current block.
The only place where a φ instruction can appear is in the beginning
of a basic block. Two interesting instructions are memload and
memstore. These represent any dynamic memory load and store
operation respectively. For instance, getelementptr and load are
some examples of instructions represented by memload. These in-
structions typically compute pointers dynamically and load data
from memory. In our abstract semantics of LLVM IR, we there-
fore treat variables assigned with values dynamically loaded from
memory as unknown (denoted ‘?’).

LLVM IR instructions are arranged in basic blocks, labeled with
a unique name. A basic block BB over a CFG is a maximal se-
quence of instructions, inst1 through instn, such that all instruc-
tions up to instn−1 are not branch or return instructions and instn
is br or ret. The φ instructions always appear as the first instruc-
tions in a block, as a block can have multiple in-edges. All call
instructions are assumed to eventually return.

2.2 Symbolic evaluation of LLVM IR variables
At the core of our resource analysis mechanism of LLVM IR
is a symbolic evaluation function seval . Given a block of code
BB , and a variable x, seval(BB , x) symbolically executes a slice
from this block to compute the effect on x. A program slice is a
set of instructions that may affect the value of x at some point
of interest. During this static analysis phase, we do not simply
execute the LLVM IR, but we use a non-standard semantics, which
abstracts away dynamic memory reads and writes i.e., memload
and memstore. This has the effect of producing simple expressions,
which can be handled by the PUBS solver. We proceed by showing
examples of actual LLVM IR snippets and showing the effect of
this on some variables:

short description of paper 2 2014/4/26



1 LoopBody:
2 %i.0 = phi i32 [ %postinc, %LoopIncrement ],
3 [ 0, %allocas ]
4 %subscript = getelementptr [0 x i32]* %0, i32 0,
5 i32 %i.0
6 %deref6 = load i32* %subscript, align 4
7 %not.zerocmp7 = icmp eq i32 %deref6, 0
8 br i1 %not.zerocmp7, label %iffalse,
9 label %iftrue2

In this case, the symbolic evaluation concludes that
seval(BB ,%not.zerocmp7) =?. The evaluation starts at the assign-
ment of %not.zerocmp7, which evaluates to %deref6 == 0. How-
ever, since %deref6 is a dynamically loaded value memload, the
analyzer concludes that %deref6 is ? and that therefore seval(BB ,
%not.zerocmp7) =?.

1 iftrue2:
2 call void @odd()
3 br label %LoopIncrement

Sometimes, the code inside a block has no effect on a variable of
interest. In this case seval(%i.0) is %i.0.

1 LoopIncrement:
2 %postinc = add i32 %i.0, 1
3 %exitcond = icmp eq i32 %postinc, %1
4 br i1 %exitcond, label %return, label %LoopBody

In this case seval(BB ,%exitcond) is (%i.0+1) ==%1, which
is easily found by traversing the structure of the LLVM block
backwards.

3. Resource Analysis for LLVM IR
The techniques described here are used to infer cost relations [2].
Cost relations are recursively defined and closely follow the flow
of the program. What we actually want to infer is a closed form
formula modeling the cost, which is parametric to any relevant
input arguments to the program, which requires solving using a
cost relation solver. These solvers typically work with simplified
control flow graph structures, and therefore we must first perform
some simplifications on the control flow graphs, as described in
Section 3.3. The analysis then infers block arguments by using
symbolic evaluation as described in Section 2.2.

3.1 Inferring block arguments
Block arguments characterize the input data, which flows into the
block, and is either consumed (killed) or propagated to another
block or function. Unfortunately, solving multi-variate cost rela-
tions and recurrence relations automatically is still an open prob-
lem, and the fewer arguments each relation has, the easier it is to
solve these. For this reason, we designed an analysis algorithm to
minimize the block arguments before inferring the cost relations.

The algorithm for inferring block arguments is a data flow anal-
ysis algorithm. We use a standard means to describe this algorithm,
as in [21]. We define a data flow analysis function gen , which,
given a basic block, returns the variables of interest in that block:

gen(BB) = genblk(BB) ∪ genfn(BB)

The function genblk returns the input arguments that affect the
branching in a block BB , composed of instructions inst1 through
instn, and genfn returns the variables that affect the input to any
external calls in the block. genblk is defined as follows:

genblk(BB) =

{
ref (seval(BB , p)) if instn = [br p ..]

∅ otherwise

The function ref returns all variables referred to in the symbolically
evaluated expression given as argument, for example ref (x >
(y + 3)) returns {x, y}. We also define function genfn. This
returns all the input arguments that affect the parameters given to
the function, and is defined as:

genfn(BB) =

n⋃

k=1





m⋃
i=1

ref (seval(BB , ai)) if instk is [x = call f a1 .. am]

∅ otherwise
The data flow analysis function kill is defined as:

kill(BB) =

n⋃

k=1





{x} if instk is x = call . . .

{x} if instk is x = op . . .

{x} if instk is x = memload . . .

∅ otherwise

Finally, we combine gen and kill by utilizing a transfer func-
tion, which is inlined into argsin and argsout. These compute
the relevant block arguments utilized by our resource analysis.
argsin(BB) is defined as the function’s arguments if BB is the
function’s first block. In all other cases, argsin and argsout are
defined as:

argsin(BB) =
⋃

BB′∈next(BB)

phimap〈BB,BB′〉(argsout(BB
′))

argsout(BB) = (argsin(BB)− kill(BB)) ∪ gen(BB)

where phimap maps variables between adjacent blocks BB and
BB ′ based on the φ instructions in BB ′.

Functions argsin and argsout are recomputed until their least
fixpoint is found. Finally, the block arguments are found in argsin.
The analysis explained in this section is closely related to live
variable analysis. A crucial difference, however, is in the function
gen . In our case, this returns a smaller subset of variables than live
variable analysis i.e., only the ones that may affect control flow.

3.2 Generating and solving cost relations
In order to generate cost relations we need to characterize the en-
ergy exerted by executing the instructions in a single block. We also
need to model the continuations of each block. Continuations, ex-
pressed as calls to other cost relations, arise from either branching
at the end of a block, or from function calls in the middle of a block.
For instance, consider the following LLVM IR block:

1 LoopIncrement:
2 %postinc = add i32 %i.0, 1
3 %exitcond = icmp eq i32 %postinc, %1
4 br i1 %exitcond, label %return, label %LoopBody

This would translate to the following relation:

CLI(i) = C0 + Cret(i+ 1) if i+ 1 = a1

CLI(i) = C1 + CLB(i+ 1) if i+ 1 6= a1,

where CLI, Cret and CLB characterize the energy exerted when
running the blocks LoopIncrement, return and LoopBody re-
spectively. We therefore refer to Cret and CLB as continuations of
CLI. Expressing these calls to other cost relations involves eval-
uating their arguments, which cannot be done without evaluating
the program. Instead, by symbolically executing the block, we can
express the arguments of the continuation in terms of the input ar-
guments to the block. In order to do so, we perform symbolic eval-
uation using the function seval .

The cost relations, extracted from recursive programs using the
techniques discussed in this section, can be automatically solved by
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PUBS [2] after translating to its proprietary format. In the output,
this shows the upper bound obtained, as a formula together with
the results of the intermediate steps performed. Internally, PUBS
solves these by computing ranking functions and loop invariants.
The problem of solving cost relations is composable, i.e., complex
functions can be inferred by first inferring simpler ones and com-
posing these together mathematically.

There are cases where the optimized program structures pro-
duced by LLVM based compilers prevent the cost relation solvers
from finding unique cover points in the structure of the cost rela-
tions. In order to solve this problem, we need to perform transfor-
mations to the call graph upon which we construct our cost rela-
tions. This is described in the next section.

3.3 Transformations for control flow graphs
After compilation, nested loop program structures are mangled by
compiler optimizations. When the resulting Control Flow Graph
(CFG) is directly used to produce CRs, it is usually not possible to
infer closed form solutions. For instance PUBS [2] cannot handle
complex CFGs, and therefore in order to analyze programs with
nested loops, the CFG needs to be simplified. The simplification is
actually done at an early stage in the analysis, right after generating
an initial CFG, using the following steps:

1. Identify a loop’s CFG, A, that has nested loops.

2. Identify the sub-CFG, B, of A that corresponds to the inner
loop.

3. Extract B out of A, so that B is a separate CFG. This can be
thought of as a new function with multiple return points. Hence
B’s exit edges are removed.

4. In A, in the place where B used to be, keep the continuation to
B. Append a continuation to B’s exit targets to B’s caller in A.

In order to perform the first two steps, we need to identify the
loops in the CFG. While LLVM has specific passes to do so, we
had better success when using the algorithm described in [32]. As
an example, we show how these steps can be used to transform the
CFG of a simple insertion sort, as shown in Listing 1. The original
CFG of this program, when compiled using clang with optimiza-
tion level O2 is shown in Figure 2 (left). In this CFG, the nested
loops are identified, which also involves identifying their corre-
sponding entries, re-entries, exit and loop headers. Here, blocks
bb1, bb2 and .backedge form the inner loop. These blocks are
hoisted and the exit edge from .backedge (dotted) is eliminated.
Instead, .loopexit is then called after bb1 “returns” (Figure 2,
right).

The CFG simplifications described in this section preserve the
same order of operations when applied to an existing CFG com-
piled from typical while or for using clang or xcc. This means
that the program called in the left-side of Figure 2 will consume
as much energy as the program in the right-side Figure 2. The only
limitation of this approach is when an induction variable of an outer
loop is modified in an inner loop. In this case the transformation
cannot occur, however we have not encountered real benchmarks
where this takes place.

In order to verify the transformation with respect to energy, let
us consider a typical while or for loop and show that the same
sequence of blocks is called after the transformation takes place.
We can assume that such a loop has a single header, but may have
multiple exits or reentries and induction variables of the outer loops
are not modified in the inner loops. After the transformation takes
place on a nested loop structure (B inside A), B is still called from
A, however B’s exit edges are now removed. The target of B’s exit
edges will still be called after B completes. This is because we have
appended a continuation in A to this target, in Step 4. Hence all

1 void sort(int numbers[], int size) {
2 int i=size, j, temp;
3 while(j = i--) {
4 while(j--) {
5 if(numbers[j] > numbers[i]) {
6 temp = numbers[i];
7 numbers[i] = numbers[j];
8 numbers[j] = temp;
9 }

10 }
11 }
12 }

Listing 1. This insertion sort demonstrates that certain classes of
programs require further analysis or transformation.

bb0:
 ...

T F

.preheader.lr.ph: 
 ... 

._crit_edge: 
 ... 

.lr.ph: 
 ... 

bb1: 
 ... 

T F

.loopexit: 
 ... 

T F

bb2: 
 ... 

.backedge: 
 ... 

T F

bb0:
 ...

T F

.preheader.lr.ph: 
 ... 

._crit_edge: 
 ... 

.lr.ph: 
 ... 

------>

.loopexit: 
 ... 

T F

<----

bb1: 
 ... 

T F

bb2: 
 ... 

.backedge: 
 ... 

T F

Figure 2. CFG of an insertion sort compiled using clang with
optimization level O2 before (left) and after (right) simplification.

blocks will be called in the same sequence. The argument above
can be inductively applied to loops with arbitrary nesting levels.

4. Computing energy cost of LLVM IR blocks
The intermediate representation used by LLVM is architecture in-
dependent. Any given LLVM IR sequence can be passed to one
of many different backends, including ISAs [16]. The exact im-
plementation of the ISA determines the energy consumed by each
instruction that is executed. Thus, the conversion to machine code,
together with the processor implementation, affects the energy con-
sumption of an instruction at the LLVM IR level.

For static analysis of LLVM IR to produce useful energy formu-
lae for programs, a method of assigning an energy cost to an LLVM
IR segment must be used. Two possible methods are demonstrated
in this paper:

1. ISA energy model w/mapping. LLVM IR is mapped to its corre-
sponding ISA instructions and the energy cost is obtained from
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the ISA level cost model. The advantage is that it is simpler to
characterize at ISA level, however this requires an additional
step to correlate LLVM with ISA instructions.

2. LLVM energy model. Attributing costs directly to LLVM IR re-
moves the need for a mapping. However, it necessarily simpli-
fies the energy consumption characteristics, reducing accuracy.

In principle, both methods can be explored for both architec-
tures. This paper utilizes an ISA level model for the XMOS pro-
cessor. The Cortex-M is modeled at the LLVM IR level directly.

4.1 XMOS XS1-L ISA level modeling
The aim of ISA level modeling is to associate machine instructions
with an energy cost. To achieve this, energy consumption samples
must be collected and an appropriate representation of the under-
lying hardware must be used as a basis for the model. A single-
threaded model, such as that defined by Tiwari [27] and expressed
in Equation 1, describes the energy of a sequence of instructions,
or program.

Eprog =
∑

i∈ISA

(BiNi) +
∑

i,j∈ISA

(Oi,jNi,j) +
∑

k∈ext

Ek (1)

The program’s energy, Eprog, is first formed from the base cost,
Bi of all instructions, i, in the ISA, multiplied by the occurrences,
Ni, of each instruction. For each transition in a sequence of in-
structions, the overhead, Oi,j , of switching from instruction i to
instruction j, multiplied by the number of times the combination
i, j occurs, Ni,j . Finally, for a set of k external effects, the cost
of each of these effects, Ek is added. For example, these external
effects may represent the cache and memory costs, based on the
cache hit rate statistics of the program.

The XS1-L architecture implements multi-threading in a hard-
ware pipeline. Even for single-threaded programs, we need to con-
sider the behavior of this multi-threaded pipeline. The power of
individual instructions varies by up to 2×, with multi-threading
introducing up to a 1.6× increase with a 4× performance boost.
This means execution time and energy are related in a more com-
plex way than a simpler single-threaded architecture. The model
for the XS1-L is built upon existing work of [28] and the more de-
tailed [26], which obtain model data through the energy measure-
ment of specific instruction sequences, and create a representation
of some of the processor’s internal structure in the model equa-
tions. A full description of the XS1-L’s energy characteristics and
the model is given in [13].

To extend a Tiwari style approach to model the XS1-L proces-
sor, two new characteristics must be accounted for: idle time and
concurrency. The XS1 ISA has a number of event-driven instruc-
tions, which can result in the processor executing no instructions
for a period of time, until the event occurs. Furthermore, the multi-
threaded pipeline permits only one instruction from a given thread
to be present in the pipeline at any one time. These changes are ex-
pressed in Equation 2. Here, the energy exerted by running a pro-
gram depends on a base power, Pbase, which represents the energy
cost when no instructions are executed, multiplied by the number
of idle periods, Nidle. The clock period of the processor, Tclk is also
introduced, to allow different clock speeds to be considered. The
inter-instruction overhead, previously described in Equation 1 as
Oi,j , is generalized to a constant overhead, O, due to the unpre-
dictability of instruction interaction between threads. For each in-
struction, the base cost is added to the instruction cost, Pi, which
is scaled by the overhead and an additional scaling factor based on
the number of active threads, Mt. This is multiplied by the number
of occurrences of this instruction at t threads, Ni,t and the clock
period, Tclk. This is done for the varying number of threads, t that

may be active in the program over its lifetime.

Eprog = PbaseNidleTclk

+

Nt∑

t=1

∑

i∈ISA

((MtPiO + Pbase)× (Ni,tTclk)) (2)

The multi-threaded ISA level model for the XS1-L requires that for
each level of concurrency, t, the number of instructions executed
at that level should be known, or estimated. If a single threaded
program is run on its own on the XS1-L and there are no idle
periods, then Equation 2 simplifies to Equation 3, where the idle
accounting is removed, and only the first threading level, t = 1, is
considered.

Eprog =
∑

i∈ISA

((M1PiO + Pbase)× (NiTclk)) (3)

The current analysis effort focuses upon single threaded experi-
ments, thus Equation 3 can be used. Multi-threaded analysis is pro-
posed as future work in Section 7.

4.2 XMOS LLVM IR energy characterization by mapping
To enable the analysis at the LLVM IR level we need a mechanism
to propagate the existing energy model at the ISA level up to
the LLVM level. The mapping technique described in this section
serves this purpose by creating a fine grained mapping between
segments of ISA instructions to LLVM IR instructions, in order to
enable the energy characterization of each LLVM IR instruction in
a program. A full description of the mapping techniques is given
in [8].

Our mapping technique leverages the existing debug mecha-
nism in the XMOS compiler toolchain. This mechanism is origi-
nally meant to facilitate the debugging process of an application,
particularly when stepping through a program line by line. During
the lowering phase of the compilation process, the LLVM IR code
is transformed to the specific ISA code by the backend. The de-
bug information (DI) is also stored alongside with the ISA code
using the DWARF standard [1], a standardized debugging data for-
mat used by many compilers and debuggers to support source level
debugging. By tracking this information we can extract an n:m re-
lationship between the two levels, because one source code instruc-
tion can be related to many different sequences LLVM IR instruc-
tions and therefore many different sequences of ISA instructions.
Because this n:m relation complicates static analysis, there is a need
for a more fine grained mapping.

To address this issue, we created an LLVM pass that traverses
the LLVM IR and replaces the Source Location Information with
LLVM IR location information, right after all the optimization
passes and just before emitting the ISA code. In this way, we
can extract a 1:m relationship between the mapping of LLVM
IR instructions and ISA instructions. Also, by doing it after the
LLVM optimizations passes the optimized LLVM IR is closer to
the ISA code than the unoptimized one, which will go through
a series of transformations. There are optimizations that happen
during the lowering phase, such as peephole optimizations and
some late target specific optimizations that can affect the mapping.
However, the effect of these optimizations on the structure of the
code is not as profound as those applied to LLVM IR. After a
mapping is extracted for a particular program, the associated energy
values for the ISA instructions corresponding to a specific LLVM
IR instruction are aggregated and then associated with the LLVM
IR instruction, and finally to every LLVM IR block.

Although we use the XMOS tool-chain for the mapper tool, the
approach is generic and transferable, due to the use of the common
LLVM optimizer and code generator, and the use of the DWARF
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standardized debugging data format, used by many compilers and
debuggers to support source layer debugging.

4.3 LLVM IR energy model for ARM
An energy model for ARM Cortex-M series is applied directly at
the LLVM IR level, based upon empirical energy measurement
data, and knowledge of both the processor architecture and the
compiler backend. The Cortex-M3 model is for the most part a
simplification of the Tiwari model [27], applied at the LLVM IR
level. The simple, embedded nature of this processor removes the
need to model external effects such as cache misses, and the effect
of the switching cost between instructions is approximated into the
actual instruction cost. Through analysis of energy measurements
for a large set of the target ISA instructions, it was found that
LLVM IR instructions can be segmented into four groups: memory,
M , program flow, B, division, D, and all other instructions, G.

The LLVM IR syntax described in Section 2 can be related to
these groupings. In particular, br, call and ret can be combined into
group B; memload and memstore are members of M ; the subset
of op relating to division make up group D; and finally, φ and all
remembering members of op form group G.

This yields a model equation that accumulates the energy of a
program based on the number of instructions executed from each
group. Equation 4 considers each group, which is assigned an
energy cost, which combined give the total program energy, Eprog,
where Ei is the energy cost of a single instruction in group i, and
Ni is the number of instructions executed in that group.

Eprog =
∑

i∈{M,B,D,G}
EiNi (4)

In addition, there are a number of other factors that affect energy,
due to the relation between the LLVM IR and the ISA:

1. Variadic arguments. LLVM has instructions with variadic ar-
guments. Typically, the number of arguments in the instruction
affects the energy consumed in a linear manner.

2. Data types. LLVM operations op can be performed on values
of different data types. If the data type is larger than 32 bits,
or floating point, this will translate into a larger number of ISA
instructions on a Cortex-M with no floating point unit.

3. Predicated instructions. The Cortex-M processor is capable
of executing predicated instruction sequences. In some cases,
short LLVM IR blocks originating from ternary expressions in
the original source code are directly translated to a number of
predicated instructions in the ARM ISA. Therefore, the number
of ISA instructions generated could be less than the instructions
in LLVM IR, and the static analysis over-approximates the
energy consumption of these blocks.

Factors (1) and (2) can be accounted for by parameterizing the
LLVM IR energy model. For instance, consider the following call
instruction:

%6 = call i32 @min(i32 %boptmp88, i32 %boptmp96)

This translates to a single branch instruction in the ARM ISA, with
surrounding register moves to ensure the correct calling conven-
tion:

1 mov r0, r4 # move arg1 into r0nnn
2 mov r1, r5 # move arg2 into r1
3 bl min # call min
4 mov r4, r0 # move the result into r4

As we can see, the energy consumed by an LLVM call instruc-
tion is parametric in the number and types of the arguments and
return value.

Benchmark L NL A B C

base64 × × ×
mac × ×
levenshtein × × × ×
insertion sort × × ×
matrix multiply × × ×
gcd × × ×
jpegdct × × × × ×

Table 1. Benchmark Characteristics.

5. Experimental Evaluation
We have selected a series of benchmarks of core algorithmic func-
tions, particularly from the BEEBS [22] and MDH WCET bench-
mark [9] suites. These are collections of open source benchmarks
for deeply embedded systems, slightly modified to work with our
test harness. The benchmarks are single threaded, reflecting the
scope of the analysis performed in this paper. Table 1 summarizes
the characteristics of the benchmarks and the meaning of the last
5 columns is as follows: (L) contains loops, (NL) contains nested
loops, (A) uses arrays and/or matrices, (B) contains bitwise opera-
tions, (C) contains loops with complex control flow predicates.

In order to show that our techniques are applicable to multiple
languages and platforms, we have ported some of the benchmarks
from C to XC. Porting C code to XC typically does not involve
rewriting, since the syntax is very similar and they both use the
same preprocessors. However, since XC does not provide pointers
some changes need to be made to the benchmarks during the port-
ing process. For the benchmarks that run on the xCORE, we have
used the XC compiler, version 13. For Cortex-M benchmarks we
have used Clang version 3.5. We proceed by describing the bench-
marks. In both cases, the benchmarks are compiled under optimiza-
tion level O2.

GCD. This benchmark is an implementation of the Euclidean
algorithm, which computes the greatest common divisor between
any two numbers. This is implemented using an iterative style and
parameterized with its two input numbers (A and B).

Insertion sort. The code of the main function is shown in Fig-
ure 1. The energy exerted by the insertion sort partly depends on
how many swaps need to take place, and this is dependent on the
actual data present inside the array. Since our analysis infers ap-
proximate upper bounds, we will be measuring the energy con-
sumed in sorting a reverse-ordered list, and comparing this to the
statically inferred formula. Note that the number of iterations in the
inner loop depends on an induction variable in the outer loop. This
benchmark is parameterized by the length of the list to be sorted,
P .

Matrix multiply (BEEBS/MDH WCET). We slightly modified
this so that it can work with matrices of various sizes. The matrices
are all square, of size P .

Base64 encode. Computes the base64 encoding1 as a string,
given an input string of length P .

MAC (MDH WCET). Dot product of two vectors together with
sum of squares. This is parameterized by the length of the vectors,
P .

Jpegdct (MDH WCET). Performs a JPEG discrete cosine trans-
form. Taken from the MDH WCET benchmark suite. This bench-
mark is not parameterized.

1 Posted by user2859193 on stackoverflow.com/questions/342409
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Figure 3. An illustration of our measurement systems for our test
platforms.

Levenshtein distance (BEEBS). Computes the minimum num-
ber of edits to change one string into another. The lengths of the
two strings are parameterized with the variables A and B.

5.1 Experimental Setup
For both ARM and XMOS platforms, power measurement data
is collected by using appropriately instrumented power supplies,
a power sense chip and an embedded system running control and
data acquisition software. The implementations differ, but are struc-
turally very similar. Both of these periodically calculate the power
using Equation 5 during a test run by sampling the voltage on either
side of a shunt resistor (Vbus and Vshunt) to determine the supplied
current.

P = I × Vbus where I =
Vbus − Vshunt

Rshunt
(5)

For the Cortex-M processor, the measurements are taken on an
ST Microelectronics STM32VLDISCOVERY board while for the
xCORE, a custom XMOS board with an XS1-L based XS1-U16A
chip is used.

5.2 Results
The results for the XMOS xCORE and ARM Cortex-M proces-
sors are shown in Figures 4 and 5, respectively. These graphs show
the insertion sort, matrix multiplication and mac benchmarks, with
data series for the static analysis results and actual energy measure-
ments. The static analysis closely fits the empirical results, validat-
ing our approach. Table 2 shows the formulae and final errors for all
benchmarks. Overall, the final error is typically less than 10% and
20% on the XMOS and ARM platforms respectively, showing that
the general trend of the static analysis results can be relied upon to
give an estimate of the energy consumption. We explain the sources
of error in our results below:

Simple LLVM IR energy model (ARM). For the case of Cortex-
M the errors in the analysis mostly stem from the greatly simpli-
fied model of energy consumption in the Cortex-M. The LLVM
energy model used for the Cortex-M assigns an energy cost to each
IR instruction. Therefore, when an IR instruction expands to un-
expected, or many ISA level instructions, the energy consumption
can be inaccurate. In particular, for base64, ternary operators are
heavily used inside its main loop. In LLVM IR, this introduces a
number of short conditional blocks inside this loop. These multi-
ple basic blocks in LLVM IR are translated to a smaller number
of predicated instructions in the ARM ISA by the compiler, so the
static analysis will over approximate the energy consumed.

Measurement error. Measurement errors are introduced from en-
vironmental factors such as temperature and power supply fluctua-
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Figure 4. The measurement results and static analysis for the
XMOS processor.

100 200 300 400 500 600 700 800 900 1000

Parameter, P

0

5

10

15

20

25

E
n
er

gy
 p

er
 i
te

ra
ti
on

 (
m

J
) insertion sort

Actual

Analysis

Error

10.0

10.5

11.0

11.5

12.0

12.5

13.0

R
el
at

iv
e 

er
ro

r 
(%

)

0 5 10 15 20 25

Parameter, P

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
n
er

g
y
 p

er
 i
te

ra
ti
on

 (
m

J
) matrix multiplication

Actual

Analysis

Error

-45
-40
-35
-30
-25
-20
-15
-10
-5
0

R
el
a
ti
v
e 

er
ro

r 
(%

)

0 200 400 600 800 1000 1200

Parameter, P

0

5

10

15

20

25

30

E
n
er

gy
 p

er
 i
te

ra
ti
o
n
 (
µ
J
)

mac

Actual

Analysis

Error

-2

-1

0

1

2

3

4

5

R
el
at

iv
e 

er
ro

r 
(%

)

Figure 5. The measurement results and static analysis for the
Cortex-M processor.
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Benchmark∗ Formulae Final error (%)
ARM (nJ) XMOS (nJ) ARM XMOS

base64 158 + 94 ·
⌊
P−1
3

⌋
1270 + 734 ·

⌊
P−1
3

⌋
28.0 1.1

mac 23P + 14 133P + 192 -1.7 10.1
levenshtein 47AB + 14A+ 31B + 44 559AB + 78A+ 571 +max(225B, 180B + 213) 7.0 0.4
insertion sort 25P 2 + 11P + 7.1 105P 2 + 30P + 75 11.1 3.0
matrix multiply 20P 3 + 13P 2 + 97P + 84 144P 3 + 200P 2 + 77P + 332 -3.3 -3.4
gcd (22 + 15 · log2A) pJ (272 + 195 · log2A) pJ N/A† N/A†

jpegdct 54 mJ‡ 463 mJ‡ 8.5 2.6

Mean relative error 9.9 3.4

Table 2. Formulae and error values for each benchmark.
† The error in this benchmark is data dependent; ‡ This benchmark was not parameteric, thus is not parameterised.

∗ Benchmark sources are available from http://anonymized.for.review.com/

1 void function(int A, int B)
2 {
3 int i;
4

5 if(A < B)
6 for(i = 2*A; i >= 0; i--)
7 ...
8 else
9 for(i = B; i >= 0; i--)

10 ...
11 }

Listing 2. Example of a case
where the analysis infers a max
function.

Figure 6. Control flow
graph of the function given
in Listing 2.

tions. The tolerance of the components is also another factor. An-
other important factor is the test harness itself, which has to call a
function repeatedly in order to get its energy measurements. The
loop surrounding this function, together with the act of calling can
be a significant overhead when the amount of computation inside
the function is low. In fact, we can see that in all cases except
GCD, the relative error converges to a single error result. This is
expected because in all of the benchmarks the parameter controls
the number of iterations performed in one or more loops. As the pa-
rameter increases, the difference in the constant energy overhead is
minimized, with respect to the energy consumption of the function
under test. Measurement runs were run numerous times to ensure
consistency of results within the expected error margins described
above.

Data flow through the processor’s execution units. The energy
models for the xCORE and ARM assume a random distribution of
operand data. In practice, however, operations such as logical tests,
bit-manipulation and instructions performed on shorter data types
such as char will not use the full bit-range of the data path. In
cases such as these, energy consumption will be lower, therefore
introducing some estimation inaccuracy.

LLVM IR to ISA mapping (xCORE). In the case of the xCORE,
the overall results are better than that of the Cortex-M. This is due
to a more accurate assignment of energy values to LLVM-IR in-
structions, which the mapper can produce for each individual pro-
gram, as described in Section 4.2. Nevertheless, the mapper intro-
duces analysis error. For instance, the mapper does not consider
instruction scheduling on the processor, where an instruction fetch
stall can happen in some limited scenarios. This can be addressed
by performing a further local analysis on the ISA code to deter-
mine the possible locations where this happens, and adjusting the

energy accordingly. Another problem arises when mapping LLVM
IR phi instructions, to the “corresponding” ISA code. This code is
sometimes hoisted out of loops at a later compilation phase. Also,
multiple ISA instruction sequences that are conditionally executed
sometimes map to a single phi instruction. This phenomenon was
partially addressed by automatically adjusting the energy of phi
instructions in the mapping in such cases.

Static analysis and data dependence. Programs where the behav-
ior and state depends on complex properties of the actual input data
are problematic for static resource analysis. An extreme example of
such a program would be an interpreter. The execution time of an
interpreter not only depends on the size of the program file it is
supplied, but also on the contents of this file. A more typical exam-
ple would be the euclidean algorithm (GCD), where the number of
steps taken to execute depends on a relationship between its param-
eters A and B. Our static analysis technique, however, still man-
ages to compute an approximate, logarithmic upper bound, which
is dependent on only one of the arguments. Part of the reason why
we can analyze programs of this type is that symbolic evaluation of
modulus between two variables x mod y returns an upper bound
of y − 1, a lower bound of 0 and an approximation of (y − 1)/2.

The levenshtein cost function for the xCORE processor in-
cludes a max function, making it a different type of formula to
the Cortex-M’s cost function. This occurs when a data dependent
branch is on the upper bound of the function and the analysis is un-
able to resolve the branch statically, possibly because the branch-
ing is data dependent. An example of this is shown in Listing 2.
The analysis cannot statically ascertain the outcome of the A < B
expression, so simply returns the cost function as the maximum of
the two possible branches:

function = k1 + max(k2 + 2 · k3 ·A, k4 + k5 ·B) + k6,

where k1, ..., k6 are the costs of executing the respective basic
blocks, as seen in Figure 6. The same effect causes max to appear
in the xCORE’s formula — there is a data dependent if statement
in an inner loop of levenshtein.

5.3 Composability
All of the benchmarks so far have consisted of relatively simple
code, for which a single function is analyzed. However, the analysis
can handle nesting and recursion, in the same way that it can handle
functions with multiple basic blocks. In the code in Listing 3,
the levenshtein and modified insertion sort functions are
composed into a simple spell checker — for a given string, sort the
list of strings by the sortbysimilarity to the target string.

In this listing, dictword len is the maximum size of the strings
in dictionary. Inferring a cost formula for this program does not
present any issues as long as it is possible to infer formulas for its
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1 int distances[MAX];
2

3 void sortbysimilarity(char *word, int word_len,
4 char *dictionary[], int dictword_len,
5 int n_strings)
6 {
7 int i = n_strings;
8

9 while(i--) {
10 distances[i] = levenshtein(word,
11 dictionary[i], word_len,
12 dictword_len);
13 }
14

15 sort(distances, dictionary, n_strings);
16 }

Listing 3. Sort by similarity function, demonstrating that the
analysis can be composed across multiple functions.

constituent parts. Our techniques construct Cost Relations (CRs)
from the program that is being analyzed. An important feature of
CRs is their compositionality. This allows computing upper bounds
of CRs composed of multiple relations by concentrating on one
relation at a time. The process starts by computing upper bounds for
cost relations which do not depend on any other relations, which we
refer to as stand-alone cost relations, and continues by replacing the
computed upper bounds on the equations which call such relations.
For instance, for the above program levenshtein distance has
an associated energy cost of

(A(53B + 16) + 35B + 31) nJ, (6)

where A and B are the third and fourth arguments to the function.
Our modified string sorting routine has a cost of:

(
37A2 + 14A+ 14

)
nJ. (7)

These functions are systematically combined together so that a cost
for sortbysimilary is computed. In this case it is
(
530ABC + 157AC + 346BC + 366C2 + 629C + 210

)
nJ,
(8)

where A is word len, B is dictword len and C is n strings.

6. Related Work
Related work exists in four different areas: energy modeling of
processors, mapping low-level program segments to higher level
structures, static resource usage analysis and worst-case execution
time analysis (WCET).

Energy models of processors for program analysis require en-
ergy consumption data in relation to the program’s instructions.
This data can be collected by simulating the hardware at various
levels, including semiconductor [17] and CMOS [4]. Alternatively,
higher level representations may be used such as functional block
level [26] that reflects the micro-architecture, direct measurement
on a per-instruction basis [27], or by profiling the energy consump-
tion of commonly used software blocks [24]. Higher level data col-
lection and modeling efforts are typically quicker to use once the
data has been acquired, as there is less computational burden than
a low-level simulation. However, the accuracy may be lower, there-
fore a suitable trade-off must be met.

Although substantial effort has been devoted to ISA energy
modeling, there is not a lot of work done for higher level program
representations. This is mostly because precision decreases when
moving further away from the hardware. One of the most recently
pertinent works for LLVM IR energy modeling is [5]. The au-
thors performed statistical analysis and characterization of LLVM

IR code, together with instrumentation and execution on the host
machine, to estimate the performance and energy requirements in
embedded software. In their case, retrieving the LLVM IR energy
model to a new platform requires performing the statistical anal-
ysis again. Our LLVM IR energy model takes into consideration
types and other aspects of the instructions. Furthermore, our map-
ping technique requires only to adjust the LLVM mapping pass for
the new architecture.

Static cost analysis techniques based on setting up and solving
recurrence equations date back to Wegbreit’s [31] seminal paper,
and have been developed significantly in subsequent work [2, 6, 7,
20, 25, 29]. In [18] this approach is applied to inferring statically
the energy consumption of Java programs as functions of input data
sizes, by specializing a generic resource analyzer [10, 20] to Java
bytecode analysis [19]. However, this work did not compare the
results with measured energy consumptions. In [15] the approach
is applied to the energy analysis of XC programs using ISA-level
models [13], and the results are compared to actual hardware mea-
surements. Our analysis continues in this line of work but with a
number of important differences. First, analysis is performed at the
LLVM-IR level and we propose novel techniques for reflecting the
ISA-level energy models at the LLVM-IR level. Also, instead of
using a generic resource analyzer (requiring translating blocks to
its Horn Clause-based input syntax) and delegating the generation
of cost equations to it, we generate the equations directly from the
LLVM-IR compiler representation, performing control flow sim-
plifications, and reducing the number of variables modelled by the
analysis mechanism. Finally, we study a larger set of benchmarks.
There exist other approaches to cost analysis such as those using
dependent types [11], SMT solvers [3], or size change abstrac-
tion [34].

As discussed in Section 1, energy and time are often correlated
to some degree. Techniques such as implicit path enumeration [14]
are often used in worst-case execution time analysis of programs.
In most cases, programs are assumed to be preprocessed such that
no loops are present (e.g. using loop unrolling). Some approaches
such as in [12] focus on statically predicting cache behavior. WCET
analysis is concerned with getting an absolute worst-case timing for
hard real-time systems. In practice, for energy consumption anal-
ysis we typically are more interested in average cases. Also, most
WCET analysis approaches produce absolute timing figures. In our
case, we infer energy formulae parameterized by the program’s in-
put.

7. Conclusion and Future Work
In this paper we have introduced an approach for estimating the
energy consumption of programs based on the LLVM compiler
framework. We have shown that this approach can be applied to
multiple embedded languages (such as C or XC), compiled using
optimization level O2 with different compilers (such as Clang or
XCC). We have also validated this approach for multiple backends,
via two target architectures: ARM Cortex M3 and XMOS XS1-
L. Our approach is validated by comparing the static analysis to
physical measurement taken from the hardware. The results on our
benchmarks show that energy estimations using our technique are
within 10% and 20% or better in the case of the xCORE and the
Cortex-M processors, respectively.

Although the techniques discussed here were initially designed
for single threaded programs, these can be adapted to multi-
threaded programs. For these programs, we also need to take the
synchronization time into consideration. For example, the XC lan-
guage has explicit constructs for thread communication using chan-
nels, and therefore the blocking communication between threads
needs to be modeled. In order to do so, we can analyze the com-
munication throughput of individual threads using techniques dis-
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cussed in this paper. Using this information we can estimate the
time between events happening on channels and hence the utiliza-
tion of the processor. This, coupled with multi-threaded energy
models as discussed in Section 4.1, can be used to analyze multi-
threaded programs.

An interesting direction is to further develop the assignment of
energy to LLVM IR program segments. In particular, an LLVM IR
energy model for the xCORE can be implemented by using the
information gathered from the mapping technique together with
statistical analysis. The mapping technique used for the xCORE
can also be adapted for the ARM case. We aim to further develop
our techniques so they can be applied and evaluated against other
embedded processor architectures, such as MIPS, or other ARM
variants.

Finally, the static analysis techniques can be improved further.
Currently the biggest limitation is solving the cost relations. Cost
relations could also be solved numerically. In some cases this
can produce tighter upper bounds and enable us to analyze more
complex programs. An implementation of this can be used when
actual formulae are not required.
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grated Program Debugging, Verification, and Optimization Using Ab-
stract Interpretation (and The Ciao System Preprocessor). Science of
Computer Programming, 58(1–2), 2005.

[11] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate amortized
resource analysis. ACM Trans. Program. Lang. Syst., 34(3):14, 2012.

[12] N. D. Jones and M. Müller-Olm, editors. Verification, Model Check-
ing, and Abstract Interpretation, 10th International Conference, VM-
CAI 2009, Savannah, GA, USA, January 18-20, 2009. Proceedings,
Lecture Notes in Computer Science. Springer, 2009.

[13] S. Kerrison and K. Eder. Energy modelling and optimisation of
software for a hardware multi-threaded embedded microprocessor.
Technical report, University of Bristol, June 2013.

[14] Y.-T. S. Li and S. Malik. Performance analysis of embedded software
using implicit path enumeration. In Workshop on Languages, Compil-
ers, & Tools for Real-Time Systems, pages 88–98, 1995.

[15] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia,
N. Grech, M. Hermenegildo, and K. Eder. Energy Consumption
Analysis of Programs based on XMOS ISA-level Models. In Pre-
proceedings of the 23rd International Symposium on Logic-Based Pro-
gram Synthesis and Transformation (LOPSTR’13), September 2013.

[16] LLVM Project. Writing an LLVM backend. http://llvm.org/
docs/WritingAnLLVMBackend.html, 2014. Accessed: 2014-03-
11.

[17] L. W. Nagel. SPICE2: A Computer Program to Simulate Semiconduc-
tor Circuits. PhD thesis, EECS Department, University of California,
Berkeley, 1975.

[18] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Safe Upper-bounds
Inference of Energy Consumption for Java Bytecode Applications. In
The Sixth NASA Langley Formal Methods Workshop (LFM 08), April
2008. Extended Abstract.

[19] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. User-Definable
Resource Usage Bounds Analysis for Java Bytecode. In Proceedings
of the Workshop on Bytecode Semantics, Verification, Analysis and
Transformation (BYTECODE’09), volume 253 of Electronic Notes in
Theoretical Computer Science, pages 6–86. Elsevier - North Holland,
March 2009.
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