ENTRA

Whole-Systems
Energy Transparency

ENTRA
318337
Whole-Systems ENergy TRAnsparency

Energy Optimization: Basic Static

Techniques
Deliverable number: D4.1
Work package: Optimization (WP4)
Delivery date: 1 July 2014 (21 months)
Actual date: 22 August 2014
Nature: Report
Dissemination level: PU
Lead beneficiary: Roskilde University

Partners contributed: Roskilde University, University of Bristol, IMDEA Software Insti-
tute, XMOS Limited

Project funded by the European Union under the Seventh Framework Programme,
FP7-ICT-2011-8 FET Proactive call.

Short description:
This deliverable describes the state of the art in the relevant energy optimization techniques
together with a discussion of the optimizations to be applied to each case study.

The deliverable includes the following two attachments.

e D4.1.1. Study of Possible Static Power Reduction due to Temperature Hot Spot Reduction
provided by Uniform Register Utilization. Technical Report.

e D4.1.2. From Relational Verification to SIMD Loop Synthesis. Published in the ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP *13.

Contents

1 Summary

1.1 Static Optimization Techniques
1.2 Application to the project Case Studies
2 Introduction
3 Classification of Optimization Techniques
3.1 Low-level Code Optimizations for Low Power
3.1.1 Power/Energy vs. Performance Optimizations
3.1.2 Thermal-Aware Compilation
3.1.3 Register-file Energy Reduction
3.1.4 Energy Efficient Compiler-based Task and/or Data Parallelization
3.1.5 Code Motion for Energy Optimization
3.1.6 Superoptimization
3.1.7 Other Important Techniques
3.1.8 Summary of Used Static Analysis Techniques
3.1.9 Concluding Remarks: Compiler Optimization Techniques
3.2 Algorithm and Source-Code Energy-aware Optimizations

3.2.1 Re-computation vs. Communication
3.2.2 Code Level Parallelization
3.2.3 Precision (QoS) - Energy Trade-off
3.2.4 Summary of Used Static Analysis Techniques
3.2.5 Concluding Remarks: Source Code Energy Optimization

4 Optimization in the Case Studies

4.1

4.2
4.3
4.4
4.5

Architecture and considerations oL Lo
4.1.1 Thread parallelism
4.1.2 T/Oandcomputations
4.13 Coreparallelism
Economics of power optimizations
Real-time audio processing
Robot and motor controlo

Real-time networking

11
12
14
14
15
15
16
16
17
18
19

Assessment and Relation to Future Tasks 27

5.1 Focus areas for future research on optimization (WP4) 28

5.2 Relation to Dynamic Optimization 29

5.3 Relation to Energy-Aware Software Engineering 29

Attachments 38
D4.1.1: Study of Possible Static Power Reduction due to Temperature Hot Spot Re-

duction provided by Uniform Register Utilization 40

D4.1.2: From Relational Verification to SIMD Loop Synthesis 45

1 Summary

1.1 Static Optimization Techniques

This report is the first deliverable from work package WP4 (Optimization). The aim of this report
is to identify and classify energy optimizations for code at various levels and the supporting
analysis techniques needed to realize them. Tools for energy transparency enable a software
developer to see how much energy an application uses and how the energy usage is distributed
among the parts of the code. Work packages WP2 and WP3 focus on the fundamental modelling
and analysis techniques needed to achieve energy transparency (see Deliverable D2.1 [EG13] and
Deliverable D3.1 [LG13]). Given this information, the developer aims to apply optimizations to
make the application more energy-efficient.

The report concerns only static optimization techniques, namely optimizations that are made
by transforming the code or by fixing hardware parameters before execution. Dynamic opti-
mizations, based on such things as run-time scheduling and dynamic modification of hardware

parameters will be considered in deliverable D4.2.

A variety of tool support can be applied to achieve the required optimizations. In this report
we consider optimizations independently of whether they are achieved by hand or with tool sup-
port, and we do not consider tool support in detail. The ENTRA project will develop prototype
optimization tools, but we also note that energy transparency enables the developer to focus hand
optimization efforts in the most effective way even if optimization tools are not available. Fur-
thermore energy transparency assists the developer to evaluate the effectiveness of optimization,
whether carried out by hand or with tool support.

1.2 Application to the project Case Studies

The survey of techniques considers a wide variety of hardware platforms, many of them beyond
the scope of the current project. However, in Section 4 we perform a first assessment of the
opportunities for optimization in the project case studies (work package WP6, deliverable D6.1).
Our approach is as follows: we first outline the main architectural features of the target hard-
ware platform for the ENTRA case studies. Secondly we summarize the context in which energy
optimizations are performed, taking into account economic costs of development and manufac-
ture. Following this we make a first assessment of the opportunities for optimization in the three
case studies described in Deliverable D6.1 [Mul13]: real-time audio processing, robot and motor

control and real-time networking.

2 Introduction

Given that software controls the way that the hardware consumes energy, it is clear that in order
to minimize the total consumed energy of an application we need to design the software with
energy consumption in mind. An estimate by Intel states that energy savings by a factor of 3 to
5 could be achieved using software optimizations alone [Edw11]. Correctly fitting software al-
gorithms to the capabilities of the underlying hardware has been identified as the most important
step in software design for low power, above all other power optimizations [RJ97]. The impor-
tance of exploiting parallelism is also identified, and has become of increasing significance as
parallelization has become the dominant method of delivering higher performance.

To identify effective optimizations, all levels of the software stack need to be considered.
Starting from algorithm and/or application specification, through the compiler which produces
the low level code, down to operating system and machine code which controls hardware oper-
ation, these should be optimized in a way to minimize the total energy consumed. In this report
we will discuss each of the mentioned levels in more detail.

The underlying hardware system also has to be taken into account, given that the optimization
requirements are not always the same. For example, in battery powered embedded systems
it might be important to reduce the fotal energy, and also the peak power since both have an
effect on battery life. However, in large-scale general purpose systems the average computation
power determines the amount of generated heat, and along with it the activity of cooling system,
whose energy consumption can become significant. Thus, before starting the optimization, the
optimizing problem and its objectives have to be clearly specified. We also consider various
metrics for energy measurement [Mull3], covering various aspects of static and dynamic power
(wattage) and total energy consumption. In the rest of the text, power and energy optimization

will be treated as the same objective, given their close connection.

3 Classification of Optimization Techniques

3.1 Low-level Code Optimizations for Low Power

Research on power-aware compiler optimizations is not very extensive, mostly due to the lack
of reliable and effective evaluation methods. There are methods that have been evaluated using
physical measurements on a set of benchmarks, and also simulation based methods, but in general
they were not considered to be sufficient proof of their practical utility. Thus, energy transparency
is important in providing ways to evaluate optimization effects.

In this section we will first explain the difference between the compiler optimizations for

4

performance and the compiler optimizations for power and energy. After that we will present the

most representative techniques divided into the following four groups:
e Thermal-aware compilation
e Register-file Energy Reduction
e Energy Efficient Compiler-based Task Parallelization
e Other important techniques that do not fall into any of the above groups

Finally, we will give a summary of the static analyses used in the cited techniques and draw the

most important conclusions.

3.1.1 Power/Energy vs. Performance Optimizations

It has been widely accepted that existing compiler optimizations for achieving higher perfor-
mance also achieve lower energy consumption given that higher execution time usually means
higher energy. This is true for some of them, such as dead code elimination, common subexpres-
sion elimination, and in general all those that decrease the amount of work to be performed.

In these techniques we can also include all the loop optimization techniques that exploit
memory hierarchy [RJ97]. The idea of these techniques is to introduce more locality in data
accesses in order to be able to use the data stored in the parts of memory hierarchy closer to the
processor, i.e., register file and/or cache. In essence, accessing the parts of the memory which
are smaller and closer to the chip reduces the effective switching capacitance, thus reducing
the energy consumption. However, some of these techniques introduce additional computation,
thus increasing processor energy. For example, some linear loop transformations can result in
complex loop bounds and array subscript expressions. Similarly, loop tiling can impose extra
branch control operations. On the other hand, loop unrolling is expected to decrease energy
consumption, since it decreases the impact of the loop overhead and in this way the total number
of instructions.

All of this has been confirmed in the work of Kandemir et al. [KVI02], which explores the
effect of the above-mentioned loop optimization techniques on energy. In particular, they eval-
uate energy consumption of matrix multiplication code on different cache configurations with
different loop optimization techniques. Their conclusion is that the effectiveness of each tech-
nique depends on cache configuration, but in general the decrease of energy consumption does
not follow the decrease of cache misses due to the effect of introducing additional computation
in the core. Thus, they advise the use of these techniques along with other optimizations in order

5

to achieve savings on global level. In this way, they were able to reduce energy consumption by
55%.

One possibility presented in the same work [KVIO2] is to combine loop optimizations, in
particular loop fission, with the possibilities offered by hardware, in this case the existence of
different memory banks that have different power modes. Loop fission in essence transforms a
nested loop that contains multiple statements into a set of nested loops, each containing a subset
of the original statements. In this way, the amount of memory needed in each loop iteration is
reduced, which provides the possibility to use lower number of memory banks, and put the ones
that are not used in hibernation mode.

In a similar fashion, compilers can help the operating system to decide when to turn on a
particular power saving mode by inferring the time during which particular modules are inactive,
so they can be turned off. The main issue with turning off modules is that their re-activation takes
a lot of time. However, if the operating system knows when a particular module is to be used,
it can start its activation and deactivation in a timely manner. An example of this is presented
in [HPH"02], where an average of 70% reduction of disk energy is achieved. Another example
is given in [SCO'07], where the compiler is able to derive disk access patterns, provided that
it is aware of the disk layout. Based on the compiler-predicted future idle and active periods of
parallel disks, a proactive disk power management can be implemented. In order to achieve ad-
ditional savings, this information can be used for code restructuring in a way such that the length
of idle disk periods is increased, which leads to better exploitation of power-saving capabilities.

Something similar can be done for Dynamic Voltage and Frequency Scaling (DVES). For
example, the compiler can infer the parts of the code where the processor can be slowed down
with negligible performance loss [HKO3]. Another example is presented in [SKLO1], where the
compiler provides an estimation of the execution time of each block. Hence, the static analysis
necessary in this case is timing analysis. Here it is assumed that the worst execution time is the
time of the critical path. Thus, if a block that is supposed to be executed next does not belong
to the critical path, the operating system can calculate the slack time, i.e., the time difference
between the block to be executed and the corresponding one that belongs to the critical path, and
change the voltage and/or frequency in such a way that the execution time of the current block is
(at most) the same as the execution time of the critical one.

A fundamental difference between performance and power optimizations is the model and/or
metrics used. In the case of performance, the optimizations of the critical path are usually con-
sidered, while the optimizations that do not belong to the critical path usually do not affect per-
formance. However, in the case of the power, each activity contributes to power consumption.
A clear example of this is given by speculative activities, e.g., prefetching, which are executed
based on a belief of a future behaviour. If the assumptions turn out to be false, additional work

6

has to be performed to undo the effects of speculative activities. If the critical path is not affected,
it is clear that it will not affect performance, but obviously it can increase energy consumption.
In the general case, this increase would have to be compensated by the overall energy benefit in

order to be effective for energy optimization.

3.1.2 Thermal-Aware Compilation

In recent years a number of solutions for thermal aware compilation appeared aimed at reducing
hot spots, i.e., the highest achievable temperature. In this way, it is possible to reduce static power
consumption, given its super-linear temperature dependence and the fact that it is becoming an
important part of power consumption, as well as energy spent on cooling in general purpose
systems.

Researchers have identified the register file to be the hot spot of a processor, given its frequent
usage and the way it is being accessed. Compilers usually assign a variable to the first free
register, which means that the register located at the beginning of the register file will be used
more frequently than the rest. For this reason, their temperature will be much higher than the
temperature of the registers located further down the register file. In order to tackle this problem,
the authors of the papers given in [AAB09, SAA10] propose to access the registers uniformly in
order to avoid hot spot creation. This is usually performed by the compiler in an additional step
called register re-assignment, using different techniques (heuristics mostly) to make the register
usage more uniform. According to their results, hot spot temperature can be lowered by 11%.
This can introduce significant reduction in cooling power in the case of general purpose systems.
However, none of the papers give insight into static power reduction. We have performed some
coarse grain estimations, according to which we could save up to 5% of static power with a
register set of 12 registers in the cases of heavy register usage'. This means that these techniques
cannot provide significant savings for embedded systems, and would be more appropriate for
large scale general purpose systems.

A different approach is given in [MLNT06] by Mutyam et al., where the authors propose to
identify thermal hot spots using software, as it is the software that determines the order and the
frequency of accesses to different hardware components. The focus of the work is to provide
compiler-based approach to make the thermal profile more balanced in the integer functional
unit through load balancing. This can be in direct conflict with the idea of using the idleness of
components to put them in a low power state, so appropriate load granularity should be found in
order to reach the balance between the two. It is important to point out that this process is made

without any performance loss, while the peak temperature is lowered by up to 14°C.

I'The calculations leading to these estimations are in Attachment D4.1.1

7

3.1.3 Register-file Energy Reduction

As mentioned above, the register file is accessed frequently, thus its energy consumption can
become significant. For this reason, several techniques for reducing its energy consumption have
been presented. However, they mostly rely on a specific hardware feature, which means that their
applicability is limited.

One of the first ideas was to put in hibernation the registers that are not being used, given that
applications typically use only a small part of register file [AVLVO03]. This of course has to be
supported by the hardware that should provide the possibility of turning off separate components.
Similar work by the same authors seeks to reduce the number of read and write ports in a register
file, reducing energy without significantly impacting performance [ALVO05]. This is achieved
through a combination of changes to the micro-architecture, and in the compiler, modifications
to the register assignment strategy and the use of loop unrolling.

Another work [JOA™09] proposes optimal register caching in the architectures that support
it. Register caching usually implies the necessity of adding extra logic to keep track of the
information necessary for optimal caching, e.g., recent past or in-flight instructions, which means
increased energy budget and higher chip price. Instead of adding extra logic, in this work it is
proposed to keep available the information about complex data dependencies generated by the
compiler, so it can be used for optimal register caching at run time. This information is added
to unused bits in ISA. In this way, they achieve reduction of energy by 13%, at the same time
increasing performance by 11%.

A subsequent work [GKDI11] goes even further in proposing a register hierarchy. Different
allocation algorithms are presented, all based on sharing temporary register files between concur-
rently running threads. In this way they were able to reduce register file energy by 54%. Having
in mind that in GPUs register file can consume 15 — 20% of dynamic energy, in this way they

are able to achieve up to around 10% decrease of dynamic energy.

Another work tries to take advantage of so-called transport triggered architectures (TTA)
[SHMC12], where the program has control over the datapath. In this way, it can reuse data
stored in pipeline registers and in this way reduce the number of accesses to the register file.
In this work the authors go even further by adding a backend to the compiler that performs
operation-based instruction scheduling. The algorithm consists in finding the shortest path in
a resource graph, where the weights of the edges correspond to the energy cost. In this way,
they are able to reduce up to 80% of register file energy. However, the number of TTA-based
processors is not big, which makes this approach very limited.

8

3.1.4 Energy Efficient Compiler-based Task and/or Data Parallelization

Nowadays having multiprocessors or multiple cores on the same chip is practically the standard,
which provides the possibility of both task and data parallelization. Along with the possibility
of voltage and frequency scaling, as well as turning off unused components, it can bring signif-
icant energy savings. Apart from multicore systems, parallelism is also supported in Very Long
Instruction Word (VLIW) architectures through Instruction Level Parallelism (ILP), or in Digital
Signal Processors (DSP) through ILP or Single Instruction Multiple Data (SIMD) instruction
format. In the following we will present the role a compiler can take in this process.

One of the first works on this subject is presented by Azeemi [Aze06]. The author starts from
the idea that performance and energy issues in embedded systems arise from inappropriate way
software uses hardware. The work is tested on VLIW architectures, where up to five instructions
can be executed at the same time. Thus, this work is an illustration of taking advantage of
ILP. The compilation is implemented as iterative compilation, where the idea is to implement
various versions of the same code using different optimization techniques, and select the best
one. This process is implemented as multiobjective genetic algorithm, where the objectives
are performance and energy, which are modeled using different monitors, such as code size,
execution time, cache misses, etc. In order to maintaing the compilation time within reasonable
bounds, search space is pruned using a heuristic. With this approach, they were able to achieve
performance improvement of up to 80% for different benchmarks, with energy savings of up to
45%. However, all optimizations techniques are performance based, and it seems that the energy
in this work is an additional benefit, rather than an objective.

In a similar way, the work of Lorenz et al. [LMD"04] represents a first attempt to generate
SIMD instructions using a compiler through a vectorization step. This has allowed them to
achieve on average 72% of energy reduction with average 76% performance improvement on a
set of benchmark applications. Although nowadays it is a common thing for a DSP compiler to
generate SIMD applications, this work is a good illustration of the benefits it provides for both
performance and energy.

However, existing pattern-based compiler technology is unable to effectively exploit the full
potential of SIMD architectures. In order to overcome this limitation, a new program syn-
thesis based technique for auto-vectorizing performance critical innermost loops is presented
in [BCG'13]?. The synthesis technique is applicable to a wide range of loops, consistently
produces performant SIMD code, and generates correctness proofs for the output code. The
synthesis technique, which leverages existing work on relational verification methods, is a novel

combination of deductive loop restructuring, synthesis condition generation and a new inductive

2 Appears as a Attachment D4.1.2

synthesis algorithm for producing loop-free code fragments. The inductive synthesis algorithm
wraps an optimized depth-first exploration of code sequences inside a CEGIS loop. The tech-
nique is able to quickly produce SIMD implementations (up to 9 instructions in 0.12 seconds) for
a wide range of fundamental looping structures. The resulting SIMD implementations outper-
form the original loops by 2.0-3.7. Although the technique is mainly applied to execution time
optimization, it can also reduce energy consumption.

The connection between task parallelization, voltage and frequency scaling and selective
turning off of different components on a multicore chip is investigated in the work of Cho and
Melhem [CM10], which derives fundamental formulas to describe the connection between par-
allelizing an application, its performance and energy consumption.

A concrete implementation of this approach is given by Chen et al. in [CDYWO0S5] . The
main idea of this approach is to use load imbalance of parallel applications, i.e., the fact they
will not finish their part at the same time and some of them will have to wait for others to finish,
and modify voltage and frequency of separate processors such that they all finish their task in
(approximately) same time. Apart from parallelizing a serial application, the compiler has two
more tasks: it should perform load imbalance analysis, i.e., estimate the load of each parallel and
serial fragment, and in the second step calculate the voltage and the frequency of each core, so
they all finish their task at the same time. However, since in many cases the load depends on
input data, it cannot be estimated at compile time (in the best case its function on the input data
can be inferred), which makes this approach inapplicable in these situations.

A continuation of the same idea is presented in [OKC11] by Ozturk et al. The idea of this
work is to provide compiler support to multimedia embedded applications (characterized by a
great number of nested loops) on the chips with voltage islands, i.e., different areas of the chip
with their own variable power supply. Their work is also based on load imbalance. However, they
go further by identifying the main source for this in multimedia applications to be loop bound
based imbalance. This is the only type of load imbalance that could be estimated at compile time.

This work further exploits both data parallelism, i.e., performing a similar computation on
different data, by executing a given loop nest in parallel on different cores, and task parallelism,
by dividing a given loop nest into independent parts (if possible), and executing each of them
on a different core. After mapping each nested loop and its parts on different cores, the second
step is to estimate the load of each core. In order to do this, the compiler should perform two

calculations:
1. Tteration count estimation

2. Per-iteration cost estimation

10

The first step is not very difficult, given that in most array-based applications loop bounds are
known before the execution starts, or they can be estimated through profiling. The second step
is more complicated, and in general case can be estimated using a Worst Case Execution Time
(WCET) technique, which is well known. The approach used in this work is based on the number
and the type of the assembly instructions used in each loop.

After having estimated load of each core, the voltage of each one is assigned in the following
way. The one with the biggest load will have highest possible voltage, the second one will have
the lowest possible voltage that does not increase the total execution time, etc. In this way, they
were able to reduce energy consumption by 40.7% on average, achieving at the same time 14.6%

average performance improvement in the terms of the total number of execution cycles.

3.1.5 Code Motion for Energy Optimization

Code motion means rescheduling or reordering execution of instructions, while preserving the
functionality of the code. In many cases energy saving can be achieved by code motion. In
the real world, programmers are seldom aware of the hardware energy-usage implications of a
particular ordering at runtime, and this often leads to loss of energy-saving opportunities.

There are two basic scenarios in which code motion can play a key role in reducing energy
consumption: in optimising time-critical code and in smoothing workload spikes. A section
of code may be time-critical due to its role in inter-process communication, a real-time [/O
response or other time-critical operation. If code in the critical session, which is irrelevant to the
critical operation, into the non-time-critical session, can facilitate run-time energy optimization,
as shown in the following example, relating to “user-perceived time” [SSCK14].

To explain user-perceived time, we take a look at one interactive session (e.g. a click on
a button or slide on the screen). The user first feeds in an input, and the system will render a
UI response after a period of processing. The interval between user input and UI response is
the so-called “user-perceived time”. In most cases, there is some “think time” between the Ul
response and the next user input. As far as the user is concerned the Ul response should be as
fast as possible (it is “time-critical””) whereas the user is most likely oblivious to the processing
during think time. Thus we can apply aggressive runtime optimization (e.g. slowing down
processor frequency) during the think time. Further, we can delay code that is irrelevant to Ul
response (code motion) so that processor frequency can be reduced during both think time and
user-perceived time, while still guaranteeing timely Ul response.

The second basic scenario mentioned above concerns workload spikes. A heavy workload
that comes in a short time slot causes workload spikes. Due to sluggish (coarse-grained) run-
time power adaptation, the processor needs a high frequency level to deal with workload spikes;

11

however, keeping the same high level even between and after the spikes leads to a waste of
energy. To reduce workload spikes, high power instructions should be spread over a long period.

There are many challenges and trade-offs to be addressed, such as preserving the user experience.

Performing code motion is in general a complex task. In the simplest case (in one single code
block), code motion consists of delaying instructions that are irrelevant to the critical statement(s)
(i.e. the statement responsible for time-critical operation) until after the critical statement, but
respecting dependencies of other statements on the delayed instructions. That is, an instruction
cannot be delayed until after another instruction that depends on it. It is tricky to find the relevant
code for the critical statement, which is the same process as find the irrelevant code, and the
process is formally called program slicing [Wei81]. A program slice consists of the parts of a
program that (potentially) affect the values computed at some point of interest. The calculation
of the slice is based on the Program Dependence Graph (PDG) [HRB88], which consists of the
Control Dependence Graph (CDG) and the Data Dependence Graph (DDG). A statement is in

the program slice for the interested statement if there is a path connecting them in the PDG.

In inter-block cases, there are many trade-offs. For example, moving code out of a loop may
induce more spikes due to frequent processing of high power instructions without interspersing
low power instructions around them in the loop. Accurate energy modelling is needed to evaluate
the benefits of code motion in more complex cases.

3.1.6 Superoptimization

Traditional compilers optimize code during compilation, however, they only produce improve-
ments over the existing code instead of truly optimal code. Superoptimization is a technique
developed by Massalin [Mas87], allowing an optimal section of code (for a given metric) to be
found for a given function. By searching through all possible instruction sequences and checking
whether the target instruction sequence is equivalent, an optimal piece of code can be found.

Massalin found that by applying superoptimization sequences of code were found, which
exploited the processor’s features in unusual ways. These sequences of code made use of the
flags, along with combinations of arithmetic and bitwise operations.

12

] int signum(int x)] ; dO = n
2 { 2 add.l1 do, do
3 if(x > 0) 3 subx.l d1, dl
4 return 1; 4 negx.l doO
5 else if(x < 0) 5 addx.l d1, dil
6 return -1; 6 ; dl = signum(n)
7 else
return 0;
9 }

The code above on the left shows one of the functions Massalin optimized, with the resulting
Motorola assembly on the right. The resulting assembly makes use of the carry bit (x) to perform
the computation. The carry bit is set by the first operation if the input is negative, and this bit is
propagated into d1 in the next instruction, which computes d1 = dl1 - dl1 - x. The third
instruction negates d0, which sets the x bit if d0 != 0. Finally the values in d1 and x are
combined to give the result. The optimal version of this function was shorter than any previously
found instruction sequence — an expert writing the same sequence managed to reduce it to 6
instructions.

In general superoptimizers have a similar structure:
1. Enumerate the instruction sequence.

2. Test the instruction sequence.

3. Cost the sequence.

When the entire set of instruction sequences has been enumerated, the instructions can be ranked
and the lowest one selected. Often superoptimizers will attempt to enumerate the sequence in
cost order, allowing the first equivalent sequence to be selected and the search stopped. In the
case of optimizing for code size this is simple — the instruction sequences are generated in size
order. This method becomes more difficult if targeting performance or energy consumption.

Some superoptimizers have attempted to reduce the size of the search space by canonicalizing
register namings [BAO6], by restricting the number of constants used [GK92] and by removing
redundant instructions (such as X = Y, Y = X) [Mas87].

Testing the instruction sequence is a challenging problem, as it must be done fast, yet ensure
that the instruction sequence is equivalent for all inputs. One approach taken by many superop-

13

timizers [BA06, SSA13] is to test the instruction sequence on a few test vectors, and if it passes
all of them, verify the sequences are equivalent using an SMT solver.

Other approaches have attempted to guarantee the instruction sequence is correct by construc-
tion — this incorporates steps 1 and 2 together. Gulwani et al. [GJTV12] use a solver and counter
example guided inductive synthesis to connect multiple ‘components’ together to produce sim-
ilar types of programs to Massalin’s superoptimizer. A similar approach is taken in [BCVF06]
using answer set programming to produce a set of instruction sequences.

There are currently no superoptimizers which explicitly target energy consumption, although
improvements in energy consumption may be expected from reducing code size, and increasing

performance.

3.1.7 Other Important Techniques

Provided that the compiler has insight into energy consumption, other common compiler tech-
niques could be used taking as objective energy rather than performance. For example, peephole
optimization, which changes a piece of code with another that carries out the same task, can
perform the change in a way the new code consumes less energy. In general, it is possible to
have different versions of the same code, and at compile time decide which one to use. Also, if
precise energy consumption cannot be estimated without the data, with the use of Just In Time
(JIT) compilers it is possible to decide which is the most optimal version of the code (in terms
of energy) at run time and continue its execution. However, this introduces certain time over-
head at run time. In the following text we will see some examples of algorithm and/or code
transformation that can provide energy savings.

In a similar way, instructions can be scheduled so as to reduce the energy, given that the
state of the hardware, as a direct result of the previous instruction, also affects on its energy
consumption. An example of this is so called cold scheduling [SyTD94], whose aim is to reduce
interinstruction effects. Another example is given in [PKVIO0], where Parikh et al. can save up
to 17% of energy through optimal instruction scheduling.

Finally, the compiler should be aware of the hardware and the possibilities it provides. For
example, if there is a floating point unit, the compiler should generate the code that uses it. Thus,
the back-end should be designed, or optimized if possible, in such a way that it takes advantage

of all hardware possibilities.

3.1.8 Summary of Used Static Analysis Techniques

We will now list all the static analyses used by the above-mentioned compilers as inputs to the

optimization step, or identified as a necessity:

14

e Energy accounting (energy transparency), i.e., providing insight into the amount of en-
ergy a piece of code spends, in order to enable the evaluation of different optimization

techniques

o Inferring the time (starting and ending point) the components (e.g., disks) are not active,

which can be used by the OS to turn them on and off in a timely manner

o Identify parts of the code the processor can be slowed down with no performance loss, e.g.,
memory access, as an enabler for voltage and frequency scaling

e [oad imbalance analysis, as a special case of the previous item
e Execution time estimation, as another enabler for voltage and frequency scaling

e [f there is more than one resource for a certain action, find the shortest path to it (in the

terms of energy)

3.1.9 Concluding Remarks: Compiler Optimization Techniques

In this section we have presented few representative compiler optimization techniques. The most
important observation is the lack of energy accounting which would provide the compiler the
necessary insight into the quality of each optimization technique without having to perform sim-
ulation and/or measurements. On the other hand, although there are lots of different examples,
there is no general approach that would combine different techniques in order to obtain over-
all energy minimization. As we have seen, some techniques can have positive impact on the
consumption of one part, but may increase the consumption of another. For this reason, it is
important to treat the optimization problem on a global level. Finally, the compiler should be

aware of the underlying hardware in order to be able to use all its potentials for saving energy.

3.2 Algorithm and Source-Code Energy-aware Optimizations

In this section we will present solutions aimed at optimizing energy through algorithm or high

level code modifications. We have identified the following major trends among modifications:
e Re-computation vs. Communication
e Code level parallelization

e Trading precision, or Quality-of-Service (QoS), with energy

15

3.2.1 Re-computation vs. Communication

Technology scaling has been more beneficial to transistors than to wires. For this reason, com-
munication has become the limiting factor of both power and performance [MGO08], especially
bearing in mind its growing significance in today’s multi-core era. Even the introduction of the
Network-on-Chip (NoC) paradigm [BWM™09] does not solve the problem completely, given the
growing trend of communication requirements.

A solution to this problem is to perform re-computation of some information, rather than
fetching it from a remote place [MGO8]. An important enabler for this approach is to develop
greater understanding of algorithms and data structures in order to better manage data movement
in systems. Furthermore, it is important to be able to estimate the cost of both computation and
communication in order to be able to decide which one is more beneficial in particular cases. The
authors believe that the significant work done in VLSI domain in characterizing and predicting
interconnections can be helpful in understanding communications in multi-core processors.

The great majority of publications on the subject have the objective of increasing performance
by trading re-computation for communication. Although without knowing their energy cost we
cannot claim that these techniques provide energy savings as well, they can be a good starting
point.

One example is given in [RKO8], where Rolf and Kuchcinski give a solution to a parallel
depth first search algorithm, where they show how reducing communication at the expense of
increasing computation can achieve speed-up of up to 18 times. They also claim that less com-
munication gives more room for an advanced load balancing scheme, which can further improve
performance. As we have seen above, load balancing can also be used to reduce energy.

Another example consists in honouring multiple alignments, i.e., relative allocation within
an array, when decomposing data into distributed memory [GSB95], which reduces conflicting
alignments and in this way the communication. The performance increase is 80%, which be-
comes more significant bearing in mind that when it was published (1995) communication did

not represent such a significant overhead.

3.2.2 Code Level Parallelization

As previously mentioned, executing code concurrently on multiple cores can be energy effi-
cient [KA10, KA11, KAO9a]. It is also possible to optimize performance through static energy-
bounded scalability analysis [KAO9b], given an energy budget. Similarly, devices capable of
parallelism through hardware multi-threading may require some level of parallelism in order for
a core’s energy efficiency to be maximised [KE13, SB13].

16

Although the process of parallelization is often performed automatically by the compiler, par-
allel code can be developed manually by the programmer. This process can be time-consuming,
complex, iterative and error prone, yet it is more flexible and it can be the only solution if the
compiler is not capable of generating parallel code. An extensive survey of parallel programming
models and tools can be found in [DMCN12].

3.2.3 Precision (QoS) - Energy Trade-off

In the recent past some researchers have studied energy-accuracy trade-offs [LY07]. The main
conclusion is that there are applications in which a significant proportion of energy is spent on
providing a correct result, whereas the applications are resilient to error [LY07, MSHR10]. One
of the most important conclusion from these studies is that there are parts of applications that are
resilient to errors, or provide a result that is good enough, while there are parts that need to have
the precise result.

This idea is exploited in the design of EnerJ [SDF*11], an extension to Java which provides
a solution for isolating precise parts of the program from the ones that can be approximated
by introducing approximate types, i.e., type qualifiers that declare that the data can be used in
approximate computations. The system can use this information as a sign to use low power
storage, low power computation, or even low power algorithms provided by the programmer.
Furthermore, the system can statically guarantee the isolation of precise program parts from the
approximated ones, which eliminates the need for dynamic checking and the additional energy
consumption implied with it. In this way, energy savings of 10% to 50% can be achieved.

However, in order to provide the practicality of the approach, it has to be supported by the
hardware as well. The authors propose an ISA extension, where the additional bits would show
if the components that support the execution of the approximate code should be involved in the
current calculation. They also envision the existence of separate ALU and floating point units for
both approximate and precise operations. Furthermore, the cache lines should have an additional
bit for distinguishing the approximate from the precise ones. It is also proposed to supply the
approximate memory (SRAM) with lower voltage, or refresh DRAM with lower frequency, etc.
However, the additional hardware would lead to extra chip fabrication costs. Thus, in order to
support the practical exploitation of EnerJ-like proposals, it should be evaluated when is the
additional hardware cost justifiable.

An important contribution to this line of research has been provided by the Computer Sci-
ence and Artificial Intelligence Laboratory from MIT [MRR11a, MRR11b, ZMKR12, MSHR10,
RHMSI10]. Their work started with the idea of supporting the execution of a task in the case of
having to cope with limited resources, failures, etc. [RHMS10], and eventually it evolved to the

17

idea of providing optimal accuracy-resource consumption trade-offs [ZMKR12], where resource
can be time, energy or cost. It is clear that in the case of energy an important enabler for this
process is the estimate of energy consumption. Another important enabler is the awareness of
which parts of the algorithm permit lower accuracy, i.e., in image processing pixel values can be
approximated, but the part of the code that determines how to reconstruct the image has to be
accurate.

The examples of accuracy-aware transformations they give are task skipping (in parallel ap-
plications) [Rin06], loop perforation, i.e., executing only a subset of the original loop itera-
tions [MRR11b, Aga09, SDMHR11], approximate function memoization [CGL10], substitution
of multiple alternate transformations [BC10], such as shifting left or right instead of perform-
ing division or multiplication, or sampling, which assumes discarding certain computations. In
the case of reduced resource computing, we could also add cyclic memory allocation [NRO7],
where a fixed sized buffer is allocated for a given dynamic allocation site. These transforma-
tions provide the possibility to realize different optimization problems, such as to minimize re-
source consumption subject to a given accuracy, or to maximize accuracy subject to a given
resource consumption. A solution to these optimization problems is given in [ZMKR12], while
in [MRR11b, MRR11a] a probabilistic reasoning that justifies that the application of transfor-
mations may change the result within probabilistic accuracy bounds is given for the case of loop
perforation.

The same research group also provides PowerDial [HSC"11], a system that dynamically
adapts the application to the varying characteristics of the environment (in terms of load, power,
resources, etc.). In essence, it is based on a set of static configuration parameters which can
be transformed into dynamic knobs. The dynamic knobs can be further tuned by the control
system to change the configuration of the running application in order to trade off accuracy of the
computation in return for the computation resources the application needs. Although automatic,
this technique requires the user to provide training data, an output abstraction and identify a set

of parameters (static configuration parameters) and their range in the program.

3.2.4 Summary of Used Static Analysis Techniques

The enabler for all the deployed techniques is again the estimation of the consumed energy. Other

static analysis techniques use to enable the code transformation are the following:

e Understanding communication patterns in order to enable communication - re-computation
trade-off

e Static energy-bounded scalability analysis, which optimizes performance of parallel algo-

18

rithms given an energy bound

e Static verification of approximate and precise code computation, in order to enable EnerJ-

like applications

e Probabilistic reasoning which justifies that the applications of code transformations change

the result within given accuracy bounds, in order to enable approximate computations

3.2.5 Concluding Remarks: Source Code Energy Optimization

This section has provided some insight into code transformation techniques that can reduce en-
ergy consumption. Particularly interesting is the application of approximate computation which
can be applied in many applications within acceptable losses. Although it has been mostly ap-
plied to performance optimizations, it could also be applied for energy optimizations, assuming
that estimation of energy consumption is available.

4 Optimization in the Case Studies

4.1 Architecture and considerations

Before discussing the optimizations that are relevant to various case studies, we discuss architec-
ture and system characteristics that may be exploitable for energy optimization, or conversely,
that may constrain or preclude certain techniques. The classifications of optimizations described
in Section 3 are referenced where appropriate.

Exploitation of available parallelism can be achievable at various levels, but the best to apply
may be architecture and program specific. For example, VLIW DSP processors benefit from ag-
gressive instruction scheduling. The instruction set and processor pipeline are designed to exploit
instruction level parallelism, and the signal processing they perform fits well to this structure.

In the case of the nominal target for these case studies — the XS1-L — there is a reasonable
amount of parallelism possible per core (up to eight threads), but no instruction level parallelism.
However, there are combined arithmetic operations such as multiply-accumulate, which speed up
common data processing operations. Further, for Input/Output, port resources can handle some

data manipulation tasks, such as buffering, timing and serialization.

4.1.1 Thread parallelism

In [KE13] the energy efficiency of the XS1-L in relation to the number of utilised threads is dis-
cussed. If fewer than four threads are utilised per core, then the pipeline is under-used, resulting

19

in sub-optimal energy efficiency. As such, this motivates keeping the pipeline full whenever the
processor is active, by having four or more active threads. This is true of other architectures with
parallel features, such as the Xeon Phi [SB13], which has sub-optimal efficiency if fewer than
two threads are running on a core.

The methods by which maximum pipeline efficiency can be obtained is governed by the de-
pendencies and structure of the application. As such, for each case study, optimization strategies
may differ.

In terms of the overhead of parallelizing in the XS1-L, at least three instructions are required
to create a thread, and further instructions may be required in order to setup all registers such as
stack, data and constant pointer. This constrains parallelization optimizations that would create
new threads, to ensure that the work they will perform is sufficiently large compared to the thread
creation time. Alternatively, provided there are sufficient thread resources available, the threads
may be permanently allocated, and wait for work to be communicated to them.

Beyond maximising pipeline utilization, another possible outcome of optimizing for thread
parallelism is that it may then be possible to lower the processor clock frequency and voltage.
The application remains able to deliver the required performance (e.g. the same data throughput),
whilst consuming less energy, a trade-off discussed in Section 3.1.1.

4.1.2 1/0 and computations

Some architectures have been designed so that real-time I/O and communication can be sched-
uled relative to computation. One of our target architectures (the XS1-L processor) is a good
example of this. The central idea is that when programming the system, the program is seen as a

sequence of I/O operations and computation operations:

Perform some computation
Perform some I/O
Perform some computation

Perform some I/0O

When an architecture is designed to dissociate I/O and computation, then the precise timing
of the I/O is no longer an issue: the I/O instruction has to be reached before the required time;
but not at the required time. This means that the computation has to be fast enough to perform
the I/O on time, but it can be made to run faster without affecting the semantics of the system.

Architecturally, I/O and computation can be dissociated by triggering the I/O on a particular
clock cycle (for example, the next clock, or the fifth clock), or by not allowing the I/O to proceed

until some external event has completed, (for example the first clock where a handshake wire has

20

been asserted). Note that in many architectures this is not the case, and I/O has to be delayed to
the appropriate time by inserting no-operation instructions (NOP) in the instruction stream.

Dissociation of I/O and computation is important from a power perspective as it enables both
the programmer and the tools to schedule computation tasks around the I/O instructions; and the
only constraint is that the I/O instructions are reached in time, and that any data dependencies
are maintained. If these goals are met, then given a fixed throughput of the processor, it can
be proven that the system will work. Conversely, given knowledge as to how much slack there
is in the system, the clock frequency of the processor can be delayed so that the computation
finished just in time; which in turn will enable us to lower the voltage, and make significant
power savings. Having sequences of no-operations inserted take this freedom away, or put the
responsibility completely in the lap of the software engineer.

A further optimization is to exploit parallelism between I/O and computation. If I/O and
computations have been dissociated, then as a buffer between the two will enable computation to
continue, whilst the I/O unit is ready to perform the 1/0; synchronising on the next interaction,
at which case the computation has to wait for the previous I/O operation to complete. This gives

further opportunities for scheduling computations.

4.1.3 Core parallelism

Where multiple cores are used, voltages and frequencies can be optimised per core. Various of
the techniques discussed in the previous section may be used or combined for optimising, where
there is core-local parallelism, multi-core parallelism, and inter-core communication to consider.
In particular, consideration should be given to re-computation vs. communication (Section 3.2.1,

as well as task parallelization (Section 3.1.4).

4.2 Economics of power optimizations

As stated before, energy use can be optimised by using a multitude of cores that run slowly.
Given the limits of voltage scaling, the physics of leakage, and the extra costs incurred in com-
munication, an optimal number of cores can be estimated that will solve a problem using the
least energy. However, from a commercial perspective this is not always desirable as deploying
extra hardware costs money.

Indeed, when designing a system, the designer is often given budgets within which to stay.
In the case of a mobile system, the budget will be for the for the maximum weight and size,
the maximum bill-of-material cost (the BOM cost), and the minimum time that the system can
operate on a single charge. In the case of a non-mobile system, the budget may be the energy

21

usage and bill-of-material costings (the BOM cost). In that case, the energy usage is often guided
by legal requirements. This may be the required maximum stand-by power usage, or a desired
efficiency label.

In either case, power does not need to be optimised beyond the point where it is “good
enough”. Reversely, it may be that parallel tasks have to be combined in order to reduce the
system cost; the designer may have gone over the cost-budget, but be below the power-budget.
All optimizations have to be balanced too; when all budgets are met, it may make sense to
make system half the cost whilst decreasing power efficiency by 5%; or it may be worthwhile to
increase cost by 5% in order to double power efficiency.

4.3 Real-time audio processing

A good case to address with the aforementioned techniques is the design of a mobile audio de-
vice; such as a battery powered headphone amplifier. Although traditionally an analogue product,
headphone amplifiers are now systems that contain both analogue and digital components. The
analogue components are an analogue amplifier, an amplifying Digital to Analogue Converter
(DAC) that generates the analogue signal for the headphone, a Phase-Locked Loop (PLL) that
generates a precise clock for the DAC, and a USB-PHY to receive digital data. The digital
component is typically a processor that executes the following tasks:

e A USB component that communicates with a mobile phone or tablet to receive audio data.
Software on the phone will decide as to what audio is played.

e A DSP component that will perform some operations on the data; this may, for example,

be sample rate conversion, converting sample formats, or performing sound enhancement.

e An audio delivery component, that typically drives digital data to the DAC and a base-line
clock to the PLL.

Although a sizeable fraction of the power gets used by the USB PHY and the analogue
amplifier, designing the software to be low power has a measurable effect on the life time of the
battery. This optimization is at present very much a manual effort.

The three software components have different characteristics in terms of their energy require-
ments:

e The USB component is heavily optimised, and only little room is available for energy
optimization; mostly in the form of deploying an extra core and thereby allowing the USB
core to be slowed down and scale its voltage.

22

e The Digital Signal Processing component can be subjected to a variety of optimizations,

in particular parallelization and precision trade-offs.

e The sound delivery component is likely to benefit from I/O parallelism and scheduling; al-
though the current component has been hand crafted, clearer components could be written
that could be subject to scheduling.

Manual optimization of the system as a whole shows an interesting set of challenges:

e Voltage and frequency scaling applies to the system as a whole; as such, the system that
requires the highest frequency sets a limit for the system as a whole. In this particular case

study, the system is likely to be limited by the frequency required by the USB software.

e The Digital Signal Processing component and the I/O component are likely to be opposite
ends in how power saving is to be applied. From experience, it is best for the DSP to be
parallelised (and reduce its frequency at the cost of a few extra threads), whereas the I/O
could be combined into a single thread, because each of the tasks is very little work. Not

combining them would be expensive and not save power.

e The system as a whole comprises components that work on different sorts of data. The
analogue delivery component works with 24 bit data values stored in the upper 24 bits; the
DSP component way work on similar values or may work on high frequency 1-bit DAC
values that use all 32 bits in a word, and the USB component may be processing packed
data (all 32 bits are used), unpacked data (with the data in the top 24 bits), or 1-bit DAC
data (all 32-bits used). There may be value in scheduling those tasks or locating those tasks

on appropriate threads and cores.

Hence, this case is interesting because it will enable optimization strategies to be explored indi-
vidually, but there is also insight to be gained from a whole systems perspective.

This system should be optimised primarily for dynamic current consumption. Static current
is not relevant since the owner of the system will switch it off when they are not listening to

music.

4.4 Robot and motor control

In this area, we focus on driving small motors, where computation is a significant component of

system power consumption; in particular we consider:

e a multi-axis system that requires the logic to control the positioning of a multitude of

(small) motors;

23

e motors where the peak power consumption is in the order of no more than a few Watts
each;

e motors where the standby consumption is likely to be less than a Watt each.

This makes it worthwhile to reduce the power consumption of the digital part; in particular if
the system as a whole spends sufficient time idling. The system typically comprises a motor, a
transistor bridge to drive each end of the motor, an ADC to measure current on each end, and a

processor that executes the following tasks:

e A PWM driver that generates a Pulse Width Modulated signal for each end of the motor.
A PWM signal is a digital approximation of the analogue signal, and it is used to drive the
transistors in the bridge. The PWM signal may either be generated by a special hardware
component (as found on system-on-chip motor control devices), or by a software compo-
nent (such as found on software controlled devices). The latter consumes more resources,
but gives finer-grained control to the programmer.

o A Digital Signal Processing component that given

— the currents as measured by the Analogue to Digital converters, and

— the desired torque

control the PWM values as applied to the motor. This can be as simple as a series of matrix

transformations.

e A controller component that controls the speed and position of each of the motors; this can
be as simple as a Proportional Integral Differential controller (PID) which comprises only

a multiplications and additions.

e A multi-axis controller that computes the desired positions and speeds of each motor, in
order to create a single smooth motion.

These components may be distributed over the system in order to build a modular and ex-
tensible system. In that case there will be one digital processor for each motor in a multi-axis
system that executes the first three of the software components. A single central processor will
implement the final component.

In terms of optimizations, different techniques will apply to different parts of the system. If
the system is designed in a distributed manner, then voltage and frequency scaling can be applied
individually to the various distributed components of the system. At present, no effort has been
spent on optimising the software stack, as it has only been applied to high powered motors.

24

Optimizations are expected to be valuable across the software components, as there is an

imbalance in computation and IO requirements:

o If the PWM driver is implemented in software, then it has very little work except for
making sure that signals are switched at precise times. As such, there is scope to schedule

this by parallelising the 10 with a different task.

e The Digital Signal Processing component performs a reasonable amount of computation,
and does so in lock step with the PWM driver and ADC samples. As such, it may be able
to shift work from this task into the PWM task (or combine them and then parallelise them)

in order to create a balanced workload that can run at a reduced frequency.

e The controller represents a very small workload. This poses an interesting problem that
occasionally extra work needs to be performed, and the system needs to be sized to allow

for that extra work.

e The multi-axis controller is a significant workload that can be optimised by splitting it out
and potentially over multiple cores. It has a soft real-time requirement as it executes only
to plan activity. This plan is then executed by the other software components. The multi-
axis controller traditionally relies on floating point computations that may be optimised

into fixed point computations for processors that do not have hardware floating point units.

In addition to the above optimizations, there is an interesting precision trade-off; driving mo-
tors with higher precision will reduce their power consumption. So a trade-off is made between
the amount of computation performed digitally, and the power consumed in the analogue part.
This is likely to be outside the scope of the project.

This system is likely to be running permanently; as such the important metric for optimization
is the dynamic current. Peak power is interesting, but is likely to be close to the average power

consumption.

4.5 Real-time networking

The purpose of real-time networking is to deliver data at a guaranteed time. The purpose of
real time networking ranges from control in industrial production lines, through to the reversing
camera of a car and or the sound distribution in a music arena. In some cases very low power
nodes are required, for example when designing a sensor network for example.

The real-time network that the project can look at is ones that are based on the IEEE 1722
standard for “Layer 2 Transport Protocol for Time Sensitive Applications in a Bridged Local

25

Area Network”. This protocol was developed as a protocol for Audio and Video delivery, but is
also useful for other data, for example sensor and control data in an industrial context.

A real-time networking system typically comprises a networking PHY (we will just assume
some sort of Ethernet PHY; probably one of the low-power 100 Mbit PHYS), a digital processor
that implements the standard, and one or more 1O devices that are controlled or observed through
the real-time network. The latter are application dependent, and may be amplifier units for the
music arena, or a motor control system in an industrial setting.

The digital processor executes the following tasks:

e Data transmission and reception tasks; these may be bespoke hardware in SOCs, or maybe

software on general purpose processors.
e A receive filter
o A MAC layer for reception
o A traffic shaper/MAC layer for transmission

e An implementation of the Stream Reservation Protocol and Media Reservation Protocol
(SRP and MRP).

e An implementation of the control protocol defined in IEEE 1722.1

e An implementation of a peer-to-peer clock protocol.

e An implementation of the AVB protocol in the form of a listener and/or a talker.
e A program that communicates with the target logic.

As far as the software is concerned, many components can run as slow as is sensible; the
only real time requirements are that the tasks that operate on data (that is the MAC, transmission,
reception, and IO layer) have sufficient bandwidth to deal with the average data rate, and the
transmission and reception layers have sufficient bandwidth to deal with the peak data rate.

This means that there is scope to run many tasks at a very low frequency, and only a few tasks

at high speed. In particular:

e Data transmission and reception tasks; if these are implemented in software, then they
must be designed to be able to keep up with the line rate of the physical network medium
(100 Mbit, or 10 Mbit for slow systems).

26

e The receive filter just has to keep up with the line-packet-rate; that is, it must be analysed
for being able to parse headers and test headers at line rate (for minimum sized packets

that is approximately 150 kPackets per second for a 100 Mbit line rate).

e The MAC layers have to be able to keep up with the average data rate expected on the
node; typically well below line rate.

e The SRP, MRP, and 1722.1 control protocols run with time-outs of tens or hundreds of
milliseconds, and must be analysed to complete in time for that. They can also run to
completion if that is more efficient.

e The peer-to-peer clock protocol expects precise timestamps from the data transmission and
reception tasks, but can itself run at a low frequency, needing to complete only in 10s of

milliseconds.

e The implementation of the talker and listener have to be able to deal with the average data

rate of the payload, excluding headers.

A completed analysis of all tasks will yield minimum speeds that will all be quite low, except
for the direct transmit and receive tasks. These tasks may be combined and executed in a single
task, or offloaded to a secondary very slow core.

There is little scope to manage precision or hamming distances.

None of these optimizations or analysis have been performed manually; at present the soft-
ware stack runs at full speed.

This system should be optimised primarily for dynamic current consumption and static cur-
rent consumption; the peak power demand should be estimated but need not be optimised. The
system is likely to have phases of activity, which means that energy use will be a combined ver-
sion of static and dynamic power figures. Peak performance is important, as we expect fluctuation
of power demands when packets arrive or are transmitted (which may happen simultaneously).

5 Assessment and Relation to Future Tasks

In this report we have surveyed many energy-related optimizations that can be obtained by static
software improvements. That is we have surveyed ways in which code can be transformed during
development or at compile-time to reduce various aspects of energy usage. Different energy
metrics were discussed in Deliverable D6.1 of the ENTRA project [Mull3]. As expected, most
optimizations are dependent on features of the underlying architecture, instruction-set and the

availability of hardware power-saving features. In Section 3 the survey considered optimizations

27

for a wide variety of platforms, while in the Section 4 we focus on general features of, and
optimizations for, the ENTRA project target platform, namely the XCORE family of processors
produced by XMOS Ltd.

5.1 Focus areas for future research on optimization (WP4)

While there is a significant overlap between performance optimizations and energy optimiza-
tions, there are opportunities for energy optimization where execution time may be unaffected or
even degraded. Static execution time optimization has been studied intensively for a long time,
whereas energy optimizations that are independent of performance are generally speaking less
understood and researched. Such optimizations are especially significant for the ENTRA project.
The opportunities for optimization in the case studies suggest the following focus areas for re-
search in the coming months in WP3 (Analysis) and WP4 (Optimization) of the ENTRA project.
Most of the gains are going to be made by choosing an appropriate level of parallelism in the
system. In the following paragraphs we summarise the directions and ongoing research tasks.

Scheduling of communication versus computation. A rule of thumb for energy optimiza-
tion, which is being applied to the case studies, is to ask “how slow can a computation run in
order to meet the application’s internal and external communication requirements?”. To answer
this question requires subsidiary analyses to those considering energy directly. The analysis
should expose essential dependencies of the communicative structure of an application, and the
(probabilistic) rates of communication and computation. The aim is to allow communication
and computation to be scheduled optimally, without unnecessary delays and ensuring that time-
critical communications are made “just in time”. Related optimization principles relate to task
location; tasks that communicate frequently should be located as physically close to each other

as possible, and threads with similar timing requirements should be on the same core.

Trading off parallelism against other costs. Introducing as much parallelism as possible, and
running processors slower as a result, is a principle that can lead to significant energy savings.
However, parallelism usually comes with overheads of communication, replication of data, and
synchronization delays, as well as expense in manufacture and materials. Thus, analyses of the
case studies that allow these trade-offs to be evaluated are important for optimizations based on
parallelism. Other aspects of parallelism to be investigated, looking beyond optimization for
the xCORE, includes fitting code to what the hardware offers, such as the number of threads in
software and hardware. In this work we aim to look also at GPUs as a target as well as the Intel
Xeon Phi.

28

Load balancing. Achieving the above goals for a given application requires detailed under-
standing of the overall thread behaviour of an application: the distribution over time of the run-
ning threads, how active or inactive each thread is, how much work each thread does for each
communication with other threads and whether there are workload spikes causing high peak
power consumption. Once this is understood the thread structure can be optimized to eliminate

bottlenecks and synchronization delays.

Precision management. This is going to be of less immediate value in the chosen case studies,
but it is still a valuable tool when managing energy consumption. In certain applications, energy
is wasted by computing results that are more precise than required, for example using higher-
precision numbers than are needed. Analysing and identifying such cases can lead to energy
optimizations by reducing precision. In some cases this is a trade-off against quality; determining
what quality is “good enough” is the key to making optimizations.

Various low-level energy improvements. We will also explore low-level optimizations appli-
cable to XCORE and other targets, such as alignment of loops to line boundaries in memory.

5.2 Relation to Dynamic Optimization

As emphasised earlier, this deliverable covers static optimizations, applicable during application
development and compilation. The deliverable provides input to Tasks T4.2 and T4.3 of the EN-
TRA project, which consider a wider range of optimizations, including dynamic optimizations.
These could be for example dynamically trading off energy against quality of service (T4.2) by
modifying precision or processor speed, or energy-aware scheduling (T4.3). We note here that
static optimization and code design can enable more effective dynamic optimizations, for exam-
ple building into the code parameters that control quality; such parameters can be dynamically
adjusted to suit the perceived quality needs. We also note that energy modelling (Work Package

WP2) is critical to both static and dynamic optimization.

5.3 Relation to Energy-Aware Software Engineering

Although this deliverable does not cover tool support, it provides input to Work Package WP1
(Energy-Aware Software Engineering) and in particular Task T1.1 (Energy-Aware Tools). Ini-
tially, tools will focus on energy transparency rather than automatic optimization. Energy trans-
parency tools will help the developer to obtain information about the energy consumption of
the program, thus assisting the developer in identifying opportunities for manual optimization.

29

They will also support the evaluation of optimizations. Other tools, needed to support the op-
timizations discussed in Section 4, are those providing information about dependencies within
the program especially those relating to communication, timing, and the distribution of parallel

tasks.

30

References

[AABO9]

[Aga09]

[ALVOS5]

[AVLVO3]

[Aze06]

[BAO6]

[BC10]

[BCG™13]

José L. Ayala, David Atienza, and Philip Brisk. Thermal-aware data flow analy-
sis. In Proceedings of the 46th Annual Design Automation Conference, DAC 09,
pages 613-614, New York, NY, USA, 2009. ACM.

Anant; R. Agarwal. Using Code Perforation to Improve Performance, Reduce
Energy Consumption, and Respond to Failures. Technical report, MIT, September
2009.

José Luis Ayala and Marisa Lopez-Vallejo. Compiler-driven power optimiza-
tions in the register file of processor-based systems. In Luca Benini, Ulrich
Kremer, Christian W. Probst, and Peter Schelkens, editors, Power-aware Com-
puting Systems, volume 05141 of Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum fiir Informatik (IBFI), Schloss Dagstuhl,
Germany, 2005.

José L. Ayala, Alexander Veidenbaum, and Marisa Lopez-Vallejo. Power-Aware
Compilation for Register File Energy Reduction. International Journal of Parallel
Programming, 31(6):451-467, December 2003.

Naeem Zafar Azeemi. Exploiting parallelism for energy efficient source code high
performance computing. In Industrial Technology, 2006. ICIT 2006. IEEE Inter-
national Conference on, pages 2741-2746, 2006.

Sorav Bansal and Alex Aiken. Automatic generation of peephole superoptimizers.
ACM SIGOPS Operating Systems Review, 40(5):394, October 2006.

Woongki Baek and Trishul M. Chilimbi. Green: a framework for supporting
energy-conscious programming using controlled approximation. SIGPLAN Not.,
45(6):198-209, June 2010.

Gilles Barthe, Juan Manuel Crespo, Sumit Gulwani, César Kunz, and Mark Mar-
ron. From Relational Verification to SIMD Loop Synthesis. In Alex Nicolau,
Xiaowei Shen, Saman P. Amarasinghe, and Richard Vuduc, editors, ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
'13, pages 123-134. ACM, 2013.

31

[BCVF06]

[BWM09]

[CDYWO5]

[CGL10]

[CM10]

[DMCNI12]

[Edwl1]

[EG13]

[GITV12]

[GK92]

Martin Brain, Tom Crick, Marina De Vos, and John Fitch. Toast: Applying answer
set programming to superoptimisation. In Int. Conf. Logic Programming, pages
270-284, 2006.

A. Banerjee, P.T. Wolkotte, R.D. Mullins, S.W. Moore, and G.] M Smit. An
energy and performance exploration of network-on-chip architectures. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 17(3):319-329, 20009.

Juan Chen, Yong Dong, Xue-jun Yang, and Dan Wu. A compiler-directed en-
ergy saving strategy for parallelizing applications in on-chip multiprocessors. In
Parallel and Distributed Computing, 2005. ISPDC 2005. The 4th International
Symposium on, pages 147-154, 2005.

Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. Continuity analysis
of programs. SIGPLAN Not., 45(1):57-70, January 2010.

Sangyeun Cho and Rami G. Melhem. On the interplay of parallelization, pro-
gram performance, and energy consumption. /EEE Trans. Parallel Distrib. Syst.,
21(3):342-353, March 2010.

J. Diaz, C. Munoz-Caro, and A. Nino. A survey of parallel programming models
and tools in the multi and many-core era. Parallel and Distributed Systems, IEEE
Transactions on, 23(8):1369-1386, 2012.

C. Edwards. Lack of Software Support marks the Low Power Scorecard at
DAC. ElectronicsWeekly (http://www.electronicsweekly.com), No. 2472, 15-21
June 2011.

K. Eder and N. Grech, editors. Common Assertion Language. ENTRA Project:
Whole-Systems Energy Transparency (FET project 318337), November 2013. De-
liverable 2.1, http://entraproject.eu.

Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Syn-
thesis of loop-free programs. ACM SIGPLAN Notices, 47(6):62, 8 2012.

Torbjorn Granlund and Richard Kenner. Eliminating branches using a superopti-
mizer and the GNU C compiler. In Proceedings of the ACM SIGPLAN 1992 con-
ference on Programming language design and implementation - PLDI *92, pages
341-352, New York, New York, USA, 1992. ACM Press.

32

[GKDI11]

[GSB9S5]

[HKO3]

[HPH*02]

[HRB88]

[HSC*11]

[JOAT09]

[KA09a]

Mark Gebhart, Stephen W. Keckler, and William J. Dally. A compile-time
managed multi-level register file hierarchy. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-44 "11, pages
465476, New York, NY, USA, 2011. ACM.

David A. Garza-Salazar and Wim Bohm. Reducing communication by honoring
multiple alignments. In Proceedings of the 9th international conference on Super-
computing, ICS 95, pages 87-96, New York, NY, USA, 1995. ACM.

Chung-Hsing Hsu and Ulrich Kremer. The design, implementation, and evaluation
of a compiler algorithm for cpu energy reduction. SIGPLAN Not., 38(5):38—48,
May 2003.

T. Heath, E. Pinheiro, J. Hom, U. Kremer, and R. Bianchini. Application transfor-
mations for energy and performance-aware device management. In Parallel Ar-
chitectures and Compilation Techniques, 2002. Proceedings. 2002 International
Conference on, pages 121-130, 2002.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. In Proceedings of the ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation, PLDI 88, pages 35-46, New York, NY,
USA, 1988. ACM.

Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant
Agarwal, and Martin Rinard. Dynamic knobs for responsive power-aware com-
puting. In Proceedings of the sixteenth international conference on Architectural
support for programming languages and operating systems, ASPLOS XVI, pages
199-212, New York, NY, USA, 2011. ACM.

Timothy M. Jones, Michael F. P. O’Boyle, Jaume Abella, Antonio Gonzélez, and
Oguz Ergin. Energy-efficient register caching with compiler assistance. ACM
Trans. Archit. Code Optim., 6(4):13:1-13:23, October 2009.

Vijay Anand Korthikanti and Gul Agha. Analysis of parallel algorithms for energy
conservation in scalable multicore architectures. In Proceedings of the 2009 Inter-
national Conference on Parallel Processing, ICPP *09, pages 212-219, Washing-
ton, DC, USA, 2009. IEEE Computer Society.

33

[KAO9Db]

[KA10]

[KAT1]

[KE13]

[KVIO2]

[LG13]

[LMD*+04]

[LYO7]

[Mas87]

Vijay Anand Korthikanti and Gul Agha. Energy-bounded scalability analysis of
parallel algorithms. In Technical Report, Department of Computer Science, Uni-
versity of lllinois at Urbana Champaign, 2009.

Vijay Anand Korthikanti and Gul Agha. Towards optimizing energy costs of algo-
rithms for shared memory architectures. In Proceedings of the 22nd ACM sympo-
sium on Parallelism in algorithms and architectures, SPAA 10, pages 157-165,
New York, NY, USA, 2010. ACM.

Vijay Anand Korthikanti and Gul Agha. Energy-performance trade-off analysis
of parallel algorithms for shared memory architectures. Sustainable Computing:
Informatics and Systems, 1(3):167 — 176, 2011. jce:title; Theoretical aspects of
Sustainable Computing;/ce:title; .

S. Kerrison and K. Eder. Energy modelling and optimisation of software for a
hardware multi-threaded embedded microprocessor. Technical report, University
of Bristol, June 2013.

Mahmut Kandemir, N. Vijaykrishnan, and Mary Jane Irwin. Compiler optimiza-
tions for low power systems. In Robert Graybill and Rami Melhem, editors, Power
aware computing, pages 191-210. Kluwer Academic Publishers, Norwell, MA,
USA, 2002.

P. Lopez-Garcia, editor. A General Framework for Resource Consumption Analy-
sis and Verification. ENTRA Project: Whole-Systems Energy Transparency (FET
project 318337), November 2013. Deliverable 3.1, http://entraproject.eu.

Markus Lorenz, Peter Marwedel, Thorsten Dréger, Gerhard Fettweis, and Rainer
Leupers. Compiler based exploration of dsp energy savings by simd operations. In
Proceedings of the 2004 Asia and South Pacific Design Automation Conference,
ASP-DAC ’04, pages 838—841, Piscataway, NJ, USA, 2004. IEEE Press.

Xuanhua Li and D. Yeung. Application-level correctness and its impact on fault
tolerance. In High Performance Computer Architecture, 2007. HPCA 2007. IEEE
13th International Symposium on, pages 181-192, 2007.

Henry Massalin. Superoptimizer - A Look at the Smallest Program. ACM
SIGARCH Computer Architecture News, pages 122-126, 1987.

34

[MGO8]

[MLN'06]

[MRR1 1a]

[MRR11b]

[MSHR10]

[Mul13]

[NRO7]

[OKCI11]

[PKVI0O0]

Simon Moore and Daniel Greenfield. The next resource war: computation vs.
communication. In Proceedings of the 2008 international workshop on System
level interconnect prediction, SLIP °08, pages 81-86, New York, NY, USA, 2008.
ACM.

Madhu Mutyam, Feihui Li, Vijaykrishnan Narayanan, Mahmut Kandemir, and
Mary Jane Irwin. Compiler-directed thermal management for vliw functional
units. SIGPLAN Not., 41(7):163—-172, June 2006.

Sasa Misailovic, Daniel M. Roy, and Martin C. Rinard. Probabilistic and statisti-
cal analysis of perforated patterns. Technical Report MIT-CSAIL-TR-2011-003,
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute

of Technology, Cambridge, Massachusetts, January 2011.

Sasa Misailovic, Daniel M. Roy, and Martin C. Rinard. Probabilistically accurate
program transformations. In Proceedings of the 18th international conference
on Static analysis, SAS’11, pages 316-333, Berlin, Heidelberg, 2011. Springer-
Verlag.

Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and Martin Rinard. Quality
of service profiling. In Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 1, ICSE 10, pages 25-34, New York, NY,
USA, 2010. ACM.

H. Muller, editor. Metrics and Case Studies. ENTRA Project: Whole-Systems
Energy Transparency (FET project 318337), November 2013. Deliverable 6.1,
http://entraproject.eu.

Huu Hai Nguyen and Martin Rinard. Detecting and eliminating memory leaks us-
ing cyclic memory allocation. In Proceedings of the 6th international symposium
on Memory management, ISMM ’07, pages 15-30, New York, NY, USA, 2007.
ACM.

O. Ozturk, M. Kandemir, and G. Chen. Compiler-directed energy reduction using
dynamic voltage scaling and voltage islands for embedded systems. Computers,
IEEE Transactions on, 62(2):268-278, 2011.

A. Parikh, M. Kandemir, N. Vijaykrishnan, and M.J. Irwin. Instruction scheduling
based on energy and performance constraints. In VLSI, 2000. Proceedings. IEEE
Computer Society Workshop on, pages 37-42, 2000.

35

[RHMS10]

[Rin06]

[RJ97]

[RKO8]

[SAA10]

[SB13]

[SCOT07]

[SDF+11]

[SDMHRI11]

Martin Rinard, Henry Hoffmann, Sasa Misailovic, and Stelios Sidiroglou. Patterns
and statistical analysis for understanding reduced resource computing. SIGPLAN
Not., 45(10):806-821, October 2010.

Martin Rinard. Probabilistic accuracy bounds for fault-tolerant computations that
discard tasks. In Proceedings of the 20th annual international conference on Su-
percomputing, ICS °06, pages 324-334, New York, NY, USA, 2006. ACM.

Kaushik Roy and Mark C. Johnson. Software Design for Low Power. In Wolf-
gang Nebel and Jean P. Mermet, editors, Low Power Design in Deep Submicron
Electronics, volume 337, pages 433—460. Kluwer Academic, 1997.

C.C. Rolf and K. Kuchcinski. State-copying and recomputation in parallel con-
straint programming with global constraints. In Parallel, Distributed and Network-
Based Processing, 2008. PDP 2008. 16th Euromicro Conference on, pages 311-
317, 2008.

Mohamed M. Sabry, José L. Ayala, and David Atienza. Thermal-aware compi-
lation for system-on-chip processing architectures. In Proceedings of the 20th
symposium on Great lakes symposium on VLSI, GLSVLSI *10, pages 221-226,
New York, NY, USA, 2010. ACM.

Yakun Sophia Shao and David Brooks. Energy characterization and instruction-
level energy model of Intel’s Xeon Phi processor. In International Symposium on
Low Power Electronics and Design (ISLPED), pages 389-394. IEEE, November
2013.

Seung Woo Son, Guangyu Chen, O. Ozturk, M. Kandemir, and A. Choudhary.
Compiler-directed energy optimization for parallel disk based systems. Parallel
and Distributed Systems, IEEE Transactions on, 18(9):1241-1257, 2007.

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. Enerj: Approximate data types for safe and general
low-power computation. SIGPLAN Not., 46(6):164—174, June 2011.

Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Ri-
nard. Managing performance vs. accuracy trade-offs with loop perforation. In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European con-
ference on Foundations of software engineering, ESEC/FSE ’11, pages 124134,
New York, NY, USA, 2011. ACM.

36

[SHMC12]

[SKLO1]

[SSA13]

[SSCK14]

[SyTD94]

[Wei8l1]

[ZMKR12]

Dongrui She, Yifan He, Bart Mesman, and Henk Corporaal. Scheduling for regis-
ter file energy minimization in explicit datapath architectures. In Wolfgang Rosen-
stiel and Lothar Thiele, editors, DATE, pages 388-393. IEEE, 2012.

Dongkun Shin, Jihong Kim, and Seongsoo Lee. Intra-task voltage scheduling
for low-energy hard real-time applications. Design Test of Computers, IEEE,
18(2):20-30, 2001.

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In
Architectural Support for Programming Languages and Operating Systems, page
305, New York, New York, USA, 2013. ACM Press.

Wook Song, Nosub Sung, Byung-Gon Chun, and Jihong Kim. Reducing energy
consumption of smartphones using user-perceived response time analysis. In Pro-
ceedings of the 15th Workshop on Mobile Computing Systems and Applications,
HotMobile ’14, pages 20:1-20:6, New York, NY, USA, 2014. ACM.

C.-L. Su, Chi ying Tsui, and A.M. Despain. Low power architecture design and
compilation techniques for high-performance processors. In Compcon Spring *94,
Digest of Papers., pages 489—498, 1994.

Mark Weiser. Program slicing. In Proceedings of the 5th International Conference
on Software Engineering, ICSE ’81, pages 439-449, Piscataway, NJ, USA, 1981.
IEEE Press.

Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A. Kelner, and Martin Rinard. Ran-
domized accuracy-aware program transformations for efficient approximate com-
putations. SIGPLAN Not., 47(1):441-454, January 2012.

37

Attachments

38

Attachment D4.1.1

Study of Possible Static Power
Reduction due to Temperature Hot
Spot Reduction provided by Uniform
Register Utilization

Zorana Bankovié¢. Technical Report. IMDEA
Software Institute, Madrid, Spain

39

Study of Possible Static Power Reduction due to
Temperature Hot Spot Reduction provided by
Uniform Register Utilization

Zorana Bankovié

IMDEA Software Institute, Madrid, Spain

1 The Estimation of Static Power Savings

In order to evaluate possible savings, first we have to establish a thermal model of
the underlying system. In general, these models are based on thermal resistance
networks, which are analogue to DC circuits where the voltage of each node is
equivalent to the temperature, and the current is equivalent to the heat flow
between two nodes, i.e. ¢ = K - AT, where K is thermal conductivity (thermal
resitance is 1/K), which depends on the technology and the geometry of the
component. Thus, these networks can be solved in the same way as DC circuits.
In this calculation we will take a very coarse-grain model, where it is assumed
that a whole register can be modelled as a unique thermal resistance, which is
the same for each register. Furthermore, we will take a set of 12 registers, since
each logical core in XMOS has its one register set of 12 registers. Initially we
will assume that different register sets belonging to different register cores are
situated far enough, so they do not affect each other. However, thermal diffusion
cannot be neglected, so we have to add a resistor between each two points to ac-
count for this phenomenon. Having in mind that thermal conductivity decreases
linerly with distance, and assuming that the distance between each two nodes
is eqaul, the conductivity between the first and the third register will be K /2,
between the first and the forth will be K/3, etc. This is depicted in figure 1,
where we can observe only the resistors which stand for the diffusion between
the first registers and the rest. However, it is important to point out that ther-
mal diffusion exists between each two registers. Thus, the complete model will
contain all these elements, but we do not include it here due to its complexity.
The model contains values ¢, ..., g12, which stand for the heat flow produced
by register accesses. We assume that the heat flow is directly proportional to the
number of register accesses, i.e. ¢; = a; - C, where a; is the number of accesses
to the register, and C' is the constant which is the same for all. Thus, having the
complete model, we can solve it using one of the ways for solving DC circuits.
Here we have used matrix inverse method [2]. However, since we do not have
enough technology parameters, we cannot know the absolute values of the ther-
mal conductivities, nor we know the absolute values of the heat flows. Thus, the
solution of the presented model can give us only the relation between the tem-
perature increase of each register. This is presented in the following table 1. The
first column states which registers are accessed uniformly, while the rest contain

gl 92 q3
T 4 T2 + T3 ¢+
k k K

ki3

q4 g5 q6 q7 q8 q9 ql0 qll qlz
T4 ¥ 15 ¥ T6 Tmd 18 4 T9 ¥ om0 b+ T YTz 4
K k k K K K k k

K

kia

—AAA

TA

L9

Fig. 1. Reduced Thermal Model of 12 Registers

coefficients C; used to calculate the temperature of each register according to
the formula: T;; = T4 + Cjj - AT, where T is the ambient temperature, i.e. the
temperature of the rest of the chip, while AT is the temperature increase due

to register access.

Table 1.

Accessed reg.

T T T3 Ty Ts T T7 Ts To Tio Ti1 Ti2

1
1,2

1,2,3

1,2,3.4

1,2,3,4,5

1,2,3,4,5,6
1,2,3,4,5,6,7
1,2,3,4,5,6,7,8
1,2,3,4,5,6,7,8,9
1,2,3,4,5,6,7,8,9,10
1,2,3,4,5,6,7,8,9,10,11

24514 13813 12712412 1.161.131.091.02 1.0
1.931.851.371.331.281.241.2 1.171.131.09 1.02 1.0
1.741.681.631.331.281.241.2 1.171.131.09 1.02 1.0
1.641.6 1.561.521.281.241.2 1.171.131.091.02 1.0
1.561.541.511.471.441.241.2 1.171.131.09 1.02 1.0
1.5611.481.461.441.411.371.2 1.171.131.09 1.02 1.0
1.471.451.431.411.381.351.321.18 1.14 1.09 1.02 1.0
14214114 1.381.361.331.3 1.271.141.09 1.02 1.0
1.4 1.381.371.351.331.311.28 1.25 1.22 1.09 1.03 1.0
14 13413313213 1.291.261.241.211.171.03 1.0
1.331.321.3 1.3 1.281.271.251.221.2 1.16 1.09 1.0

1,2,3,4,5,6,7,8,9,10,11,12 1.31 1.3 1.29 1.28 1.26 1.25 1.23 1.21 1.19 1.15 1.09 1.08

We will now perform a simulation with different values of T4 and AT. AT
takes values from 0 to 20°C, which means high register usage. On the other
hand, to be able to estimate power savings, we need to estimate the leakage
current. This information is provided by XMOS [1], where leakage dependence
on the temperature is depicted. The graph which depicts typical value is taken
and fitted with the following formula:

Tiear = 0.085 -T2 — 1.28 - T + 272.42

(1)

The average chip temperature is calculated as average of Ty and T, ..., T12, and
the leakage current is calculated using the previous formula. Since the voltage
does not change throughout the whole process, and given that P = U - I, the
current is the one that determines the amount of the saved energy.

In order to illustrate the findings of this experiment, we will illustrate the
difference of two extreme cases: in the first case only the first register in the set
is used, while in the second case, all registers are uniformly accessed. The power
savings for different versions of T4 and AT are depicted in figure 2. As we can
observe, maximal achievable savings are around 3%, which is not very significant,
having in mind that static power makes 30% of total power, which gives total
savings around 0.9%. However, if we take a look at table 1, we can observe that
in the previous extreme cases the difference between the hotspots can become
significant, i.e. (2.45 — 1.31) - AT = 1.14AT, which can affect significantly on
cooling power. For this reason, according to the findings of this experiment, the
methods based on making register access more uniform from the point of view
of power and energy savings become more significant when the cooling power
becomes significant part of total power, such as in general purpose systems and
especially in data centers.

% saved

"result,.dat”

Fig. 2. Power Savings in Different Scenarios

References

1. XMos Ltd. Estimating power consumption for xsl-g devices, may 2012.
2. Robert E. Simons. Using a matrix inverse method to solve a ther-
mal resistance network. http://www.electronics-cooling.com/2009/05/

using-a-matrix-inverse-method-to-solve-a-thermal-resistance-network/,

may 2009.

Attachment D4.1.2

From Relational Verification to SIMD
Loop Synthesis.

Published in the ACM SIGPLAN Symposium
on Principles and Practice of Parallel
Programming, PPoPP ’13.

44

From Relational Verification to SIMD Loop Synthesis

Gilles Barthe! Juan Manuel Crespo’

Sumit Gulwani? César Kunz!®> Mark Marron!

'IMDEA Software Institute, 2Microsoft Research, 3Technical University of Madrid
{gilles.barthe, juanmanuel.crespo, cesar.kunz, mark.marron}@imdea.org, sumitg@microsoft.com

Abstract

Existing pattern-based compiler technology is unable to effectively
exploit the full potential of SIMD architectures. We present a new
program synthesis based technique for auto-vectorizing perfor-
mance critical innermost loops. Our synthesis technique is appli-
cable to a wide range of loops, consistently produces performant
SIMD code, and generates correctness proofs for the output code.
The synthesis technique, which leverages existing work on rela-
tional verification methods, is a novel combination of deductive
loop restructuring, synthesis condition generation and a new induc-
tive synthesis algorithm for producing loop-free code fragments.
The inductive synthesis algorithm wraps an optimized depth-first
exploration of code sequences inside a CEGIS loop. Our technique
is able to quickly produce SIMD implementations (up to 9 instruc-
tions in 0.12 seconds) for a wide range of fundamental looping
structures. The resulting SIMD implementations outperform the
original loops by 2.0x-3.7x.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.3.4 [Programming Lan-
guages]: Processors-Optimization; C.1.1 [Single Data Stream Ar-
chitectures]: VLIW architectures

Keywords Program Vectorization, Program Synthesis, Deductive
Synthesis, Inductive Synthesis, Relational Program Verification

1. Introduction

Single Instruction Multiple Data (SIMD) instructions sets (such as
SSE on x86 or NEON on ARM) provide high throughput and power
efficient data-parallel operations. These operations can process 128
bits in a single instruction and can often do so in the same number
of cycles (and power usage) needed to process a single 32 bit value
via the standard ALU execution path. These features have proven
invaluable in accelerating multimedia and high performance com-
puting applications, and are critical to achieving both good applica-
tion performance and battery life in many mobile computing envi-
ronments. Despite these advantages and their proven value in prac-
tice, the use of SIMD operations has been limited to a relatively
small set of (often hand optimized) applications. Extending these
benefits to a wider range of programs via automatic compiler vec-
torization has, in practice, been limited by three major challenges:
the presence of pointers, sub-optimal data layout, and complex data
driven control flow. In this paper we explore a new approach to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’13, February 23-27, 2013, Shenzhen, China.
Copyright © 2013 ACM 978-1-4503-1922/13/02. .. $10.00

//Simple widget struct with a tag and a score value
struct { int tag; int score; } widget;

int exists(widgetsx vals, int len, int tv, int sv) {
for (int i = 0; i < len; ++i) {
int tagok = vals[i].tag == tv;
int scoreok = vals[i].score > sv;
int andok = tagok & scoreok;
if (andok) return 1;

return O;

}

Figure 1. Initial Loop.

int exists_sse(widget* vals, int len, int tv, int sv) {
ml128i vectv = [tv, tv, tv, tv];
ml128i vecsv [sv, sv, sv, sv];

int i = 0;
for (; i < (len — 3); i += 4) {
ml128i blckli = load_128(vals + i);

ml128i blck2i = load_-128(vals + i + 2);
int tvswizzle

SHF_.ORDER(0, 2, 0, 2);
int svswizzle 1

= SHF.ORDER(1, 3, 1, 3);
ml128i tagvs = shuffle_i32 (blckli, blck2i, tvswizzle);
ml128i scorevs = shuffle_i32 (blckli, blck2i, svswizzle);

ml128i cmprl = cmpeq-i32(vectv, tagvs);
ml128i cmprh = cmpgt_i32(vecsv, scorevs);
ml128i cmpr = and-il28 (cmprl, cmprh);
int match = !allzeros (cmpr);
if (match) return 1;
}
for (; i < len; i++) {
int tagok = vals[i].tag == tv;
int scoreok = vals[i].score > sv;

if (tagok & scoreok) return 1;

return O;

}

Figure 2. SIMD Implementation.

auto-vectorization that is intended to address the last two of these
challenges. This approach allows us to produce efficient SIMD im-
plementations for many loops that are present in foundational li-
braries such as the STL for C++ or the BCL for C#.

Motivating Example. Consider the program fragment in Fig-
ure 1, which consists of a loop that traverses an array of widget
structs (of length 1en). The loop body checks if the values in the
tag and score fields satisfy certain properties and if so returns 1
immediately. If no such widget is found then O is returned.

(variables)

(fields) f € Field
(constants) ¢ == Z|SHF_ORDER(c,c,c,c)
(expr) e u=

(vector expr) ve v

a : Array | 4,z : Int32 | s : Struct| v : Vector

clz|ali]|e.f|xzox, whereo € {+,=,&,...} | allzeros(v)
| (e,e,e,e) | load_128(a, i) | shuffle_i32(v, v, c)
op(v,v), where op € {add.i32,cmpeq-i32,and_i128,...}
z:=e|afil:=z | e.f:=x | skip | vi=ve | store_128(a, i, V)

fori:=e; idde’; i =i+ c; do f,where <€ {=,#,<,>,<,>} Ae’ : Int32 A€ is invariant in f

|
(stmts) st =
(block) b == st|b;b|if xzthenbelseb
(flowbdlock) f = b|returnz | break | f; f | if z then f else f
(loop) L u=
(fragment) é = fil;ex;f

Figure 3. Program Fragment Language and SIMD extensions (in bold)

This loop contains two major challenges from the viewpoint of
automatic vectorization. First is that since the loop can exit on any
iteration (i.e. return 1) the loop carries a control flow dependence
on all previous iterations. Second is the fact that the data is poorly
laid out for SIMD processing — it is in an array of structs. Thus,
doing a block load from the array will get a mixture of the tag
and score fields. Since these fields are processed differently in the
loop body (tag == tv vs. score > sv) the mixture prevents the
direct use of SIMD operations (which apply the same operation
to each value). Thus, this loop body does not fit into a standard
vectorization template form. Attempting to write a compiler that
recognizes and transforms this loop appropriately based on a set of
pattern matching rules is unattractive from both an implementation
effort and complexity standpoint.

Despite these complications it is possible to construct an effi-
cient SIMD implementation using the SSE instructions found in
x86 processors (see Figure 2). The program first loads two data
blocks of 128 bits each (two widget structs per load) from the
array via the 1oad-128 operation. The SSE implementation han-
dles the array-of-struct issue by swizzling [14] the four tag values
into one SSE register (tagvs) and the four score fields into a sec-
ond SSE register (scorevs). This is done by computing two swiz-
zle masks, tvswizzle and svswizzle, and using them to control
how the data that was loaded from the array is unpacked by the
shuffle_i32 operations. The tvswizzle mask indicates that the
0" and 2" entries, which contain the tag fields, should be loaded
from blck1i and blck2i, and these four values should be placed
into tagvs. Similarly the 1% and 3" values, which contain the
score fields, should be placed into scorevs. Once these values are
unpacked it is then simple to apply the appropriate SIMD equality
(cmpeq-i32) and greater than (cmpgt_i32) operations to compare
the four tag fields and the four score fields. These comparison op-
erations produce bitmasks in the result vector, all 1’s if the test re-
sult is true and all 0’s if the result is false, for each 32 bit value. The
results of these comparisons are then bitwise anded in one step via
the and_i128 operation. The final test (! allzeros (cmpr)) checks
if any of the widgets processed satisfy the constraints and if one
does then the match value will be 1. Since the original loop sim-
ply returns on finding a matching widget the SSE loop returns 1 if
any of the four widgets being processed match (i.e. the allzeros
value is 0). The resulting SSE implementation outperforms the sim-
ple loop by well over a factor of 2x for large numbers of iterations
and is 25% faster even on small iteration counts.

There are a number of challenges present when designing a
system to automatically vectorize loops, such as the one in Fig-
ure 1. The first challenge is structuring the vectorization algorithm
such that it is applicable to a wide range of loops and variations in
how they are implemented [21]. This is critical to ensuring that the
auto-vectorization is consistently able to find optimized implemen-
tations for loops in the input programs and thus improve perfor-
mance in practice. The next challenge is that the process of vector-

izing code often adds complexity and overhead. In order to avoid
slowing down the program instead of speeding it up, it is useful to
be able to predict if (and when) the SIMD implementation will reli-
ably improve the performance of the program relative to the initial
implementation. Finally, a fundamental issue in any compiler opti-
mization is correctness. Since compiler bugs may introduce errors
into every program that is compiled, it is critical to ensure that the
resulting SIMD code is equivalent to the input program.

Contributions. To construct an auto-vectorization algorithm that
achieves the desired applicability, reliable improvement, and cor-
rectness objectives, this paper makes the following contributions:

¢ A new methodology for program optimization (Section 4) based
on a novel combination of: deductive rewriting of loop and
control-flow structures, inductive synthesis of the desired code
blocks, and a novel construction based on relational program
verification to connect the deductive and inductive steps.

The methodology is applied to the problem of auto-vectorization
of irregular loops that have sub-optimal data layouts and com-
plex data driven control flow. In particular we look at library
code from the C++ STL or the C# Base Class Libraries.

An efficient technique for inductive synthesis of loop-free code
fragments, based on a novel combination of concrete program
execution, bounded search techniques, and symbolic counter
example generation methods (Section 5).

e An experimental evaluation of the auto-vectorizer on a set of
challenge loops and real-world applications (Section 7). The
results show that the technique performs well in practice: pro-
ducing SIMD implementations which outperform the original
implementations by 2.0x-3.7x. We also apply the technique
to vectorize loops in the SPEC 483.Xalan benchmark to obtain
a 5.5% reduction in runtime.

2. Relational Verification

We begin by reviewing relational verification [8, 42] and explain
how this technique can be used to reason about the equivalence of
two implementations of a loop. We will then introduce two novel
forms of equivalence relations on program variables for showing
the equivalence of a scalar and a vectorized loop.

2.1 Relational Verification Background

The key insight in relational verification is that given two similar
programs one does not need to know the exact functionality of the
two programs in order to show that they are equivalent. It is suffi-
cient to show that, at the appropriate synchronization points during
their execution, the states of the two programs are equivalent under
some relation. Consider the loops:

int j = —1;

int sum = 0; int sum = 0;
for(int i = 0; i < n; i++) for(int i = 0; i < n; i++) {
sum += i; j++s
sum += j;
}

We begin by renaming any variables v which appear in both pro-
grams as v(yy for the value of the variable in the first program on the
left and v 2y for the value of the variable in second program on the
right. After this renaming then the equality relation for the states of
the two programs is ¢(1y = 2y AJ = i1y — 1 Asumyy = sumay.

Using this relationship we can show these two loops compute
the same value. We begin by checking that, when the loop iterations
are run in lockstep, at every iteration the states of the programs
are equivalent under the relation. Once we have shown that the
equivalence relations hold at every loop iteration we can show that
they hold after the exit of the loop as well. Thus, we can generate a
proof that the two loops compute the same values for the final sums
and are observationally equivalent, i.e. sum 1y = sumay.

A critical step in this process is obtaining suitable equality rela-
tions. Techniques for obtaining some of these relations, particularly
relating to loop structure and conditional control flow, have been
developed in previous work [4]. Loop splitting and unrolling are
standard transformations which make latent data-parallelism in the
loop body more easily exploitable. As SIMD operations operate on
k values at a time we need to restructure the loop so that (1) the
iteration count of the loop is a multiple of k£ and (2) that there are
k exposed values to operate on. Similarly we can separate the ex-
pected hot path in the loop body from the branches that may lead to
abnormal loop exits. This restructuring can be viewed as a variation
on the hot-trace with a guarded trace-exit flow restructuring that is
commonly done in Tracing Just-In-Time Compilers [1, 7].

2.2 Relational Verification of SIMD Loops

In this work we are primarily interested in showing the equivalence
of a scalar loop and a loop using SIMD instructions. Thus, to
leverage the relational verification machinery we need to identify
a suitable set of equivalence relations that may hold between a
scalar loop and the corresponding SIMD implementation. We have
identified two commonly occurring forms for these equivalence
relations, invariant and reduction expressions Section 4, which are
sufficient to enable the scalar/SIMD loop equivalence verifications
we are interested in. Consider the following loops which illustrate
the needed equivalence relations:

int x = ...; int x = ...;
int hash, i = 0; int hash, i = 0;
ml128i hv = [0, O, O, O];
ml28i xv = [x, X, X, X];
for(; i < n; i +=4) { for(; i <n; i += 4) {
hash "= A[i] & x; ml28i d = load_128(A + i);
hash "= A[i+1] & x; ml28i t = and_i128(d, xv);
hash "= A[i+2] & Xx; hv = xor-i32 (hv, t);
hash "= A[i+3] & x; }
} hash = (hv.r0 "~ hv.rl

hv.r2 " hv.r3);

The first loop on the left contains several variables with live
ranges that span multiple iterations of the loop. The variable x is
an invariant value in the loop on the left and a vectorized invariant
version xv is used in the second loop on the right. The variable
hash is a reduction variable in the first loop. The loop on the right
represents these accumulated values in four 132 values in the vector
variable hv and adds a final reduction at the exit of the loop. Thus,
the relations needed to show these loops are equivalent on each
lockstep iteration are: i1y = i(a) A xv = [T (1), T (1), T(1y, T(1)] A
hashy = (h.r0 "~ hv.rl ~ hvr2 © hvr3).

Given these relations it is straight forward to use a relational
verification technique to show the program fragments are equiva-

lent. In practice we use a product program construction [4] with
off the shelf SMT solvers to solve the generated verification condi-
tions. The equivalence relation is clearly satisfied on the first entry
to the loop. Then inductively we can see that if the equivalence
holds on iteration & then in iteration k + 1 it will again hold after
executing both loop bodies. The final step is then simply to show
that when the loop exits, and after executing the final reduction af-
ter the loop when the relational equivalence invariant holds, that
hash<1> = hash<2>.

In practice these new relations, invariant expression vectoriza-
tion and reduction variable vectorization, along with previously
known relations (Section 2.1) for reasoning about loop control-flow
restructuring are sufficient to verify the equivalence of the loops
that are of interest in this work. In Section 4 we will formalize the
definitions for the invariant and reduction vectorization equivalence
relations. Additionally, we show how to leverage the relational ver-
ification methodlogy to construct the constraints needed to synthe-
size a vectorized body given a scalar implemention of a loop.

3. Problem Description & Algorithm Overview

This section presents a formalization of the program fragment lan-
guage that we want to vectorize and the language with SIMD in-
structions that the auto-vectorization algorithm produces as output.
We also provide an overview of the auto-vectorization algorithm.

3.1 Input and Output Loop Languages

Input Language. The work in this paper operates on a core im-
perative language shown in the non-bold portion of Figure 3. For
simplicity, this language consists of variables and operations on
three types: 32-bit integers, user defined structures (with named
fields) and arrays of either structures or integers. This language ex-
tends naturally to include other integer sizes, floating point values,
etc. The expressions e in the language cover the standard sets of
arithmetic, bitwise, comparison, and access operations. The lan-
guage admits the standard suite of assignments to locals, array lo-
cations, and fields in structs.

To focus on blocks of code that are suitable for vectorization, we
distinguish between blocks consisting of simple assignments with
conditional flow inside a single iteration b, and blocks of statements
that may contain non-local control flow f. The grammar describes
the structure of the loops that we are interested in vectorizing
and which are likely to benefit most from the conversion to a
SIMD implementation — innermost loops that are free of function
calls. However, in practice the technique can be applied more
aggressively by explicit inlining of function calls or by providing
explicit pre/post semantics for an inner loop or method call.

To ensure that the loop is amenable to vectorization, we also
impose some semantic restrictions: (1) the loop limit expression
€' is invariant, (2) the iteration variable is only updated by linear
operations, and (3) the updates are done uniformly on all paths of
the loop. Finally, we define a program fragment J as a single loop
with possible loop initialization and clean-up code.

SIMD Output Language. The output of the auto-vectorization
algorithm is a program in the SIMD extended language shown in
Figure 3, including the terms in bold. The output language extends
the input language with a set of SIMD instructions similar to what
is present in the Intel SSE4 instruction set. For simplicity, we
assume that all of the vectors (v € V') are 128 bits which can
contain 4 integers of 32 bits each. We extend the constant set with
macros for shuffle constants and add the allzeros operation to
the set of expressions that produce integer values (e). The SIMD
expressions (ve) treat each 128 bit vector either as a single bit
set of 128 bits for logical operations (e.g. or_1128 or and_i128)
and as four 32 bit integer values for arithmetic and comparison

operations (e.g. add_i32 or cmpgt_i32). We add operations to load
(load_128) and store (store_128) 128 bits at a time. Finally, we
allow the fragment to contain a sequence of loops.

3.2 Algorithm Overview

The auto-vectorization algorithm is depicted in Figure 4. This flow
diagram shows how we first apply deductive restructuring to the
loop to expose data parallelism using deductive rewritings. From
this restructured loop and the associated equivalence relations from
Section 2 we extract a loop-free block of code from the loop
body which will be replaced with a sequence of synthesized SIMD
instructions. This synthesized code is then patched back into the
loop. Finally we compute a cost scoring function and a proof of
correctness for the final code fragment.

Restructuring and Pre/Post Generation. The loop is first re-
structured via standard loop splitting/unrolling and if-conversion.
We also introduce vector variables (Section 4) which are used in
the synthesis phase. The condition generator examines the restruc-
tured program and equivalence relations that are built up during the
resturcturing to construct the needed synthesis pre/post conditions.

Inductive Concolic Synthesis. The synthesis phase (Section 5)
takes the pre/post conditions produced by the previous step and
produces a sequence of instructions that realize the specified behav-
ior. The synthesizer uses a novel combination of concrete program
execution and counter example generation, which we call concolic
synthesis. This combined search approach quickly produces an ef-
ficient sequence of instructions that satisfies the pre/post conditions
and this sequence of instructions is the output of this phase.

Merge and Cost Ranking Function. The final step in the algo-
rithm is to patch in the synthesized code for the hole in the program
and to clean up any dead or loop invariant code that may have been
created in the vectorization step. The final program is passed to the
cost ranking computation (Section 6), and a proof of correctness is
computed for the program.

Output. The output of the algorithm is (1) the SIMD optimized
program, (2) a proof of equivalence between the SIMD implemen-
tation and the original program, and (3) a cost ranking function.

This approach provides the ability to use deductive heuristic
rules to quickly rewrite a loop to expose parallelism and enables
the reduction of the synthesis problem to small blocks of code. The
synthesis component provides a simple inductive method to con-
struct efficient code blocks that is robust to a wide range of struc-
tures, and variations on these structures, that appear in the loop bod-
ies. The relational verification methodology provides a connection
between the inductive and deductive approach allowing them to
co-operate to maximize the strengths of each approach. As an addi-
tional benefit the correctness certificate enables the pre-compilation
of code in a managed language, such as C#, to assembly code which
can be deployed and JITed without violating the safety guarantees
of the language [26, 27].

4. From Relational Verification to Synthesis

We borrow the general concept of turning an appropriate verifi-
cation methodology into a synthesis algorithm from [38] and ex-
tend the core idea to apply it to our problem domain. The approach
in [38] requires a specification of the program to be synthesized as
a pre/post condition pair (¢, 1) and a template 7" (with only first-
order holes) that form the full-correctness proof for the program.
In our setting there are two natural possibilities for constructing
the pre/post conditions: (1) the minimal loop invariant required for
correctness and (2) the precondition and postcondition for the loop

body. Unfortunately, both of these options are unsatisfactory. The
computation of loop invariants (even with the limited language in
Figure 3) is an undecidable problem. Conversely, pre/post condi-
tions based on only the loop body can be computed efficiently.
However, the resulting conditions are highly restrictive and can-
not be used for loops that require certain vector registers to be live
across loop iterations (such as reduction variables).

We use results from the area of Relational Program Verifica-
tion [4, 8, 30] and the transformation/verification rules outlined in
Section 2 to generate the synthesis pre/post conditions. To expose
or create data parallelism which can be exploited in the SIMD syn-
thesis step we utilize standard loop restructuring rules (splitting,
unrolling, and if-conversion) and rules for introducing vectorized
variables or constants. Each rule consists of (1) a loop rewriting
template and (2) a template for the equivalence relation between the
original loop and the rewritten version. The equivalence relations
are used to generate the desired synthesis condition and an equiv-
alence proof between the original loop and the vectorized version
(or to reject the vectorized version if a proof cannot be generated).

4.1 Introduction of Vectorized Variables/Constants

Vectorization of Loop Invariant Expressions. We identify vari-
ables and expressions e that are invariant across loop iterations
in the standard manner — either none of the values used in e are
modified in the loop body or they are assigned the result of an-
other loop invariant expression. For each invariant expression, e
of type Int32, we introduce the corresponding vectorized version,
vece:= (e, e, e, e), where vece is a fresh variable name and the
initialization is done before the loop. We accumulate the loop in-
variant expressions and the corresponding vector variables as tuples
(e, vece) in the set V. The equality relationship that should exist
between the scalar and vector forms is given by:

Inv(VE) = /\ v = [€<1>,€<1>,6<1>,6<1>}
(e,v)EVe

Vectorization of Reduction Variables. We define a reduction
variable x as a candidate for reduction variable vectorization when:
x is not used as an array index and all paths through the loop con-
tain an assignment of the form x:=x e e where e is commutative.
This definition heuristically identifies a reduction variable x, intro-
duces a vector version vecx, and adds the appropriate initialization
before the loop with reduction at loop exit. This definition is unsafe
to use in general as we have ignored the effects of the rest of the
loop body and their interaction with the reduction operator. How-
ever, in the case where the transformation is unsafe we will not be
able to produce a proof of equivalence in the relational verification
step and will reject the resulting program. The equality relationship
that should exist between the scalar and vector forms is given by:

/\ v = [ro, 71,72, 3]A
oeev Ty =x(2y @ (roeri @2 @7T3)

Reduce(V;.) =

4.2 Final Equivalence Relation

Once we have the identified the loop invariant expressions, the
reduction variables, and the input and output variables (I and O) for
the loop, the next step is to construct the final equivalence relations
at the desired synchronization points.

In our setting the synchronization points correspond to the pro-
gram points at the normal control-flow entries and exits of the loop
bodies. By definition the variables in V. or V;. are in scope at both
the loop body entry and exit points so the special equality condi-
tions for them are the same at both points. For the variables not in
the V. or V.. sets we check if they are in the input or output vari-
able sets (I or O) and if so add an equality condition between the
versions in the two programs. We say a variable x is simple at a

———
Input Program Restructure
- Loop
(Sec. 2)

;or(i € Ibyc)
‘ |

}

Intro. Vector
Values
- (Sec4.1)

Simulation Relation (Eq)

O
Qp |—> Cost Score

I Cost Ranking
Restructured CPU Model (Sec. 6) Function @
Program
for(i € I by 4c) t Final SIMD
— ‘ Merge & » Program
— Cleanup
¥ for(i € I by 4c)
S~ =11 ‘
Body Synthesize
(Sec. 5)
Synth. Cond.
Generation
Correctness
(Sec. 4.3) Synthesis Cond. . Proof ¥

Figure 4. Overview of the auto-vectorization algorithm.

program point if it is defined at that point and it is not an invari-
ant or reduction variable. We define the equivalence relation for the
loop entries Ep. and exits Epoq; as:

Epre = Inv(V.) A Reduce(V;) A /\ T(1) = T(2)
zeX
where X = {z € I|z simple at the loop entries}

Epost = Inv(V.) A Reduce(V;) A /\ T(1) = T(2)
zeX
where X = {z € I U O|z simple at the loop exits}

4.3 Partial Program and Condition Generation

As the natural candidate code for conversion to a SIMD implemen-
tation is the normal control-flow block of the loop body. We replace
the normal control-flow block between the loop entry and exit with
a hole [36]. Using the equality relations from Ey,.. and E},s:, along
with the weakest preconditions computed with them, we can con-
struct pre/post conditions ¢ and) for the hole which are used to
construct replacement code to fill the hole.

Given our choice synchronization points as the loop normal
control-flow entries/exits, the required verification condition is of
the form Epre = wp(b1, wp(bz, Epost)) where by, ba are the loop
bodies from the left and right programs respectively and wp com-
putes weakest preconditions. If b2 is a hole then this verification
condition is a specification for the required code. We compute the
synthesis pre/post conditions (¢, 1) for our synthesis hole by taking
the code for the block we want to replace and compute:

¢ = 3L1yEpre where 11y = {z(1y|x € I}
P = E|I<1)(Epre A Wp(bl,Epost)) where I<1> = {CE(1>|$ S I}

This construction lifts the relational program verification method-
ology to a synthesis condition generation methodology. Further, it
reduces the problem of synthesizing loopy programs to the prob-
lem of synthesizing straight line code. However, it does so in a
way that preserves cross loop information as well as context from
before/after the loop body. This context ensures that the generated
conditions are as relaxed as possible, enabling the generation of op-
timized code in the synthesizer, while still ensuring the equivalence
of the original and optimized programs.

4.4 Running Example

Figure 5 shows the result of applying these transformations to the
input code from Figure 1. The resulting fragment has two loops,

the first one has a loop guard that ensures the loop iteration count
is a multiple of 4 while the second loop handles the remaining it-
erations. The first loop has been unrolled 4 times and the variables
have been uniquely renamed to expose 4 independent sets of values
for the vectorization. The if-conversion step has swept the condi-
tional guards and abnormal loop exit to the single flow block at the
end of the loop.

After the loop restructuring and introduction of vector variables,
vectv and vecsv for tv and sv respectively, we have the following
following equivalence post relation for the body:

Epost = match(y = matchy Avalsy = vals(z)
A ’i<1) = ’i<2) Atvy = tvgey A Sv1y = Sv(2)
A vectv = [tv<1> , tuqy, tugry, t’l}(1>]

A vecsv = [sv(1y, SU(1), SU(1), SU(1)]

The code shown in Figure 6 has had the normal control flow
code in the loop, from the first statement to the if, replaced with a
[HOLE] as a place holder for the code we want to synthesize. The
pre/post conditions we want to generate (¢ and) for use in the
synthesis step are shown before/after the hole.

The only assignments to externally visible variables that can be
made by the synthesized code are specified by the set O. Thus,
we simplify the computed post condition, 1, by assuming that all
variables not in O have the same values before/after the synthesized
code. As the only variable in O is match, the interesting parts of
the generated synthesis pre/post conditions are:

¢ = (vectv = (tv, tv, tv, tv) A vecsv = (sv, sv, sv, SV))
1 = (match = ((vals[i].tag = tv A valsli].score > sv)
V (vals[i + 1].tag = tv A vals[i 4+ 1].score > sv)
V (vals[i + 2].tag = tv A vals[i + 2].score > sv)
v [)

(vals[i 4 3].tag = tv A vals[i + 3].score > sv)))

After synthesizing the SIMD code for these conditions and
substituting it in for the hole we get the final program shown
in Figure 2. Using the equivalence relations Ep.. and Epos; We
can compute and discharge a set of verification conditions for the
original input loop and the final SIMD implementation which serve
as a correctness proof for the transformation. Finally, using the
construction in Section 6 we can produce a cost function for the
relative performance of the input and SIMD loops.

int i;

for (i = 0; i < len—3; i+=4) {
int tagok0 = vals[i].tag == tv;
int scoreok0 = vals[i].score > sv;

int andok0 = tagok0 & scoreokO;

int tagok3 = vals[i+3].tag == tv;
int scoreok3 = vals[i+3].score > sv;
int andok3 = tagok3 & scoreok3;

match = andokO | andokl | andok2 | andok3;
if (match) return 1;

}

for (; i < len; ++i) {
int tagok = vals[i].tag == tv;
int scoreok = vals[i].score > sv;

int andok = tagok & scoreok;
if (andok) return 1;

}
Figure 5. Running example after structural transformation.
int i;
for (i = 0; i < len—3; i+=4) {
¢
[HOLE]
P
if (match) return 1;
}
for (; i < len; ++i) {
int tagok = vals[i].tag == tv;
int scoreok = vals[i].score > sv;

int andok = tagok & scoreok;
if (andok) return 1;

}

Figure 6. Running example after hole insertion and pre/post con-
dition locations shown.

5. Inductive SIMD Synthesis

The synthesis algorithm takes a pre/post condition pair (¢, ¥), a
set of instructions to select from Stmts, the set of input variables 1
and outputs O, and a maximum cost for the program to be synthe-
sized (cost.,). The output is a program p which is a sequence of
statements such that for any state valuation s that satisfies the pre-
condition ¢, the execution of p starting in s yields a state valuation
s’ that satisfies the postcondition 1. Inspired by work on concolic
testing [9, 32] our concolic synthesis algorithm uses a combina-
tion of a top-level counter-example driven loop (based on symbolic
methods) to find interesting values for the inputs / and an efficient
search for candidate programs p (based on concrete execution over
these input values). The symbolic reasoning in the top-level loop
(Algorithm 1) ensures that each new input provides useful informa-
tion, which forces behavioral differences, while the use of concrete
values in the program search subroutine (Algorithm 2) provides an
efficient method for generating candidate programs.

5.1 Counter-Example Generation Loop

The top-level CEGIS (Counter-Example Guided Inductive Synthe-
sis [35]) loop in Algorithm 1 iteratively constructs a set of concrete
state valuations (a mapping of values to variables) and searches for
a candidate program p that satisfies the postcondition ¢ when run
on these state valuations, line 6. On line 4 the algorithm attempts
to symbolically construct a new input state valuation s that is a
counter-example for the correctness of the program p — i.e. ¢ does
not hold on the result of running p on s. If such an example can
be found it is added to the set on line 5 and the loop is repeated,

if we can prove that no such example exists then p is the desired
program and we return on line 8, and if we cannot decide if such
an example exists then the synthesis fails. The initialization of the
concrete state valuations set, the underlined call to GenlnitialStates
on line 2 is an optimization, described in Section 5.3, to minimize
the number of iterations of the CEGIS loop.

Algorithm 1: Top-Level CEGIS Loop
input : pre ¢, post v, statements Stmts,
inputs I, outputs O, max. cost cost,,,
disjunctive precondition x
output: program p
1 p < skip;
2 S « GenlnitialStates(x);
while GenModel(3V, ¢ A —wp(p, ¢)) & {unsat, fail} do
s« GenModel(3V , ¢ A —wp(p,¥));
S+ S+s;
p < Search({), S,1,0,0, Stmts, I, O, costy,);
if p = L then return fail;
return (GenModel(El_/’7 ¢ N —wp(p, 1)) = unsat) ?p : fail,

® N AW

5.2 Candidate Program Search

The Search method, Algorithm 2, performs the search for a pro-
gram py.s that when run on the input list of state valuations S pro-
duces a list of state valuations that satisfy the post condition . The
naive search, i.e., the algorithm excluding the underlined code, is a
depth first enumeration of possible sequences of instructions from
the set Stmts. If we reach a point where every state valuation in
S satisfies ¢ then we have a candidate program and can return it,
line 9. Otherwise the current program is extended with another in-
struction from Stmts, yielding p;, and this statement is applied to
each of the state valuations in .S, yielding S;. The new values, p;
and S;, are then used in the recursive search call on line 14. As this
naive search approach is computationally intractable for instruction
sequences of length greater than four [12, 16, 23] we introduce sev-
eral optimizations below.

5.3 Synthesis Optimizations

Initial State Valuations. The set of input state valuations S in the
top-level CEGIS loop (Algorithm 1) plays a critical role in the num-
ber of iterations required for the loop to terminate. Every new state
valuation that is added to S is, by construction, a counter-example
and when no further counter-examples can be generated the loop
terminates. Thus, we initialize .S with a number of input valuations
that are likely to provide good initial constraints and as a result we
will need to generate very few additional counter-examples. As in
concolic testing we note that different paths through the program
are likely to exercise different behaviors. Thus, we alter the syn-
thesis algorithm to take a disjunctive pre-condition x, which is a
disjunction of per path weakest preconditions from the input pro-
gram. The GenlinitialStates method produces a state valuation for
each clause in the disjunctive pre-condition and we use these to
initialize S on line 2.

Search Merging. The naive search builds redundant instruction
sequences that repeatedly generate the same program state valu-
ations, e.g. repeatedly add and then subtract a constant. We also
observe that the search re-explores equivalent state valuations that
are reachable on different instruction paths, e.g. (a + (b+¢)) — d
and (a 4+ b) + (¢ — d). We can eliminate this redundant explo-
ration by merging branches in the instruction sequence search tree
that are actually exploring the same set of state valuations. This is

done by adding a set, Seen, of state valuations that have been seen
during previous search steps (checked on line 2). If we encounter
a state valuation that has been previously seen it means that either
(1) the current instruction sequence has redundant instructions, in
which case it is suboptimal, or (2) we have already explored the
state valuations reachable from the current valuation, and so con-
tinuing exploration on this sequence of instructions merely re-visits
previously seen state valuations. In these cases, pending a check
on cost information described below, we simply abort the current
branch of the search on line 3.

Cost Bounds. In our application we are only interested in mini-
mal cost code sequences. Using the cost model from Section 6 we
score the initial program fragment that is being replaced and com-
pute cost scores for each program generated during the search. With
this information we can immediately stop searching, line 1, if the
current program has a larger score, cost,,, than the input program
or current best solution. This bound is updated as needed to be the
best found so far in a standard branch-and-bound manner, line 17.

We further refine how the search handles state valuations that
have been seen previously by noting that computational cost is
monotone. Thus, repeating the exploration of a previously visited
state with a higher cost program will not discover a faster program.
However, if the current instruction sequence was able to produce
the current state valuation more efficiently than previous instruction
sequences then it may be possible to reach target state valuations
satisfying 1) without exceeding the cost bound cost,,. Thus, on
line 3 we check if we have found a less costly instruction sequence,
if not we return immediately but if the new instruction sequence is
less costly we update the min cost for this state valuation on line 4
and continue the search (re-exploring as needed).

Stack Machine. In order to limit the introduction and lifetime of
intermediate values, as well as to reduce the combinatorial prob-
lems of selecting which variables to use/modify in each instruction,
we extend the concrete execution state valuation with an evaluation
stack. The use of an evaluation stack is a common way to simplify
the operation of an abstract machine (e.g. the .Net and Java virtual
machines) by removing the need to explicitly refer registers or to
introduce explicit temporary variables. In the instruction selection
step, line 11, we assume instructions take their arguments from the
evaluation stack and place the result on the stack. We also extend
the instruction set with operations to load input variable values on
the stack and to pop values off of the stack into output variables.
The introduction of an explicit evaluation stack allows us to place a
bound on stack depth, line 8. This biases the search to avoid instruc-
tion sequences that produce large numbers of intermediate values
which would produce code with high register pressure.

Incremental Search Expansion. We can obtain additional per-
formance by using incremental expansion of the search parameters.
In general the operations used by the original program (==, &, . . .)
are the same type of operations that will be needed in the SIMD ver-
sion. Thus, we start with only the corresponding vector operations
and basic load/store operations in the set of instructions (Stmts). If
we fail to find a suitable program we extend this set with additional
operations such as the shuffle and other bitmasking operations.
Finally, if this larger set fails we let Stmts be the set of all instruc-
tions. Similarly, we start with a small eval stack, in our case depth
4 increasing to 6 if the first search fails. This allows us to improve
the performance of the synthesizer in many cases but still allows
the incremental exploration of the full program space as desired.

6. Cost Ranking Function

The computation of absolute costs for arbitrary blocks of code is a
challenging problem [39]. However, we do not need to compute the

Algorithm 2: Concrete Program State Search

input : program p, state valuations .S, post v,
seen set Seen, seen cost Cost, instructions Stmts,
inputs I, outputs O, max. cost cost,,

output: program Peand
if cost(p) > cost,, then return L ;
if S € Seen then

if cost(p) > Cost(S) then return L ;

Cost < Cost + [S — cost(p)];
else

Seen <— Seen U {S};

Cost + Cost + [S — cost(p)];
if Stackaepin (S) > Maxack then return L;
if Vs € S .4 holds for s then return p;
10 Pres < L3
11 foreach stmt € StmtsU{ldv(v)|v € I} U {stv(v)|v € O} do
12 pi < p + inst;
13 Si < ApplylnstToAll(inst, S);
14 Do <— Search(ps, Si, v, Seen, Cost, Stmts, I, O, costm);
15 if po # L A cost(po) < costy, then
16 Pres <= Pos
17 COStm — cost(po);

—

= W N

e ® N wn

18 return pres;

absolute costs of the programs. As we are only interested in identi-
fying the best performing program from a set of candidates we only
need to model cost in a way that allows relative comparison of two
programs. Further, our more restricted program fragment language
and vectorization application possess a number of simplifying fea-
tures. The impacts of branch mis-prediction are parameterized as
described below while the the uniform array accesses required for
vectorization imply that the caching/prefetching in the processor
will behave in a consistent and uniform manner.

We assume that we are given a model of the processor architec-
ture, M, which contains the standard information on execution unit
resources and latencies as well as branch mis-predict costs Mpiss.
We parametrize the remaining program fragment behaviors based
on the conditionals C (i.e. if statements) and the loops L that ap-
pear in the program fragment:

B, :C —[0,1) The mis-predict probability of each branch.
B;:C+[0,1) The probability that the true path is taken.
L.:L+— N The number of times a loop is executed.

From these parameters we construct a cost ranking function
Perf . (8, By, By, L) — R. The cost of a straight line block
of code is simply the sum of each statement as reported by the
underlying processor model M. The cost of a branch statement,
with true branch /3, and false branch 3y is:

Pe'fﬂl(ﬁ7 prBhLC) =
By(B) % Muiss + Bi(B) % Perf (81, By, By, L)
+ (1 — Bi(B)) * Perf* (B¢, By, B, Le)

The cost of a loop statement, ¢ with the body £j0qy, is simply
Muiss + Lo (€) % Perf (Lsoay, Bp, Bt, Le). We can compute the cost
ranking function for a fragment where 6 = finir; 1 . . . £k fexie in the
natural way as the sum of all the costs:

PEUAW((S,BZJ,BMLC) :Pe’fM(fi"il7BP7BtaLC)
+ (e, e, Perf* (0s, By, Bt, Le)) + Perf (fexit, Bp, B, Le)

In this paper we report results when running the code on an
Intel i7 processor. We can construct a (very) simple model M for
this processor with: a normalized latency of 1 per operation, a 3
wide execution unit, a mis-predict cost Mpyis = 12, a uniform mis-
predict probability of 5% for forward conditional branches, and a
1% mis-predict rate for loop back and exit branches. Using this
model the cost ranking function for the SIMD loop in Figure 2 is
Perjgl((so,,,, n1,n2) = 24+n1%5.164+n2%3.16 and for the original
loop in Figure 1 the function is Perfy! (8umg, n1) = 12+ nf * 3.16.

The estimated asymptotic speedup can be computed by observ-
ing that as nj becomes large the costs of the loops are proportional
to nf * 3.16 for the original loop and n * 1.29 for the SIMD loop
(since the SIMD loop processes 4 elements per iteration). Thus, the
cost ranking functions predict a speedup of 2.44 X, closely match-
ing the empirically observed speedup of 2.5x. To find the predicted
break even point we solve for the values where the cost ranking
functions for the original loop and SIMD loop are equal, nj = 8
for our functions. As we see in Section 7 this matches well with the
experimentally seen break-even of between 4 and 8.

Even with our simple processor model, which can be built us-
ing readily available information, the resulting static cost predic-
tions are both precise and, as we would like in a static compiler,
conservative. This simple model can be further improved via ei-
ther more detailed architecture descriptions [39] or autotuning [41]
to identify key performance parameters in the processor models.
As the cost estimation functions are parametrized on branch mis-
predict, branch taken, and loop count information it is also possible
to evaluate them and select the best implementation based on run-
time data, as in a Tracing JIT [1, 7].

7. Experimental Evaluation

To evaluate the approach presented in this paper we selected 18
loops which represent fundamental classes of algorithms (find,
exists, accumulate, map, etc.) that are found in standard libraries
such as the STL for C++ or the base class libraries for C# (or
Java). These algorithms cover many common loop idioms that
appear in real world code. In this section we examine 6 benchmarks
in detail. Four benchmarks — Countlf, Find, Lexo, Equals — come
from the C++ STL (specialized for random access iterators). Two
benchmarks — FindIf and the running example Exists — are from
the .Net base class libraries (BCL) and are implementations of
methods in the List<T> class. Finally, the CyclicHash comes from
production C++ code and implements a hash code function for data
blocks. For the methods that take user defined lambda expressions
— Countlf, FindIf, and Exists — we used non-trivial instantiations for
the lambda code, e.g. the running example in Figure 1.

7.1 Transformation and Synthesis Performance

Table 1 shows the time required to vectorize each program fragment
(memory is always less than 100MB). In practice the synthesis step
accounts for 90% or more of this time. Thus, the table shows the
number of input states the synthesis started with, the number of
additional iterations the CEGIS loop needed, and the number of
instructions in the final synthesized block. As we can see in this
table the resource requirements vary greatly even for similarly sized
code blocks. This variability is not surprising as the synthesis is
fundamentally a search in a very large state space. However, in
all of the cases the synthesizer was able to produce an optimized
SIMD program. These programs consisted of up to 9 instructions
and covered a diverse set of comparison, bitwise, and swizziling
operations. The results also show the impact the disjunctive pre-
condition generation heuristic has on the total number of iterations
(taking only 1 iteration for all but one case).

Benchmark || Time(s) | Init./Iters. | Insts.
Countlf 0.136s 16/1 8
Find 0.053s 6/1 4
Lexo 0.056s 6/1 5
Equals 0.667s 10/1 5
Exists 0.120s 6/2 9
CyclicHash 0.998s 16/1 5

Table 1. Time required by the synthesizer. Init number of examples
in S and Iters of the CEGIS loop. Insts in the final SIMD code.

7.2 Performance of SIMD Loops

To compare the performance of the synthesized SIMD loops and
the original scalar implementations we implemented a driver loop
which executes each loop, on inputs of various sizes, 5 million
times in a simple timing loop. The evaluation was done on an Intel
i7 running Windows 7 (32 bit) and Visual Studio C++ compiler
(Version 16 for x86) with the default optimization settings.

Figure 7 contains a chart for each of the benchmark loops. This
chart shows the experimentally measured performance improve-
ment seen with the synthesized SIMD implementation and the per-
formance improvements predicted by the analytical cost functions
in Section 6. The logarithmic x-axis is the number of iterations
that the original loop expected to execute. For fixed count loops
like Countlf and CyclicHash this is the size of the input array. For
loops with abnormal returns (the remaining four loops) this is the
expected number of iterations before the loop exits. As we use a
uniform distribution for where the element of interest is in the in-
put the expected number of iterations is half the length of the input
array. The y-axis is the speedup of the SSE implementation relative
to the original scalar implementation. Finally we mark the break-
even line where the performance of the SSE implementation and
original implementation are equal.

The results in Figure 7 show that in general the SIMD imple-
mentations start to outperform the baseline implementations almost
immediately (the Actual plot). For an iteration count of 8 only
the Lexo loop is slower than the baseline implementation while
CyclicHash is slightly better than break-even and the remaining
loops show a 10% to 40% reduction in runtime. As the input size
gets larger the performance differences get larger in favor of the
SIMD loops. Once the iteration counts approach 32 the Lexo has
passed the predicted break even point and is now faster than the
baseline implementation. At iteration counts of 512 all the loops
outperform the baseline by a factor of 2x or more. Finally by it-
eration counts of 2048 the loops performance ratios are near their
asymptotic speedup and now outperform the baseline implemen-
tations by between 2.0x and 3.7x, which is near the 4x maxi-
mum speedup we would expect from using 4 wide SSE instruc-
tions. These results demonstrate that the approach to vectorization
described in this paper is applicable to a wide range of loops and
produces SIMD implementations that consistently provide large
performance increases (even on relatively small inputs).

The Predicted plots in Figure 7 show that in general the
speedups predicted by the analytic cost model from Section 6 corre-
late well with the observed speedups — despite the relatively crude
model used for the processor. The major exception to this trend
is the Equals program where the predicted and actual performance
diverge significantly for large iteration counts. Further investiga-
tion indicates that in this case the processor is able to optimize the
loop execution in ways that are not captured by the simple pro-
cessor model, M, used when constructing the cost functions. Thus
there is room for improvement via either more detailed architecture
descriptions [39] or autotuning [41] to identify key performance
parameters in the processor models.

4x

3x

2x

1x

—eo— Actual
—m— Predicted

4x

3x

2x

1x

—e— Actual
—m— Predicted

4x

3x

2x

1x

—e— Actual
—m— Predicted

22 25 28 211 22 25 28 211 22 25 28 211
(a) Countlf (b) Find (c) Lexo
4x 4x 4x
3x 3x 3x
2X 2x 2x
q —e— Actual 1 —e— Actual { —e— Actual
X ‘ ‘ —&— Predicted X ‘ ‘ —m— Predicted X ‘ ‘ —m— Predicted
92 95 98 911 92 95 98 9l1 92 95 98 9l1
(d) Equals (e) Exists (f) CyclicHash

Figure 7. Speedup (Original Time / SSE Time) on Y axis ranging over the expected number of iterations in original loop on X axis.

To avoid performance degradations it is critical that the cost
model is able to predict the break-even number of iterations (where
the SIMD loop begins to outperform the original loop). In all our
benchmarks we see that this number is well predicted by the cost
model and in all cases is a conservative estimate (i.e. overestimating
the number of iterations needed to break-even). Thus, these results
demonstrate that the cost model defined in this work is an effective
predictor for the relative performance of the loops and provides an
effective means to check that a SIMD implementation will reliably
improve the performance of the program in practice.

To validate that these results were not an artifact of the evalua-
tion environment [25] we ran the evaluation on a second platform.
This environment consisted of an Intel Core2 running Mac OS X
(Tiger) and GNU C++ compiler (Version 4.2.1 x86). The results
were, with one notable exception, consistent with the performance
improvements seen on the Intel i7 platform. The outlier benchmark,
Exists, had a break-even cost of 16 on the Core2 compared to a
break-even of 8 on the i7. This increase is mainly a result of the
shuffle operation being more expensive on the Core2 and the in-
creased break-even is correctly predicted by our cost function.

7.3 Synthesis with Specialized Operations

In order to evaluate how the synthesis technique handles SIMD
operations with unusual semantics we synthesized three common
string operations from the C# System. String class: StringEquals,
IndexOf and IndexOfAny. These can be implemented using the spe-
cialized Packed Compare Strings (PCMPESTRI) operation from
SSE 4.2. The synthesis algorithm produces SIMD implementations
for these loops using the specialized packed compare strings op-
eration in less than 1 second for each benchmark. The speedups
obtained ranged from 3.4x for StringEquals to 9.5x for IndexO-
fAny. These results demonstrate how the synthesis approach can
be easily extended to make use of new, or unusual, instructions to
produce optimized loop implementations.

7.4 Impact on 483.Xalan

The results in Section 7.1 show that the synthesized loop imple-
mentations consistently improve performance across a range of
loops and input data sizes. To validate that the performance gains
seen on the micro-benchmarks translate into similar performance
gains in practice, we selected the 483.Xalan benchmark from SPEC
CPU2006 [37] as a case study. This program makes heavy use of
std::vector<string#*> as a cache for commonly used strings
and it uses the STL find algorithm (our Find benchmark) to find
string pointers in the cache.

The cache behavior is very sensitive to the data that is being
processed as shown in recent work on automatic data structure
selection [17]. Replacing the std: :vector with a std: :set (or
a hashset) resulted in performance improvements of up to 20%
on the SPEC provided train input but when run with the SPEC
provided test input the alternative data structure representation
actually degrades performance by up to 20%. This swing from
performance improvement to performance degradation is driven
by the sensitivity of the cache to particular features of the input
data set. Thus, this program tests both the performance impact of
the SIMD code our synthesis produces and the robustness of the
performance improvements on the various benchmark inputs.

Performance profiling of the 483.Xalan program shows that ap-
proximately 14% of the total runtime is spent executing the find
algorithm on the cache. As our loop micro-benchmarks indicate
that the SIMD find code is between 1.08x and 2.4x faster than
the baseline implementation we would expect to see between a 1%
(worst case) and 8% (best case) reduction in total runtime.

Table 2 shows the performance results obtained by replacing (by
hand) the calls to the find algorithm with calls to our synthesized
SIMD code. We show for each input provided in the SPEC test
suite the size of the input and the percentage reduction in the total
program execution time. The speedup indicates that the calls to
the synthesized SIMD code are, depending on the inputs, 1.15

Input Data | Input Size || Improve(%)
test 28KB 5.5%
train 39MB 2%
ref 56MB 5%

Table 2. Runtime improvement(%) for 483.Xalan.

to 1.5 times faster than the standard implementations (matching
our expectations from the micro-benchmark results). In contrast
to the widely variable speedup (and slowdown) seen by changing
the underlying data structure, the use of the vectorized find loop
showed consistent improvements of 2%-5% across the inputs.

8. Related Work

Vectorization. Automatic program vectorization is a challeng-
ing problem which requires the application of a wide range of
techniques for effective vectorization including: loop transforma-
tion [18, 29], control flow dependency elimination [18], alignment
optimizations [28, 40], and finding sets of operations that can be
executed in parallel [19, 33]. However, previous work on compiler
auto-vectorization has focused on what are traditionally consid-
ered regular applications (e.g., scientific codes, multimedia appli-
cations, encode/decode algorithms) and on special purpose libraries
(codecs, encryption, etc.), where loops have well behaved termina-
tion conditions, data sets are of a fairly regular/large size, and data
layouts are suited to SIMD computation.

In contrast, the work in this paper seeks to apply SIMD in-
structions to irregular loops from standard library implementations
which often have poor data layouts, small iteration count loops,
and extensive data dependent control flow. These types of programs
present different and in many ways more difficult problems to the
automatic construction of vectorized code. These difficulties are
highlighted in a recent study by Maleki et. al. [21] which examines
a number of state of the art vectorizing compilers and their ability
to vectorize a range of loops. They conclude that modern compilers
fail to vectorize many loop patterns due to a lack of development
resources needed to build a compiler that can identify and treat all
the needed loop and computation patterns.

The work in this paper focuses on the issues of sub-optimal
data layouts and complex data driven control flow but does not
examine issues involving indirect memory accesses via pointers.
Recent work has begun to explore how to reorganize and traverse
pointer based structures into flat structures which are amenable
to SIMD computation [31]. In particular work on unique pointer
referencing [3, 20] and object lifetime, either as a global invariant
or in a localized section of code, based on static [20, 22] is a critical
first step dealing with the challenges posed by pointers.

Verification. Translation validation is a general method for check-
ing a posteriori that compiler runs are correct, i.e output target pro-
grams that are semantically equivalent to input programs [30, 43].
Product programs reduce relational verification to functional verifi-
cation of a single program: instances include self-composition [6],
cross-products [42], and their combination [4, 5]. These methods
are able to validate a wide range of loop optimizations, including
those needed by our method. In this work, we use product programs
to generate synthesis conditions for loop bodies.

Relational Hoare Logic is a generalization of Hoare logic in
which judgments involve two programs, and pre- and post- con-
ditions are denoting relations on states [8]. Relational Hoare Logic
is effective for proving the correctness of structure-preserving op-
timizations, and simple optimizations that alter the control flow of
programs. However, the core logic of [8] does not support the kind
of loop optimizations required for our examples.

Synthesis The area of program synthesis is gaining renewed in-
terest [10, 11, 35]. Srivastava et.al. introduced the notion of proof-
theoretic synthesis where the problem of synthesizing a loopy pro-
gram, given a pre/post condition, is reduced to the problem of
simultaneously synthesizing loop-free fragments and loop invari-
ants [38]. This approach is limited to synthesis of simple programs
whose total correctness proofs or loop invariants can be expressed
as simple templates. In contrast, we reduce the problem of vector-
izing a given loopy program, to the problem of synthesizing only
a loop-free fragment (without the need to synthesize any sophisti-
cated loop invariants). This reduction is enabled by our use of the
powerful relational verification methodology, which allows us to
separate the process of verification and synthesis by generating an
over approximation of the equalities required for equivalence proof.

The problem of synthesizing loop-free programs has been ad-
dressed in a variety of domains including bit-vector algorithms [12,
15, 36], ruler/compass based geometry constructions [13], text
transformations [24], and algebraic proof problems [34]. One class
of technique is based on constraint solving, which involves re-
ducing the synthesis problem to that of solving a SAT/SMT for-
mula (inside a CEGIS loop) and let an off-the-shelf SAT/SMT
solver efficiently explore the search space. The applicability of this
technique has been limited to semi-automatic settings, where the
user provides templates [36] or reasonable over-approximation of
the number of times each base component is used in the desired
program [12]. Another class of technique is based on brute-force
search, which involves systematically exploring the entire state
space of artifacts and checking the correctness of each candidate.
This approach often requires use of non-trivial optimizations and
performs best when the specification consists of examples as op-
posed to a formal relational specification. Past work has included
optimizations such as goal-directed search [13], clues based on
textual features of examples [24], and common subexpression
evaluation [34]. In this work, we combine the CEGIS loop from
constraint-solving approaches with brute force search approach
and novel optimizations.

Superoptimization is the task of finding an optimal code se-
quence for a straight-line target sequence of instructions, and it is
used in optimizing performance-critical inner loops. One approach
to superoptimization has been to constrain the search space to a
set of equality-preserving transformations [2, 16], and then select
the one with the lowest cost. This approach is limited by the kind
of transformations that it can generate. Another approach to super-
optimization has been to use brute-force search and enumerate se-
quences of increasing length or cost, testing each for equality with
the target specification [23]. We also use brute-force search, but
combined with a CEGIS loop and non-trivial optimizations.

9. Conclusion

This work presents a new approach to addressing the challenges
that are present when attempting to harness the performance and
power advantages available from data-parallel SIMD operations.
In particular we looked at the problem of auto-vectorizing loops
that have sub-optimal data layouts and complex data driven control
flow, as is frequently the case in general purpose library code from
the C++ STL or the C# Base Class Libraries. Our approach is
driven by three core objectives: to produce an auto-vectorizer that
is applicable to a wide range of irregular loops, that produces
code which reliably improves the performance of the loop, and that
guarantees the correctness of the resulting SIMD code.

These objectives led us to a novel auto-vectorization approach
based on deductive loop rewriting and inductive synthesis of loop-
free code. The use of inductive synthesis for constructing the loop
body makes it particularly robust when dealing with the multitude
of variations on the basic loop forms (find, map, reduce, etc.) that

appear in practice. In addition this approach allows us to produce
correctness proofs for the resulting code. We believe that this un-
derlying approach of combining deductive code restructuring with
inductive code generation represents a general and promising way
forward in research on program compilation. Thus, this work is
an important step in both expanding the set of programs that can
be automatically SIMDized and in the larger problem of effective
compilation for specialized hardware.

Acknowledgments

We would like to thank the PPoPP reviewers and Rastislav Bodik
for their constructive comments and thoughts on this work. This
work was supported in part by: European Projects FP7-318337
ENTRA, FP7-231620 HATS and FP7-256980 NESSoS, Spanish
project TIN2009-14599 DESAFIOS 10, Madrid Regional project
S2009TIC-1465 PROMETIDOS. César Kunz is funded by Span-
ish Juan de la Cierva programme (JCI-2010-08550). Juan Manuel
Crespo is funded by FPI Spanish programme (BES-2010-031271).

References

[1] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive
optimization in the Jalapefio JVM. In OOPSLA, 2000.

[2] S. Bansal and A. Aiken. Automatic generation of peephole superopti-
mizers. In ASPLOS, 2006.

[3] E. Barr, C. Bird, and M. Marron. Collecting a Heap of Shapes.
Technical Report MSR-TR-2011-135, Microsoft Research, Dec. 2011.

[4] G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using
product programs. In FM, 2011.

[5] G. Barthe, J. M. Crespo, and C. Kunz. Beyond 2-safety: Asymmetric
product programs for relational program verification. In LFCS, 2013.

[6] G. Barthe, P. R. DArgenio, and T. Rezk. Secure information flow by
self-composition. In CSFW, 2004.

[7] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo, W. Schulte,
N. Tillmann, and H. Venter. SPUR: A trace-based JIT compiler for
CIL. In OOPSLA, 2010.

[8] N. Benton. Simple relational correctness proofs for static analyses and
program transformations. In POPL, 2004.

[9] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated
random testing. In PLDI, 2005.

[10] S. Gulwani. Dimensions in program synthesis. In PPDP, 2010. Invited
talk paper.

[11] S. Gulwani. Synthesis from examples: Interaction models and algo-
rithms. SYNASC, 2012. Invited talk paper.

[12] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-
free programs. In PLDI, 2011.

[13] S. Gulwani, V. A. Korthikanti, and A. Tiwari. Synthesizing geometry
constructions. In PLDI, 2011.

[14] Intel Optimization Manual (June 2011) - Section 6.5.1.
http://www.intel.com/content/dam/doc/manual/
64-ia-32-architectures-optimization-manual.pdf.

[15] S. Jha, S. Gulwani, S. Seshia, and A. Tiwari.
component-based program synthesis. In /CSE, 2010.

[16] R. Joshi, G. Nelson, and K. H. Randall. Denali: A goal-directed
superoptimizer. In PLDI, 2002.

[17] C. Jung, S. Rus, B. P. Railing, N. Clark, and S. Pande. Brainy:
Effective selection of data structures. In PLDI, 2011.

Oracle-guided

[18] K. Kennedy and J. Allen. Optimizing compilers for modern architec-
tures: a dependence-based approach. Morgan Kaufmann Publishers
Inc., 2002.

[19] S.Larsen and S. Amarasinghe. Exploiting superword level parallelism
with multimedia instruction sets. In PLDI, 2000.

[20] K.-K. Ma and J. Foster. Inferring aliasing and encapsulation properties
for java. In OOPSLA, 2007.

[21] S.Maleki, Y. Gao, M. Garzardn, T. Wong, and D. Padua. An evaluation
of vectorizing compilers. In PACT, 2011.

[22] M. Marron. Structural analysis: Shape information via points-to com-
putation. Technical Report 1201.1277, arXiv, Jan. 2012.

[23] H. Massalin. Superoptimizer - a look at the smallest program. In
ASPLOS, 1987.

[24] A. Menon, O. Tamuz, S. Gulwani, B. Lampson, and A. Kalai. A
machine learning framework for programming by example. In ICML,
2013.

[25] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Producing
wrong data without doing anything obviously wrong! In ASPLOS,
2009.

[26] G. Necula. Proof-carrying code. In POPL, 1997.

[27] G. Necula and P. Lee. Safe kernel extensions without run-time check-
ing. In OSDI, 1996.

[28] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization of interleaved
data for SIMD. In PLDI, 2006.

[29] D. Nuzman and A. Zaks. Outer-loop vectorization: Revisited for short
SIMD architectures. In PACT, 2008.

[30] A. Pnueli, M. Siegel, and F. Singerman. Translation validation. In
TACAS, 1998.

[31] B. Ren, G. Agrawal, J. Larus, T. Mytkowicz, T. Poutanen, and
W. Schulte. SIMD parallelization of applications that traverse irregu-
lar data structures. In CGO, 2013.

[32] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing
engine for C. In ESEC/FSE-13, 2005.

[33] J. Shin, M. Hall, and J. Cha. Superword-level parallelism in the
presence of control flow. In CGO, 2005.

[34] R. Singh, S. Gulwani, and S. Rajamani. Automatically generating
algebra problems. In AAAL 2012.

[35] A. Solar Lezama. Program Synthesis By Sketching. PhD thesis, EECS
Department, University of California, Berkeley, Dec 2008.

[36] A. Solar-Lezama, R. M. Rabbah, R. Bodik, and K. Ebcioglu. Program-
ming by sketching for bit-streaming programs. In PLDI, 2005.

[37] SPEC. Standard Performance Evaluation Corporation (SPEC). http:
//www.spec.org/cpu2006/.

[38] S. Srivastava, S. Gulwani, and J. S. Foster. From program verification
to program synthesis. In POPL, 2010.

[39] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenstrom. The worst-case
execution-time problem: Overview of methods and survey of tools.
ACM TECS, 1(3), 2008.

[40] P. Wu, A. Eichenberger, and A. Wang. Efficient SIMD code generation
for runtime alignment and length conversion. In CGO, 2005.

[41] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and
P. Stodghill. Is search really necessary to generate high-performance
BLAS? Proceedings of the IEEE, 93(2), 2005.

[42] A. Zaks and A. Pnueli. Covac: Compiler validation by program
analysis of the cross-product. 2008.

[43] L. D. Zuck, A. Pnueli, and B. Goldberg. Voc: A methodology for the
translation validation of optimizing compilers. J. UCS, 9(3), 2003.

