

Dynamic Energy Model of Application Source Code on Smart Devices

Xueliang Li Roskilde University

Motivation

- Energy saving by a factor of 3 to 5 could be achieved by software optimizations alone. [C. Edwards , 2011]
- How to bridge the gap between high level source code and energy consumption?
 - Explore alternative approach to build a source code energy model.
 - Not based on a low level energy model

Approach

- Analyze a large set of test cases
 - Identify the set of basic energy-consuming operations
 - Obtain the execution paths of the cases
 - Label the path with actual measured energy cost
 - Employ the labeled data to train the energy model for the basic operations

Model

- The model construction
 - based on data mining
 - correlate energy ops and energy costs from a large amount of data.

Model Construction

Test Cases (Examples)

Click and move

3D effect

Input sequence 1: (tap, position1), (tap, position2)...... Input sequence 2: (tap, position1), (tap, position2)...... Input sequence 3: (tap, position1), (tap, position2)......

ENTRAproject.eu -- Whole-Systems Energy Transparency

Experiment Setup

Target: Odroid-XU+E development board

- Two ARM quad-core CPUs, Cortex-A15 with 2.0 Ghz clock rate and Cortex-A7 with 1.5 Ghz.
- A built-in power monitor tool to measure the voltage and current of CPUs with a sampling frequency of 30 Hz

Source code: Cocos2d-Android

• A framework for building games, demos and other interactive applications.

Execution Path

- We choose block as the basic unit of the path
 - Statement: impact significantly on energy cost and timing
 - Functions or classes: unstable execution components

Block Definition

- A block is a set of gathered statements.
 - In the block, each node has only one in-edge and one out-edge in the control flow graph,
 - But the start point of the block could have more than one in-edge,
 - The end point could have more than one out-edge.
- A block is a fixed execution unit. That means, always if one part of the block is processed, the rest certainly will be executed.

Block Division(If)

previous code;
if boolean then
 body;
end
following code;

Block Division (While Loop)

previous code; **while** boolean **do** | body; **end** following code;

Block Division (For Loop)

13 ENTRAproject.eu -- Whole-Systems Energy Transparency

Operation Dictionary of Blocks

We developed a parser to extract the energy ops from the source code.
All of the ops are labeled with the ID of the block where it resides.

Obtain Energy Operations on The Path

Model Construction

Error Function

Gradient Descent

To minimize: $J(cost_1, cost_2, ...cost_l) = \frac{1}{2m} \sum_{i=1}^m (n^{(i)} \times cost - e^{(i)})^2$

Repeat update until convergence:

$$cost_j := cost_j - \alpha \frac{\partial J(cost_1, ...cost_j, ...cost_l)}{\partial cost_j}$$

$$= \cos t_j - \alpha \frac{1}{m} \sum_{i=1}^m (\vec{n}^{(i)} \times \vec{cost}) \cdot n_j^{(i)}$$

$$j = 1, 2, ...l$$

• The value α determines how large the step is in each iteration.

Correction part

The algorithm above may produce cost with negative elements, however as a matter of fact, the energy costs should be above zero. Original part Correction part

$$J = \frac{1}{2m} \sum_{i=1}^{m} (\vec{n^{(i)}} \times \vec{cost} - e^{(i)})^2 + \lambda \frac{1}{l} \sum_{j=1}^{l} \rho^{-cost_j}$$

$$\rho > 1$$

- The λ value balances the weights of correction part and that of the original part.
- The ρ value determines how aggressive the correction is

Experiment Progress

- 2700+ test cases
- Hard to obtain energy model at the "high level" and "middle level"

Next step:

- Go to lower level
- Consider the transition energy cost
- Use block as the model input

High level	Middle level	Lower
Arithmetic Ops	Addition, Subtraction Multiplication, Division Increment, Decrement	Information about the operands
Comparison Ops	Greater, Less, Equal Greater or equal Less or equal	
Bitwise Ops	BitAnd, BitOr SignedBitShiftRight SignedBitShiftLeft	
Reference Ops	Array reference Field reference	
Function Ops	Argument passing Returning value	
Control Ops	Block goto Function Invocation	
Others	Declaration Type conversion	

Thank You! Questions & Suggestions? @不加VO和富二代意外怀孕后

ENTRAproject.eu -- Whole-Systems Energy Transparency

21