
On Testing Non-functional Software Properties

Sudipta Chattopadhyay
Linköping University, Sweden

Joint work with Abhijeet Banerjee, Lee Kee Chong and Abhik Roychoudhury
National University of Singapore

!
Ahmed Rezine and Ke Jiang
Linköping University, Sweden

!

+30

-27

Context

3

Programming abstractions

Desktops, handheld devices etc.

Tools and
techniques

Write efficient !
software

Developer

Overview

4

Tools and Techniques to Write Efficient Software

Software Testing !
for Non-functional !

Properties
Inefficient!

Code Patterns

Coding Guidelines!
for Building Efficient!

Software

Desktop machines, handheld devices etc.

Overview

5

Tools and Techniques to Write Efficient Software

Performance Testing !
Energy Testing

Desktop machines, handheld devices etc.
Memory !

Performance!
!

Android Devices

Inefficient!
Code Patterns

Coding Guidelines!
for Building Efficient!

Software

Overview

6

Tools and Techniques to Write Efficient Software

Performance Testing Performance-inefficient !
Code Patterns

Performance-aware !
Coding Guidelines

Desktop machines, handheld devices etc.
Memory !

Performance!

State-of-the-art in Detecting
Performance Loss

Program profiling
Program

Input

Profiler

Hotspots

7

State-of-the-art in Detecting
Performance Loss

Program profiling
!

Program inputs that expose performance loss
!

Detecting performance loss
!
!

Program

Input

Profiler

Hotspots

8

State-of-the-art in Detecting
Performance Loss

!
!

Detecting performance loss
!
!

Program

Input

Profiler

Performance
Loss

9

Memory Performance

CPU Cache DRAM

Memory Traffic

Typically, DRAM is several magnitudes slower than caches

Performance Loss

• Memory Performance

• How do we define?

• Many cache misses (How many is bad
enough?)

• Our approach

• Detect cache thrashing

State-of-the-art in Detecting
Performance Loss

!
!

Detecting performance loss
!
!

Program

Input

Profiler

Cache !
Thrashing

12

Cache Thrashing Scenario

x!=1

DRAM (m1)

DRAM (m2)

y n

Cache

m1 replaces m2 from the cache and vice versa

Test Generation

Program P Program P’ Validate
Assertions

Encodes Cache Thrashing
 of “Program P” as Assertions

Find Test Inputs
Invalidating Assertions

Test Generation

Program P Program P’ Validate
Assertions

Encodes Cache Thrashing
 of “Program P” as Assertions

Find Test Inputs
Invalidating Assertions

In other words, we reduce memory performance testing into
an equivalent functionality testing problem

Encoding Cache Thrashing Scenario

Cache

m5 and m6 map to the same cache set

m1

m2 m5

m2

m3 m6

m4

x < 5 x >= 5

y > 12 y <= 12

Encoding Cache Thrashing Scenario

Cache

m5 and m6 map to the same cache set

m1

m2 m5

m2

m3 m6

m4

x < 5 x >= 5

y > 12 y <= 12

m1, m2, m3 and m4 cannot be evicted
the cache (static analysis)

!
Ferdinand et al. 2000
Bach Khoa et al. 2011

Encoding Cache Thrashing Scenario

m5 and m6

Cache

m5 and m6 map to the same cache set

m1

m2 m5

m2

m3 m6

m4

x < 5

x >= 5

y > 12

y <= 12

C_m6++

C_m5++

No Cache Thrashing

Encoding Cache Thrashing Scenario

m5 and m6

Cache

m5 and m6 map to the same cache set

m1

m2 m5

m2

m3 m6

m4

x < 5

x >= 5

y > 12

y <= 12

C_m6++

assert(c_m5 <= 0 ⌵ c_m6 <= 0)

C_m5++

assert(c_m5 <= 0 ⌵ c_m6 <= 0)

No Cache Thrashing

Encoding Cache Thrashing Scenario

m5 and m6

Cache

Test Generation is Performed on the modified program

m1

m2 m5

m2

m3 m6

m4

x < 5

x >= 5

y > 12

y <= 12

C_m6++

assert(c_m5 <= 0 ⌵ c_m6 <= 0)

C_m5++

assert(c_m5 <= 0 ⌵ c_m6 <= 0)

No Cache Thrashing

Test Generation Approach

assert (c_m5 <= 0 ⌵ c_m6 <= 0)

Dynamic Symbolic Execution
Guidance via Control Dependency Graph

!
(reaching path to Assertions)

x >= 5

y <= 12

Test Generation Approach

assert (c_m5 <= 0 ⌵ c_m6 <= 0)

x >= 5

y <= 12

!
Generate inputs satisfying (x >= 5 /\ y <= 12)

Summary

Program P Program P’ Validate
Assertions

Encodes Cache Thrashing
 of “Program P” as Assertions

Find Test Inputs
Invalidating Assertions

Static Cache
Analysis

Encode
Assertions

Control
Dependency

Graph

Dynamic
Symbolic
Execution

Performance
Stressing

Test Inputs

Evaluation

Time (in Seconds)

A
ss

er
tio

n
C

ov
er

ag
e

Overview

25

Tools and Techniques to Write Energy-efficient Software

Energy Testing Energy-hungry !
Code Patterns

Energy-aware !
Coding Guidelines

Desktop machines, handheld devices etc. Android Devices!

Smartphone Market
Bi

llio
n

D
ol

la
rs

2013 2014 2015 2016 2017

$0.20

$0.80$0.70

$2.30

Smartphone Sales Mobile App Testing Market Size

Data obtained from IDC, Gartner and ABI Research

Energy Inefficiency
• How do we quantify energy inefficiency?

• High energy consumption, what is high?!

• High energy consumption

• High utilization of hardware components

• Low utilization of hardware components

• Ratio Energy/Utilization

Energy Inefficiency
Cause/Source

Hardware components Resource leak Suboptimal resource
binding

Sleep state transition Wakelock bug Tail Energy hotspot

Background Service Vacuous background
service

Expensive
background service

Defective Functionality Immortality bug Loop energy hotspot

Energy Inefficiency

Resource
acquired

Resource
first used

Suboptimal resource binding

Wasted Energy

Service started Never used

Vacuous background service

Wasted Energy

A Broader Categorization
Cause/Source Energy Bugs Energy Hotspots

Hardware components Resource leak Suboptimal resource
binding

Sleep state transition Wakelock bug Tail Energy hotspot

Background Service Vacuous background
service

Expensive
background service

Defective Functionality Immortality bug Loop energy hotspot

Device does !
not return to idle

High energy consumption !
+ low utilization

Measurement

Our framework

LG Optimus
smartphone

Yokogawa Digital
Power Meter

Measurement
• Measuring Energy/Utilization ratio for an application

Time

Energy/Utilization

App is not executing
(PRE)

App is executing
events (EXC)

Recovery
(REC)

Idle
(POST)

Energy Inefficiency

Time

Energy/Utilization

App is not executing
(PRE)

App is executing
events (EXC)

Recovery
(REC)

Idle
(POST)

Comparable

Energy Inefficiency

Time

Energy/Utilization

App is not executing
(PRE)

App is executing
events (EXC)

Recovery
(REC)

Idle
(POST)

Time

Energy/Utilization

Comparable

Not Comparable

Energy Bugs

Energy Inefficiency

Time

Energy/Utilization

App is not executing
(PRE)

App is executing
events (EXC)

Recovery
(REC)

Idle
(POST)

Normal behavior

Energy Inefficiency

Time

Energy/Utilization

App is not executing
(PRE)

App is executing
events (EXC)

Recovery
(REC)

Idle
(POST)

Normal behavior

Time

Energy/Utilization
Abnormal !
(high energy!

low utilization)
Energy Hotspots

Test Generation

Detecting
Energy

Inefficiency

Guiding to execute
energy-inefficient

scenarios

Our framework

Test Generation

Detecting
Energy

Inefficiency

Guiding to execute
energy-inefficient

scenarios

Our framework

Measurement

LG Optimus
smartphone

Yokogawa Digital
Power Meter

Send events

Record Utilization

Record
Energy
Trace

Measurement

LG Optimus
smartphone

Yokogawa Digital
Power Meter

Send events

Record Utilization

Record
Energy
Trace

Global !
clock

Utilization

Energy consumption of different components is not even (GPS < CPU)
100% CPU does not consume same energy as GPS being on

32
0

M
H

z
48

0
M

H
z

60
0

M
H

z

80
0

M
H

z

Sc
re

en
 O

n

Sc
re

en
 F

ul
l

Detecting Energy Bugs

Time

Energy/Utilization

App is not executing
(PRE)

App is executing
events (EXC)

Recovery
(REC)

Idle
(POST)

Time

Energy/Utilization

Comparable

Not Comparable

Statistical !
dis-similarity !

between !
PRE and POST

Detecting Energy Hotspots

Time

Energy/Utilization

App is not executing
(PRE)

App is executing
events (EXC)

Recovery
(REC)

Idle
(POST)

Normal behavior

Time

Energy/Utilization
Abnormal !
(high energy!

low utilization)
Detecting !

discords in !
time-series!

data

Test Generation

Detecting
Energy

Inefficiency

Guiding to execute
energy-inefficient

scenarios

Our framework

Guided Exploration
• Energy-inefficient execution

• Which fragments are energy-inefficient?

• What is an appropriate coverage metric?

A Broader Categorization
Cause/Source Energy Bugs Energy Hotspots

Hardware components Resource leak Suboptimal resource
binding

Sleep state transition Wakelock bug Tail Energy hotspot

Background Service Vacuous background
service

Expensive
background service

Defective Functionality Immortality bug Loop energy hotspot

Invoked via System Calls

Test Generation

Detecting
Energy

Inefficiency

Guiding to execute
energy-inefficient

scenarios

Our framework

Android App
+

System call pool

Event flow
graph

Event trace
database

Guided
explorationTo smartphone

Event
trace

Test Generation
Android App

+
System call pool

Event flow
graph

Event trace
database

Guided
explorationTo smartphone

Event
trace

An ordering between trace T1 and T2
!
!s1

s2

s3

s1

s2

T1 > T2

More system calls

s1

s2

s3

s5

s6

T1 > T2
s1

s2

Buggy
trace

Similarity with buggy trace

s1

s2

s3

s5

s6

T1 < T2

Covering more system calls

s1

s2

Executed
trace

s4

Evaluation
Travel/Transportation Photography/Media
Lifestyle/Health Entertainment
Books/News Puzzle
Productivity Tools

Category of Android Apps Evaluated

Summary of Evaluation
App Feasible!

traces
Energy
Bugs

Energy !
Hotspots Type Reported!

before

Aripuca 502 Yes No
Vacuous

background
service

No

Montreal
Transit 64 No Yes

Suboptimal
resource

binding and
more

No

Sensor
Test 2800 Yes No Immortality Bug No

760
KFMB AM 26 Yes Yes

Vacuous
background

service, suboptimal
resource binding

No

All Results are in the paper
(10 energy bugs and 3 energy hotspots found

out of 30 tested apps)

Summary of Evaluation
App System call!

coverage
Statement !
coverage

Lines of Code
Aagtl 100 21 11612

Android Battery Dog 100 17 463
Aripuca 100 15 4353

Kitchen Timer 100 30 1101
Montreal Transit 89 11 10925

NPR News 100 24 6513
OmniDroid 83 36 6130
Pedometer 100 56 849

Vanilla Music Player 86 20 4081

To cover all system calls, exploring only a small part of the program suffices
A substantial portion of the code is used for provide user feedback, compatibility

over different OS

Case Studies

Aripuca (Energy Bug)
Reason: Vacuous Background Service

Fix: serviceConnection.getService().stopLocationUpdates();
serviceConnection.getService().stopSensorUpdates();

Case Studies

Aripuca (Energy Bug)
Reason: Vacuous Background Service

Case Studies

Montreal Transit (Energy hotspot for <5 sec)

Main Thread Location service Location service
(for loading ads)

User exits GPS released

Loading Ads

Case Studies

Montreal Transit (Energy hotspot for <5 sec)

Main Thread Location service Location service
(for loading ads)

User exits GPS released

Loading Ads

Main Thread Location service Share location
for loading ads

User exits
GPS released

Loading Ads by Asynchronous thread

Case Studies

Montreal Transit (Energy hotspot for <5 sec)

Montreal Transit (After fixing)

Summary
• Categorization of energy inefficiency

• Energy bugs

• Energy hotspots

• A guided exploration of event traces

• Targeting system call coverage

• Evaluation with Android apps

• Energy bugs and hotspots exist in several Android apps

Is That All?
• Testing Non-functional Software Properties

• Performance Testing

• Energy Testing

• Far from being solved

• Fresh look on the formal foundation of software testing

• Automated debugging and fault localization

• Information leaks via side channels (time, cache miss, power)

Cache Side Channel

encrypt (message, key) {

︙︙︙︙︙︙︙︙︙︙︙︙︙︙︙

mid[0][0] = lookup[key[0]][0];

mid[0][0] ^= lookup[key[1]][1];

︙︙︙︙︙︙︙︙︙︙︙︙︙

}

Intermediate state of the
encrypted message

lookup Table

(in memory)

Cache Side Channel

encrypt (message, key) {

︙︙︙︙︙︙︙︙︙︙︙︙︙︙︙

mid[0][0] = lookup[key[0]][0];

mid[0][0] ^= lookup[key[1]][1];

︙︙︙︙︙︙︙︙︙︙︙︙︙

}

Intermediate state of the
encrypted message

lookup Table

(in memory)

Depends on
the value of Key

Cache Miss Distribution
N

um
be

r o
f C

ac
he

 M
is

se
s

Number of Occurrences of “N” Cache Misses (for different inputs)

• Abhijeet Banerjee, Sudipta Chattopadhyay and Abhik Roychoudhury. Static
Analysis Driven Cache Performance Testing. IEEE Real-time Systems
Symposium (RTSS), 2013 Best Paper Candidate

• Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay and Abhik
Roychoudhury. Detecting Energy Bugs and Hotspots in Mobile Apps.
Foundation in Software Engineering (FSE), 2014

• Sudipta Chattopadhyay, Petru Eles and Zebo Peng. Automated Software
Testing of Memory Performance in Embedded GPUs. International
Conference on Embedded Software (EMSOFT), 2014

