What happens betweén

commuhications?

Towards analysis of SKnchronizoﬂon and parallelism in
multi-threaded programs

Nina Bohr
John Gallagher
Morten Rhiger
Mads Rosendahl
Roskilde University

m B
* *

* *

Y 4 MOS Fa ™

* 4 K

Elic University of
BRISTOL

Some inter-related questions relevant to
resource analysis of multi-threaded code (1)

What resources are used by each
thread between communications?

What statements in different threads
may run in parallel with each othere
— equivalently — which statements in

different threads definitely do not run in
parallele

ENTRA

| &

Some inter-related questions relevant to
resource analysis of multi-threaded code (2)

 How (in)active is each thread?¢ Are
thread loads reasonably balancede

¢ Are threads located on the
appropriate corese

ENTRA

/23

Behaviour of a single thread

Communication- comm) Communication- comm
free code free code

‘I
-
‘l
-

- m
s 328
'R
s a8

-

comm i ion- | comm i ion- |join
, Communication Communication J
, free code free code

S<
S~

Automaton

transition Automaton

state

— ENTRA

Overview of approach

« Construct an automaton for each thread

— states are pieces of code that do not
communicate

— tfransitions are labelled with events
« geft, send, get+send, fork, join
 The automaton for a program is formed
as a synchronised product of the
automata for individual threads

— synchronous communication (XC)

— ENTRA

Automaton for a thread

T o0 o0 Note: all in-arcs
assume N>0, >
// B, starts here of g state
. fork have the same
while (1) {
int v: label
for (inti=0;i<N;i=i+M){ B,
for (intj=0;j<M;j=j+1){ ﬁ(
cin > vI[jl; // B, starts here cin > v{j]
} cin > v[j]
...... cout <: V[J]
for (intj=0;j<M;j=j+1){
} cout <: V[j]; // B starts here K cout <: Vil
} «j
} Jom

ENTRA

| —

Notes on the automaton

1. Program statements can
be in more than one state. fork l

— e.g. B, and B, overlap
2. There can be multiple

51
paths through a state
(possibly an infinite cin > V[Jh

number) cin > i cin > v[j]
— e.g.B; can (1) re-enter inner
for-loop, (2) re-enter outer cout <: Vv[j]
for-loop, (3) exit both for-
loops K cout <: V[j]
3. Size of automaton is /\j
inear in code size. JOIn

s SATRR

Parallel threads

Thread A Thread B
fork
v1“orl< v
A B,
-| N
A cin <: X cin > v{j -
2
\J cout <: v(j]

Threads A and B synchronize on channel cin, jon
but cout is not shared between the threads.

— ENTRA

v

Product automaton

fork

\ 4

AiB,

cin

AgB,

cin

cout <: v[j] &

Product synchronizes
internally on cin.

Still has unsynchronized
transitions on cout.

cin

In XC, possible deadlock
is detected if the
shared channel

.

/23

cout <: V[j] transitions do not

.| channel cout. Thread A remains

match in the product.

Transitions on the non-shared

in state A, while thread B
can move to a different state.

ENTRA

Formal definition of product

AB is reachable if AB is the initial state, or o > AB

AB SEEEN A'B’ if AB reachable, c is a shared channel, where

A —9et(e)

and vice versa

send(c)>

B B’
AB get(c) > AB’ if AB reachable, c is not a shared channel,
where

s —9et(C) %

similarly for send(c), and symmmetric cases

— ENTRA

May-run-in-parallel analysis

« Pair-states that are reachable in the product
contain code that may run in parallel
—i.e. A;B,, A,B, and A,B,
— pairs that do not occur cannot execute In
parallel

« Analysing execution times of the elements of
the pairs yields information on whether one
thread may wait for the other.

— could be WCET (if bounded) or parametric
complexity analysis

ENTRA

| R ——

Example - pipeline

Thread A

Thread B

fork

Thread C

| fork

cin <: X

cin >y

[[an=y]d

cout <.y

~

Pipeline product

fork

\ 4
AlB1C1

cin

AByC

cout

5

AgB3C

cout :
cin

ABC

join

] - EII'I'RA

Pipeline sequence diagram

A B C
A B
| Cin | -
Az B, cout R
B C
cin ° 2
A2 B, cout
>
B
cin & C,
A2 B, cout
>
By C,

— ENTRA

Pipeline product states

« Reachable states (out of 12 possible)
_ A1B1C1
— AQBQC1
_ AQBSCQ
_ AQBQCQ

* Timing analysis might show that A and C
are hardly ever active simultaneously
— should be allocated on the same core?¢
— or A and C should run on slower corese

ENTRA

| 2

Abstracting paths/states

¢ Let the variables of a state be X.

« The behaviour of each state S can be
abstracted to a relafion R (X, X’)

— e.g. abstract interpretation of the code.

— relation between the values of the
variables before (X) and after (X)
execution of the state.

ENTRA

| &

Reachability relation

« State S’ Is reachable with state X' it
— there is a transition from S to ', and
— state S is reachable with state X, and
— R¢(X,X") holds

» Representation as Horn clause

reach.. (X') - reach¢(X), R¢(X,X").

ENTRA

| &

Horn clause abstraction of automaton

fork l reachl1(X) - init(X).
B reach2(X’) :-
N, reach1(X), R;(X.X').
— V[jm/_\ reach2(X’) :- |
cin > VI[j] reach2(X), Ry(X,X").
cin > Vv[j] B, reach2(X’) :-

reach3(X), R;(X.X").

cout <: v{j]

reach3(X’) :-
B, cout <: v[j] reach?2(X), R,(X,X").
/\j reach3(X’) :-

join reach3(X), R;(X.X").

v

— ENTRA

Horn clause abstraction of product

cin

fork
Y
A] B]
cin
cin
AZBQ
cout < vl
L/-\ cout <: v(j]

/23

reach11(X,Y) - initA(X), initB(Y).

reach22(X',Y’) :-

reach11(X,Y), R,;(X.X"), Rg;(Y.Y').
reach22(X’,Y’) :-

reach22(X,Y), R, (X, X'), Rg,(Y.Y').
reach22(X',Y’) :-

reach23(X.Y), R, (X.X), Rgs(Y.Y').

reach23(X’,Y’") :-

reach22(X.Y), R, (X.X"), Rgo(Y.Y').
reach23(X',Y’) :-

reach23(X.Y), R, (X.X'), Rgs(Y.Y').

ENTRA

Implicit representation of product

* The product is represented implicitly

* The transition relation for each product
state is not explicitly computed

— this would be computationally expensive

 We thus have control over the trade-
off of precision and complexity

— drawing on methods from Horn clause
analysis and verification

/23

Refinement of automaton

« Analysis of the product automaton Horn
clauses yields approximation of the values in
which each product state is reachable

« This can give more precise analysis of may-
run-in-parallel

« Let ®,; be an approximation of the state in
which product state AB is reachable.

— Apply forward slicing using ® ,; to states A and B

— eliminate infeasible path combinations that
cannot run in parallel

E— ENTRA

How far have we got?

Construction of thread automata
Prototype shown in Madrid November 2014.

< current work — extension of the language and
semantics

now have AST from the real XC parser (thanks Jamie)
“*construction of product automata

Analysis and refinement of state relations
Rg(X.X')

tools for Horn clause abstract interpretation

tools for slicing Horn clauses

% Complexity analysis of states
“integration with CiaoPP resource analysis (and WCET?)
“*other recent techniques for cost analysis (CAV'2014)

— ENTRA

Future

“ Integration with timing analysis?
% Estimation of throughput, frequency of
communication, idle fime, etc.

< Handling master-slave and stfream
communicafion in XC.

“ Energy analysis of whole program

single-threaded energy analysis of thread
automaton states

uses estimates of number of active threads
as needed by the Bristol energy model

Y- 00 000 e

