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Some inter-related questions relevant to 
resource analysis of multi-threaded code (1) 

•  What resources are used by each 
thread between communications? 

•  What statements in different threads 
may run in parallel with each other? 
→  equivalently – which statements in 

different threads definitely do not run in 
parallel? 

/23 2 



Some inter-related questions relevant to 
resource analysis of multi-threaded code (2) 

•  How (in)active is each thread? Are 
thread loads reasonably balanced? 

•  Are threads located on the 
appropriate cores? 
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Behaviour of a single thread 

Communication-
free code 

Communication-
free code 

Communication-
free code 

Communication-
free code 

fork comm comm 

comm comm join 

Automaton  
state 

Automaton  
transition 
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Overview of approach 

•  Construct an automaton for each thread 
–  states are pieces of code that do not 

communicate 
–  transitions are labelled with events 

•  get, send, get+send, fork, join 

•  The automaton for a program is formed 
as a synchronised product of the 
automata for individual threads 
–  synchronous communication (XC) 
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Automaton for a thread 

    // assume N>0, M>0 
   // B1 starts here 
    while (1) { 
        int v; 
        for (int i = 0; i < N; i = i+ M) { 
             
                for (int j = 0; j < M; j = j + 1) { 
                    cin :> v[j]; // B2 starts here 
                } 
             
                ...... 
                for (int j = 0; j < M; j = j + 1) { 
                    cout <: v[j]; // B3 starts here 
                } 
        } 
    } 

cout <: v[j] 

B1 

B2 

B3 

cin :> v(j] 
cin :> v[j] 

cout <: v[j] 

fork 

join 

cin :> v[j] 

Note: all in-arcs 
of a state  
have the same 
label 
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Notes on the automaton 
1.  Program statements can 

be in more than one state. 
–  e.g. B1 and B2 overlap  

2.  There can be multiple 
paths through a state 
(possibly an infinite 
number) 
–  e.g. B3 can (1) re-enter inner 

for-loop, (2) re-enter outer 
for-loop, (3) exit both for-
loops 

3.  Size of automaton is 
linear in code size.  

cout <: v[j] 

B1 

B2 

B3 

cin :> v[j] 
cin :> v[j] 

cout <: v[j] 

fork 

join 

cin :> v[j] 
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Parallel threads 

cout <: v[j] 

B1 

B2 

B3 

cin :> v[j] 
cin :> v[j] 

cout <: v[j] 

fork 

join 

cin :> v[j] 

A1 

A2 

fork 

cin <: x 

cin <: x 

join 

Threads A and B synchronize on channel cin, 
but cout is not shared between the threads. 

Thread A Thread B 
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Product automaton 

Product synchronizes 
internally on cin. 
 
Still has unsynchronized  
transitions on cout. 

In XC, possible deadlock  
is detected if the 
shared channel 
transitions do not 
match in the product. 

Transitions on the non-shared  
channel cout.  Thread A remains  
in state A2 while thread B  
can move to a different state. 

A1B1 

A2B2 

A2B3 

fork 

cin 

cin 

cout <: v[j] cin 
cout <: v[j] 

join 
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Formal definition of product 

if AB reachable, c is a shared channel, where AB A’B’ 
c 

A A’ 
get(c) 

B B’ 
send(c) 

and vice versa 

AB AB’ 
get(c) 

if AB reachable, c is not a shared channel,  
where 

B B’ 
get(c) 

similarly for send(c), and symmmetric cases 

AB is reachable if AB is the initial state, or  ** AB 
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May-run-in-parallel analysis 

•  Pair-states that are reachable in the product 
contain code that may run in parallel 
–  i.e. A1B1, A2B2 and  A2B3 

–  pairs that do not occur cannot execute in 
parallel 

 

•  Analysing execution times of the elements of 
the pairs yields information on whether one 
thread may wait for the other. 
–  could be WCET (if bounded) or parametric 

complexity analysis 
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Example - pipeline 

A1 

A2 

fork 

cin <: x 

cin <: x 

join 

C1 

C2 

fork 

cout :> z 

cout :> z 

join 
cout <: y 

B1 

B2 

B3 

cin :> y 

fork 

join 

cin :> y 

Thread A Thread B Thread C 
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Pipeline product 

A1B1C1 

fork 

cin 

cin 

cout  

join 

A2B2C1 

A2B3C2 

A2B2C2 

cout  

/23 13 



Pipeline sequence diagram 
A B C 

A1 B1 C1 

B2 

C2 

C2 

C2 

A2 

B3 

B2 

B3 

B2 

B3 

A2 

A2 

cin 

cin 

cin 

cout 

cout 

cout 
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Pipeline product states 

•  Reachable states (out of 12 possible) 
– A1B1C1 

– A2B2C1 

– A2B3C2 

– A2B2C2 

•  Timing analysis might show that A and C 
are hardly ever active simultaneously 
–  should be allocated on the same core? 
– or A and C should run on slower cores? 
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Abstracting paths/states  

•  Let the variables of a state be X. 
•  The behaviour of each state S can be 

abstracted to a relation RS(X,X’) 
– e.g. abstract interpretation of the code. 
–  relation between the values of the 

variables before (X) and after (X’) 
execution of the state. 
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Reachability relation 

•  State S’ is reachable with state X’ if 
–  there is a transition from S to S’, and 
– state S is reachable with state X, and 
– RS(X,X’) holds 

•  Representation as Horn clause 
 
reachS’(X’) :- reachS(X), RS(X,X’). 
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Horn clause abstraction of automaton 

cout <: v[j] 

B1 

B2 

B3 

cin :> v[j] 
cin :> v[j] 

cout <: v[j] 

fork 

join 

cin :> v[j] 

reach1(X) :- init(X). 
 
reach2(X’) :- 
   reach1(X), R1(X,X’). 
reach2(X’) :- 
   reach2(X), R2(X,X’). 
reach2(X’) :- 
   reach3(X), R3(X,X’). 
 
reach3(X’) :- 
   reach2(X), R2(X,X’). 
reach3(X’) :- 
   reach3(X), R3(X,X’). 
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Horn clause abstraction of product 

A1B1 

A2B2 

A2B3 

fork 

cin 

cin 

cout <: v[j] cin 
cout <: v[j] 

join 

reach11(X,Y) :- initA(X), initB(Y). 
 
reach22(X’,Y’) :- 
   reach11(X,Y), RA1(X,X’), RB1(Y,Y’). 
reach22(X’,Y’) :- 
   reach22(X,Y), RA2(X,X’), RB2(Y,Y’). 
reach22(X’,Y’) :- 
   reach23(X,Y), RA2(X,X’), RB3(Y,Y’). 
 
reach23(X’,Y’) :- 
   reach22(X,Y), RA2(X,X’), RB2(Y,Y’). 
reach23(X’,Y’) :- 
   reach23(X,Y), RA2(X,X’), RB3(Y,Y’). 
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Implicit representation of product 

•  The product is represented implicitly 
•  The transition relation for each product 

state is not explicitly computed 
–  this would be computationally expensive 

•  We thus have control over the trade-
off of precision and complexity 
– drawing on methods from Horn clause 

analysis and verification 
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Refinement of automaton 

•  Analysis of the product automaton Horn 
clauses yields approximation of the values in 
which each product state is reachable 

•  This can give more precise analysis of may-
run-in-parallel 

•  Let ΦAB be an approximation of the state in 
which product state AB is reachable. 
–  Apply forward slicing using ΦAB to states A and B  
–  eliminate infeasible path combinations that 

cannot run in parallel 
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How far have we got? 
ü Construction of thread automata 

ü  Prototype shown in Madrid November 2014. 
v current work – extension of the language and 

semantics 
ü now have AST from the real XC parser (thanks Jamie) 
v construction of product automata 

ü Analysis and refinement of state relations 
RS(X,X’) 

ü tools for Horn clause abstract interpretation 
ü tools for slicing Horn clauses 

v  Complexity analysis of states 
v integration with CiaoPP resource analysis (and WCET?) 
v other recent techniques for cost analysis (CAV’2014) 
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Future 

v  Integration with timing analysis? 
v  Estimation of throughput, frequency of 

communication, idle time, etc. 
v  Handling master-slave and stream 

communication in XC. 
 
v  Energy analysis of whole program 

ü  single-threaded energy analysis of thread 
automaton states 

ü  uses estimates of number of active threads 
as needed by the Bristol energy model 
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