
What happens between
communications?

Towards analysis of synchronization and parallelism in
multi‐threaded programs

Nina Bohr

John Gallagher
Morten Rhiger

Mads Rosendahl
Roskilde University

Some inter-related questions relevant to
resource analysis of multi-threaded code (1)

•  What resources are used by each
thread between communications?

•  What statements in different threads
may run in parallel with each other?
→  equivalently – which statements in

different threads definitely do not run in
parallel?

/23 2

Some inter-related questions relevant to
resource analysis of multi-threaded code (2)

•  How (in)active is each thread? Are
thread loads reasonably balanced?

•  Are threads located on the
appropriate cores?

/23 3

Behaviour of a single thread

Communication-
free code

Communication-
free code

Communication-
free code

Communication-
free code

fork comm comm

comm comm join

Automaton
state

Automaton
transition

/23 4

Overview of approach

•  Construct an automaton for each thread
–  states are pieces of code that do not

communicate
–  transitions are labelled with events

•  get, send, get+send, fork, join

•  The automaton for a program is formed
as a synchronised product of the
automata for individual threads
–  synchronous communication (XC)

/23 5

Automaton for a thread

 // assume N>0, M>0
 // B1 starts here
 while (1) {
 int v;
 for (int i = 0; i < N; i = i+ M) {

 for (int j = 0; j < M; j = j + 1) {
 cin :> v[j]; // B2 starts here
 }

 for (int j = 0; j < M; j = j + 1) {
 cout <: v[j]; // B3 starts here
 }
 }
 }

cout <: v[j]

B1

B2

B3

cin :> v(j]
cin :> v[j]

cout <: v[j]

fork

join

cin :> v[j]

Note: all in-arcs
of a state
have the same
label

/23 6

Notes on the automaton
1.  Program statements can

be in more than one state.
–  e.g. B1 and B2 overlap

2.  There can be multiple
paths through a state
(possibly an infinite
number)
–  e.g. B3 can (1) re-enter inner

for-loop, (2) re-enter outer
for-loop, (3) exit both for-
loops

3.  Size of automaton is
linear in code size.

cout <: v[j]

B1

B2

B3

cin :> v[j]
cin :> v[j]

cout <: v[j]

fork

join

cin :> v[j]

/23 7

Parallel threads

cout <: v[j]

B1

B2

B3

cin :> v[j]
cin :> v[j]

cout <: v[j]

fork

join

cin :> v[j]

A1

A2

fork

cin <: x

cin <: x

join

Threads A and B synchronize on channel cin,
but cout is not shared between the threads.

Thread A Thread B

/23 8

Product automaton

Product synchronizes
internally on cin.

Still has unsynchronized
transitions on cout.

In XC, possible deadlock
is detected if the
shared channel
transitions do not
match in the product.

Transitions on the non-shared
channel cout. Thread A remains
in state A2 while thread B
can move to a different state.

A1B1

A2B2

A2B3

fork

cin

cin

cout <: v[j] cin
cout <: v[j]

join

/23 9

Formal definition of product

if AB reachable, c is a shared channel, where AB A’B’
c

A A’
get(c)

B B’
send(c)

and vice versa

AB AB’
get(c)

if AB reachable, c is not a shared channel,
where

B B’
get(c)

similarly for send(c), and symmmetric cases

AB is reachable if AB is the initial state, or ** AB

/23 10

May-run-in-parallel analysis

•  Pair-states that are reachable in the product
contain code that may run in parallel
–  i.e. A1B1, A2B2 and A2B3

–  pairs that do not occur cannot execute in
parallel

•  Analysing execution times of the elements of
the pairs yields information on whether one
thread may wait for the other.
–  could be WCET (if bounded) or parametric

complexity analysis

/23 11

Example - pipeline

A1

A2

fork

cin <: x

cin <: x

join

C1

C2

fork

cout :> z

cout :> z

join
cout <: y

B1

B2

B3

cin :> y

fork

join

cin :> y

Thread A Thread B Thread C

/23 12

Pipeline product

A1B1C1

fork

cin

cin

cout

join

A2B2C1

A2B3C2

A2B2C2

cout

/23 13

Pipeline sequence diagram
A B C

A1 B1 C1

B2

C2

C2

C2

A2

B3

B2

B3

B2

B3

A2

A2

cin

cin

cin

cout

cout

cout

/23 14

Pipeline product states

•  Reachable states (out of 12 possible)
– A1B1C1

– A2B2C1

– A2B3C2

– A2B2C2

•  Timing analysis might show that A and C
are hardly ever active simultaneously
–  should be allocated on the same core?
– or A and C should run on slower cores?

/23 15

Abstracting paths/states

•  Let the variables of a state be X.
•  The behaviour of each state S can be

abstracted to a relation RS(X,X’)
– e.g. abstract interpretation of the code.
–  relation between the values of the

variables before (X) and after (X’)
execution of the state.

/23 16

Reachability relation

•  State S’ is reachable with state X’ if
–  there is a transition from S to S’, and
– state S is reachable with state X, and
– RS(X,X’) holds

•  Representation as Horn clause

reachS’(X’) :- reachS(X), RS(X,X’).

/23 17

Horn clause abstraction of automaton

cout <: v[j]

B1

B2

B3

cin :> v[j]
cin :> v[j]

cout <: v[j]

fork

join

cin :> v[j]

reach1(X) :- init(X).

reach2(X’) :-
 reach1(X), R1(X,X’).
reach2(X’) :-
 reach2(X), R2(X,X’).
reach2(X’) :-
 reach3(X), R3(X,X’).

reach3(X’) :-
 reach2(X), R2(X,X’).
reach3(X’) :-
 reach3(X), R3(X,X’).

/23 18

Horn clause abstraction of product

A1B1

A2B2

A2B3

fork

cin

cin

cout <: v[j] cin
cout <: v[j]

join

reach11(X,Y) :- initA(X), initB(Y).

reach22(X’,Y’) :-
 reach11(X,Y), RA1(X,X’), RB1(Y,Y’).
reach22(X’,Y’) :-
 reach22(X,Y), RA2(X,X’), RB2(Y,Y’).
reach22(X’,Y’) :-
 reach23(X,Y), RA2(X,X’), RB3(Y,Y’).

reach23(X’,Y’) :-
 reach22(X,Y), RA2(X,X’), RB2(Y,Y’).
reach23(X’,Y’) :-
 reach23(X,Y), RA2(X,X’), RB3(Y,Y’).

/23 19

Implicit representation of product

•  The product is represented implicitly
•  The transition relation for each product

state is not explicitly computed
–  this would be computationally expensive

•  We thus have control over the trade-
off of precision and complexity
– drawing on methods from Horn clause

analysis and verification

/23 20

Refinement of automaton

•  Analysis of the product automaton Horn
clauses yields approximation of the values in
which each product state is reachable

•  This can give more precise analysis of may-
run-in-parallel

•  Let ΦAB be an approximation of the state in
which product state AB is reachable.
–  Apply forward slicing using ΦAB to states A and B
–  eliminate infeasible path combinations that

cannot run in parallel

/23 21

How far have we got?
ü Construction of thread automata

ü  Prototype shown in Madrid November 2014.
v current work – extension of the language and

semantics
ü now have AST from the real XC parser (thanks Jamie)
v construction of product automata

ü Analysis and refinement of state relations
RS(X,X’)

ü tools for Horn clause abstract interpretation
ü tools for slicing Horn clauses

v  Complexity analysis of states
v integration with CiaoPP resource analysis (and WCET?)
v other recent techniques for cost analysis (CAV’2014)

/23 22

Future

v  Integration with timing analysis?
v  Estimation of throughput, frequency of

communication, idle time, etc.
v  Handling master-slave and stream

communication in XC.

v  Energy analysis of whole program

ü  single-threaded energy analysis of thread
automaton states

ü  uses estimates of number of active threads
as needed by the Bristol energy model

/23 23

