
Z. Banković et al. Optimal Scheduling

Deterministic Scheduling in Multicore
Environments using Evolutionary Algorithms

Whole-Systems
Energy Transparency

Zorana Banković
IMDEA Software Institute

ENTRA Workshop
Málaga, May 6-7, 2015

Z. Banković et al. Optimal Scheduling

Problem Statement

Given a set of n jobs (tasks) J := J1, J2, ..., Jn, where each job Ji has:
• Release time ri

• Deadline di

• Processing volume ωi (number of cycles)
and a multicore environment given by:
• Number of cores, and threads per core.
• Possible (V , f) levels for each core.
Find:
• A task scheduling.
• A task-core assignment.
• (V , f) levels for each core.
so that the total energy is minimised and all task deadlines are met.

1 / 15 ENTRAproject.eu | Whole-Systems Energy Transparency Whole-Systems
Energy Transparency

Z. Banković et al. Optimal Scheduling

Solutions

• Evolutionary Algorithm (EA):
◦ Custom solution created.
◦ Can fail in finding a viable solution when deadlines are too tight.

• YDS:
◦ Adapted for multicore environments.
◦ Solved the problem of energy increase due to static power when deadlines

are loose.
• EA + Loop Perforation:

◦ For application which can permit accuracy loss.

• Testing environment: XMOS one core chips with eight threads, where all
the threads have the same V and f .

2 / 15 ENTRAproject.eu | Whole-Systems Energy Transparency Whole-Systems
Energy Transparency

Z. Banković et al. Optimal Scheduling

Deterministic Scheduling: EA

• Supports task preemption and migration.
• State ≡ (V, f)

• Energy estimation:
◦ The latest energy model by U. of Bristol.
• Introduces overhead, having in mind it is instruction-based and it has to be

performed for each individual in each generation.
◦ Static analysis: total energy equal to the sum of separate programs.

• If the deadlines are too tight, it cannot always find a viable solution
starting from the random initial population.

3 / 15 ENTRAproject.eu | Whole-Systems Energy Transparency Whole-Systems
Energy Transparency

Z. Banković et al. Optimal Scheduling

Deterministic Scheduling: The YDS Algorithm
Frances Yao, Alan Demers, and Scott Shenker, “A Scheduling Model for Reduced CPU Energy”,
FOCS, 1995.

Definitions:
• Set of n jobs (tasks) J := J1, J2, ..., Jn, where each job Ji has:

◦ release time ri
◦ deadline di
◦ processing volume ωi (number of cycles)

• I : time interval (defined with release times and deadlines)
• SI ∈ I : set of jobs to be processed in I , i.e. [ri , di] ∈ I
• Work density in I : ∆I = 1

|I|
∑

Ji∈SI
ωi

Algorithm:
While J 6= {}
1. Determine the time interval I of maximum density ∆I

2. In I process the jobs of SI at speed ∆I according to EDF

3. Remove SI from the set of jobs J := J \ SI

4. Remove I from the time horizon and update the release times and deadlines of
unscheduled jobs accordingly.

End While

4 / 15 ENTRAproject.eu | Whole-Systems Energy Transparency Whole-Systems
Energy Transparency

Z. Banković et al. Optimal Scheduling

YDS: Pros and Cons
Pros:
• Very fast.
• Always finds a viable solution, i.e., all the dealines are met (if the hardware can

support the processing volume).
Cons:
• It does not take into account the static power, which becomes significant if the

deadlines are too loose.

Does not use information about energy, only time. Q: Pro or Con?
5 / 15 ENTRAproject.eu | Whole-Systems Energy Transparency Whole-Systems

Energy Transparency

Z. Banković et al. Optimal Scheduling

Adaptation of YDS to a Multicore Environment
Implemented:
• Two choices for optimal task-core assignment:

1. Assign a task to the core with the least load at that moment, so the
processing volume of each core is (approximately) equal.

2. Assign a task to the core with the least work density during its active
period, i.e., [ri , di], so its addition assumes minimal density increase.

As the number of tasks increases, the second one performs better.
• Run YDS for each core.
• If frequency f calculated by YDS is not supported by the system,
supported frequencies f1 and f2 are assigned in the following way:

ωi

f
≈ ωi1

f1
+

ωi2

f2
f1 ≤ f ≤ f2

ωi = ωi1 + ωi12

6 / 15 ENTRAproject.eu | Whole-Systems Energy Transparency Whole-Systems
Energy Transparency

Z. Banković et al. Optimal Scheduling

YDS for Multicores: Dealing with Static Power
A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony, and R. Rajkumar.
Critical power slope: Understanding the runtime effects of frequency
scaling.

Slope:

mfx =
Pfx − Pfmin

fx − fmin

fmin - frequency when the core does not go in the idle state.
Critical slope, i.e. the slope when energy is equal for all the frequencies:

mfx
critical =

Pfx − Pidle

fx

• If mfx < mfx
critical , then Efx−ε > Efx > Efx+ε , i.e., the energy increases as we

decrease the frequency.
• If mfx > mfx

critical , then Efx−ε
< Efx < Efx+ε

, i.e., the energy decreases as
we decrease the frequency.

7 / 15 ENTRAproject.eu | Whole-Systems Energy Transparency Whole-Systems
Energy Transparency

Z. Banković et al. Optimal Scheduling

YDS: Results After Applying the Slope Improvement
Energy savings obtained by improved YDS vs. original YDS (%)

Scenario with tight deadlines Scenario with loose deadlines
Num.cores Allocation 1 Allocation 2 Allocation 1 Allocation 2

1 4.18 4.18 6.21 6.21
2 1.50 4.26 14.67 14.67
3 -5.26 3.17 14.67 14.67
4 2.22 2.77 8.80 8.80
5 -3.28 3.47 11.18 11.18
6 0.95 4.34 11.82 11.82
7 4.80 3.03 10.90 10.90
8 19.36 5.61 10.56 10.56

8 / 15 ENTRAproject.eu | Whole-Systems Energy Transparency Whole-Systems
Energy Transparency

Z. Banković et al. Optimal Scheduling

Deterministic Scheduling: EA vs. YDS

YDS EA

Speed Very fast Slow
Viable solution Always Not always
Solution quality Good Solution found → better
Opt. num. of threads Has to be set before Intrinsically found

9 / 15 ENTRAproject.eu | Whole-Systems Energy Transparency Whole-Systems
Energy Transparency

Z. Banković et al. Optimal Scheduling

EA vs. YDS: Experimental Results

EA trained with static analysis input.

EA EA YDS En. Saving En. Saving
En. by St. En. by En. by % EA train. on
Analysis µJ Model µJ Model µJ (Col.3− Col.2)/Col.3 Mod. %

A scenario with 22 small numeric tasks and loose deadlines
Mean 26.3 14.3 33.1 56.8 76.57

A scenario with 22 small numeric tasks and tight deadlines
Mean 36.9 14.6 34.8 60.92 69.83

A scenario with 16 tasks made of Biquad and FIR filters and loose deadlines
Mean 11.25 4.38 35.3 87.59 NA

A scenario with 16 tasks made of Biquad and FIR and tight deadlines
Mean 87 14.5 35.4 59.04 NA

A scenario with 32 tasks made of Biquad and FIR filters and loose deadlines
Mean 165.33 17.85 68.16 73.81 NA

A scenario with 32 tasks made of Biquad and FIR filters and tight deadlines
Mean 226.4 29.43 68.16 56.82 NA

10 / 15 ENTRAproject.eu | Whole-Systems Energy Transparency Whole-Systems
Energy Transparency

Z. Banković et al. Optimal Scheduling

Energy/Accuracy Trade-off: EA + Loop Perforation

Loop perforation: skip every n-th loop iterations.

Energy: static analysis - total energy equal to the sum of separate programs.

11 / 15 ENTRAproject.eu | Whole-Systems Energy Transparency Whole-Systems
Energy Transparency

Z. Banković et al. Optimal Scheduling

EA + Loop Perforation: Results
Obtained savings with different levels of minimal acceptable accuracy

Tested on 32 tasks, each implemented using either FIR or Biquad, starting
at different moments

Case 1: loop perforation is applied.

Case 2: no loop perforation.

Max. Case 1: Case 2: Savings(%)
Avg. Error Avg. En.(mJ) Avg. En.(mJ) Avg. CI0.05

10−6 0.487 0.721 16.18 0.93 - 31.42
2 · 10−6 0.461 0.597 18.21 3.54 - 32.87
3 · 10−6 0.434 0.666 31.04 13.72 - 48.37

Error: Euclidean distance between the outputs obtained with and without
applying loop perforation

12 / 15 ENTRAproject.eu | Whole-Systems Energy Transparency Whole-Systems
Energy Transparency

Z. Banković et al. Optimal Scheduling

EA + Loop Perforation: Experimental Results
Tasks to which loop perforation has been applied. Max.error = 10−6.

Task Original num. of Final num. of N
loop iterations loop iterations

FIR97-1 97 87 9
FIR85-1 85 76 9
FIR121-1 121 108 9
FIR109-1 109 104 21
FIR97-2 97 96 96
FIR85-2 85 84 84
FIR121-2 121 120 120
FIR109-2 109 108 108
FIR97-3 97 87 9
FIR85-3 85 76 9
FIR121-3 121 108 9
FIR109-3 109 97 9
FIR85-4 85 84 1
FIR121-3 121 81 3
FIR109-3 109 97 9

13 / 15 ENTRAproject.eu | Whole-Systems Energy Transparency Whole-Systems
Energy Transparency

Z. Banković et al. Optimal Scheduling

Conclusions

• Two algorithms with different characteristics implemented, complement
each other.

• Static analysis introduced significant speed-up, although precision loss.
• EA coupled with loop perforation: if applications can permit accuracy
loss, significant energy savings can be achieved.

• Possible improvements:
◦ YDS: Optimal number of cores
• For small number of cores, simply checking each possibility would be faster

than introducing an additional optimisation process.
• If the number of threads is bigger than the number of tasks, computationally

extensive tasks can be further parallelised.
◦ EA:
• Additional operators, so it can always find a viable solution.
• Techniques for speeding-up the training process.

14 / 15 ENTRAproject.eu | Whole-Systems Energy Transparency Whole-Systems
Energy Transparency

Z. Banković et al. Optimal Scheduling

Thank you!

Thank you for your attention!

15 / 15 ENTRAproject.eu | Whole-Systems Energy Transparency Whole-Systems
Energy Transparency

