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This talk

• Our existing energy model for the XCore

• How much energy is data dependent, and how do we model for it

• Examining energy distributions

• Instruction specific energy distributions

• Conclusions and future work
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The Tiwari energy model

• Instruction level energy model

• Computes the base cost of executing any particular instruction

• Additionally, the cost of transitioning between two instructions

• “Extra” costs such as caches and branch prediction (not present on the
XCore)
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The existing Tiwari XS1 energy model
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Currently implements an average-case energy model

• Instruction costs are averaged over a large number of executions

• Only coarse-grained consideration is given to the amount of data path
switching

• Difficult to say that the cost for a sequence of instructions is best or
worst, with this data
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What could a data-dependent energy model tell us?

Within the confines of dynamic power,

• The amount of energy caused by switching in an instruction, caused by
data

• The most common (average) cost of an instruction

• The most costly and least costly inputs/output for an instruction

• Ideally, for a sequence of instructions, what the worst case consumption
is, and what data pattern triggers such consumption

5 / 26 ENTRAproject.eu — Whole-Systems Energy Transparency Whole-Systems
Energy Transparency



James Pallister, Steve Kerrison, Jeremy Morse and Kerstin Eder Data dependent energy models: A worst case perspective

Challenges

• How do we determine the best / worst / average cost of a particular
instruction

• How do we compose such costs for a sequence of instructions?
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Instruction specific dynamic power

• Switching cost of charging/discharging circuits during instruction
execution

• Instruction decode and functional unit activation covered by the
inter-instruction effects measured in the Tiwari energy model

• Cost of data paths, register writeback, and other data dependent
operations are not

To address this we explored a small portion of the possible operand space on
XCore
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Dynamic power with a range of Add operands
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Additional power images
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Limitations of this data

• It covers a tiny amount of the available state space (the “bottom left” of
a larger square)

• We only have data for two input-operand instructions

• Models switching in the XCore pipeline, which is not necessarily the same
as between instructions in the same thread

It does show, however, that a considerable portion of overall power (up to
25%) can be attributed to data switching
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Problem 2: composing instruction costs

• Assuming we knew a perfect instruction cost for any input, how do we
compose them?

• All instructions transform the distribution of inputs into a different
output distribution, often non-linearly

What’s the maximum switching for this sequence:

add r0 , r1 , r2
mul r0 , r0 , r3
s h l r0 , r0 , r 4
sub r0 , r5 , r0

Which instruction do you maximise switching for, and does that minimise
others?
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Is this feasible?

• One might need to enumerate a large amount of state space to discover
the maximum amount of switching between instructions:

• This is probably NP-complete

• Assuming the maximum amount of switching possible for each
instruction every time will not lead to tight bounds
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Instead: perform an analysis of energy distributions

• If instructions transform one distribution of inputs to another distribution,
can we characterize energy consumption as such a distribution?
◦ Do real world benchmarks yield a distribution of energy?
◦ Can we estimate energy consumption of an arbitary instruction sequence in

this way, by composition?

• We have:
◦ Attempted this with two embedded benchmarks (FDCT and a matrix

multiplication)
◦ Characterized the results as a Weibull distribution
◦ Used a (generic) genetic algorithm to search for high energy / low energy

inputs
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AVR and XMOS applied to FDCT (8x8) and MatMult
(20x20) benchmarks

20.3 20.4 20.5 20.6 20.7 20.8 20.9 21.0 21.1 21.2

Average power (mW)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

D
en

si
ty

fdct

G
en

et
ic

m
in

im
u

m

G
en

et
ic

m
ax

im
u

m

P
ro

b
ab

il
is

ti
c

m
ax

im
u

m

matmult

G
en

et
ic

m
in

im
u

m

G
en

et
ic

m
ax

im
u

m

P
ro

b
ab

il
is

ti
c

m
ax

im
u

m

AVR platform

0.113 0.114 0.115 0.116 0.117

Average power (mW)

0

10000

20000

30000

40000

50000

60000

D
en

si
ty

fdct

G
en

et
ic

m
in

im
u

m
(f

dc
t)

G
en

et
ic

m
ax

im
u

m

P
ro

b
ab

il
is

ti
c

m
ax

im
u

m

matmult

G
en

et
ic

m
in

im
u

m
(m

at
m

u
lt

)

G
en

et
ic

m
ax

im
u

m

P
ro

b
ab

il
is

ti
c

m
ax

im
u

m

XMOS platform

14 / 26 ENTRAproject.eu — Whole-Systems Energy Transparency Whole-Systems
Energy Transparency



James Pallister, Steve Kerrison, Jeremy Morse and Kerstin Eder Data dependent energy models: A worst case perspective

Contrived outliers
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• Program energy appears to form a roughly normal distribution

• Certain patterns of data may cause extremely low or high power:
◦ A: All zero (or very sparse) data
◦ B: Most elements set to the value 1
◦ C: Strided (repeating data)
◦ D: Identical input data with high bits set

• Most of these biases reduce energy consumption
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Can we build these distributions for arbitrary
instruction sequences?

• The next goal is to try and build such a distribution from single
instruction distributions

• Convolve instruction distributions together

• Resulting distribution should estimate the actual distribution of the
sequence

• Such a distribution will also yield a probable upper bound
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Test harness (AVR)

mov r1 , X
l o o p r e s t a r t :
mov r0 , Y
l s l r0 , r 1
mov r0 , Z
. . .

Individual instructions harness: repeated operation on random values, then
reset of destination operand. Similar approach for pairs of instructions. mov

characterized and deconvolved separately.

17 / 26 ENTRAproject.eu — Whole-Systems Energy Transparency Whole-Systems
Energy Transparency



James Pallister, Steve Kerrison, Jeremy Morse and Kerstin Eder Data dependent energy models: A worst case perspective

AVR distributions for LSL / COM
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Difficulties in composition

• Convolution of both instruction underestimates actual energy
consumption

• Additionally, cost of same instructions in different order not equal!

• Possibly due to differing inter-instruction costs between the two

• Produce instruction transition costs instead and try again
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Energy distribution using instruction transitions
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Once composed, some instructions do not make
perfect distributions

• Repeatedly composing instructions does not always lead to
characterizable distributions

• Large numbers of multiply operations on limited amounts of input tend
to overflow then latch at zero

• The result is a bimodal distribution, which does not fit our previous
analysis
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Bimodal multiply power
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Conclusions

• We may be able to calculate the worst case cost of individual
instructions, however,

• Even with instruction worst case costs, we likely would not be able to
compose them to find an effective and sound upper bound

• Programs can have their energy consumption characterized as probability
distributions

• This leads to a probable upper bound

• Instruction transition distributions can predict the distribution of
instruction sequences

• Not all distributions are perfect
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Future work

• Can we use correlations / biases in the input data distributions to further
refine the worst case estimate?

• Can “best” case consumption be estimated?

• Is there an effective way of modelling what the “general” or “average”
case is?
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Thank you for your time

• Questions?
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Chaotic distribution
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