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Short description:

This deliverable describes our current view about the kind of tools needed for supporting energy
transparency. It is a point of view influenced by the project’s first two years of research, and the
emerging understanding of the needs of an energy-aware software development tool chain. It first
gives an overview of the knowledge relevant to an energy-aware software engineer about some of
the key aspects affecting a program’s energy consumption. The purpose is to identify the kinds
of information that is needed and the tool support that could provide such information in order
to assist in energy optimization. It does not yet attempt to present a detailed process or method,
but rather to provide a broad context for the more detailed descriptions, given later, of the initial
prototype tools for energy-aware software engineering, integrating the implementations of the
energy analysis, verification and optimization techniques developed in work packages 2, 3 and
4. It also includes a prototype implementation demonstration and an experimental study of such
tools.
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1 Introduction

This document presents a preliminary overview of the ENTRA tools supporting energy trans-
parency, in the context of the project’s emerging understanding, after two years, of the needs of
an energy-aware software development tool chain. In Section [2| we give a broad view of some of
the key aspects of a program’s behaviour that an energy-aware software engineer needs to know.
We do not yet attempt to present a detailed process or method, but focus on the kinds of infor-
mation that is needed. We then summarise the tool support that could provide such information
and assist in energy optimization.

Section 2| is intended to provide the context for the more detailed descriptions of tools in
Section |3} where we present four tool components that are the result of work performed in work
packages WP2, WP3 and WP4:

e A multi-level energy analysis and verification tool based on a transformation into a block
based intermediate program representation (“HC IR” from now on), where each block is

written as a Horn Clause.

e A multi-level mapper tool for propagating energy model information defined at one level
upwards to other levels, and for creating a mapping of code locations between different

intermediate code representations, assembly code (ISA-level code) and source code.
e A tool for flow and synchronization analysis of multi-threaded XC programs.

e A tool for optimization via Dynamic Voltage and Frequency Scaling (DVFS) and task
scheduling.

The first two of these, as the names suggest, focus on the analysis and modelling challenges in
performing analyses at different levels, in particular intermediate code (LLVM IR) and assembly
code (ISA-level code). They are described in Sections [3.1] and [3.2] respectively. The third tool,
described in Section[3.3] deals with analysis of source code, for which an energy model has not
yet been developed, but which can nonetheless yield information relevant to energy-awareness.
The fourth tool, described in Section 3.4} is the first optimization tool under development in the
project.

These tools are components, used in the project for experimental studies. We are also consid-
ering tool development and integration strategies. It is a research challenge in itself, quite apart
from the tool functionalities, to consider how they might be integrated into an energy-aware tool
chain. The ENTRA project has two streams of work:
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1. Integration in the XC tool chain, which constitutes the proof of concept of the project,
where different components, such as the tools (or parts of them) presented in Section |3|can
be used, once they are in a mature and stable enough state. Such tools exploit the existing

infrastructure of the compiler, intermediate code, and other development tools.

2. Stand-alone tool development, which allows a more general investigation and the study of
other application areas. This development stream allows the invention of new approaches,
the experimentation and evaluation of already developed components, the identification of

new components and the investigation of a wider range of scenarios.

Tool components from the second stream could in the longer term migrate to the XC tool
chain when they are in a mature enough state.

Sections [3] and [4] give further details about the tools under development, adding information
about the individual building blocks, providing information relevant to developers of energy-

aware software development tools.



2 Key Elements and Tool Support for Energy-aware Software
Engineering

The ENTRA Description of Work states that “the project is built around the central concept of
energy transparency at every stage of the software lifecycle.” In this section we discuss how,
after two years of the project, this overall requirement is understood in terms of key aspects
of energy-aware software engineering. As explained in the Introduction, this document does
not intend to define methods, procedures or guidelines; these will emerge after experience with
using energy-aware tools, and the final deliverable of the ENTRA project is expected to contain
an outline of an “energy-aware software engineering method”.

This document discusses the tools needed to enable engineers to understand and quantify
the impact of design decisions on energy, and to guide optimizations that are either manual or

automatic. Section |3|contains more detailed descriptions and demonstrations of ENTRA tools.

2.1 Developing Low Energy Systems

Although physical energy is only consumed by hardware, it is the software driving the hardware
that governs how much energy will be consumed by the hardware whilst completing a task.
Previous deliverables (D6.1 and D5.1) have detailed how energy can be saved. In order to make
the software low energy, various actors therefore have to work together.

Starting with the programmer; their primary task is to write code efficiently. For example, if
a choice of algorithms is available, then the algorithm with the lowest computational complexity
is probably a good starting point. Almost all good programming practices such as avoiding
replication of computation are helpful.

But once the right algorithms are picked, there are different implementation strategies that
each have their unique energy profile. Picking the best of these strategies can have a large impact
on the energy consumption. Indeed, it is not implausible that an algorithm that is slightly less
time efficient can be made more energy efficient.

In order to achieve this task the programmer will use a toolbox similar to the toolbox de-
signed for designing programs that perform fast enough. The traditional parts of this toolbox
are the tools that physically measure power consumption whilst the program is running and the
compiler that optimises for energy usage. Akin to the profiler and optimiser used when designing
programs.

Less traditional is the tool that statically predicts energy usage. Tools like that are common
place in hardware design, where energy usage and timing closure of a new chip are analysed
before the chip is physically produced; the software equivalent of static timing closure exists in
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the XMOS tool chain (XTA - XMOS Timing Analyser), this project aims to develop tools that
statically predict energy usage.

This matters, as such a tool will be able to reason about energy usage over a variety of
conditions, and not just the one condition under which energy is actually measured. For example,
different input data may cause different energy usages, and finding a worst case is useful to be
able to reason about sizing power supplies and batteries.

Such a tool is not trivial, and in particular it requires analysis of concurrency and communi-
cation patterns in multi-threaded programs. The project aim is to provide methods and prototype
tools that will enable a static energy profiler to be developed.

Choose
algorithms

Y

Compile with
energy opts

Y

Analyse using
static energy

analyser
Experiment with
multiple slow
Experiment threads
with precision
trade-offs Analyse multi-
threading
behaviour

Measure
energy usage
on hardware

Figure 1: Steps through using the tools

The process that the software engineer will flow through is sketched in Figure|l| The general
flow is from top to bottom, but inevitably there will be iterations through several steps. However,
the flow is organised in such a way that the iterations are local, and fast; i.e., compilation and
static energy analysis are fast steps; that can be repeated often at little cost. Experimentations

6



with using multiple threads that can run at a lower frequency (and hence a lower voltage), and
experimentations with reduced precision all requires iterations through the tools, but this is a

quick iteration. The following subsections describe the tools in more detail.

2.2 Tools Providing Information about Factors Affecting Energy Consump-
tion

The high-level objective of energy-aware software engineering is to permit energy efficiency to
be a first-class design goal of the software engineer. That is, design and implementation decisions
can be made with energy efficiency in mind, already in the early phases of the development
process. The alternative to energy-awareness is to test energy consumption of the implemented
system and then re-engineer the system (if it is possible to do so) if the energy target is not met.

In order to make energy-related design and implementation decisions, the software engineer
needs understanding of the factors affecting the energy consumption of programs. These are
typically hidden from the programmer in high-level languages, where software engineering ab-
stractions focus on functionality rather than resource usage. Moreover, even at assembly code
level, few programmers have detailed expertise about what causes high or low energy consump-
tion.

This problem has always existed in embedded systems development, since determining the
power requirements of a system is a key part of the overall design process. In recent years, energy
consumption of individual applications running on general purpose computers has become a
widespread concern. Every user of a smartphone or tablet knows that certain apps drain the
battery faster than others. Designing low-power apps is thus becoming increasingly important,

but energy-aware development tools are lacking.

2.3 Tools for Static Energy Profiling

We define static energy profiling as the inference of information about energy usage of a program,
which plays a central role in energy-aware software engineering. The tools under development
in ENTRA aim to provide information such as the following.

e The total energy consumption of a complete program;

e the total energy consumption of each part of a program, at selected levels of granularity

such as functions, blocks or statements;

e the energy consumed by a program fragment between given events such as inter-thread

communication or external I/O operations.
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All of these may be given

e in parameterized form, where the parameter might be the size of input data or some hard-

ware setting;

o at different levels of the software stack, such as source code, intermediate code (LLVM
IR) or assembly code.

e as worst, best or average case estimates.
The purpose of static energy profiling include enabling energy-aware design tasks such as

e verifying that energy usage of an application meets given energy specifications, such as

maximum energy;
e identifying energy “hot spots” — program parts that consume the most energy;

o identifying energy distribution over time, over different cores, over threads etc.

When combined with timing information, energy profiling will yield information on the power
dissipation profile. (The incorporation of timing models in energy profiling has not yet been
tackled in the project).

2.4 Tools for Analysis of Concurrency and Communication in Multi-threaded
Applications

Investigation of ENTRA benchmarks and case studies has shown that crucial energy savings can
be obtained by understanding the behaviour of a multi-threaded program’s threads, especially
with respect to communication and I/O operations. A typical question that the energy-aware
software engineer asks is “How slow can a given program or thread be run, while still meeting its
internal and external communication deadlines?”, since lowering the clock speed is an important
energy-saving measure. Analysis of load balance and data dependencies between threads gives
the software engineer useful insights that can be used to design more energy efficient multi-
threaded code.
Tools supporting such analyses include the following.

e Dependency analysis with respect to I/O operations. The purpose of such an analysis is
to find the instructions on which time-critical operations such as an I/O operation depend.
Instructions that are not urgently needed for time-critical operations can sometimes be
delayed until after the time-critical point, allowing the other dependent instructions to be
run more slowly.



e Analysis of thread load. Uneven distribution of computation over threads can lead to en-

ergy inefficiencies, since energy is spent while threads are idling.

e Analysis of data dependencies within thread computations, where the relative load on

threads depends on data values passed between them.

2.5 Tools Supporting Compiler-based Energy Optimizations

As with other resources such as time and memory, energy efficiency can often be improved by
compiler optimizations, taking advantage of hardware-specific features that are not visible to the
software engineer. Supporting tools can assist the compiler, providing information needed to
take advantage of available opportunities for optimization.

The ENTRA approach allows the software engineer to add assertions to programs, and these
can be passed to the compiler. In addition, or in combination with assertions, tools for dataflow
analyses such as the following can be employed.

e Precision or range analysis of numeric expressions allowing the compiler to select energy-

optimal representations;

e constant propagation and other forms of specialization, which can lead to both time and

energy savings;

e dataflow analysis across modules allowing specialization of interface calls and link-time
optimization.

2.6 Tools Supporting Trade-offs of Energy Against Quality

The choice of saving energy at the cost of quality will be an increasingly important decision for
the energy-aware software engineer. Some applications (such as media processing, interactive
games, or non-safety-critical control system) might be capable of several “energy modes”. In a
low-energy mode, the quality (such as image or sound fidelity, game response time, or precision
in control) might be lower, whereas if desired a more high-energy mode can increase quality at
the expense of higher energy consumption.

All the tools discussed above in principle contribute to enabling such choices to be taken
into account during design. The software engineer, having access to precise energy profiling
information, can decide how much energy can be saved by decreasing quality. In addition,
tools supporting analysis of quality are needed, for example estimating error accumulation using

lower-precision numbers, or response-time delays by lowering clock speeds.
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3 Energy-aware Software Development Tools

This section describes prototype tools corresponding to the development streams mentioned in
Section |1} These tools are intended to be used by (embedded) application developers or energy
model constructors.

There is a subsection for each tool, describing the functionality it provides and the input and
output. There is also an explanation of interfaces offered by the tool (GUI, command line, or
both), and how the user (e.g., the application developer) interacts with them in order to perform
tasks like analyzing, verifying or optimizing programs in different scenarios. Information on
the architecture of the tool is also provided. Such information is mainly for tool developers and
includes an overall diagram of the tool, showing its different components and information flow
between them.

The tools (or parts of them) described in this section could potentially be integrated into
existing production tool chains, such as the XC development environment, once they are in a
mature and stable enough state. For example, the prototype tool presented in Section [3.1] allows
experimentation with energy analysis at different levels of abstraction. During later stages of
the project, when experimental studies have stabilised, functional components used in such tool
can be integrated with a compiler tool chain (e.g., for XC). In other words, the prototype pre-
sented in Section [3.1]is intended for ENTRA project partners (for experimentation, research and
development) rather than XC developers.

3.1 Multi-level Energy Analysis and Verification Tool based on HC IR

Transformation

In this section we describe an experimental prototype tool for analysis and verification of energy,
execution time and general resource usage properties.
The user (typically the energy-efficient software developer) can interact with the tool through

both, a GUI and a command line interface. Both interfaces are described in Section|3.1.1

Main functionality Currently, the user can select to perform two main kinds of actions:

e Analysis: This action is used to estimate the energy consumed and time spent by the execu-
tion of XC programs and each of its procedures (even when there are parts not developed
yet.). Such information is given in general as functions on some properties of the input
data (e.g., range of integers or length of arrays) and can be used by developers of energy-

efficient software to make informed design decisions (e.g., redesigning the most energy
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consuming parts of the programs, using alternative data structures, ...) or optimizing the

XC programs, either manually or using a (semi-)automatic optimization tool.

e Verification: This action is used to prove whether resource usage specifications are met or

not, or to infer conditions under which such specifications are met.

Input to the tool The input to the tool is a file with a program encoded in any of the four
following languages: XC source, Instruction Set Architecture (ISA), or HC IR. These are recog-
nized by their respective extensions: .xc for XC, . asm for ISA, .11 for LLVM IR, or .p1 for
HCIR.

For an input file in HC IR format, it is the responsibility of the programmer to include asser-
tions in Internal Assertion Language (IAL) format describing the models for particular resources
used for the analysis / verification (see [EG13] for a detailed description of the IAL). Never-
theless, CiaoPP provides some packages for predefined resource models in IAL format. For
example, the user can include the package ciaopp (xcore/model/energy) to use the en-
ergy model described in D2.2 [EKG14], or the package ciaopp (xcore/model/time) to
use a timing model. For a file in a format different from HC IR (i.e., XC, LLVM IR or ISA), the

tool automatically uses the energy and timing models defined by the packages above.

Output of the tool The outcome of the analysis (or the verification) is subsequently included
as assertions in the output file in one of the two following formats. For XC, LLVM IR and ISA,
the results are formatted in the front end aspect of the Common Assertion Language described in
deliverable D2.1 [EG13]]. For HC IR the results are formatted in the IAL, i.e., the internal aspect

of the Common Assertion Language.

Main features: multi-level analysis, experimental The tool integrates two different instan-
tiations of the general resource analysis framework described in deliverable D1.1. Both instan-
tiations use energy models defined at the ISA level (see deliverable D2.2 [EKG14])), but one of
them performs the analysis at the ISA level (see deliverable D3.1 and [LKS™13]]) and the other
one performs the analysis at the LLVM IR level (see deliverable D3.2 and Attachment D3.2.4.).
In this sense, the tool is a multi-level analysis and verification tool, and the user can select at
which level (LLVM IR or ISA) the analysis is to be performed. In order to perform the analysis
at the LLVM IR (resp. ISA) level, the LLVM IR (resp. ISA) corresponding to the input XC file
is first generated (by using the standard xcc compiler), and then transformed into HC IR using
the LLVM IR (resp. ISA) HC IR translation. The HC IR is then analyzed by the analysis engine.
Technical details about such translations can be found in deliverable D3.2, Attachment D3.2.4.
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The selection of the analysis level has an impact on the accuracy of the results and on the
class of programs that can be analyzed. Thus, the tool allows experimentation with energy (and
time) analysis at different levels of abstraction. It is intended for ENTRA project partners, rather
than XC developers.

The tool has been integrated in an existing tool chain for experimentation, the CiaoPP sys-
tem, leveraging the environment for program analysis, verification and optimization offered by
it, which uses HC IR as internal program representation and is based on modular, incremental
abstract interpretation. During later stages of the project, when experimental studies have sta-
bilised, functional components from the CiaoPP system could potentially be integrated with a

compiler tool chain.

3.1.1 Usage and Interface

The user can interact with the tool through a Graphical User Interface (GUI) or through a Unix
command line. The GUI is mainly used in the project to facilitate experimentation by tool devel-

opers and to experiment with aspects of user interaction such as source assertions.

Graphical User Interface (GUI) The CiaoPP Graphical User Interface is based on
Assuming the CiaoPP system has been properly installed (as described in the Ciao/-
CiaoPP reference manual [BCH™11]), the GUI is automatically started up as soon as the file
loaded into the current Emacs buffer is recognized by the tool (e.g., XC, ISA or HC IR files are
recognized by their respective extensions .xc, .asm, .11,0r .pl.).

Within the GUI, the processing of files is governed by a menu, where the user can select dif-
ferent options. Clicking on the icon in the buffer displays that menu, which looks (depending
on the options available in the current CiaoPP version) like the “Preprocessor Option Browser”
shown in Figure [2] Except for the first and last lines, which refer to loading or saving a menu
configuration (a predetermined set of selected values for the different menu options), each line
corresponds to an option the user can select. In the following, we describe the options relevant
for the analysis and verification of XC programs.

e The Action Group determines which action to perform on the input file (i.e., the file

loaded in the Emacs buffer). The user can set the option to two different values:

— When option is set to the analyze value, the tool performs the analysis previously

described on the input file.

— When the option is set to the veri fy value, the tool performs the verification action
previously described, by checking the assertions present in the input file. In this case
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Figure 2: CiaoPP menu showing different options.

an analysis is first performed — as it would be the case if the option were assigned to
the analyze value — then the results are compared with the input assertions to be
checked.

e The Resource Analysis determines which resource analysis engine should be used
to run the resource analysis. The user can set the option to two different values:

— When the option is set to the resources value, the tool uses the legacy version
of the CiaoPP resource analysis engine. Such version is based on [NMLGHO7],
where the last steps of the analysis (setting up and solving recurrence equations) are
not implemented as an abstract domain, and hence offers a more limited number of

features than the new resource analysis, explained below.

— When the option is set to the res_plai value, the tool uses a newer version of the
CiaoPP resource analysis engine. This analysis has been developed within the scope
of ENTRA and integrated in the CiaoPP system (see [SLGH14]| or attachment D3.2.3
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of D3.2 for a detailed description). Unlike the previous version, the res_plai en-
gine is fully defined as an abstract domain in PLAI, the abstract interpretation frame-
work of CiaoPP. This makes the analysis able to infer separate resource information
for different calling patterns of the same procedure and handle sized types, among
other features. Sized types are representations that incorporate structural (shape) in-
formation and allow expressing both lower and upper bounds on the size of a set of
(recursive) data structures and their sub-structures at any position and depth (e.g., the
length of a list and the size of its elements). They are fully described in [SLGBH13]]
or attachment D3.1.2 of deliverable D3.1.

It is recommended to use the res_plai resource analysis engine as it turns out to be more
general and more efficient than the previous analyzer resources. The later can be used
for the sake of comparison.

The Solver option determines which recurrence equation solver must be used by the

resource analysis engine. Currently, the user can set the option to two different values:

— When the option is set to the builtin value (default value), the resource analy-
sis engine uses the builtin solver. This solver is directly incorporated into the CiaoPP
analyzer and consequently does not require the installation of any external tool. How-
ever, currently, the solver is less powerful than the external solver and therefore can

lead to more imprecise analysis results.

— The mathematica value forces the use of Wolfram Mathematical In general,

Mathematica is a more powerful recurrence equation solver than the builtin solver,
however being an external component, it has to be installed on the machine separately
from CiaoPP.

The Analysis Level option allows the user to select at which level (LLVM IR or ISA)
the analysis will be performed, as explained previously. For this, the user can set the option
to two different values: LLVM or I SA respectively.

The Output Language option specifies in which language the output file with the anal-
ysis / verification results must be written. The user can set the option to two different

values:

— When the option is set to the source value, the results are output in the same lan-
guage as the input file.

15



— When the option is set to the internal representation value, the results are
output in HC IR (with assertions in IAL).

Command line interface Besides the graphical user interface, CiaoPP also offers a specialized
command line interface to perform analysis (and other actions) on XC, LLVM IR and ISA files.
This command line interface provides the same functionality as the GUI described previously,
and can be used by advanced users to bypass it, or by analysis tool developers to ease CiaoPP
integration into a heterogeneous tool chain.

The name of the command line executable is ciaopp_entra and can be used as follows:
S ciaopp_entra [Options] <InputFilename>

where <InputFilename>, the last argument, is the path of the input file that contains the
program to be processed — as for the GUI the format of this input file is determined by the
file name extension — and [Options] is a space separated sequence of the following possible

options:

e The --analyze option is used to perform the resource usage analysis of the input file
(equivalently to setting the Act ion Group option of the GUI to the value analyze.)

e The --verify option isused to perform the resource usage verification of the input file
(equivalently to setting the Act ion Group option of the GUI to the value verify.)

In case neither the --analyze nor the --verify option is specified, no actions
(analysis nor verification) are performed on the input file. However, an output file is gener-
ated. This behaviour may be useful to generate the HC IR representing the ISA or LLVM
IR code of the input program.

e The -o <OutputFileName> option specifies that <OutputFileName> is the path
of the target output file to be written.

e The --oformat=<OutputFormat> option specifies in which language the output

should be written. There are two options for “<OutputFormat>"":

— HC IR: the analysis/ verification results are written in HC IR.

— source: the analysis / verification results are written in the source language.

e The ——level=<level> option determines at which level (LLVM IR or ISA) the analy-
sis is to be performed (similarly to the Analysis Level option of the GUI previously
explained).
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e The -—reg-solver=<solver> option specifies which recurrence equation solver must
be used by the resource analysis engine, similarly to the Solver option of the GUI pre-
viously explained. Thus, there are two different options for <solver>: builtin and

mathematica.

e The ——help option displays description of the command line usage including the different

options described above.

3.1.2 Methodology and Scenarios for Using the Tool

Scenario 1. Deciding values for program parameters that meet an energy budget As il-
lustrative example in this scenario we consider the development of an equaliser (XC) program
using a biquad filter similar to the one presented in deliverable D5.1 (Section 2). The purpose
of an equaliser is to take a signal, and to attenuate / amplify different frequency bands. This
will, for example in the case of an audio signal, correct for a speaker or microphone frequency
response. The energy consumed by such a program directly depends on several parameters, such
as the sample rate of the signal, and the number of banks (typically between 3 and 30 for an au-
dio equaliser). A higher number of banks enables the designer to create more precise frequency
response curves.

Assume that the developer has to decide how many banks to use in order to meet an energy
budget while maximizing the precision of frequency response curves at the same time. For
simplicity, we assume that the rest of parameters affecting energy consumption are fixed. In this
scenario, the developer writes an XC program where the number of banks is a variable, say V.
Assume also that the energy constraint to be met is that an application of the biquad program
should consume less than 1,300 nJ (nano Joules). Since our purpose in this section is to describe
the scenarios conceptually, we do not pay too much attention to the syntax in which such energy
specification is written. It could be expressed for example in the (front end) assertion language

as follows:
#pragma entra check biquad(n) : (energy < 1300)

Then the developer makes use of the tool (for example via the graphical interface), which
infers an energy consumption function for the program that depends on the number of banks /V,
namely Epguqa(N) = 165.3N + 54.45. Moreover, the tool also infers that in order to meet the
energy budget of 1,300 nJ, i.e., 165.3 N + 54.45 < 1, 300, the number of banks /N should be at
most 7. This can be expressed for example with the following assertion, which is generated by
the tool indicating that the original assertion holds subject to a precondition on the parameter /V:
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#pragma entra checked biquad (n)
(0 <= n && n <= 7) ==> (energy < 1300)

Since the goal is to maximize the precision of frequency response curves and to meet the
energy budget at the same time, the number of banks should be set to 7. The developer could
also be interested in meeting an energy budget but this time ensuring a lower bound on the
precision of frequency response curves. For example by ensuring that N > 3, the acceptable
values for N would be in the range [3, 7].

In the more general case where the energy function inferred by the tool depends on more
than one parameter, the determination of the values for such parameters is reduced to a con-
straint solving problem. The advantage of this approach is that the parameters can be determined
analytically at the program development phase, without the need of determining them experi-

mentally by measuring the energy of expensive program runs with different input parameters.

Scenario 2. Using analysis information to guide design decisions In this scenario, the user
will provide an (XC) program to the analysis tool, which will statically estimate the energy
consumed and time spent by its whole execution, and by each of its procedures and functions.
This way, the user can identify the more energy consuming procedures / functions in the program

in order to perform a better design and encoding of it, choosing better data structures, etc.

Scenario 3. Checking and verifying energy / timing specifications In this scenario, the user
(application developer) interacts with the tool to prove whether resource usage (energy / timing)
specifications are met or not, or to infer conditions (e.g., intervals for the input data) for which
the assertion is correct or incorrect.

The user provides a source program together with energy / timing specifications to be verified
by the tool. Specifications are written in the form of assertions with status check, which means
that the verification process will be performed on such assertions. As as result of the verification

process, in the output of the tool, either:

1. The assertion is included with status checked (resp. false), meaning that the assertion
is correct (resp. incorrect) for all input data meeting the precondition of the assertion,

2. the assertion is “splitted” into two or three assertions with different status (checked,
false, or check) whose preconditions include a conjunct expressing that the size of the
input data belongs to the interval(s) for which the assertion is correct (status checked),
incorrect (status false), or the tool is not able to determine whether the assertion is

correct nor incorrect (status check.), or
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3. in the worse case, the assertion is included with status check, meaning that the tool is not

able to infer any verification information about it.

Consider for example a (naive reverse) program, and assume that the user has included the

following assertion to be checked by the tool:

#pragma entra check nrev (n)

(length(n) <= energy && energy <= 10xlength(n))

where 1length (n) represents the length of the input list n. In other words, the user wants to
check whether the energy consumed by the program for an input n is in the interval [length (n)
10xlength (n) 1. The energy units are not specified, since they are not important for illustra-
tion purposes.

The outcome of the verification of the previous assertion is the following set of assertions:

#pragma entra checked nrev(n)
(1 <= length(n) && length(n) <= 16) ==>
(length (n) <= energy && energy <= 10xlength (n))
#pragma entra false nrev(n)
(length(n) == 0 || length(n) >= 17) ==>
(length (n) <= energy && energy <= 10xlength(n))

meaning that the assertion is true for values of length(n) belonging to the interval [1, 16], and
false for values of length(n) in the interval [0, 0] U [17, co]. In order to produce that outcome,
the resource analysis infers both upper and lower bounds functions for the energy consumed
by the program, then those bounds are compared against the specification. In this particular
case, the upper and lower bounds inferred by the analysis are the same, namely the function
0.5 x length(A)?+1.5 x length(A) + 1 (which implies that this is the exact energy consumption
function for the program).

As we can see in Figure [3| the energy consumption function inferred by the analysis lies in
the interval expressed by the specification, namely:
[length(n), 10 x length(n)], for length(n) belonging to the data size interval [1, 16]. Therefore,
the tool says that the assertion is checked in that data size interval. However for length(n) = 0
or length(n) € [17, oo, the assertion is false. This is because the energy consumption interval
inferred by the analysis is disjoint with the one expressed in the specification. This is determined
by the fact that the lower bound energy consumption function inferred by the analysis is greater
that the upper bound energy consumption function expressed in the specification.
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Figure 3: Energy consumption functions for a (naive reverse) program.

We consider now the case where the assertions to be checked by the tool include precondi-
tions expressing data size intervals, i.e., the applicability of such assertions is restricted to certain
intervals of input data sizes. This is a common case, since often in a system the possible input
data belong to certain value ranges. Such preconditions can be useful to reduce false negative
errors during static checking which may be caused by input values that actually never occur.

For example, consider the previous program, and assume now that the possible length of
the input list is in interval [1, 10]. In this case, we can add a precondition to the specification

expressing an interval for the input data size as follows:

fpragma entra check nrev(n) : (1 <= length(n) && length(n) <= 10)
==> (length (n) <= energy && energy <= 10xlength(n));

As we can see in Figure [3| this assertion is true because for any input value n such that
length(n) € [1, 10], the energy consumption function of the program inferred by analysis lies in
the specified energy interval [length(n), 10 x length(n)]. In general, the outcome of the static
checking of an assertion with a precondition expressing an interval for the input data size can be
different for different subintervals of the one expressed in the precondition.

Scenario 4. Using trusted assertions for unknown (or not available) code In this scenario
the code of one procedure (or in general several procedures) called in the main program is not
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available or is not implemented yet. The developer wants to know the impact on energy con-
sumption of such a procedure in the main program.

For the procedures that are not developed yet or (for which the code is not available), the
user can write frusted assertions (in the Common Assertion Language described in deliverable
D2.1 [EG13]) providing upper-bound energy (and timing) information for them. Such assertions
are assumed to be true by the analysis tool, and the energy information they provide are propa-
gated by the analysis to estimate an upper bound on the energy consumed by the whole program.
If such global energy estimate is acceptable, then the user can develop an implementation of the
procedure (or use an existing one) whose energy consumption is bounded by the one expressed
by the trusted assertion. Otherwise, a more efficient implementation of the procedure (or other
parts of the program) should be used in order to reduce the global energy consumed.

Note that frusted assertions can be also provided for parts of a system for which the analysis
infers inaccurate information, in order to improve its accuracy.

As a future work, trusted assertions will allow to express the energy used by a procedure as
a parameter, so that the global energy estimated for the main program will be given in terms of
such parameter. This will allow to find values for the parameter for which a global energy budget

is met.

3.1.3 Architecture of the Tool

An overview diagram of the architecture of the prototype tool is depicted in Figure 4] The
diagram shows its different components (blue boxes), data (pink square boxes) and information
flow (arrows).

The tool takes as input an XC source program that can (optionally) contain (front end) asser-
tions (see deliverable D2.1 for details about the common assertion language). Such assertions
are used to express energy or timing specifications that the tool will try to prove or disprove,
but they can also express trusted information such as the energy usage of procedures that are not
developed yet, or useful hints and information to the tool. Since the user can choose between
performing the analysis at the ISA or LLVM IR levels (or both), the associated ISA and/or LLVM
IR representations of the XC program are generated using the xcc compiler. Such representations
include useful metadata. The HC IR transformation component (described in deliverable D3.2,
Attachment D3.2.4), produces the internal representation used by the tool, HC IR, which includes
the program (Horn Clauses) and possibly specifications and/or trusted information (expressed in

the IAL). It performs several tasks:

1. Transforming the ISA and/or LLVM IR into the internal representation used by the tool,

HC IR. Such transformation preserves the resource consumption semantics, in the sense
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that the resource usage information inferred by the tool is applicable to the original XC

program.

2. Transforming specifications (and trusted information) written as front end assertions into
the TAL.

3. Transforming the energy model at the ISA level (described in D2.2 [EKG14]), expressed
in JSON format, into the Internal Assertion Language (IAL, described in D2.1 [EG13]].).
Such IAL assertions express the energy consumed by individual ISA instruction represen-

tations.

4. In the case the analysis is performed at the LLVM IR level, the HC IR transformation
component produces a set of IAL assertions expressing the energy consumption corre-
sponding to LLVM IR block representations in HC IR. Such information is produced from
the mapping of LLVM IR instructions with sequences of ISA instructions produced by the
mapping component and the ISA level energy model.

Then, the parametric static resource usage analyzer (developed in WP3 and described in
D3.1, D3.2, Attachment D3.2.4, and [LKS™'13])) takes the HC IR, together with the assertions
which express the energy consumed by LLVM IR blocks and/or individual ISA instructions,
and possibly some additional (trusted) information, and processes them, producing the analysis
results, which are expressed also using IAL assertions. Such results include resource usage
functions (which depend on input data sizes) for each block in the HC IR (i.e., for the whole
program and for all the procedures and functions in it.). The procedural interpretation of the HC
IR programs, coupled with the resource-related information contained in the (IAL) assertions,
together allow the resource analysis to infer static bounds on the energy consumption of the HC
IR programs that are applicable to the original LLVM IR and, hence, to their corresponding XC
programs.

In case the user wants the system to check energy or timing specifications provided to the
tool (by including them in the XC source), the resource usage verification is done by a special-
ized component which compares the energy / timing specifications with the (safe) approximated
information inferred by the static resource analysis.

Finally, the results produced by the static analysis and verification components are then pro-
cessed by the printing component, which is in charge of showing the information to the program
developer, referred to the original XC source program, in a user-friendly format. It uses mapping
information for this purpose.
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3.1.4 Evaluation and Experimental Results

We have performed an experimental evaluation of our prototype tool on a number of selected
benchmarks. Power measurement data were collected for the XCore platform by using appropri-
ately instrumented power supplies, a power-sense chip, and an embedded system for controlling
the measurements and collecting the power data. The main goal of our experiments was to shed
light on the trade-offs implied by performing the analysis at the ISA level (without using com-
plex mechanisms for propagating type information and representing memory) and at the LLVM
level using models defined at the ISA level together with a mapping mechanism.

There are two groups of benchmarks that we have used in our experimental study. The first
group is composed by four small recursive numerical programs that have a variety of user defined
functions, arguments, and calling patterns. These benchmarks only operate over primitive data
types and do not involve any structured types. Both the ISA and LLVM IR analyses are able to

infer energy functions for them.

e fact (N): Calculates the factorial of the integer N.
e fibonacci (N): Calculates the Nth Fibonacci number.
e sgr (N): Computes N? using just additions.

e power_of_two (N) : Calculates 2V using no multiplication.

The second group of benchmarks differs from the first group in the sense that they all involve

structured types. The programs are recursive or iterative.

e reverse (N, M): Iterative program that reverses an array.
e concat (N, M): Recursive program that concatenates two arrays.
e mat mult (N, M): Iterative program that performs matrix multiplication.

e sum_facts (N, M): Recursive program that computes the sum of the factorials of the

numbers in an array.

e fir (N): Iterative Finite Impulse Response (FIR) filter. The £ir (N) benchmark com-
putes the inner-product of two vectors: a vector of input samples, and a vector of coeffi-
cients. The more the coefficients, the higher the fidelity, and the lower the frequencies that
can be filtered. The cost depends on the number of taps N (size of the coefficients).
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e biquad (N): This benchmark is an equaliser. An equaliser takes a signal and attenuates
/ amplifies different frequency bands. This will, in the case of an audio signal, correct for
a speaker or microphone its frequency response. This equaliser benchmark uses a cascade
of Biquad filters where each filter attenuates or amplifies one specific frequency range.
The energy consumed depends on the number of banks N, typically between 3 and 30 for
an audio equaliser. A higher number of banks enables a designer to create more precise

frequency response curves.

The ISA level analysis used in our experiments is not able to infer useful energy functions
for the second group of benchmarks. This is due to the fact that significant program and data
type / shape information is lost due to lower-level representations, which sometimes makes the
analysis at the ISA level difficult or impossible. In order to overcome this limitation and improve
analysis accuracy, a significantly more complex representation of memory in the HC IR would
be needed.

Table |1| shows detailed results of our experiments. Column SA energy function shows the
energy consumption functions, which depend on input data sizes, inferred for each program
by the static analyses performed at the ISA and LLVM IR levels (denoted with subscripts isa
and llvm respectively). The argument M in the sum_factsy,, (N, M) function refers to the
estimated size of an element of the array (which controls the inner loop / recursion). We can
see that the analysis is able to infer different kinds of functions (polynomial, exponential, etc.).
Column HW shows the actual energy consumption in nano Joules (nJ) measured on the hardware
corresponding to the execution of the programs with input data of different sizes (shown in
column Input Data Size). Both the measurements and inferred estimations are without using any
optimization (using -O0) at compile time. Estimated presents the energy consumption estimated
by static analysis. This is obtained by evaluating the functions in column SA energy function
for the input data sizes in column Input Data Size. The value N/A in such column means that the
analysis has not been able to infer any energy consumption function and, thus, no estimated value
can be obtained. Column Error vs. HW shows the error of the values estimated by the static
analysis with respect to the actual energy consumption measured on the hardware calculated as
follows: Error vs. HW = (LYMr ISA)-HW . 10)% Finally, the last column shows the ratio

HW
between the estimations of the analysis at the ISA and LLVM IR levels.

Table 2| shows a summary of results. The first two columns show the name and short de-
scription of the benchmarks. The columns under Error vs. HW show the average error of the
energy consumption estimated by the static analysis (performed at both the ISA and LLVM IR
levels) compared to the actual energy consumption measured on the hardware. The average has
been obtained by using different values for the input data, by evaluating the energy functions
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SA energy Input Data HW (nJ) Estimated (nJ) Error vs. HWY% | isa/

function (nJ) Size Ilvm isa llvm isa llvm

Fact;sq(N)= N=2 78 75 70 | -3.40 | -9.63 0.94

26.0 N +19.4 N=4 128 129 121 1.34 | -4.79 0.94

N=8 227 237 223 459 | -1.48 0.94

Factjym(N)= N=16 426 453 428 6.52 0.49 0.94

28.4 N +22.4 N=32 824 886 836 7.58 1.57 0.94

N=64 1690 1751 1654 3.59 | -2.15 0.94

Fibonacciisq(N)= N=2 75 74 69 | -1.16 | -7.88 0.93

31.62 + 36.6 x 1.62N + N=4 219 241 221 10 0.93 0.92
11.4 x (—0.62)N

N=8 1615 1951 1693 | 14.75 4.81 0.91

Fibonacciyjym (N)= N=15 47 x 103 57 x 103 50 x 103 | 16.47 6.33 0.91

37.53 +42.3 x 1.62N + N=26 9.30 x 106 | 11.5x 10 9.9 x 106 | 17.31 7.09 0.91
11.68 x (—0.62)N

Sqrisa(N)= N=9 1242 1302 1209 486 | -2.66 0.93

9.02 N2 +51.29 N + 16.5 N=27 8135 8734 7979 7.36 | -1.92 0.91

N=73 52 x 103 57 x 103 52 x 103 8.51 | -1.58 0.91

Sqriem (N)= N=144 19.7 x 104 21 x 10* | 19.4 x 104 8.89 | -1.47 0.90

10.52 N2 +55.79 N 4+ 16.5 N=234 51 x 104 55 x 104 50 x 104 9.61 | -0.91 0.90

N=360 | 11.89 x 10° 13 x 10° | 11.9x 10° | 1049 | -0.17 0.90

N=3 326 344 322 568 | -1.10 0.94

Poweroftwo;sq(N)= N=6 2729 2965 2770 6.59 1.49 0.93

10.9 x 2N+2 _27.29 N=9 21.9 x 10% | 23.9x10% | 22.3x 103 6.61 1.81 0.93

Poweroftwoyym (N) = N=12 | 17.57 x 10* | 19.1x10* | 17.9 x 10% 6.62 1.85 0.93

492 x 2N —31.5 N=15 13.8 x 10° | 15.3x 105 | 14.3 x 10° 6.62 3.71 0.93

N=57 1138 1179 N/A 3.60 N/A N/A

reverseqym (N)= N=160 3125 3185 N/A 1.91 N/A N/A

20.50 N + 72.98 N=320 6189 6301 N/A 1.82 N/A N/A

N=720 13848 14092 N/A 1.76 N/A N/A

N=1280 24634 24998 N/A 1.48 N/A N/A

N=10 | 49.77 x 103 | 49.9 x 103 N/A 0.22 N/A N/A

matmult gy, (N)= N=15 | 15.79 x 10* | 15.9 x 10* N/A 1.03 N/A N/A

44.7IN3 4 72.4TN? 4 N=20 | 36.29 x 10* | 36.8 x 10* N/A 1.51 N/A N/A

52.52N + 25.49 N=25 | 69.56 x 10* | 70.8 x 10* N/A 1.77 N/A N/A

N=31 | 13.07 x 10° | 13.8 x 10° N/A 1.98 N/A N/A

N=50; M=154 14.8 x 10% | 13.5 x 103 N/A 8.67 N/A N/A

concatyyym (N, M)= N=131; M=69 14.5 x 103 | 13.2x 103 N/A 8.65 N/A N/A

69.14N + 69.14M + 14.12 || N=170; M=182 | 25.44 x 10% | 23.3 x 103 N/A 8.60 N/A N/A

N=188; M=2 13.8 x 10% | 12.6 x 103 N/A 8.59 N/A N/A

N=13; M=134 10.7 x 103 | 9.79 x 103 N/A 8.74 N/A N/A

N=15; M=7.6 4097 4196 N/A 2.40 N/A N/A

sum_factsiym (N, M)= N=40; M=7.4 10.7 x 103 11 x 103 N/A 245 N/A N/A

28.45 N x M + 76.71 N N=80; M=8 22.7 x 10% | 23.3x 103 N/A 2.52 N/A N/A

+22.50 N=160; M=7.8 44.3 x 103 | 45.4 x 102 N/A 245 N/A N/A

biquadyym (N)= N=5 871 880 N/A 1.04 N/A N/A

165.3N + 54.45 N=7 1187 1211 N/A 2.05 N/A N/A

N=10 1660 1707 N/A 2.83 N/A N/A

N=14 2290 2368 N/A 3.42 N/A N/A

Firgom (N)= N=85 2999 2984 N/A 0.48 N/A N/A

33.47N + 141.6 N=97 3404 3386 N/A 0.53 N/A N/A

N=109 3812 3788 N/A 0.63 N/A N/A

N=121 4227 4189 N/A 0.88 N/A N/A

Table 1: Comparison of the accuracy of energy analyses at the LLVM IR and ISA levels.
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inferred by the analysis and comparing the results with the actual energy of the execution of the
programs for such input data. The last row of the table shows the average error over the number

of benchmarks analyzed at each level.

Program Description Error vs. HW | ISA/LLVM
llvin isa
fact (N) Calculates N! 4.5% | 2.86% 0.94
fibonacci (N) Nth Fibonacci no. 11.94% | 5.41% 0.92
sqr (N) Computes N? 9.31% | 1.49% 0.91
power_of_two (N) | Calculates 2V 11.15% | 4.26% 0.93
reverse (N, M) Reverses an array 2.18% N/A N/A
concat (N, M) Concatenation of arrays 8.71% N/A N/A
mat_mult (N, M) Matrix multiplication 1.47% N/A N/A
sum_-facts (N, M) | Sum of factorials in an array 2.42% N/A N/A
fir (N) Finite Impulse Response filter | 0.63% N/A N/A
bigquad (N) biquad filter 2.34% N/A N/A
Average 5.48% | 3.50% 0.92

Table 2: LLVM IR- vs. ISA-level analysis accuracy.

The experimental results show that:

e On average, the analysis performed at either level is reasonably accurate and the relative

error between the two analysis at different levels is small.

e [ISA-level estimations are slightly more accurate than the ones at the LLVM IR level (3.5%
vs. 5.48% error on average with respect to the actual energy consumption measured on
the hardware respectively). This is because the ISA-level analysis uses very accurate en-
ergy models, obtained from measuring directly at the ISA level, whereas at the LLVM
IR level, such ISA-level model needs to be propagated up to the LLVM IR level using

(approximated) mapping information. This causes a slight loss of accuracy.

e The LLVM IR level analysis is more powerful than the one at the ISA level. This is because
type information is preserved at the LLVM IR level, which allows analyzing programs
using data structures (such as arrays) that could not be analyzed at the ISA level, without
a significantly more complex representation of memory in the Horn clause representation.

Our results suggest that performing the static analysis at the LLVM IR level is a reasonable
compromise, since 1) LLVM IR is close enough to the source code level to preserve most of the
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#include "fact.h"

int fact(int i) {
if(i<=0) return 1;
return i*fact(i-1);

--:--- fact.xc All L10 (C/1 Abbrev)

Figure 5: XC source of a factorial program.

program information needed by the static analysis, and 2) the LLVM IR is close enough to the
ISA level to allow the propagation of the ISA energy model up to the LLVM IR level without
significant loss of accuracy for the examples studied. Our experiments are based on single-
threaded programs. It remains to be seen whether the results would carry over to other classes
of programs, such as multi-threaded programs and programs where timing is more important. In
this sense our results are preliminary, yet are promising enough to continue research in analysis
of LLVM IR and ISA-LLVM IR energy mapping techniques for a wider class of programs,
especially multi-threaded programs.

LLVM IR is in partial Static Single Assignment (SSA) form (up to the variable names only),
which makes it difficult to model aliases and indirect memory operations in SSA form in HC IR,
particularly for derived types (arrays, structures etc.) as well as pointer arithmetic. A possible
solution is to use hashed or array SSA representation of LLVM IR that models aliases and indirect
memory operations in SSA for derived types.

3.1.5 Demonstration of the Tool

This section provides a demonstration of the use of the implemented prototype in two typical
scenarios: Analyzing the energy consumed by an XC program and verifying energy related
specifications.

Analyzing the energy consumed by an XC program In order to analyze an XC program
using the CiaoPP graphical interface, we first open it in a buffer, as shown in Figure [5] Then we
select the menu options depicted in Figure[2} analyze, for Action Group, res_plai, for

Resource Analysis,isa,forSelect Analysis Level (which will tell the analysis
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#include "fact.h"

#pragma entra true (energy(fact(A)) <= 21469718*A+16420396)
int fact(int i) {

if(i<=0) return 1;

return i*fact(i-1);

}

--- fact_unfold_entry_res_plai_co.xc All L11 (C/1 +3 Abbrev)

Figure 6: Analysis results (expressed as front end assertions).

to take the ISA option by compiling the source code into ISA and transform into HC IR for
analysis) and finally source, for Select Output Language (the language in which the
analysis results are shown). After clicking on the Apply button below the menu options, the
analysis is performed, producing the results as depicted in Figure [f] (marked with a red arrow).
Such results are expressed in the front end aspect of the common assertion language, as explained
in Deliverables D2.1 [EG13] and D3.1 [LG13]. We can see that the energy consumption of the
factorial program is given as a linear function on the size of the input argument to the program,
A, namely 21469718 x A + 16420396 n.J.

Verification of the energy budget for an XC program In order to verify that an energy bud-
get can be met by a given XC program and to find the optimal values for the inputs for which
such budget is respected, we first open the program in a using the CiaoPP graphical interface
buffer, as shown in Figure Line 5 in the program specifies the energy budget (to be less
than equal to 122009721 nj) with a check assertion. Then we select the following menu op-
tions: check_assertions, forAction Group, res_plai,for Resource Analysis,
1lvm, for Select Analysis Level (which will tell the analysis to take the LLVM IR
route by compiling the source code into LLVM IR and transform into HC IR for analysis) and
finally source, for Select Output Language (the language in which the analysis re-
sults are shown). After clicking on the Apply button below the menu options, the analysis is
performed, producing the results as depicted in Figure [§] (on lines 5 and 7). Such results are
expressed in the front end aspect of the common assertion language, as explained in Deliverables
D2.1 [EG13] and D3.1 [LG13]]. We can see that on line 9 the energy consumption of the biquad
program is given as a linear function on the size of the input argument to the program, C, namely
16652087 * C' 45445103 n.J. On line 5 the assertion with status false indicate that energy budget
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#include "main.h”

2 #include "biquad.h"
3 #include <xsl.h>
4
5 #pragma entra check bigquadCascade(nl, nZ, n3) : (1 == n3) ==> (energy <= 1Z22009721)
6
7 #pragma unsafe arrays
8 int biguadCascade(biquadState &state, int xn, int BANKS1) {
9 unsigned int ynl;
10 int ynh;
12 for(int KeBANKSL: ks@: k--)
13 i
14 int j = BANKS1-k;
15 ynl = (1<<(FRACTIONALBITS-1));
16 ynh = @;
17 {ynh, ynl} = macs( biquads[j].b@, xn, ynh, ynl);
18 {ynh, ynl} = macs( biguads[j].bl, state.b[j].xnl, ynh, ynl);
19 {ynh, ynl} = macs( biguads[j].b2, state.b[j].xn2, ynh, ynl);
e {ynh, ynl} = macs{ biguads[j].al, state.b[j+1].xnl, ynh, ynl);

21 {ynh, ynl} = macs( biquads[j].a2, state.b[j+1].xn2, ynh, ynl);
if (sext(ynh,FRACTIONALBITS) == ynh) {
yah = (ynh << (32-FRACTIONALBITS)) | (ynl »>> FRACTIOMALBITS);
} else if (ynh < @) {
ynh = BxEQ000000,;
}else { ]
ynh = Bx7FIfffff;

state.b[j].xn2
state.b[j].xnl

= state.b[j].xnl;
= Xn;

xn = ynh;

state.b[BANKS1].xnZ = state.b[BANKS1].xnl;

L L Lad L L) L L L P P PP
R~ AR R ST SR I - RN R R S ST N

state.b[BANKS1].xnl = ynh;
return xn;
1
-:--- biquad.xc All LZ6  Git:new-resources (C/1 Abbrev)

Figure 7: XC source of a biquad program.

(specified with a check assertion on line 11) is not met for C' >= 8. Similarly, on line 7 the
assertion with the status checked indicate the interval of the argument C' (1 =< C' =< 7) for
which the budget is met.
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®00 biquad_unfold_entry_res_plai_co.xc

DE*xHBA S s DHREB» AR > 8

#include "main.h"

#include "biquad.h"

#include <xsl.h=

#pragma entra folse biquadCascade(A,B,C) : (8 =< () == (energy =< 1220089721)

#pragma entra checked biguadCascade(A,B,C) @ (1 =< C && C =< 7) === (energy =< 122003721)

[t RN T, ST N

#pragma entra true biquadCascade(A,B,C) : (16582887*C+5445103 =< energy &R energy =< 16652087*C+54451@3)

11 #pragma entra check biquadCascade(nl, nZ, n3) : (1 <= n3) ==» (energy <= 1220@9721)
17 #pragma unsafe arrays
13 int biquaodCascade(biquadState &state, int xn, int BANKS1) {

14 unsigned int ynl;

15 int ynh;

16

17 for{int k=BANKS1; k>8; k--)

18 {

19 int ] = BANKS1-k;

20 ynl = (1<<(FRACTIOMALBITS-1)D;

21 ynh = @;

22 {ynh, ynl} = macs( biquads[j].b@, xn, ynh, ynl);

23 {ynh, ynl} = macs( biquads[j].bl, state.b[j].xnl, ynh, ynl);
24 {ynh, ynl} = macs( biquads[j].b2, state.b[j].xnZ, ynh, ynl);
25 {ynh, ynl} = macs( biquads[j].al, state.b[j+1].xnl, ynh, ynl);
26 {ynh, ynl} = macs( biquads[j].a2, state.b[j+1].xnZ, ynh, ynl);
27 if (sext(ynh,FRACTIONALBITS) == ynh) {

28 ynh = (ynh << (32-FRACTIONALEITS)) | (ynl »>» FRACTIONALEITS);
29 } else if (ynh < @) {

30 ynh = @x80000000 ;

31 } else {

32 ynh = @x7FFfffff;

33 1

34 state.b[j].xn2 = state.b[j].xnl;

35 state.b[j].xnl = xn;

36

37 xn = ynh;

38

9 state.b[BANKS1].xn2 = state.b[BANKS1].xnl;

40 state.b[BANKS1].xnl = ynh;

41 return xn;

42 }

-:**-  biquad_unfold_entry_res_plai_co.xc All L16 (C/1 Abbrev)

Figure 8: Verification results (expressed as front end assertions).
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3.2 Multi-level Mapper Tool

The ENTRA mapper tool serves two purposes. Firstly, to create a mapping of code locations
between different intermediate code representations, ISA and source code. This allows analysis
results to be mapped back to the procedures and functions in the source code. Secondly, the
mapper tool allows energy model information defined at one level to be propagated upwards to
other levels. Analysis that can only be performed at these higher levels can then utilise this raised
energy model information.

The mapper tool can be seen as the glue that holds together several pieces of our framework
for resource consumption analysis and verification, enabling energy transparency. For more
details about the techniques utilized to create this tool, see Section 5 from deliverable D3.1.

The mapper tool has been developed using the Java language, for two primary reasons.
Firstly, Java is portable to any operating system, including Windows, Linux and Mac OS. Sec-
ondly, this makes potential integration into the XMOS tools environment easier, because the
tools environment is built around the Eclipse software development suite, which is itself pre-
dominantly Java based.

Currently the prototype tool is accessible through a Linux shell script as a normal command
line tool. Figure 9] shows the contents of the ReadMe . txt file included in the prototype pack-
age. This describes the tool version, the contents of the tool folder, the dependencies and the
expected output of the tool.

Figure [I0] shows the output of executing mapper --help on a Linux terminal after the
tool is installed. The output describes the usage of the tool and all the available options. In the
following subsections we will give a brief description of each option and their results using some

screenshots on real examples.

3.2.1 Using the ——analysis Option

This option performs the analysis of the LLVM IR and the corresponding ISA code, creating a
Control Flow Graph (CFG) at both code levels. It then creates a mapping between the two levels,
and then using an ISA level energy model, provides energy costs for each LLVM IR instruction
and block. This mapping information is saved in a JavaScript Object Notation (JSON) file,
a format which is both human readable and widely supported in many languages, making it
straightforward for other analysis tools to parse it.

Using a real example from our benchmarks, the mac function which can be found in Code
Sample I} the following command will analyze the code to create the CFGs and the mapping
info:
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1. input.json - the map between LLVMIR and XC ISA instructions inm a jsor

Figure 9: The Mapper prototype tool ReadMe . t xt installation guide.

™} entra-utils : bash - Kensole

entra-utils : bash

Figure 10: The mapper prototype tool output of the ——he1lp command option.
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$ mapper —-—-analysis bencharks/mac/mac.xe

In this case, mac . xe is the executable created ahead by using the XMOS compiler. Figure[1T]
shows the created CFG for the ISA code. The CFG shows the control flow between each basic
block (BB), and the instructions in each block. Each instruction has an id number at the end
of the line, in square brackets. Every ISA instruction with a given id number is derived from
an LLVM IR instruction with the same id during code lowering. Combined with the CFG in
Figure[12] code locations in the ISA CFG can be mapped to locations in LLVM IR using the id

numbers, and vice versa.

Code Sample 1: The mac benchmark source code

int macCustom(const short a[], const short b[], short len, int sqgr, int &sum)
{

int i;

int dotp = sum;

while (len—-) {

dotp += b[len] % allen];
sgr += b[len] * bl[len];
}

sum = dotp;

return sqgr;

In addition to providing code location mappings, the ——analysis option also infers the
existence of “fetch, no-operation” (FNOP) instructions, such as in Figure id 24.

These are implicit instructions, introduced by the scheduler logic under certain conditions at
runtime. An FNOP is needed when the instruction buffer for a thread does not contain the next
instruction. This can happen in two cases [May13]]. In the first case, due to the fact that the
last stage of the pipeline is shared between memory operations and the fetch operation, when
multiple memory instructions happen in a row the buffer might be left empty and then an FNOP
will be introduced in order to fetch new instructions. In the second case, a branch instruction is
executed and flushes the instruction buffer, which may require an FNOP if the branch target is
unaligned and the target instruction is long (4 bytes).

The FNOP has no effect on the actual result of the program, but has an affect on the time
and energy. To account for this, the mapper tool performs a static analysis on the ISA CFGs
to recreate the behaviour of the instruction buffer logic and reason where the FNOPs will be
introduced.

The mapper tool output in Figure [I2] also identifies several pieces of energy consumption
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macCustom

prolog_macCustom x1:

0x000121aa: 43 77: entsp (w6}  0x3 [0]
0x000121ac: 02 55: stw (rub} 4, sp[0x2] [0]
fnop [0]

0x000121ae: 41 55: stw (rub} t5, sp[Ox1] [0]
0x000121b0: 80 55: stw (rub} 6, sp[0x0] [0]
fnop [0]

0x000121b2: c4 Se: 1dw (ru6} r11, sp[Ox4] [0]
0x000121b4: cc 09: ldw (2rus} 4, r11[0x0] [5]
fnop [5]

0x000121b6: 58 90: add (2rus} 5,2, Ox0 [5]
0x000121b8: 75 47: zext (rus} 5, 0x10 [5]
0x000121ba: 4e 79: bf (rub} 5, Oxe <.labell4> [8]

labell4 x3:

0x000121d8: cc 01: stw (2rus}  r4, r11[0x0] [11]
0x000121da: Oc 90: add (2rus} 10,3, 0x0[12]
0x000121dc: 80 54: 1dw (ru6} 6, sp[0x0] [12]
0x000121de: 41 5d: ldw (ru6} 5, sp[0x1] [12]
fnop [12]

0x000121e0: 02 54: ldw (ru6} 4, sp[0x2] [12]
0x000121e2: ¢3 77: retsp (u6y  0x3[12]

Figure 11: The CFG of the ISA code for the mac benchmark.
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data to help developers understand the energy consumption of their code. In each BB the LLVM
IR instruction which costs the most energy is identified, and prefixed with +SOS+. This could
potentially lead to some energy aware instruction selection. Furthermore, at the end of each BB
the total energy cost, whether the block is recursively called, and the loop depth of the block are
provided. This information is significant to a programmer because a deeply nested or recursive
block will consume more energy than others, and may deliver the greatest energy savings in
the program if optimized. Finally, BBs in loops are denoted with orange color in both ISA and
LLVM IR CFGs.

All of the information included in the CFGs is also written to a JSON file to be used by other
tools. The JSON file for our example is shown in Code Sample 2] The nested structure of this file
is as follows. Each function in the program contains a list of BBs. Each BB contains an list of
LLVM IR instructions, and each such instruction contains a list of ISA instructions that it maps
to. Each BB also has the total energy cost in pico Joules (pJ). Finally for each BB the start
and end fields record the line numbers in the source code that it was compiled from. This is

particularly useful for linking analysis results back to the source code.
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macCustom

macCustom_allocas:

+S0S+ tail call void @llvm.dbg.value(metadata !{ [0 x i116]* %0}, i64 0, metadata 17}, Idbg 129 : 0 [0]
tail call void @Ilvm.dbg.value(metadata !{ [0 x i16]* %1}, i64 0, metadata !18), Idbg 130 : 1 [1]

tail call void @1lvm.dbg.value(metadata !{i16 %2}, i64 0, metadata !19}), Idbg 131 : 2 [2]

tail call void @1lvm.dbg.value(metadata !{i32 %3}, i64 0, metadata 120}, Idbg 132 : 3 [3]

tail call void @llvm.dbg.value(metadata [{i32* %4}, i64 0, metadata 121}, Idbg 133 : 4 [4]

Yederefl =1oad i32* %4, align 4, !dbg 134 : 5 [5]

tail call void @1lvm.dbg.value(metadata !{i32 %derefl }, i64 0, metadata 124}, !dbg 135 : 6 [6]
Jozerocmp = icmp eq il16 %2, 0, Idbg 136: 7 [7]

br il %zerocmp, label %ifdone, label % LoopBody, !dbg 137, lentra 138 : 8 [8]

Block Info :

Total Energy = 1.0181958375358165E-8
IS Recursive = false

Loop Depth =0

macCustom_ifdone:

Jesqr.0 = phi i32 [ %3, %allocas ], [ %"+=28", %LoopBody ], !dbg 141 : 9 [9]
Jedotp.0 = phi i32 [ %derefl, %allocas |, [ %"+=", %LoopBody ], Idbg 142 : 10 [10]
store 132 %dotp.0, i32* %4, align 4, Idbg 143 : 11 [11]

+SOS+ ret i32 %sqr.0, Idbg 144, lentra 145 : 12 [12]

Block Info :

Total Energy = 6.850038790922991E-9
IS Recursive = false

Loop Depth = 0

Figure 12: The CFG of the LLVM IR code for the mac benchmark.
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12
13
14

16
17
18
19
20
21

22
23
24
25

26
27
28
29

30
31
32
33

34
35
36
37

Code Sample 2: The json file emitted for the mac . xc with the mapping info

{"program": {

"functions": [{
"lineEnds": " ",
"name": "macCustom",
"blocks": [

{

"lineEnds": 14,

"name" :

"mapping": [

{

"LLVMIRIns":
1+ %0}",
"ISAMap": [

"entsp_ub",

"macCustom_allocas",

"tail call void @llvm.dbg.value (metadata

"stwsp_ru6",

"stwsp_ru6"
"stwsp_ru6"

"ldwsp_ru6"

"LLVMIRInNns":
1% %1}",
"ISAMap": []

"LLVMIRIns":

4

"ISAMap": []

"LLVMIRIns":

4

"ISAMap": []

"LLVMIRIns":

"
4

"ISAMap": []

"LLVMIRIns":

4

14

"tail call

"tail call

"tail call

"tail call

"$derefl =

void

void

void

void

load

38

@llvm.dbg.

@llvm.dbg.

@llvm.dbg.

@llvm.dbg.

132% %4",

value (metadata

value (metadata

value (metadata

value (metadata

'{[0 x 116

'{[0 x 116

1{ile6

1{132

1{132%

%2

%3

[o)

o

}"

}"

4}



38
39
40
41
)
43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
7
73
74
75
76
77
78
79

"ISAMap": |
"ldw_2rus",
"add_2rus",

"zext_rus"

"LLVMIRIns":
derefl}",
"ISAMap": []

"LLVMIRIns":
"ISAMap": []

"LLVMIRIns":

"ISAMap":
1,
"lineStarts": 10,

"energy":

"lineEnds": 19,
"name" :
"mapping": [

"LLVMIRIns":
"ISAMap": []

"LLVMIRIns":
"ISAMap": []

"LLVMIRIns":
"ISAMap":

"LLVMIRIns":
"ISAMap": [

"add_2rus",

"tail call void @llvm.dbg.value (metadata

"$zerocmp = icmp eqg il6 %2",

"br il %zerocmp",

["brff rué6"]

1.0181958375358165E-8

"macCustom_ifdone",

53",

"$sqgr.0 = phi 132 [

"%dotp.0 = phi 132 [

$derefl",

"store 132 %dotp.0",

["stw_2rus"]

"ret 132 %sqgr.0",

39

{132

%



80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

"ldwsp_ru6",
"ldwsp_ru6",
"ldwsp_ru6",

"retsp_ub"

}
1y
"lineStarts": 19,
"energy": 6.850038790922991E-9

"lineEnds": 14,
"name": "macCustom_LoopBody",
"mapping": [
{
"LLVMIRIns": "%$len.0.in = phi 116
"ISAMap": []
b
{
"LLVMIRIns": "%sgr.l = phi 132 [
"ISAMap": []
b
{
"LLVMIRIns": "%dotp.l = phi 132 [
"ISAMap": []
b
{
"LLVMIRIns": "%len.0 = add il6 %len.0.in",
"ISAMap": [
"sub_2rus",
"add_2rus",
"zext_rus"
]
b
{
"LLVMIRIns": "%cast = sext 116 %len.0 to i32",
"ISAMap": [
"add_2rus",
"sext_rus"
]
e
{

"LLVMIRIns": "S$subscript = getelementptr

40

%\n+:28\un,

%\"+:\" ",

[0 x il6]«*

51",



123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

155
156
157
158
159
160
161
162
163
164

"ISAMap": []

"LLVMIRIns": "%deref5 =
"ISAMap": []
"LLVMIRIns":
"ISAMap": []
"LLVMIRIns": "%dereflO
"ISAMap": []
"LLVMIRIns": "%castll =
"ISAMap": ["1dl6s_3r"]
"LLVMIRIns": "%castl2 =
"ISAMap": ["1ldl6s_3r"]
"LLVMIRIns": "%boptmp =
"ISAMap": ["mul_13r"]
"LLVMIRIns": "$\"+=\" =
"ISAMap": ["add_3r"]
"LLVMIRIns": "tail call
%\"+:\"}",
"ISAMap": []
"LLVMIRIns": "%boptmp26
"ISAMap": ["mul_13r"]
"LLVMIRIns": "%\"+=28\" =
"ISAMap": ["add_3r"]

load il6* %subscript",

"$subscript9 = getelementptr [0 x 116]*

load il6* %subscripto",

sext 116 %$deref5 to i32",

sext 116 %$derefl0 to i32",

mul 132 %castl2",

add i32 S%boptmp",

void @llvm.dbg.value (metadata

= mul i32 %castll",

add 132 %boptmp26",

41

50",

1{i32



165
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

"LLVMIRIns": "tail call void @llvm.dbg.value (metadata !{i32
S\"+=28\"}",
"ISAMap": []
b
{
"LLVMIRIns": "$zerocmp3l = icmp eq il1l6 %$len.O",
"ISAMap": []
b
{
"LLVMIRIns": "br il %zerocmp3l",
"ISAMap": ["brbt_ru6"]
}

1,
"lineStarts": 14,
"energy": 1.4003856974234669E-8

}
]
}]I
"fileLocation": "Benchmarks/mac/mac.xc",
"name": "mac.xc"

1

3.2.2 Using the ——ISAFunCFG Option

Some of the functions in the ISA code for a program might not correspond to any source code.
This is due to the compiler invoking internal functions to perform necessary operations. In this
case it may be necessary to analyze these functions in order to reason about their contribution
on the time and the energy consumption of a program. Figure [I3]is an example of this. The
memset function is introduced in the ISA code and called by user defined functions in order to
initialize some local variables. To create the CFG of the memset function the following mapper

command is invoked:

$ mapper —-—-ISAFunCFG bencharks/mac/ -n memset

3.3 A Tool for Flow and Synchronization Analysis of Multi-threaded XC

Programs

We outline a tool that is under construction for analysing source code XC programs, whose goal

is to provide energy-relevant information to the developer such as:
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e rmsel

label356 x1:

Ox00011248: bb a8: shr(2rus)  r1], r2, Ox3 [null]
0x0001124a: dd 7a: BF (rué) r11, Ox1d <label 19> [null]
/ dz2
label356__2 x2:
O0x0001124¢: 3447 zexl (rus)  r], Ox8 [null]
Ox0001124¢: 34251 shl(2rus)  r11, r], Ox8 [null]
Ox00011250: 97 44 or (3r) rl, rl, rl] [null]
Ox00011252: 3525 shl (2rus)  r11, ], Ox10 [null] 1abel19 = 11:
O0x00011254: 97 44:  or(3r) rl, rl, ¢l [null] 5 "
0x00011256: 3390:  add (2rus) 3, 10, Ox3 [null] 0x00011286: 84 78! bF (rué) r2, Ox4 < label 25 [null]
Ox00011258: ¢3 fa: Ide (ru6)  r11,0x3 [null]
Ox0001125a: 2F2F  andnel (2r) 3, r1] [null]
Ox0001125¢: be 18: sub (3r) rll, 3, /O [null]
0x0001125e: 5 Ta: bF (rué) r11, Ox5 <.label 20> [null]
3
label356__2_ 3 «3: 18
Ox00011260: ab e sub (3r) r2,r2, r1] [null]

label25 x13:
0x00011290: 0772
0x00011292: 00 00:

relsp (u)
slw [2rus)

0x0 [null]
10, rO[0x0] [null]

label 20
0x000]

x5!
126a: ba a8:

shr (2rus)

r11, r2, 0x2 [null]

label22__ 7 7

000011274 3e 10:
000011276 da 46!
0x00011278: 85 78:

add (3r)
2ex1 [rus)
bF (rué)

3, 3, r2 [null]
2, 0x2 [null]
r2, Ox5 <label23> [null]

S

label22_ 7_ 8 x8:
Ox0001127a: 3e 18:

sub (3r) r3, r3, r2 [null]
13 12
d1s
label 23 x10:
Oc00011284: 0770 relsp (u€)  OxO [null]

Figure 13: The CFG of the ISA code for the memset function.
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e What happens between synchronisation points in each thread?
— max-min time/energy of each non-synchronised code section
e What code blocks can (possibly) run in parallel with each other?
— how many threads can be active simultaneously?

e How slow can blocks run and meet port deadlines?

The ENTRA tool architecture generally involves a trade-off — greater accuracy at lower level
versus better analyses at the higher level. Direct analysis of source code means that we do
not compile it to intermediate code or assembly code, but instead model its behaviour (seman-
tics) directly. Despite the reduction in energy modelling precision of source code, some things
get simpler at a higher level. For example precise analysis of dataflow between the program’s
threads, determining which bits of code are most heavily used and which parts of the program
can run concurrently is easier when the details of the machine are abstracted away. Such as-
pects of program behaviour are relevant for energy consumption; even an approximate energy
profile for a high-level implementation of a system can help to make decisions that reduce power

consumption later.

3.3.1 Usage and Interface

The tool takes an XC program and yields an HC IR representation of its thread and commu-
nication structure as explained below. It is run from the command line by a script named

xcreach. sh. The command
xcreach.sh Tests/ProducerConsumer/main.xc

generates an output folder containing the output files, including one called (in this example)
main.synch.pl which contains the run and reach relations outlined below, represented as
Horn clauses.

3.3.2 Generation of a Run Relation

As presented before (Deliverable D3.1) our approach to analysis of source code is based on the

following steps.
1. Small-step operational semantics for XC.

2. A CLP program implementing the operational semantics as an “interpreter”.
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3. Partial evaluation of the interpreter (using Logen) with respect to (the abstract syntax tree
of) an XC program.

4. Some further CLP transformations to “clean up” the resulting specialised interpreter.
The output of the steps above is a set of CLP clauses of the form
rung(Xi, ..., Xp,) = (X1, .., X, Y1, Y0), rung (Y, oL, Y.

Here the predicates run; and run; represent the state of the computation at two program points

labelled : and j respectively. The clause expresses a transition stating that if the computa-

tion is in state 7un;(Xy, ..., X,,) then there is a transition to state run;(Y1,...,Y,,), where
c(X1,..., Xy, Y1,...,Y,,) is a constraint relating the state variables in the two states. The vari-
ables Xy, ..., Xy, Y1,...,Y,, represent values of XC program variables, labels such as source

line numbers, or instrumentation such as counters for energy or time.

A thread-modular approach. In single-threaded code we typically obtain one run predicate
per program point. Applying this approach to multi-threaded programs presents several diffi-
culties compared to analysis of single-threaded programs. A naive approach to modelling the
operational semantics of multi-threaded code is not feasible due to the combinatorial explosion
of possible states arising by concurrent interleaving of threads. To follow a similar approach
with multi-threaded code, we would need to consider one run predicate for each tuple of pro-
gram points from the program’s threads, representing the execution state of each thread.

Even leaving aside the explosion of possible tuples due to interleaving and assuming a de-
terministic thread scheduler, the number of possible code states explodes due to choice-points
which are not resolved at analysis time. For example, considering two threads, each of which
contains an if-then-else statement, and assuming that at analysis time we do not know which
branch will be taken, we have to consider four possibilities, namely then-then, then-else, else-
then or else-else branches that might run concurrently when running the threads. With just a few
loops and branch expressions in the threads, the number of combinations of program points rises
rapidly.

In a thread-modular approach the state of each thread is initially modelled separately as a
single-threaded execution. The possible interaction of threads is considered as extra constraints
on the behaviour of a single thread (sometimes called interferences). We now explain how we
formalise and implement this approach for multi-threaded XC programs with synchronous chan-

nel communication.
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Modelling XC threads and synchronization The interpreter is based on the semantics pre-

sented in Deliverable D3.1, but with some changes to reflect the thread-modular approach.

e The treatment of the par construct expresses the fact that each thread starts a run inde-
pendently, and ignores synchronization. A multi-step relation (see next item) is used to
express the start of the threads, each of which runs to completion. The final state ¢’ after
executing S; || Sz is unknown. Note that if one or other of the threads does not terminate,

then neither does the par statement. We return to this later.

(S join(L)Y, o) —*  (Sy:join(L"), o) —
(Sy || S, ) THEE (skip, o)

We also add an extra statement called join(L) to the end of each thread, where L is the label

(thread-start)

of the respective thread. This is a marker, whose operational behaviour is the same as skip,

whose purpose is to allow the detection of the end of a thread’s execution.

e The multi-step transition —* appearing in the above transition is a simplified version of
the multi-step transition introduced in the earlier semantics, ignoring the final state, but
adding a label. Previously there was a relation (Sy, 0g)—*(S1,01) expressing a multi-
step “run” from (Sy, 0o) to (S1,01). Ignoring the final configuration and adding a label
we get a relation (S{, o¢)—*. The label L gives information about the program point at
the start of the run. The construct (S{, 0o)—>* can be read as “there is a run starting at

configuration (Sy*, o). It is defined as follows.

” (step-skip)

(skip®™®, o) —»

*

(So,00) = (S1,00)  (SF, 1) —
<S(]]:7 UO>—>*

(step-trans)

The reason for ignoring the final state is that many of the programs we consider are per-
petual processes that do not have any final state; we focus instead on which states are

reachable from the initial state.

e The treatment of the send z ¢ and = := get ¢ commands is modified to ignore synchroni-
sation. The transition for send = ¢ sends the value of x on the channel ¢ without checking
that the value is received; the transition for x := get c reads an unknown value from the

channel c.

46



void consumer(chanend couts) { int main ) {
int j; chan a;
while (1) { int x;
couts :> j; par {
ifor (int i=0;i<j;i++) while (1){
: led_port<: (i& 1); inP > x:
} 1 producer(x,a);
} - }
: consumer(a);
void producer(i.ﬁt n, chanend couts) { }
for (int i=0;i<n;i++) { 1
|printf("i=%d\n",i);
W, - g
) Ll start of inter-
} communication block

Figure 14: Simple Producer-Consumer XC program

3.3.3 Analysis of Threads and Communication Structure

In Figure |14/ we show an example of a simple multi-threaded XC program. In the program there
are two threads (the producer and the consumer), which share a channel. The producer writes
values onto the channel, which are then processed by the consumer.

The semantics-based translation initially generates fours sections of single-threaded CLP

clauses, representing the following parts of the program.

e From the entry point (call to main procedure) up to the par statement.
e The producer thread.
e The consumer thread.

e The code following the par statement (which happens to be empty in this program).

3.3.4 Generating the Reach Relation

A reachability transition relation is generated directly from the run clauses shown above, by
reversing the transition rules. That is, for each CLP clause of the form

rung (X, ..., Xp,) = co( X1, Xy, Ya, o0, Yay), run(Yr, .o, Y.
there is a corresponding reachability transition of the form
reach;(Y1,...,Y,,) —c(X1,..., Xy, Y1,...,Yy,), reachy(Xy, ..., Xy,).

that states that point j is reachable if point 7 is reachable and the transition constraint is satisfied.
We also add a fact stating that the entry point is reachable.
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Adding synchronization constraints to the reachability relation The semantics as shown
above omits any modelling of parallelism or synchronization. The synchronization information
is now added to the reachability relation as extra constraints. We add extra clauses to the reach-

ability clauses, expressing the following.

e The start state of each thread is reachable, if the par statement containing the thread is
reachable.

e The state immediately after the par statement is reachable if the join statements of both
threads is reachable.

e The point immediately following a send x ¢ statement is reachable, if the send x ¢ statement
is reachable and a corresponding statement x := get c is reachable.

e The point immediately following a  := get ¢ statement is reachable, if the x := getc

statement is reachable and a corresponding statement send x c is reachable.

In order to generate the last two rules, the CLP clauses are searched for matching channel com-
munication points. The last two rules are over-approximations of the actual synchronization,
in that different reachable states of the same get and send statements are not distinguished.

Nonetheless it results in a safe over-approximation of the reachable states of each thread.

Analysis of the combined run/reach relations

e Analysis of the reachability relation permits dataflow analysis between threads, using well-
established techniques from analysis of CLP. For example, in Figure |14, we can show that
the values received by the consumer at the statement couts :> Jjrange from 0 to x—1,
where x is the value sampled from the port in the statement inP :> x. Although in a
small program such dependencies are easy to track, such dataflow is not obvious in more
complex code.

e Secondly, we can isolate the sections of code in the run relation that are not synchronized.
This allows us to estimate the resources used by each thread between communications,
and estimate the load balance between threads. For instance, analysis of the relation shows
that if a value of O is sampled from the port in the statement inP :> x, the consumer
is not invoked at all. More generally, between each channel send operation, the producer
performs a constant amount of work, but the consumer does work proportional to the value
sent. Thus the load imbalance increases with the value sent on the channel.
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e Furthermore, analysis of the run/reach relations shows which sections of code can run in
parallel. Threads started at the same par statement can run in parallel, upto the next syn-
chronization point, and code in threads immediately following a channel communication

can run in parallel, upto the next synchronization point.

Figure [14] illustrates how the tool could highlight the channel communication (in blue) and

sections of code that run in parallel in each thread between communications (in red).

3.4 Optimization via Dynamic Voltage and Frequency Scaling (DVFS) and
Task Scheduling

An optimal task scheduling can provide significant energy savings in XMOS chips as well as in
the great majority of today’s computing systems that support parallelism. Additional energy sav-
ings can be obtained by performing Dynamic Voltage and Frequency Scaling (DVES), a feature
offered by many modern devices. DVFS enables changes to voltage and frequency “on-the-fly”
and allows obtaining energy savings while meeting task deadlines.

In this section we describe an optimization tool that we have developed for solving the fol-
lowing general problem: given a multicore system able to execute multiple threads per core and
offering the possibility of performing DVES per core, a set of tasks, each represented by its re-
lease time, deadline, and estimated power consumption (if available), find an optimal task-core
(thread) assignment, so that all deadlines are met and the consumed energy is minimised. This
definition includes task sets where the tasks can be related or unrelated. If there are dependencies
among the tasks, any task cannot be released before all the tasks it depends on are finished. The
dependency is expressed by the release time. If there are periodic tasks, the beginning of the
periods can be considered as the task release time and the end of the periods as the task deadline.

Special cases can include one or more relaxations of the previous definition:
e The underlying hardware can be either multicore or multithreaded.

e [t does not offer the DVFES feature.

e The tasks can all start at the same time.

e The deadlines do not have to exist. Note however that in this case it is not beneficial to
scale down voltage and frequency indefinitely, since static power consumption becomes
more significant than dynamic power consumption. Thus, in this case, minimal possible

voltage and frequency do not necessarily imply minimal energy consumption.
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3.4.1 Usage and Interface

The tool can be used standalone through the command line, but it can also be integrated into a
more general tool, e.g., CiaoPP.
The input to the tool are the following files:

o A file that contains the necessary information about each task. There is a line per task with
the following fields (given in this order):
— Task ID - unique for each task.
— Release time: the moment when the task becomes available.
— Estimated execution time.
— Estimated power consumption (if available).
— Deadline: the moment until the task has to be finished; if it does not exist, the field
should be left empty.

e A file which describes the architecture:

— Number of cores.

— Number of threads per core; if there are no multiple threads per core, it should contain
0.

— Information about voltage and frequency scaling: if applicable, it should provide
possible (V, f) pairs, if not, it should be empty.

The execution time can be set from the beginning by the programmer, or can be estimated by
using some analysis tool. Also, the power consumption can be estimated via an analysis tool.

Some examples of tasks are the following:

Task 0 with release time: 7 deadline: 8 number of cycles: 21
Task 1 with release time: 9 deadline: 10 number of cycles: 33
Task 2 with release time: 1 deadline: 2 number of cycles: 23

Also, the underlying architecture can be specified in the following way:
Cores: 1
Threads per core: 8
Voltage: 0.95 Frequency: 500000000
Voltage: 0.87 Frequency: 400000000
Voltage: 0.80 Frequency: 300000000
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Voltage: 0.80 Frequency: 150000000

Voltage: 0.75 Frequency: 100000000

Voltage: 0.70 Frequency: 50000000

where voltage and frequency are given in their corresponding basic units: Volts (V) and Hertz
(Hz).

The output of the scheduler is a file with the following information for each task:
e The exact moment when its execution starts.

e The core (thread) on which the task is executed.

e (V) f) state of the core where the task is being executed.

An example of the output of the tool for a single core system is the following:
Scheduling of tasks on core: 1
Task 9 with release time: 1 deadline: 5 number of cycles: 40
frequency: 5e+07 scheduled at: 1 until 5
Task 18 with release time: 0 deadline: 2 number of cycles: 8
frequency: 5e+07 scheduled at: 0 until 1
Task 21 with release time: 1 deadline: 10 number of cycles: 19

frequency: 5e+07 scheduled at: 5 until 10

Scheduling of tasks on core: 8

Task 22 with release time: 5 deadline: 7 number of cycles: 24
frequency: 5e+07

scheduled at: 5 until 7

Task 4 with release time: 2 deadline: 3 number of cycles: 10
frequency: 5e+07

scheduled at: 2 until 3

Task 6 with release time: 4 deadline: 6 number of cycles: 9
frequency: 5e+07 scheduled at: 4 until 5

Task 23 with release time: 1 deadline: 9 number of cycles: 24
frequency: 5e+07 scheduled at: 1 until 2

scheduled at: 3 until 4

scheduled at: 7 until 9

Freqg: 5e+07 assigned at 5
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In order to use the scheduler tool as a standalone tool, we should provide two input files (the
extension is not important since they are parsed as text files), namely fasks and architecture in
the formats explained above. They are put in the same folder, and the tool distinguishes them
by their format. Figure [I5]shows a typical usage of the tool in the command line, where we use
the YDS algorithm for scheduling (to be explained later). The input files are given in the folder

Assertions, and the output is written in the file out in the output format explained above.

800 [L] YDS — bash — bash — 181x24

Last login: Mon Oct 6 10:22:36 on ttys00o
IMDEA-2:~ zbankovic$ cd Code/YDS
IMDEA-2:YDS zbankovic$ ./YDS Assertions/ >out]]

Figure 15: Command line for using the YDS scheduling algorithm.

We have developed two implementations of the tool (scheduler), depending on the way the

execution time and power consumption are estimated:
e deterministic, where those values are estimated as concrete (deterministic) values, and

e stochastic, where the values are treated as random variables, whose probability density
function, as well as interdependence, is estimated using a probabilistic analysis.

3.4.2 Methodology and Scenarios for Using the Tool

Given that the scheduling tool has been designed to solve a quite general problem, it can be

specialized and be applied in many different scenarios. Some typical scenarios are the following:

o Embedded systems that support parallelism: since these systems usually execute certain
application, it can be possible to split the application into tasks that run in parallel. The
scheduling tool is then applied on these subprograms. The parallelization of the application

can be performed by a parallelizing compiler, or can be done manually by the programmer.

e Small to large scale parallel computing systems: these systems usually run a set of unre-
lated tasks, so the application of the scheduler is straightforward. However, if the level of
parallelism they support is bigger than the number of tasks, the most extensive tasks can
be further parallelized for a more efficient usage of the underlying system. In this case, the

scheduler is applied in the same way as in the previous case.
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Figure 16: General Flowchart of the Scheduling Tool.

3.4.3 Architecture of the Tool

An overview of the general architecture of the tool is presented in Figure[I6] If the scheduler is
integrated in a tool chain that requires a different format for the input and output data, we would
add modules for translating the input from the tool chain to the internal format of the scheduler,
as well as for translating the output of the scheduler to the format required by the tool chain.

The core part of our tool, i.e., the scheduler, can be implemented using different algorithms.
Currently, we have implemented a custom genetic algorithm based scheduler for both stochastic
and deterministic scheduling [BLG14]. In addition, we have adapted the well-known YDS al-
gorithm [YDS93]], initially designed for DVFS-enabled single core, to a multicore environment
using two different options for the initial assignment of tasks to cores:

1. The task is assigned to the core with the least load (at the moment of assigning the task).

2. The task is assigned to the core with the least density. The density is the total number of
cycles divided by the interval duration, in the interval the task is supposed to be executed,

1.e., the interval whose end points are the task release time and the task deadline.

3.4.4 Evaluation and Experimental Results

At the moment, the tool has been evaluated using synthetic data and/or typical power consump-
tion of XMOS chips. The different experiments that we have performed confirm that:

e The application of DVFS can significantly reduce energy consumption: in our experi-
ments, using the typical power consumption of XMOS chips, the savings can go up to
34% [BLG13].

e The stochastic scheduler can significantly improve the results of scheduling in the situ-
ations where real values deviate from the estimated ones used to create the deterministic
scheduler [BLG14]. In our experiments, additional savings of up to 15.4% can be achieved.
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e In the case of stochastic scheduling, if there is dependency among different inputs (execu-
tion time and power of different tasks), and with a proper model of it, additional savings
can be obtained. We have performed experiments by controlling task dependency modeled
with Gumbel copulas [NelO3], and we have achieved average improvements of around
15%, up to 20%, in comparison to the case where the dependency is not modeled, i.e.,
assuming task independence.

Although we still have not tested the schedulers on real data, the obtained rates confirm
the potential of energy-aware scheduling coupled together with DVES for optimising energy
consumption.
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4 Work in Progress

This section reports on work in progress towards developing a tool for Worst Case Energy Con-
sumption (WCEC) based on the implicit path enumeration technique, and another tool for Horn

clause verification.

4.1 Worst Case Energy Consumption Using Implicit Path Enumeration

A current area of research that is being investigated by the project is Worst Case Energy Con-
sumption (WCEC) using Implicit Path Enumeration (IPE) techniques. This technique is fre-
quently used to estimate Worst Case Execution Time (WCET) of a program and was firstly
adopted in [JMLO6] for inferring the WCEC of a program. We adopt the same methodology us-
ing our parametric energy model. Currently a prototype tool is under development utilizing this
analysis. In the next subsections a description of the techniques employed is provided along with

sample outputs from an example benchmark using the tools that are currently under development.

4.1.1 Integer Linear Programming (ILP) Formulation

In our case we use the same formulation used in [LM97]], but we replace the time cost of a CFG
basic block with its energy cost provided by our energy model in a similar approach to [JMLO6].
The formulation adopted is as follows.

Let x; be the number of times the basic block B; is executed when the longest path of the pro-
gram CFG is taken. Let ¢; be the energy cost assign to the 5; block using our energy model. The
energy cost of a CFG block is calculated by aggregating the energy cost of all ISA instructions
included in the block.The energy cost of each ISA instruction is provided by the parametric ISA
energy model as described in Deliverable D2.2. Putting them all together the energy consumption

of a program with N basic blocks is given by the expression:

N

i=1

Considering that Equation (I]) represents the energy consumption of our program, the number
of values the xi’s can take are constrained by the program structure and functionality and there-
fore by the data inputs. Solving this equation to get the upper bounds of energy consumption
requires maximizing it and taking into account the restrictions driven by the program structure
and functionality. Stating those restrictions in the form of linear constraints enables the use of
ILP to maximize the Equation (T
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4.1.2 Structural Constraints

To extract the structural constraints of a program, the CFG is created and annotated. The edges
are annotated with d;’s and the basic blocks with x;’s variables, which represents the number of
times the edges or blocks are exercised during the program execution respectively. In order to
have a program that normally executes and returns the number of times you enter a basic block
must be equal to the number of times you exit the basic block. Hence the z; of a basic block
is equal to the sum of d;s of edges entering the block and the sum of d;s of edges exiting the
block. For clarity the annotated CFG of jpegDct, one of the benchmarks analyzed, is given in
Figure 17| alongside with the retrieved structural constraints in linear expressions. The edges d|
and d,, representing the start and the exit of the CFG respectively, are set to one as they can be
executed only once. The source code for this example is given in Code Sample 3]

Code Sample 3: The jpegDct benchmark source code

void jpegdct (short d[], short r[])
{
long int t[12];
int v=0;
short i, j, k, m, n, p, ic, ik;
for (ik=2; ik; ik—--) {
for (i = 8; 1i; i--, v+=8) {
for (J = 3; 3>=0; j——) |
// some code

}

// some code

In the case of function calls, f-edges are used to connect the caller function to the start of
the CFG of the callee function. Then the f-edge is treated in the same way as a d-variable to

construct the structural constraints in the caller function.

4.1.3 Functionality Constraints

Functionality constraints are used to characterize anything that can affect the program function-
ality. This includes loop bounds and path information, and usually can be only specified by the
programmer as static analysis cannot extract this kind of information in most of the cases.The
minimum requirement for user input to enable the bounding of the problem, is the loop bounds.

This is standard also in timing analysis. Providing this kind of information is usually easy for
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dol dp =1 (2)

X1

dll ry=di=dy (3)
X2

A Ty =di+dy=dy (4)
‘2733 x3 =dy +dy = d3 (5)

ds C| X4 d?) dy
dz X J]4Zd3+d5:d4+d5 (6)

X5

ds | x5 =dy =de +d7 (7)
L6 w6 =ds = ds+do (8)
ds |
X7 x7 = dg = dyo )

d

o do=1  (10)

Figure 17: jpegDct benchmark annotated CFG and it’s corresponding Structural Constraints

formed as linear expressions

the programmer, as the bounds of the loops usually are associated by the programmer. Figure
demonstrates the loops bounds given by the user for the jpegDct benchmark to our prototype
tool.

Finally in Equation the ILP formulated function, extracted by our prototype tool, for
the jpegDct benchmark is given. This function is passed to one of the many ILP open source
solvers, namely the 1psolver, to be maximized and retrieve the upper bound on the energy
consumption for this program. Figure[I9]shows the output of the solver. In the output the energy
cost of the worst case execution path is given in (nano joules) and also the times each BB and

edge will be executed using this path.

maXZblXI1+b2XZE2+b3XIE3—|—b4XZL‘4—|—b5X(L’5—|—b6><l'6+b7><$7 (17)

4.2 Tools for Horn Clause Verification

Constrained Horn clauses (CHCs) provide a suitable intermediate form for expressing the se-
mantics of a variety of programming languages (imperative, functional, concurrent, etc.) and
computational models (state machines, transition systems, big- and small-step operational se-
mantics, Petri nets, etc.) [PGS98, BG09, GLPR12]. As a result it has been used as a target
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lrl <= 22 (1D

r2 <= 2rl (12)

122 <= 23 (13)
ds do

r3 <= 8z2 (14)

lz3d <= 24 (15)

4 <= 4z3 (16)

Figure 18: jpegDct benchmark annotated CFG and it’s corresponding Functional Constraints

formed as linear expressions

@ sinlgeThread : bash - Konsole

sinlgeThread : bash

Figure 19: jpegDct ILP formulated function
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language for software verification and has been chosen as the main internal representation for
the ENTRA project tools. Recently there is growing interest in CHC verification from both the
logic programming and software verification communities, and several verification techniques
and tools have been developed for CHC [GGL™ 12, [dMBOS, DAFPP14, HKG™12]. Pure con-
straint logic programs (CLP) are semantically and syntactically identical to CHCs

We have constructed a toolkit based on established CLP analysis and transformation tech-
niques, whose purpose is verification of assertions in programs as well as discovery of useful

invariants. Its main components are the following.

Unfolding. Let P be a set of CHCs and ¢y € P be H(X) < By,p(Y), By where By, Bs
are possibly empty conjunctions of atomic formulas and constraints. Let {ci,...,c,,} be the
set of clauses of P that have predicate p in the head, that is, ¢; = p(Z;) + D;, where the
variables of these clauses are standardised apart from the variables of ¢y and from each other.
Then the result of unfolding ¢y on p(Y") is the set of CHCs P’ = P\ {¢o} U{c},...,,} where
¢, = HX) «+ B,Y = Z;,D;,B;. The equality Y = Z; stands for the conjunction of the
equality of the respective elements of the vectors Y and Z;. It is a standard result that unfolding
a clause in P preserves P’s minimal model [PP99]. In particular, P |~ false = P’ |~ false.

Specialisation. A set of CHCs P can be specialised with respect to a query. Assume A is an
atomic formula; then we can derive a set P4 such that P = A = P4 = A. P, could be simpler
than P, for instance, parts of P that are irrelevant to A could be omitted in P4. In particular, the
CHC verification problem for P, and P are equivalent. There are many techniques in the CLP
literature for deriving a specialised program P4. Partial evaluation is a well-developed method
[Gal93, [Leu99].

We make use of a form of specialisation known as forward slicing, more specifically redun-
dant argument filtering [LS96]], in which predicate arguments can be removed if they do not affect
a computation. Given a set of CHCs P and a query A, denote by P7f the program obtained by
applying the RAF algorithm from [LS96] with respect to the goal A. We have the property that
P E A= P} = Aand in particular that P |= false = P3f_ = false.

Query-answer transformation. Given a set of CHCs P and an atomic query A, the query-
answer transformation of P with respect to A is a set of CHCs which simulates the computation
of the goal <~ A in P, using a left-to-right computation rule. Query-answer transformation is
a generalisation of the magic set transformations for Datalog. For each predicate p, two new
predicates p,ns and pgyer, are defined. For an atomic formula A, A,,s and Ay, denote the
replacement of A’s predicate symbol p by pu,s and pgyer, respectively. Given a program P and
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query A, the idea is to derive a program P35> with the following property P |= A iff P§’ = Aups.
The Agyery predicates represent calls in the computation tree generated during the execution of
the goal. For more details see [DR94, |(GdW93, I(CD93]. In particular, Pfifse = false,,s = P |
false, so we can transform a CHC verification problem to an equivalent CHC verification problem
on the query-answer program generated with respect to the goal < false.

Predicate splitting. Let P be a set of CHCs and let {c;,...,c,} be the set of clauses in P
having some given predicate p in the head, where ¢; = p(X) < D;. Let C, ..., Cy be some
partition of {cy, ..., ¢}, where C; = {c;,, ..., ¢;, }. Define k new predicates p; .. . py, where
p; is defined by the bodies of clauses in partition C;;, namely Q7 = {p;(X) + Dj,,...,p;(X) «
D, }. Finally, define k clauses C;, = {p(X) < p1(X),...,p(X) < pg(X)}. Then we define a

splitting transformation as follows.
1. Let P = P\ {c1,...,cn} UC,UQ U ... U Q"

2. Let Pt be the result of unfolding every clause in P’ whose body contains p(Y') with the
clauses C),.

In our applications, we use splitting to create separate predicates for clauses for a given predi-
cate whose constraints are mutually exclusive. For example, given the clauses new3 (A, B) :—
A=<99, new4 (A,B) and new3 (A,B) :— A>=100, new5 (A, B), we produce two new
predicates, since the constraints A=<99 and A>=100 are disjoint. The new predicates are de-
fined by clauses new3; (A, B) :— A=<99, newd (A,B) andnew3,(A,B) :— A>=100,
new5 (A, B), and all calls to new3 throughout the program are unfolded using these new
clauses. Splitting has been used in the CLP literature to improve the precision of program anal-
yses, for example in [SDSO1]. In our case it improves the precision of the convex polyhedron
analysis discussed below, since separate polyhedra will be maintained for each of the disjoint
cases. The correctness of splitting can be shown using standard transformations that preserve the
minimal model of the program (with respect to the predicates of the original program) [PP99].

Assuming that the predicate false is not split, we have that P |= false = P!t = false.

Convex polyhedron approximation. Convex polyhedron analysis [CH7/8]| is a program anal-
ysis technique based on abstract interpretation [CC77]. When applied to a set of CHCs P it
constructs an over-approximation M’ of the minimal model of P, where M’ contains at most
one constrained fact p(X) < C for each predicate p. The constraint C is a conjunction of linear
inequalities, representing a convex polyhedron. The first application of convex polyhedron anal-
ysis to CLP was by [BK96]. Since the domain of convex polyhedra contains infinite increasing
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chains, the use of a widening operator is needed to ensure convergence of the abstract inter-
pretation. Furthermore much research has been done on improving the precision of widening
operators. One technique is known as widening-upto, or widening with thresholds [HPR94]].

Recently, a technique for deriving more effective thresholds was developed [LCJG1 1], which
we have adapted and found to be effective in experimental studies. The thresholds are computed
by the following method. Let TS be the standard immediate consequence operator for CHCs, that
is, TS(I) is the set of constrained facts that can be derived in one step from a set of constrained
facts I. Given a constrained fact p(Z) < C, define atomconstraints(p(Z) < C) to be the set of
constrained facts {p(Z) <~ C; | C = C1 A...AC}, 1 < i < k)}. The function atomconstraints is
extended to interpretations by atomconstraints(/) = UP(Z)HCH{atomconstraints(p(Z) —C)}.

Let I7 be the interpretation consisting of the set of constrained facts p(Z) < true for each
predicate p. We perform three iterations of 7S starting with /7 (the first three elements of a “top-
down” Kleene sequence) and then extract the atomic constraints. That is, thresholds is defined
as follows.

thresholds(P) = atomconstraints(Tg(?’) (IT))

A difference from the method in [LCJGI11]] is that we use the concrete semantic function Tﬁ
rather than the abstract semantic function when computing thresholds. The set of threshold
constraints represents an attempt to find useful predicate properties and when widening they help
to preserve invariants that might otherwise be lost during widening. See [LCJG11] for further
details. Threshold constraints that are not invariants are simply discarded during widening.

4.2.1 Combining Off-the-shelf Tools: Experiments

CHC Program P RAF — Redundant Argument Filtering
FU — Forward Unfolding
QA — Query Answer Transformation

Saf
RAF FU QA PS TC CHA P25,
PS — Predicate Splitting Junknown
TC — Threshold Constraint

CHA — Convex Hull Analyzer

Figure 20: The basic tool chain for CHC verification.

The motivation for our tool chain, summarised in Figure 20} comes from our example pro-

gram, which is a simple yet challenging program. We applied the tool chain to a number of
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benchmarks from the literature, taken mainly from the repository of Horn clause benchmarks in
SMT-LIB2 (https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/) and other sources
including [GNS™13] and some of the VeriMap benchmarks [DAFPP14]. We selected these ex-
amples because many of them are considered challenging since they cannot be solved by one or
more of the state-of-the-art-verification tools discussed below. Programs taken from the SMT-
LIB2 repository are first translated to CHC form. The results are summarised in Table 3]

In Table [3} columns Program and Result respectively represent the benchmark program and
the results of verification using our tool combination. Problems marked with (*) could not be
handled by our tool chain since they contain numbers which do not fit in 32 bits, the limit of our
Ciao Prolog implementation, whereas problems marked with (**) are solvable by simple ad hoc
modification of the tool chain.

Problems such as systemc-token-ring.01-safeil.c contain complicated loop structure with
large strongly connected components in the predicate dependency graph. As a result, our con-
vex polyhedron analysis tool is unable to derive the required invariant. However overall results
show that our simple tool chain begins to compete with advanced tools like HSF [GGL™12],
VeriMAP [DAFPP14], TRACER [JMNSI12], efc. We do not report timings, though all these
results are obtained in a matter of seconds, since our tool chain is not at all optimised, relying on
file input-output and the individual components are often prototypes.
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Table 3: Experiments results on CHC benchmark program

SN | Program Result || SN | Program Result

1 MAP-disj.c.map.pl verified || 17 MAP-forward.c.map.pl verified
2 | MAP-disj.c.map-scaled.pl | verified || 18 tridag.smt2 verified
3 tl.pl verified || 19 grdcmp.smt2 verified
4 tl-a.pl verified || 20 choldc.smt2 verified
5 t2.pl verified || 21 lop.smt2 verified
6 t3.pl verified || 22 pzextr.smt2 verified
7 t4.pl verified || 23 grsolv.smt2 verified
8 t5.pl verified || 24 INVGEN-apache-escape-absolute | verified
9 pldil2.pl verified || 25 TRACER-testabs15 verified
10 | INVGEN-id-build verified || 26** | amebsa.smt2 verified
11 | INVGEN-nested5 verified || 27%* | DAGGER-barbr.map.c verified
12 | INVGEN-nested6 verified || 28* | sshsimpl-s3-srvr-1a-safeil.c NOT

13 | INVGEN-nested8 verified || 29 sshsimpl-s3-srvr-1b-safeil.c NOT

14 | INVGEN-svd-some-loop | verified || 30* | bandec.smt2 NOT

15 | INVGEN-svdl verified || 31 systemc-token-ring.01-safeil.c NOT
16 | INVGEN-svd4 verified || 32* | crank.smt2 NOT
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