
Swallow: Building an Energy-Transparent
Many-Core Embedded Real-Time System

To appear in DATE 2016, Dresden, Germany.
Simon J. Hollis and Steve Kerrison

Department of Computer Science, University of Bristol, United Kingdom
E-mail: harryhollis@cantab.net, steve.kerrison@bristol.ac.uk

Abstract—Swallow is a many-core platform of interconnected
embedded real time processors with time-deterministic execution
and a cache-less memory subsystem. Its largest current configu-
ration is 480 × 32-bit processors. It is open-source, designed
from the ground up to allow the exploration of flexibility,
scalability and energy efficiency in large systems of embedded
processors. Further, it enables the behavior of various structures
of parallel programs to be explored. It is a proof of concept
and design example for other potential systems of this kind.
We present the energy transparency features and proportional
energy scaling of the system that allows it to be expanded beyond
hundreds of cores. We discuss the design choices, construction
and novel network implementation of Swallow. Currently, the
system provides up to 240 GIPS, with each core consuming
71–193 mW, dependent on workload. Its power per instruction
is lower than almost all systems of comparable scale. We
discuss the challenges associated with efficiently utilizing this
system, particularly communication/computation ratios, and give
recommendations for future systems and their software.

I. INTRODUCTION

Swallow is a scalable many-core system of multi-threaded
real-time processors. Our contributions are the system itself,
and the design process used to construct an energy-transparent
multi-core research system. An energy-transparent system
provides a predictable relationship between software execution
and hardware energy consumption.

The XMOS xCORE XS1-L micro-architecture [1] is used for
the underlying compute and network architecture, providing
highly predictable time-deterministic program execution and
a low latency network. This is the first example of this
architecture assembled at this scale, with a network of 16 cores
per Swallow board (slice), that can be assembled into systems
of much larger sizes, such as in Fig. 1. The current largest
demonstrated system is 480 cores. The hardware designs are
available under an open source license.

Swallow has been developed as an experimental system
for investigating techniques to improve energy efficiency in
scalable parallel systems. Key aims of the platform include:

• Scale to hundreds of cores and beyond.
• Deliver proportional scaling in performance and energy.
• Make energy consumption transparent to aid parallel

software design exploration for energy efficiency.
• Support a variety of parallel application types and data

sharing methods [2], including groups of tasks, pipelines,
client/server, message passing and shared memory.

Figure 1. An eight board, 128 core stack of Swallow slices.

• Use a real-time embedded system, in contrast to typical
heavyweight parallelism of application specific or non-
real-time domains.

To support these aims, we built a system that allows flexible
expansion and provides energy measurement capabilities. This
paper focuses on Swallow and the design challenges surround-
ing it. A distributed operating system has been developed for
Swallow [3], and a wider study of benchmarks and program
structures for Swallow and other platforms is future work.

In this paper, we first examine Swallow’s energy mea-
surement capabilities in Section II and its appealing energy
proportionality in Section III. Then, we discuss the design
considerations and decisions in Section IV, before explaining
the novel network implementation in Section V. This is
followed by Section VI, a survey of related work, and finally
conclusions are made in Section VII.

II. ENERGY MEASUREMENT

A number of power measurement points are designed into
the system to provide energy-transparency. Swallow cores are
powered by five separate switch-mode power supplies, each
fed from a main 5 V supply. Four of these deliver 1 V to two
chips each (four cores), the fifth supplies 3.3 V for I/O, etc.

Each power supply has a shunt resistor on its output and
associated probe points. We created a daughter-board that
incorporates sensitive differential voltage amplifiers and a
high-speed multi-channel analogue-to-digital converter. The
resulting system is able to measure individual power supply
energy consumption at up to 2 M samples/sec, or 1 M/s if all
supplies are sampled simultaneously. Schematics are available
online as part of the Swallow project open source contribution.



Table I
PER-BIT ENERGIES OF Swallow LINKS.

Link type Data Rate Max Link Power Energy per bit
On-chip 250 Mbit/s 1.4 mW 5.6 pJ/bit
On-board,
vertical 62.5 Mbit/s 13.3 mW 212.8 pJ/bit

On-board,
horizontal 62.5 Mbit/s 12.6 mW 201.6 pJ/bit

Off-board,
30cm FFC 62.5 Mbit/s 680 mW 10880 pJ/bit

A novel feature of this energy measurement is that the
measurement data can be collected on the Swallow slice
itself. In this way, it is possible to create a program that can
measure its own power consumption and adapt to the results.
Alternatively, the results can be streamed out of the system
using an Ethernet interface.

The separate measurement points allow Swallow to monitor
the balance of energy consumed by the processor cores and
external communication links. We present the energy-per-bit
for each link in Table I. The system construction and network
are described in more detail in Sections IV and V respectively.

The links consume approximately 200 pJ/bit for package-
to-package data. The low value can be attributed to the link
protocol, which requires only four wire transitions per byte of
data. Therefore, the worst case energy usage in communication
is half that of a naïve serial or parallel link. Once transmissions
go off-board via long flexible cables, the capacitance of those
cables becomes the dominating factor for energy, and the
energy cost per bit rises by a factor of 50.

Comparing communication costs to computation, profiling
of the XS1-L series of processors [4] shows that instructions
cause core energy consumption of in the range of 1.0–2.25µJ
at 400 MHz and 1 V, including static power and dependent
upon the operations they perform. We can consider this to be
31–70 nJ per bit operated upon. Data movement is therefore
relatively inexpensive compared to data processing, before
latency is considered.

III. ENERGY PROPORTIONALITY

In order for a many-core system to be scalable, its energy
consumption must be both efficient and proportional to the
computation it is undertaking. Modern high-performance com-
puting centers consume vast quantities of energy, and energy
density is the most important throttle of continued integration
of more and more compute power into a fixed space. In this
section, we demonstrate how Swallow is both energy efficient
and energy proportional, and is therefore scalable.

A. Swallow is energy efficient

The processor and memory architecture in Swallow are
targeted for the embedded application space, where low energy
is a primary design goal. A single processor consumes a
maximum of 193 mW when active, leading to 3.1 W/slice.
Losses in the on-board power supplies and other support
logic increase the overall power consumption to approximately
4.5W/slice (equivalent to 260 mW/core), so a complete 480
core, 30 slice system consumes only 134 W.

Proportion of power per node (260 mW total)

Computation &
memory ops
78 mW, 30 %

Static
68 mW, 26 %

Network
interface
58 mW,

22 %

DC-DC
& I/O

46 mW,
18 %

O
ther

10
m

W

Figure 2. Power distribution for each Swallow processor node.

100 200 300 400 500
Frequency (MHz)

0
100
200
300
400
500
600
700
800
900

Po
w

er
(m

W
)

Static leakage

Static + max.
dynamic leakage

Computational
dynamic power

Four active threads
Zero active threads

Figure 3. Power consumption with frequency scaling (four cores).

Overall, we see that approximately 18 % of power is used
in power supply conversion, support logic and I/O, 30 % is
consumed in performing computation, 26 % is spent in non-
computational static and dynamic power, and 22 % is used for
network interfacing (Fig. 2).

B. Swallow is energy proportional

The XS1-L used in Swallow supports dynamic frequency
scaling, based on run-time load factors [1]. Fig. 3 shows how
the power consumption of a group of four cores scales with
their clock frequency.

The power consumed per core, Pc, ranges from 193 mW at
500 MHz to 65 mW at 71 MHz when under heavy load, and
113 mW at 500 MHz to 50 mW at 71 MHz when all cores and
threads are idle. The characteristics are linear, giving a directly
energy proportional response to clock speed, f , under load,

Pc = (46 + 0.30f) mW. (1)

Thus, static power is 46 mW and dynamic is 0.3 mW/MHz.
Although the current version of Swallow does not support

voltage scaling, newer xCORE devices do support full DVFS.
The additional power savings from voltage scaling on top of
frequency scaling can be reliably calculated from knowing the
power formula P = CV 2f , where C is the capacitance of
the switching transistors and V is Vdd. We have determined
the minimum allowable voltage experimentally to be 0.6 V at
71 MHz and 0.95 V at 500 MHz, and calculate the equivalent
DVFS savings for Swallow in Fig. 4.

IV. DESIGN OF SWALLOW

The Swallow project sought to build a system from com-
mercially available components, keeping costs and design
effort low when compared to building a custom processor or
collection of IPs in a bespoke SoC/NoC. This demonstrates
that many-core systems can be built and used for research
quickly, cheaply and with relatively low risk. The system is



100 200 300 400 500
Frequency (MHz)

20
40
60
80

100
120
140
160
180
200

Po
w

er
(m

W
)

Power at 1V
Power after voltage scaling

Figure 4. Impact of voltage and frequency scaling on power consumption
(four active thread load) for one core.

also designed to be energy-transparent, giving insight into how
many-core systems and software consume energy.

A. Processor selection

The choice of processor was governed by a desire to build a
system of many predictable embedded processors, upon which
novel parallel programming approaches and experiments could
be performed, exploiting this predictability. This necessitates
the processor have time-deterministic instruction execution
in terms of both instruction scheduling and the behavior of
the memory hierarchy. The interconnection capabilities must
also scale, at least into the hundreds of cores. A number of
candidate processors are summarized in Table II.

As is visible in this comparison, few commercial processors
present the necessary characteristics of a scalable architecture.
The XMOS XS1-L is the only candidate to provide all of
these. We further investigated the architecture and determined
that its feature set was an excellent match for our system
requirements. Key characteristics of XS1 are:

• 64 KiB of single-cycle SRAM local memory per core;
• message passing between cores;
• fast on-chip links, tunable off-chip links;
• fixed instruction completion time for most instructions;
• hardware threads with no context overhead;
• ISA-level primitives for I/O and networking; and
• a network of up to 216 interconnected XS1-L cores.
There are several chips available that are based on XS1-L

architecture, with core counts of one or two, with a range of
packages and integrated peripherals. To maximize the density
of the final configuration a dual-core XS1-L2A device was
selected. The maximum operating frequency is 500 MHz,
yielding 500 MIPS potential throughput per core.

B. Scalable construction

For economic and reliability reasons, we decided to con-
struct Swallow from slices. A slice is shown in Fig. 5. Each
Swallow slice comprises sixteen processors across eight chips,
with ten off-board network links.

Several components are highlighted in Fig. 5, including
the chips, external interconnect headers along all four board
edges, along with GPIO near the top edge of the board for
further interfaces. The slices are 105 mm × 140 mm in size,
with a maximum operating power of 5 W at 12 V. Slices are

Dual-core 

processor

Dual-core 

processor

Swallow slice

Energy meas. 

domains

Dual-core 

processor

Dual-core 

processor

Dual-core 

processor

Dual-core 

processor

Dual-core 

processor

Dual-core 

processor

256Mbit 

SDRAM

Ethernet 

interface

Vertical links (layer 0)

Horiz. 

links 

(layer 1)

Additional GPIO JTAG routing

Power in
12V @ 0.3A

Grid interconnect
125Mbps per link

JTAG debug,
Xscope data

streaming

Dual-core chip
64KiB SRAM

per core

Figure 5. A Swallow slice, topology (left); photograph (right), one of forty
boards that can be assembled into a grid.

connected with flexible FFC-type ribbon cables. Mounting
holes allow vertical stacks to be assembled to minimize the
system’s footprint (see Fig. 1).

Forty Swallow slices have been manufactured, enabling the
construction of a 640 processor system. However, yield issues,
mostly with edge connectors, mean that the largest machine
we have been able to build and test is 480 cores.

C. Computational throughput

Equation (2) shows that the per-thread Instructions Per
Second, IPSt, and processor aggregate throughput, IPSc, scales
according to the number of active threads, Nt, on each core.

IPSt =
f

max(4, Nt)
, IPSc =

f ×min(4, Nt)

4
(2)

This is a property of the XS1-L processor’s four-stage execu-
tion pipeline [5] with overhead-free thread context switching.

D. Network-on-Chip Implementation

Swallow exploits the network technology of the XS1 ar-
chitecture. Each XS1-L processor has a number of external
communication links. Links are flexibly allocated, with soft-
ware configurable network partitioning and routing. Links can
be aggregated to form a single logical channel with increased
bandwidth; or connected separately to different parts of the
network, increasing the dimension of the network topology.
Links are managed by a switch, with one switch per core in
the XS1-L micro-architecture.

V. SWALLOW NETWORK

Swallow contains a low latency interconnect, suitable for
supporting arbitrary traffic types and a mix of parallel or
non-parallel applications. In the following section we give an
overview of the interconnect and implementation details.

A. Network topology

The device chosen for the Swallow system contains two
cores and exposes four external network links, in the way
shown in Fig. 6. The internal links have four times more



Table II
COMPARISON OF CANDIDATE SWALLOW PROCESSORS. ONLY THE XS1-L MEETS ALL REQUIREMENTS.

Processor
Features Requirements

Cores ×
data width

Super-
scalar Cache Typical memory

configuration
Multi-core

interconnect
Time

deterministic
ARM Cortex M 1×32-bit No Optional <varies> No W/o cache
ARM Cortex A, single core 1×32-bit Yes Yes <varies> No No
ARM Cortex A, multi-core 4×32-bit Yes Yes <varies> Coherent mem. No
Adapteva Epiphany 64×32-bit Yes No Local + global SRAM NoC + external No
XMOS XS1-L 1×32-bit No No Unified, single cycle SRAM NoC + external Yes
MSP430 1×16-bit No No I-Flash + D-SRAM No Yes
AVR 1×8-bit No No I-Flash + D-SRAM No No
Quark 1×32-bit No Yes Unified DRAM Ethernet No

XS1-L die

Core

Switch

XS1-L die

Core

Switch

XS1-L2 package

4 Gbps

switch links

500 Mbps

internal X-links
Un-bonded 

X-links

125 Mbps

External

X-links

4 Gbps 

switch links

Un-bonded 

X-links

125 Mbps

External

X-links

Figure 6. Network links of the XMOS XS1-L2 in a single Swallow node.

bandwidth than external links. Data words can be transferred
from the core to the network hardware with just three cycles of
latency (6 ns). This compares with 80 ns for the BlueGene/Q
system [6]. In Swallow, four external links are then arranged
to connect North, South, East and West to other devices.

An interesting artifact of Swallow’s device selection is that,
as is evident in Fig. 6, it is not possible to make a conventional
2D mesh topology. The internal links are already utilized by
core-to-core connections. This, combined with the pin-out of
the package, means that the most effective grid-like structure is
an unwoven lattice, shown in Fig. 7. This presents interesting
routing challenges, requiring a unique strategy.

The unwoven lattice network is effectively composed of two
layers, with each layer containing half of the available cores.
One layer routes in the vertical dimension and the other layer
routes in the horizontal dimension. Each node in the network
also has a connection to a node in the opposite layer, which
takes place within a chip package. This topology requires
that two-dimensional routes be translated into a form of 2.5 D
routing, where routing between layers is required to change
horizontal/vertical direction. The dimension order routing [7]
strategy that we use prioritizes the vertical dimension first.
If a node is attached to the horizontal layer and a vertical
communication is required, the message must therefore be sent
to the other layer first. In this scheme, there will be at most two
layer transitions; the exemplary case being two nodes attached
to the horizontal layer that do not share the same vertical index.

Links between Swallow slices use flexible cables, allowing
the physical topology of the network to be adjusted across a
wide variety of configurations, further extending the range of

experiments that can be carried out. New routing algorithms
can simply be programmed in software to cope with these.

B. Network implementation

Each processor node in the XS1-L2 contains one core and
one switch, which has four internal links and two external
links, as per Fig. 7. Switches use wormhole routing with
credit-based flow control. The instruction set abstracts the
network into channel communication which can take the form
of either channel switched or packet operation.

Routes are opened with a three byte header prefixed to
the front of the first token emitted from a channel end.
Any network links utilized along the route are held open
until the source channel emits a closing control token. If
the close token is never emitted, links are permanently held
open, effectively creating a dedicated circuit between two
endpoints. The overhead of packet data reduces throughput to
approximately 87 % of the link speed, but is dependent upon
the packet size.

Multiple links can be assigned to the same routing direction,
where a new communication will use the next unused link.
This increases bandwidth, provided the number of concurrent
communications is equal to or greater than the number of links.
This is particularly exploitable for on-chip communication,
where there are four links between each core. Provided no
more than three links are used for channel switching, packeted
data can still flow through the network.

C. Network details

On- and off-chip links all use the same five wire proto-
col [1], but run at different speeds to preserve signal integrity.
The connections and speeds used in Swallow are shown
in Fig. 6. There is a maximum throughput of 500 Mbit/s
per internal link and 125 Mbit/s per external link, providing
2 Gbit/s in-package and 500 Mbit/s externally.

Links send data in eight-bit tokens comprised of two-bit
symbols. A token’s transmit time is 3Ts+Tt, where Ts is the
inter-symbol delay and Tt the inter-token delay, measured in
clock cycles. The fastest possible mode is Ts = 2, Tt = 1,
yielding the aforementioned 500 Mbit/s at 500 MHz.

The total core-to-core latency for an eight-bit token is
270 ns. The total core-to-core latency for a 32-bit word be-
tween packages is 360 ns, equivalent to the time taken to for



Core 0

Core 1

Chip

Core 0

Core 1

Chip

Core 0

Core 1

Chip

Core 0

Core 1

Chip

Core 0

Core 1

Chip

Core 0

Core 1

Chip

Figure 7. Swallow’s unwoven lattice network topology.

the sending thread to execute 45 instructions. Between two
cores in a package, this reduces to 40 instructions. Core-local
communication takes 50 ns, or approximately 6 instructions.

D. Ratio of communication to computation

The ratio of computation to communication is important to
the performance of all systems, where a processor’s ability to
process data is governed by how quickly data can be moved
through the system. This ratio has been termed C

C in some
work [8], but for clarity, we adopt the notation E

C [9], where
E is execution or computation, and C is communication.
Communication can be considered movement of data to/from
memory, or messages over a network. We define the scope of
the ratios (single cores or cross-system) as appropriate.

On Swallow, it is possible for a single thread of execution
to issue 125 MIPS. Instructions operating on 32-bit data give
a maximum per-thread communication throughput of 4 Gbit/s.
With four or more threads active threads, E = 16Gbit/s. Core-
local communication can sustain this data rate, such that E =
C and therefore E

C = 1. However, where communication is not
core-local, worst case C becomes 250 Mbps and 62.5 Mbps
for internal and external links respectively. Communication
instructions will block if the output buffer is full.

The total bandwidth of all four package-internal links, C =
1Gbps, gives E

C = 16. External links are a quarter of the
bandwidth, so externally this ratio increases to 64, assuming
non-contended links. If four threads contend for one link, E

C
becomes 256.

Considering a slice of sixteen cores, if we take the vertical
bisection bandwidth, then C = 250Mbps. If all available
compute resource attempts to communicate over the bisection,
then E = 128Gbps and therefore E

C = 512, which is
undesirable. The impact of this on a full Swallow system
depends on the arrangement of slices and, most importantly,
the communication patterns of the programs running upon it.

The systems described in Section VI have system wide
computation to communication ratios ranging from 0.42 to
55. Larger, memory-oriented many-core processors such as the
Xeon Phi achieve analogous ratios for FLOPS/memory word

that sit in the top half of this range [10]. Based on the highly
desirable core- and chip-local ratio, and the potential impact
of contention over external links, the following considerations
should be made when running applications on Swallow:

• Prefer core-local communication where possible; it is low
latency, high bandwidth, with tight timing predictability.

• Chip-local communication should be the next preference.
Link reservation through channel switching can allow
similar levels of predictability, with a potential impact
on any external traffic routed through the chip.

• Off-chip communication is the most contentious, with
the least predictability in large systems, particularly with
complex communication patterns.

These problems are analogous to issues in memory hier-
archy of more conventional multi-core systems. However, in
Swallow, more control is placed in the hands of the developer,
where the allocation of work onto threads and cores, combined
with sensibly scheduled, mostly localized communication,
allowing predictability and good E

C to be achieved.

E. External network interface

Communication into and out of a Swallow system is per-
formed over an Ethernet bridge module. This module attaches
to the Swallow network and is addressable as a node in the
network, but forwards all data to and from an Ethernet inter-
face. Using this bridge, it is possible to both load programs1

into and stream data in/out of Swallow over Ethernet. Swallow
supports up to two Ethernet modules per slice (on the South
external links). Each bridge can support up to 80 Mbit/s of
full-duplex data transfer.

VI. RELATED WORK

There are few embedded systems made at the same scale
as Swallow, with even fewer designed for general purpose
computation. Here we identify noteworthy examples, and in
Table III provide a comparison of scaling, technology and
power characteristics of a number of recent systems.

The Tilera Tile [13] comes the closest to matching Swal-
low’s goals and form. The Tile64 is a 64-core device with five
overlaid networks to provide low latency and high throughput
between cores in a software configurable way. The effect is
to provide a very agreeable computation to communication
ratio of 2.4 with 64 cores, and general purpose computation
is supported as well as sophisticated network traffic manipu-
lation. The system is highly optimised for streaming traffic,
but relies on adding additional networks to improve network
performance in larger systems. Tilera’s 64 core device [15]
consumes 300 mW/core (19.2 W/device).

Adapteva’s specialized floating point Epiphany [14] archi-
tecture has a similar grid structure to Tilera Tile, with three
independent networks. It requires less than 2W for a 28 nm
64-core device (31 mW/core).

The Centip3De system [12] aims to use 3-D stacked dies
to implement a 64-core system based on the ARM Cortex-M3

1Swallow boot video: https://youtu.be/kUo11tTeYK0

https://youtu.be/kUo11tTeYK0


Table III
COMPARISON OF SCALE, TECHNOLOGY AND POWER PROPERTIES OF RECENT MANY-CORE SYSTEMS.

System ISA Cores / chip Total cores Tech. node Power / core Frequency µW/MHz
Swallow XS1 2 16–480 65 nm 193 mW 500 MHz 300
SpiNNaker [11] ARM9 17 1,036,800 130 nm 87 mW 200 MHz 435
Centip3De [12] Cortex-M3 64 64 130 nm 203–1851 mW 20–80 MHz 2540–2300
Tile64 [13] Tile 64 64–480 130 nm 300 mW 1000 MHz 300
Epiphany-IV [14] Epiphany 64 64 28 nm 31 mW 800 MHz 38.8

processor. Whilst its scale is within an order of magnitude of
Swallow, it relies on a series of crossbars and coherent DRAM
storage and thus scalability to larger sizes may be restricted.
Further, the design choices leave it with an undesirable com-
putation to communication ratio of 55. Centip3De exploits
near-threshold computing in 130 nm, small ARM Cortex-M3
cores and consumes 203–1851 mW/core, depending on its
configuration. Centip3De’s high power is mainly due its cache-
centric design, which is not present in Swallow.

The SpiNNaker system [11] is the best provisioned system
in the large scale. SpiNNaker, like Centip3De is based on
ARM cores, connecting up to one million ARM9 parts via
a highly-connected network. However, the system is targeted
at solving a single problem, making it very difficult to overlay
general computation tasks, and also making it hard to draw
parallels with Swallow and the other systems mentioned above.
It dissipates an average of 87 mW per core. It is more densely
integrated than Swallow, with 17 cores per chip. If Swallow
had these economies of scale, an equivalent level of power
efficiency is very possible to obtain, however this would
require the fabrication and packaging of new processors.

Swallow’s power per core is in the middle of the surveyed
range, in line with its operating frequency and process node
with respect to the other systems.

VII. CONCLUSIONS

We have presented a many-core real-time embedded system,
named Swallow, that has been demonstrated on a scale of
up to 480 cores, and can be scaled into the thousands. The
purpose of Swallow is to explore the challenges of building
a networked many-core system with predictable embedded
processors, and to demonstrate that such a feat is possible. It is
being used to investigate energy efficiency of parallel programs
and the impact of computation to communication ratios of such
systems on these programs. Swallow demonstrates excellent
core- and chip-local network latency and bandwidth, allow
predictable program behavior. The effects of slower, more
contended links can be mitigated through appropriate user-
controlled communication patterns and allocation of resources.

Swallow is energy efficient, using only 193 mW/core with
four active threads. XS1-L processors support dynamic fre-
quency scaling and this allows an energy reduction to as little
as 50 mW/core when idle. This could be lowered further in a
future revision, by using configurable power supplies.

The platform serves as a new case study and data source
in the spectrum of many-core systems, being the first with a
strong focus on using real-time, deterministic general purpose
embedded hardware.

OPEN SOURCE RELEASE

Swallow is an open source project released in several parts,
with licenses appropriate for the hardware, operating system,
supporting tools and application software. The latest status of
all releases can be found at https://swallow-project.github.io.

ACKNOWLEDGMENT

The authors would like to thank Jamie Hanlon for his advice
and technical discussions. The initial 10 prototypes of the
Swallow system were kindly sponsored by XMOS Ltd. The
full system was funded by the University of Bristol’s research
Pump-priming scheme. Research conducted on the Swallow
platform and the presentation of this work has received funding
from the European Union 7th Framework Program agreement
no 318337, ENTRA - Whole-Systems Energy Transparency.

REFERENCES

[1] D. May et al., “XS1-L System Specification,” pp. 1–40, 2008.
[2] J. Diaz et al., “A Survey of Parallel Programming Models and Tools

in the Multi and Many-Core Era,” IEEE Transactions on Parallel and
Distributed Systems, vol. 23, pp. 1369–1386, Aug. 2012.

[3] S. J. Hollis et al., “nOS: a nano-sized distributed operating system for
resource optimisation on many-core systems,” Tech. Rep., 2015.

[4] S. Kerrison et al., “Energy Modeling of Software for a Hardware Multi-
threaded Embedded Microprocessor,” ACM Transactions on Embedded
Computing Systems, vol. 14, pp. 56:1–56:25, Apr. 2015.

[5] XMOS, “XS1-L16A-128-QF124 Datasheet,” 2014.
[6] S. Kumar, “Challenges of Exascale Messaging Library Design: Case

Study with Blue Gene Machines,” in CASS Workshop, 2012. [Online].
Available: http://www.ccs3.lanl.gov/cass2012/talks/kumar.pdf

[7] H. Sullivan et al., “A large scale, homogeneous, fully distributed parallel
machine, I,” in Proceedings of the 4th annual symposium on Computer
architecture - ISCA ’77. New York, New York, USA: ACM Press, May
1977, pp. 105–117.

[8] M. Crovella et al., “Using communication-to-computation ratio in par-
allel program design and performance prediction,” in Proceedings of the
Fourth IEEE Symposium on Parallel and Distributed Processing. IEEE,
1992, pp. 238–245.

[9] D. May, “Communicating Processors: Past, Present and Future,”
in Networks-on-Chip, International Symposium on, 2008. [Online].
Available: http://www.cs.bris.ac.uk/~dave/nocs.pdf

[10] K. S. Solnushkin, “Memory Bandwidth for Intel
Xeon Phi.” [Online]. Available: http://clusterdesign.org/2013/02/
memory-bandwidth-for-intel-xeon-phi-and-friends/

[11] S. Furber et al., “Overview of the spinnaker system architecture,” IEEE
Transactions on Computers, vol. 62, pp. 2454–2467, 2013.

[12] D. Fick et al., “Centip3De: A cluster-based NTC architecture with 64
ARM cortex-M3 cores in 3D stacked 130 nm CMOS,” IEEE Journal of
Solid-State Circuits, vol. 48, pp. 104–117, 2013.

[13] S. Bell et al., “TILE64TM processor: A 64-core SoC with mesh inter-
connect,” in Digest of Technical Papers - IEEE International Solid-State
Circuits Conference, vol. 51, 2008.

[14] Adapteva, “E64G401 EPIPHANYTM 64-core microprocessor datasheet.”
[Online]. Available: http://www.adapteva.com/docs/e64g401_datasheet.
pdf

[15] A. Agarwal et al., “The Tile Processor Architecture, Embedded Multi-
core for Networking and Multimedia,” in Hot Chips, 2007.

https://swallow-project.github.io
http://www.ccs3.lanl.gov/cass2012/talks/kumar.pdf
http://www.cs.bris.ac.uk/~dave/nocs.pdf
http://clusterdesign.org/2013/02/memory-bandwidth-for-intel-xeon-phi-and-friends/
http://clusterdesign.org/2013/02/memory-bandwidth-for-intel-xeon-phi-and-friends/
http://www.adapteva.com/docs/e64g401_datasheet.pdf
http://www.adapteva.com/docs/e64g401_datasheet.pdf

	Introduction
	Energy measurement
	Energy proportionality
	Swallow is energy efficient
	Swallow is energy proportional

	Design of Swallow
	Processor selection
	Scalable construction
	Computational throughput
	Network-on-Chip Implementation

	Swallow network
	Network topology
	Network implementation
	Network details
	Ratio of communication to computation
	External network interface

	Related Work
	Conclusions
	References

