
SUBM
IT

TED

Fine-Grained Energy Modeling for Mobile
Application Source Code

ABSTRACT
Energy efficiency has a significant influence on user experience of
battery-driven devices such as smartphones and tablets. The goal
of an energy model for source code is to lay a foundation for the
application of energy-saving techniques during software develop-
ment. The challenge is to relate hardware energy consumption
to high-level application code, considering the complex run-time
context, such as user inputs and the virtual machine. Traditional
techniques build the energy model from bottom to top, mapping
a hardware energy model onto software constructs; this approach
faces obstacles when the software stack consists of a number of
abstract layers. Another approach that has been followed is to uti-
lize hardware or operating system features to estimate software
energy information at a coarse level of granularity such as blocks,
methods or even applications. In this paper, we propose a fine-
grained energy model for the source code, which is based on "en-
ergy operations" identified directly from the source code and able
to provide more valuable information for code optimization.

1. INTRODUCTION
In February 2015, the penetration of smartphones was about

75% in the U.S. This figure is expected to reach 85% by De-
cember 2015 [4]. With the improvement of hardware process-
ing capability and software development environment, appli-
cations are becoming much heavier and more PC-like. At the
same time, users are frustrated by limited battery capacity – ap-
plications running in parallel could easily drain a fully-charged
battery within 24 hours.

Furthermore, current software development is performed in
an energy-oblivious manner. Throughout the engineering life-
cycle, most developers and designers are blind to the energy
usage of code written by themselves. On the other hand, it
has been estimated that energy saving by a factor of as much
as three to five could be achieved solely by software optimiza-
tion [8]. To realize this, the first step is to understand the energy
characteristics of the source code at different levels of granu-
larity and from different points of view.

Energy modeling of software needs to bridge the gap be-
tween high-level source code and hardware, where energy is
consumed, in order to enable energy accounting of code. How-
ever, traditional bottom-to-top modeling techniques [6, 22, 26,
27] face obstacles when the software stack of the system con-
sists of a number of abstract layers. On the Android platform,
say, the source code is in Java and then translated to Java byte-
code, further to Dalvik [3] byte-code, native code and machine
code and finally has chance to execute on the processors and
consume energy. Consequently, the modeling task has to char-
acterize the links among all the layers.

Instead of building a software energy model layer by layer,
another approach to acquiring software-level energy informa-
tion is to use the hardware readings, like CPU state residency,
CPU utilization, L1/L2 Cache misses and battery trace, as pre-
dictors of software energy use [7,21,28,29]. However, they are
only capable of obtaining energy information at a coarse level
of granularity such as blocks, methods or applications. Two
pieces of work [9, 13] result in source-line energy information.
The former requires low-level energy profiles. The latter em-

ploys accurate measurement to acquire the energy consumption
of source lines.

The main contribution of this paper is to develop a fine-
grained software energy model based on "energy operations",
which are finer-grained than source lines. Rather than building
the software energy model from bottom to top, we identify the
basic energy operations (such as multiplications, comparisons
and method invocations) directly from the source code and find
their correlations to the energy cost by analyzing a diversity of
well-designed execution cases. The resulting energy model im-
plicitly includes the effect of all the layers of the software stack
down to the hardware.

The key contributions of this work are the following:

• A source-code energy model based on fine-grained en-
ergy operations, from which energy operations of source
lines, blocks and so on can be derived.

• An approach in which an explicit low-level energy model
or hardware profile is not required, since comprehensive
information is identified directly from the source code and
statistical analysis of a wide range of execution cases.

Our target platform is an Android development board with
two ARM quad-core CPUs, and the source code in our study
is a game engine used in games, demos and other interactive
applications. The result shows that the model’s inference accu-
racy achieves about 85.0%. Based on this model, we are able
to obtain more comprehensive energy information than coarse-
grained models or techniques could provide.

Firstly, in Section 2, we introduce the approach of identify-
ing energy operations from the source code. The architectural
setup and the design of execution cases are detailed in Section
3. We elaborate the data collection and the model construc-
tion separately in Section 4 and Section 5, based on which the
fine-grained energy accounting is shown in Section 6.

2. BASIC ENERGY OPERATIONS
There are two reasons why we choose to build the source

code energy model based on "energy operations". Firstly, an
energy operation is "atomic", by which we mean that all the
statements, source lines, blocks and methods are made up of a
certain number of kinds of operations (in the experiment, we
have 120 operations). Secondly, it is fine-grained. Energy
information at the level of source lines or methods is useful;
however, information at source line level could not distinguish
energy consumption of two operations in the same source line,
for example.

Energy operations are identified directly from source code.
The enumeration of the operations is inspired by Java seman-
tics [5], which specifies the operational meaning, or behavior,
of the Java language, which is the target language in the experi-
ment. We intuitively identify semantic operations that perform
operations on the state and may be energy-consuming, and let
them be our energy operations. Ones that have little or no en-
ergy effect will automatically be identified by the regression
analysis in the later stage of the analysis. Table 1 lists 14 rep-
resentative operations out of a total of 120 in the experiment.

1

SUBM
IT

TED

Table 1: Examples of Energy Operations

Operation Identified where:
Method Invocation one method is called
Parameter_Object Object is one parameter of the method
Return_Object the method returns an Object
Addition_int_int addition’s operands are integers
Multi_float_float multiplication’s operands are floats
Increment symbol "++" appears in code
And symbol "&&" appears in code
Less_int_float "<"’s operands are integer and float
Equal_Object_null "=="’s operands are Object and null
Declaration_int one integer is declared
Assign_Object_null assignment’s operands are Object and null
Assign_char[]_char[] assignment’s operands are arrays of chars
Array Reference one array element is referred
Block Goto the code execution goes to a new block

Table 2: Examples of Library Functions

Class Function
ArrayList add, get, size, isEmpty, remove

glBindTexture, glDisableClientState
glDrawElements, glEnableClientState

GL10 glMultMatrixf, glTexCoordPointer
glPopMatrix, glPushMatrix
glTexParameterx, glVertexPointer

Math max, pow, sqrt, random
FloatBuffer position, put

They include arithmetic calculations like Multi_float_float, Ad-
dition_int_int, in which operands types are explicit, as well
as Increment whose operand is implicitly an integer. Boolean
operations and comparisons, such as And, Less_int_float and
Equal_Object_null also form one major part. Method Invoca-
tion and Block Goto are important for the control flow which
plays a key role in the execution of the code. Assignments and
Array Reference will unexpectedly take a significant amount
of the application’s energy consumption, as will be shown in
Section 6.

The application also employs a diversity of library functions
that may be written in different languages and at lower levels of
the software stack. On the other hand, usually a limited num-
ber (67 in the experiment) of library functions are frequently
called in one application. So we treat them as basic modeling
units. The examples of highly-used library functions in the ex-
periment are shown in Table 2. For instance, the functions in
the class of GL10 are responsible for graphic computing.

3. EXPERIMENTAL SETUP
In this section, we will introduce the setup of the target de-

vice and the employed source code. We also explain the design
principles of the execution cases.

3.1 Target Device
Experimental target: we employ an Odroid-XU+E develop-

ment board [19] as the target device. It possesses two ARM
quad-core CPUs, which are Cortex-A15 with 2.0 GHz clock
rate and Cortex-A7 with 1.5 GHz. The eight cores are logically
grouped into four pairs. Each pair consists of one big and one
small core. So from the operating system’s point of view there
are four logic cores. In our experiment, we turn off the small
cores and run workload on big cores at a fixed clock frequency
of 1.1 GHz. We do this in order to remove the influence of
voltage, clock rate and CPU performance on the power usage.

Power Reading Script: Odroid-XU+E has a built-in power
monitoring tool to measure the voltage and current of CPUs
with a frequency of 30 Hz and updates the samples in a log
file. We wrote a script to obtain the samples from the file. Dur-
ing execution we run the script on an idle core to minimize its
influence on the application.

Note that the power monitor gives two sequences of power
samples: one is for the big cores and the other is for the small
cores. We pick the sequence of power samples of the big cores,

(a) for loop (b) while loop

Figure 1: Block division of for and while loops in control flow
graph.

because we only run workload on them.

3.2 Target Source Code
The target source code is the Cocos2d-Android [2] game en-

gine, a framework for building games, demos and other inter-
active applications. It also implements a fully-featured physics
engine. Games are increasingly popular on mobile phones,
and the applications include more and more fancy and energy-
consuming features, requiring high CPU performance. Energy
modeling and accounting, explained in the rest of this paper,
will present opportunities to guide software development to-
wards energy efficiency.

3.3 Design of Execution Cases
The execution cases whose energy usage is measured and

analyzed represent typical sequences of actions during game,
including user inputs. We focus on a Click & Move scenario,
in which the sprite (the character in the game) moves to the
position where the tap occurs. To simulate the game scenar-
ios under different sequences of user inputs, we script with the
Android Debug Bridge [1] (ADB) , a command line tool con-
necting the target device to the host, to automatically feed the
input sequences to the target device.

In order to obtain a more varied set of execution cases, we
vary the executions of individual basic blocks in the code. This
is achieved by systematically removing a set of blocks for each
execution case, using the control flow graph obtained using the
Soot tool [24]. We ensure that each block could be removed in
some execution case. Thus an execution case is made up of one
user input sequence and one set of basic blocks.

4. DATA COLLECTION
In this section, we describe the collection of data on the num-

ber of times each operation executes and the energy consump-
tion of an execution case, based on which we construct the en-
ergy model.

4.1 Number of Executions of Operations
To obtain the number of times that each operation executes in

an execution case, we need to determine at which level of gran-
ularity to track the execution. We choose the level of "blocks".
A block is a sequence of consecutive statements, without loops
or branches. It is sufficient to track block executions, since if
one part of a block is processed, the rest certainly will be pro-
cessed as well.

We could consider collecting data at other levels of granular-
ity. Tracing individual statements might overload the capacity
of the target device. On the other hand, methods or classes are
unsuitable execution units, since we cannot determine which
parts of the method or class will be active during the execution,
and this information about energy operations is lost.

We then divide the source code into blocks. For individual
syntactic structures, we deal with block division case by case.

2

SUBM
IT

TED

For loops and while loops are handled as shown in Figure 1.
In a for loop, the header usually has three segments which are
initialization, boolean and update. They are divided into three
different blocks. Similarly, we set the while header itself as a
block ("block 2" in Figure 1b). In order to build the log, we in-
strument the source code with a log instruction at the beginning
of each block.

The generic view of the collection of the operation-execution
data is displayed in Figure 2. We build a dictionary showing,
for each block, the number of occurrences within it of each
energy operation, such as those in Table 1. This dictionary is
built using a parser that traverses all the blocks in the code.

Then, using the log file recording the processed blocks, to-
gether with the dictionary, we can sum up the number of times
that each energy operation is executed during an execution case.
To be more precise, let Bi be the number of times that the ith
block is executed (this is obtained from the log file). Let Oi, j
be the number of occurrences of operation j in block i (this is
obtained from the dictionary). Then the total number of execu-
tions of the jth operation is ∑

n
i=1(Bi ∗Oi, j), where n is the total

number of blocks.

4.2 Energy Approximation from Power Samples
We write a script to obtain the power samples from the built-

in measurement component with a frequency of 30 Hz. The
power samples are the discrete values sampled from the power
trace; we approximate energy consumption by calculating Equa-
tion (1): p= power(t) is the power trace, that is, the continuous
power-vs-time function; power(ti) is the power sample at time-
stamp ti; ∆i equals to ti− ti−1, which is the interval between
two sequential samples.

E =
∫ tn

t0
power(t)dt ≈

n

∑
i=1

power(ti) ·∆i (1)

where t0 ≤ t1 ≤ t2 · · · ≤ tn−1 ≤ tn

4.3 Challenges in Practice
Measurement limitation: the sampling rate of the built-in

power monitor is 30 Hz. However, the instruction execution
rate is about several million per second. That means, one power
sample measures the energy cost of hundreds of thousand in-
structions. Even though the state of the art of the power mea-
surement can reach a sampling rate of tens of KHz [11], one
power sample still includes up to thousands of instructions.

To deal with this problem, we first lengthen the sessions of
all the execution cases to above 100 seconds, and then run each
case for ten times to calculate their average energy cost. Com-
pared with the execution cases that only run once with sessions
around one second, this approach can reduce the error of mea-
suring energy consumption of the code by three orders of mag-
nitude.

Run-time context: during the running of the application, the
Dalvik virtual machine performs garbage collection, which is
not part of the application and still could be included in the
power samples.

The Dalvik virtual machine produce time-stamp logs when
launching the garbage collection procedure. We consider the
garbage collection as one library function, so it will be inte-
grated in the model.

Code instrumentation and power reading script: although
the instrumentation is at block level rather than statement level,
its impact on energy consumption is still not negligible and its
cost is as much as 50% of the application’s energy consump-
tion itself. Also, the energy cost of the power reading script is
up to 5% of the application’s consumption.

We followed three experimental principles to address this
problem. Firstly, for each execution case, the log of the exe-

Figure 2: The flow of the operation-execution data collection.

cution path and of the power samples are separated into two
separate runs. In the first round, we record the execution path
without reading power samples. In the second round, we only
trace power and disable the instrumented log instructions. So
for each execution case, the instrumentation for logging the ex-
ecution path will not influence the power samples.

Secondly, in each of the two runs, the main process of the
application is allocated to one CPU core, while the thread log-
ging execution path or power samples is allocated to another
CPU core, minimizing effects due to interaction of the threads.

Thirdly, we design one "idle execution case" paired with
each execution case; this only runs the power reading script
without the application. By this means we can get the energy
consumption of the main application process by excluding the
cost of the "idle execution case" from the execution case. Note
that the durations of execution cases are different, so we need
to have a distinct "idle execution case" for each execution case.

In summary, each execution case will be run 21 times: once
for tracing the execution path; ten times for calculating the av-
erage energy consumption of the "idle execution case", and ten
times for calculating average energy consumption of the exe-
cution case.

5. MODEL CONSTRUCTION
The entire energy consumption is composed of three parts:

the cost of energy operations, the cost of library functions and
the idle cost. The aimed model is formalized in Equation (2).
The cost of energy operations is the sum of Costopi ·Ne(opi)
(the cost of one operation multiplied by the number of its exe-
cutions), where opi ∈ EnergyOps. EnergyOps is the set con-
taining all the operations. The cost of library functions is the
sum of Cost f unci ·Ne(f unci) (the cost of one library function
multiplied by the number of its executions), where f unci ∈
LibFuncs. LibFuncs is the set of library functions. The IdleCost
is the energy consumption of the "idle execution case". The
lengths of case sessions are varying, so the Idle Cost is differ-
ent for each execution case.

E =
opi∈EnergyOps

∑ Costopi ·Ne(opi) (2)

+
f unci∈LibFuncs

∑ Cost f unci ·Ne(f unci)+ Idle Cost

The model construction is based on regression analysis, find-
ing out the correlation between energy operations and their
costs from the data obtained in the execution cases. We set out
the collected data in the matrices in Equation (3). The leftmost
matrix (N) contains the execution numbers of l operations (in-
cluding energy operations and library functions) in m execution

3

SUBM
IT

TED

Table 3: NMAE in Cross Validation

Set Round 1st 2nd 3rd 4th
Training set 17.7% 15.0% 13.6% 18.9%

Validation set 14.2% 14.2% 19.7% 17.8%

cases, acquired as shown in Section 4. Each row indicates one
execution case. Each column represents one operation. The
vector (~cost) in the middle contains the costs of l operations,
which are the values we are aiming to estimate. The vector (~e)
on the right of the equal mark contains the measured entire en-
ergy costs of the execution cases. So for each execution case,
the entire energy cost is the sum of the costs of operations. It
should be noticed that the energy costs~e exclude the Idle Cost
which is measured when no application workload is being pro-
cessed.

n(1)1 n(1)2 ... n(1)l
n(2)1 n(2)2 ... n(2)l

... ...

n(m−1)
1 n(m−1)

2 ... n(m−1)
l

n(m)
1 n(m)

2 ... n(m)
l

×
cost1

cost2
...

costl

=

e1
e2
...

em−1
em

 (3)

Inevitably, the execution path and power samples are not ab-
solutely accurate. Furthermore, the energy model in reality is
unlikely to be completely linear. For these reasons Equation
(3) may be unsolvable, that is, the vector ~e is out of the col-
umn space of N. We thus employ the gradient descent algo-
rithm [18] to compute the approximate values of ~cost.

The elements of ~cost are randomly initialized and then im-
proved by the gradient descent algorithm iteratively. We first
introduce the error function J (computed by Equation (4)) which
indicates the quality of the model. The smaller J is, the bet-
ter the model is. ~n(i) is the ith row in N, ~cost is the middle
vector above. ~n(i)× ~cost is the estimated energy cost for the
ithexecution case, e(i) is its observed energy cost. J first com-
putes the sum of the squared values of the estimate errors of all
the execution cases, which is afterwards divided by 2m to get
the average value.

J(cost1,cost2, ...costl) =
1

2m

m

∑
i=1

(~n(i)× ~cost− e(i))2 (4)

cost j := cost j−α
∂J(cost1, ...cost j, ...costl)

∂cost j
(5)

= cost j−α
1
m

m

∑
i=1

(~n(i)× ~cost) ·n(i)j

j = 1,2, ...l

The idea of gradient descent is to minimize J by repeatedly
updating all the elements in ~cost with Equation (5) until conver-
gence. The partial derivative of the function J on cost j gives the
direction in which increasing or decreasing cost j will reduce J.
Every element (cost j) of ~cost is updated one by one in each
iteration. The value α determines how large the step of each
iteration is. If it is too large, the extremum value will possibly
be missed; if too small, the minimizing process will be rather
time-consuming. It needs to be manually tuned. Theoretically,
the gradient descent algorithm could only find the local optima.
In practice, we randomly set the values in ~cost and restart the
entire gradient decent procedure for several times to look for
global optima.

To validate the model, we apply the four-round cross vali-

0	 2	 4	 6	 8	 10	

Greater_int_int	
Assign_double_double	

Addi8on_float_float	
Division_int_float	

Substrac8on_float_float	
Assign_boolean_boolean	

NotEqual_Object_null	
Return_Object	

Parameter_float	
AssignAnd_float_float	

Declara8on_float	
Declara8on_Object	

FloatBuffer.put_method	
Not_boolean	

Declara8on_int	
Mul8_int_int	

And_boolean_boolean	
Increment	

NotZero_boolean	
BlockGoto_for	

Mul8_float_float	
Assign_Object_Object	

Less_int_int	
Assign_int_int	

ArrayReference	
BlockGoto_if	

Addi8on_int_int	
Assign_float_float	
Parameter_Object	
MethodInvoca8on	

Energy	 Consump8on	 (mJ)	

Figure 3: The top 30 energy consuming operations.

dation procedure: the set of execution cases are randomly di-
vided into four subsets; in each round, one of them is chosen to
be the validation set and the others together to be the training
set. In Table 3, we can see the Normalized Mean Absolute Er-
ror (NMAE) of the model in training and validation sets in the
four rounds. The NMAE is a well-known statistical criterion
that shows how well the estimated value matches the measured
one. It is computed by Equation (6), the mean value of nor-
malized difference between the predicted energy cost ê and the
measured cost e. The lower the ratio the better the result. In
our cross validation, the NMAE in training sets ranges from
13.6% to 18.9%, and in validation sets from 14.2% to 19.7%.
The model produced in the 2nd round is chosen to help analyze
the energy property of the code in Section 6, because it has a
good balance on both training and validation sets. Its NMAE
is around 15.0%, which means the model’s inference accuracy
is around 85.0%.

NMAE =
1
n

n

∑
i=1
|

ˆe(i)− e(i)

e(i)
| (6)

6. ENERGY ACCOUNTING
The energy model for the application source code based on

energy operations facilitates comprehensive energy accounting
at different levels of granularity and from various viewpoints.
In this section, we will see the rank of the most expensive op-
erations, and the contributions of different operations to the en-
ergy consumption of each block.

6.1 Operation Level
Figure 3 shows the top 30 energy consuming operations. The

figure also indicates that the energy-usage of the code is largely
determined by a relatively small number of operations. The
30 operations out of 187 (including library functions) take up
99.2% of the whole cost of the code, in which the top 10 con-
sumes the major part with a percentage of 72.1%. Among all
the operations (even beyond the top 30), the costs of them vary
in a range of several orders of magnitude.

Usually, it is supposed that the sophisticated arithmetic op-
erations, such as multiplications and divisions, should be the
most costly. However, the result shows that Method Invocation
ranks the highest. This is due to a sequence of complex pro-
cesses to fulfill Method Invocation, such as storing the return
address and managing the stack frame. Instance methods are
always implicitly passed a "this" reference as their first param-
eter. It suggests a trade-off between the structure and the energy
saving when writing the code. That means, in certain cases, we

4

SUBM
IT

TED

0	

250	

500	

750	

1000	

1250	

1500	

1750	

2000	

	 E
ne

rg
y	
Co

ns
um

p3
on

	 (J
ou

le
)	

Blocks	

In	 Applica3on	
At	 3000-‐Times-‐Execu3on	

(a) Block costs “In Application" and “3000-Times-Execution".

0	

0.025	

0.05	

0.075	

0.1	

0.125	

0.15	

0.175	

0.2	

En
er
gy
	 C
on

su
m
p4

on
	 (J
ou

le
)	

Blocks	

Assignment	

Declara4on	

Control	 Ops	

Array	 Reference	

Fuc4on	 Ops	

Boolean	 Ops	

Arithme4c	 Ops	

Lib	 Func4ons	

(b) Energy proportions of different kinds of operations in blocks.

Figure 4: Energy distribution on blocks and operations. Blocks are sorted by the order of their run-time energy costs "In Application".

could unpack some thin methods that are highly-invoked in the
code, at the cost of losing the integrity of the structure of the
code to some extent.

Two arithmetic operations, Addition_int_int and Multi_float_
float, are members of the top 10. Unexpectedly, the addition is
twice as expensive as the multiplication. We surmise that this is
a result of their operands in the target code, as experimentally
shown in [20], the energy cost of the arithmetic computation is
operand-dependent.

Later in Section 6.2, we will see that assignments, compar-
isons and Array Reference play significant roles in the overall
energy consumption. This is not only because they are fre-
quently used, but also because they are costly as operations
themselves, as shown in Figure 3.

Block Goto operations are expensive as well. Based on the
types of conditionals and loops where "Block Goto" occurs,
they are classified into BlockGoto_if, BlockGoto_for and Block-
Goto_while. The result shows that they cost different amounts
of energy as operations themselves, respectively 6.7 mJ, 4.1
mJ, 1.1 mJ. And together with Method Invocation, they take up
37.6% of the total energy consumption of the application.

6.2 Block Level
In the execution cases, we have 108 active blocks with a

wide diversity of energy usage. As shown in Figure 4a, "In
Application" means running the Click & Move scenario with
the full set of blocks. The costs of blocks "In Application" are
plotted as orange bars. Note that, blocks here obviously have
distinct execution times. The cost of a fixed number (3000)
of executions of one block are calculated by multiplying its
single-execution cost by 3000. This could help us compare the
single-execution costs of different blocks. The costs of blocks
"3000-Times-Execution" are plotted as green bars.

Similar to energy distribution on operations, only a small
number (11 blocks) of all the blocks uses up nearly half of the
entire cost, which indicates that putting efforts on optimising a
small group of blocks can achieve significant energy-saving.

There are two factors that make one block costly "In Ap-
plication". The first factor is a large number of executions.
For example, the most costly block "In Application" (the right-
most orange bar in Figure 4a) has a large number of execution
times. This block takes only 30.6 mJ for single-execution but
2128.6 Joule when running "In Application". The second fac-
tor is the energy consumption of the block itself. For exam-
ple, the three prominent green bars in Figure 4a, whose single-
execution costs are 201.5 mJ, 146.9 mJ and 142.8 mJ. We will
later zoom in these three blocks to see which operations con-
tribute to their energy costs.

We can further observe the energy proportions of operations
in each block in Figure 4b. To illustrate, operations are grouped
into eight classes. Specifically, the "Block Goto" operations
and Method Invocation are gathered in Control Ops; the pa-

rameter passing and the value returns of methods are in Func-
tion Ops; the comparisons and Booleans are in Boolean Ops;
all the arithmetic computations are in Arithmetic Ops; all the
library functions are in Lib Functions.

Most of the blocks cost less than 25 mJ for single-execution.
In these blocks, Control Ops occupy the major part of the en-
ergy consumption, in contrast, Arithmetic Ops only take a tiny
proportion.

For those three most prominent blocks, assignments and Ar-
ray Reference are the biggest energy consumers. Furthermore
one of the three blocks has the largest proportion of Arithmetic
Ops among all the blocks.

The most expensive block "In Application" consists of three
even parts: Control Ops, Function Ops and Boolean Ops. This
block is the main entrance of the game engine to draw and dis-
play frames, so its works are conditional judgments and method
invocations.

7. RELATED WORK
From the hardware side, initial efforts on energy modeling

research have been put on circuits-level (see the survey [17]),
gate-level [15, 16] and register-transfer-level [10]. Later, re-
search focus shifted towards high-level modelings, such as soft-
ware and behavioral levels [14].

Energy modeling techniques for software start with the basic
instruction level, which calculates the sum of energy consump-
tion of basic instructions and transition overheads [6,26]. Gang
et al. [22] base the model at the function-level while consider-
ing the effects of cache misses and pipeline stalls on functions.
T. K. Tan et al. [25] utilize regression analysis for high-level
software energy modeling.

However, the run-time context considered in the above works
is unsophisticated, free from user inputs, a virtual machine and
so on. Furthermore the software stack below the level that they
deal with (such as the level of the basic or assembly instruction)
is relatively thin.

When research is focused on the energy of mobile applica-
tions, the level of granularity of the techniques is increased as
well. An important part of such efforts is the use of operat-
ing system and hardware features as predictors to estimate the
energy consumption at the component, virtual machine and ap-
plication level [7, 12, 21, 23, 28, 29].

Shuai et al. [9] and Ding et al. [13] propose approaches to
get source line energy information. The former requires the
specific energy profile of the target system, and the workload
is fine-tuned. The latter utilizes advanced measurement tech-
niques to obtain the source line energy cost.

In contrast to the above approaches, we explore the idea of
identifying energy operations and constructing a fine-grained
model which is able to capture energy information at a level
lower than source line.

5

SUBM
IT

TED

8. CONCLUSION
In this paper, we propose a fine-grained energy model for

mobile application source code on the basis of energy opera-
tions. We first introduce the energy operations that are identi-
fied directly from the source code. The energy operations are
employed as the basic units that constitute the overall energy
consumption of the source code. We then design a wide diver-
sity of execution cases to generate data about the operation exe-
cutions and the entire energy consumption. Regression analysis
is applied to use the data to estimate the energy consumption
of each operation. Finally, we show that the model is capable
to capture comprehensive energy features that coarse-grained
models or techniques could not shed light on.

9. REFERENCES
[1] Android Debug Bridge.

http://developer.android.com/tools/help/adb.html.
[2] Cocos2d-Android.

https://code.google.com/p/cocos2d-android/.
[3] Dalvik Virtual Machine.

http://source.android.com/devices/tech/dalvik/.
[4] Report: U.S. Smartphone Penetration Now At 75 Percent.

http://marketingland.com/report-us-smartphone-
penetration-now-75-percent-117746,
2015.

[5] D. Bogdanas and G. Roşu. K-Java: A complete semantics
of Java. SIGPLAN Not., 50(1):445–456, Jan. 2015.

[6] C. Brandolese, W. Fomacian, F. Salice, and D. Sciuto.
An instruction-level functionality-based energy
estimation model for 32-bits microprocessors. In Design
Automation Conference, 2000. Proceedings 2000, pages
346–350, 2000.

[7] M. Dong and L. Zhong. Self-constructive high-rate
system energy modeling for battery-powered mobile
systems. In Proceedings of the 9th International
Conference on Mobile Systems, Applications, and
Services, MobiSys ’11, pages 335–348, New York, NY,
USA, 2011. ACM.

[8] C. Edwards. Lack of software support marks the low
power scorecard at DAC. In Electronics Weekly., pages
15–21, June 2011.

[9] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan.
Estimating mobile application energy consumption using
program analysis. In Proceedings of the 2013
International Conference on Software Engineering, ICSE
’13, pages 92–101, Piscataway, NJ, USA, 2013. IEEE
Press.

[10] C.-T. Hsieh, Q. Wu, C.-S. Ding, and M. Pedram.
Statistical sampling and regression analysis for RT-level
power evaluation. In Computer-Aided Design, 1996.
ICCAD-96. Digest of Technical Papers., 1996
IEEE/ACM International Conference on, pages 583–588,
Nov 1996.

[11] X. Jiang, P. Dutta, D. Culler, and I. Stoica. Micro power
meter for energy monitoring of wireless sensor networks
at scale. In Proceedings of the 6th International
Conference on Information Processing in Sensor
Networks, IPSN ’07, pages 186–195, New York, NY,
USA, 2007. ACM.

[12] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A.
Bhattacharya. Virtual machine power metering and
provisioning. In Proceedings of the 1st ACM Symposium
on Cloud Computing, SoCC ’10, pages 39–50, New
York, NY, USA, 2010. ACM.

[13] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan.
Calculating source line level energy information for
Android applications. In Proceedings of the 2013
International Symposium on Software Testing and
Analysis, ISSTA 2013, pages 78–89, New York, NY,
USA, 2013. ACM.

[14] E. Macii, M. Pedram, and F. Somenzi. High-level power

modeling, estimation, and optimization. Computer-Aided
Design of Integrated Circuits and Systems, IEEE
Transactions on, 17(11):1061–1079, Nov 1998.

[15] R. Marculescu, D. Marculescu, and M. Pedram. Adaptive
models for input data compaction for power simulators.
In Design Automation Conference, 1997. Proceedings of
the ASP-DAC ’97 Asia and South Pacific, pages
391–396, Jan 1997.

[16] F. Najm. Transition density: a new measure of activity in
digital circuits. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on,
12(2):310–323, Feb 1993.

[17] F. Najm. A survey of power estimation techniques in
VLSI circuits. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 2(4):446–455, Dec 1994.

[18] A. Ng. CS229 lecture notes.
http://cs229.stanford.edu/notes/cs229-notes1.pdf, 2012.

[19] Odroid. Odroid-XUE.
http://www.hardkernel.com/main/main.php.

[20] J. Pallister, S. Kerrison, J. Morse, and K. Eder. Data
dependent energy modelling: A worst case perspective.
CoRR, abs/1505.03374, 2015.

[21] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy
spent inside my app?: Fine grained energy accounting on
smartphones with Eprof. In Proceedings of the 7th ACM
European Conference on Computer Systems, EuroSys
’12, pages 29–42, New York, NY, USA, 2012. ACM.

[22] G. Qu, N. Kawabe, K. Usarni, and M. Potkonjak.
Function-level power estimation methodology for
microprocessors. In Design Automation Conference,
2000. Proceedings 2000, pages 810–813, 2000.

[23] A. Shye, B. Scholbrock, and G. Memik. Into the wild:
Studying real user activity patterns to guide power
optimizations for mobile architectures. In Proceedings of
the 42Nd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 42, pages 168–178, New
York, NY, USA, 2009. ACM.

[24] Soot. A framework for analyzing and transforming Java
and Android Applications. http://sable.github.io/soot/.

[25] T. Tan, A. Raghunathan, G. Lakshminarayana, and
N. Jha. High-level software energy macro-modeling. In
Design Automation Conference, 2001. Proceedings,
pages 605–610, 2001.

[26] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of
embedded software: a first step towards software power
minimization. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 2(4):437–445, Dec 1994.

[27] T. Šimunić, L. Benini, G. De Micheli, and M. Hans.
Source code optimization and profiling of energy
consumption in embedded systems. In Proceedings of the
13th International Symposium on System Synthesis, ISSS
’00, pages 193–198, Washington, DC, USA, 2000. IEEE
Computer Society.

[28] C. Wang, F. Yan, Y. Guo, and X. Chen. Power estimation
for mobile applications with profile-driven battery traces.
In Proceedings of the 2013 International Symposium on
Low Power Electronics and Design, ISLPED ’13, pages
120–125, Piscataway, NJ, USA, 2013. IEEE Press.

[29] L. Zhang, B. Tiwana, R. Dick, Z. Qian, Z. Mao,
Z. Wang, and L. Yang. Accurate online power estimation
and automatic battery behavior based power model
generation for smartphones. In Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2010
IEEE/ACM/IFIP International Conference on, pages
105–114, Oct 2010.

6

