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Abstract—Energy efficiency has a significant influence on user
experience of battery-driven devices such as smartphones and
tablets. It is shown that software optimization plays an important
role in reducing energy consumption of system. However, in
mobile devices, the conventional nature of compiler considers
not only energy-efficiency but also limited memory usage and
real-time response to user inputs, which largely limits the
compiler’s positive impact on energy-saving. As a result, the code
optimization relies more on developers. In this paper, we propose
an energy-aware programming approach, which is guided by
an operation-based source-code-level energy model. And this
approach is placed at the end of software engineering life cycle to
avoid distracting developers from guaranteeing the correctness of
system. The experimental result shows that our approach is able
to save from 6.4% to 50.2% of the overall energy consumption
depending on different scenarios.

I. INTRODUCTION

The smartphone, the most popular mobile device,
has been considered as one of the most important in-
vention in the contemporary age. In February 2015,
the penetration of smartphones was about 75% in
the U.S [4]. This figure is still growing. With the
improvement of hardware processing capability and
software development environment, the smartphone
is no longer a handset only to make phone calls,
also play entertaining games, watch movie videos,
browse web pages and so on. On the other hand,
users are meanwhile frustrated by the limited battery
capacity – applications running in parallel could
easily drain a fully-charged battery within 24 hours.

Software optimization barely by the compiler
achieves very little energy-saving for mobile de-
vices since besides energy-saving the compiler on
a mobile device has to think of many other im-
portant factors, such as limited memory usage and
quick responses to user interactions. The Android
platform, say, employs the Just-In-Time (JIT) com-
piler [6], also known as the dynamic compiler. Its
optimization window is generally as small as one
or two basic blocks in order to use less memory
and quicken the delivery of performance boost.
However, the small window largely restricts the
space of energy-saving strategies. Eventually, the
refactoring of code should rely more on developers.

Unfortunately, current software development is
performed in an energy-oblivious manner. Through-
out the engineering life cycle, most developers

and designers are blind to the energy usage of
code written by themselves. However, developers
are desperate for the knowledge on energy-aware
programming techniques. In the most popular soft-
ware development forum STACKOVERFLOW [40],
energy-related questions are marked as favorites
3.89 more often than the average questions [34].
And among the energy-related questions, code-
design-related ones are prominently more popular.
Moreover, it has been estimated that energy-saving
by a factor of as much as three to five could be
achieved solely by software optimization [12]. To
realize this, the first step is to analyze the energy
accounting of source code at different levels of
granularity and from different points of view.

In order to enable energy accounting of code,
energy modeling of code is needed to bridge the
gap between high-level source code and low-level
hardware, where energy is consumed. However,
traditional bottom-to-top modeling techniques [8],
[36], [42], [44] face obstacles when the software
stack of the system consists of a number of abstract
layers. On the Android platform, say, the source
code is in Java and then translated to Java byte-code,
further to Dalvik [3] byte-code, native code and
machine code and finally has chance to execute on
the processors and consume energy. Consequently,
the modeling task has to characterize the links
among all the layers.

Instead of building a software energy model layer
by layer, another approach to acquiring software-
level energy information is to use the hardware
readings, like CPU state residency, CPU utilization,
L1/L2 Cache misses and battery trace, as predic-
tors of software energy use [11], [33], [45], [46].
However, they are only capable of obtaining energy
information at a coarse level of granularity such
as methods or applications. Two pieces of work
[14], [20] result in source-line energy information.
The former requires low-level energy profiles. The
latter employs accurate measurement to acquire the
energy consumption of source lines.

The energy information on blocks or more coarse-
grained units could identify the hot spots in the
code, but it gives few clues about how to make
changes to the code. The source line is also not an
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appropriate level of granularity to provide energy
information. For instance, the header of for loop
contains three segments which are initialization,
boolean and update at the same source line, but
usually have distinct numbers of executions. So the
energy information about the source line of the
header is not very sensible for developers.

Li et al. [21] propose a source-level energy model
based on "energy operations", which is more fine-
grained and able to provide more valuable informa-
tion for code optimization. Compared with coarse-
grained techniques, there are several advantages of
the operation-based model in guiding the energy-
aware programming techniques:
• The energy operations are basic units that con-

stitute the energy consumption of entire soft-
ware. Thus using the energy estimate of oper-
ations, the developers can assess the effects of
code changes on energy consumption of code.

• It provides more valuable information on how
to make changes. For example, the experiment
shows that the "methode invocation" is the most
expensive operation, suggesting that in some
case we may inline some thin methods at the
cost of losing the integrity of the structure of
code.

In this paper, we propose an energy-aware pro-
gramming approach guided by fine-grained energy
model of source code. The generic procedures of
the approach are as following:
• We utilize the methodology described in [21] to

construct the operation-based source-code-level
energy model, which is achieved by analyzing
the data produced in a range of well-designed
execution cases .

• The model generates energy accounting at oper-
ation and block level, which captures the energy
characteristics of the code.

• We put efforts on the most costly blocks, where
we refactor the code to remove, reduce or
replace the expensive operations, meanwhile
maintain its logical consistency with the origi-
nal code.

Our target platform is an Android development
board with two ARM quad-core CPUs, and the
source code in our study is a game engine used in
games, demos and other interactive applications. We
evaluate the approach in three game scenarios, and
the experimental result shows that it can save energy
consumption by from 6.4% to 50.2% depending on
different scenarios.

In the rest of this paper, we firstly introduce the
identification of energy operations in Section II. The
architectural setup and the design of execution cases
are detailed in Section III. We elaborate the data
collection and the model construction separately
in Section IV and Section V, based on which we

TABLE I: Examples of Energy Operations

Operation Identified where:
Method Invocation one method is called
Parameter_Object Object is one parameter of the method
Return_Object the method returns an Object
Addition_int_int addition’s operands are integers
Multi_float_float multiplication’s operands are floats
Increment symbol "++" appears in code
And symbol "&&" appears in code
Less_int_float "<"’s operands are integer and float
Equal_Object_null "=="’s operands are Object and null
Declaration_int one integer is declared
Assign_Object_null assignment’s operands are Object and null
Assign_char[]_char[] assignment’s operands are arrays of chars
Array Reference one array element is referred
Block Goto the code execution goes to a new block

are able to capture the energy characteristics and
optimize the source code in three different scenarios,
Click & Move, Orbit and Waves, as respec-
tively seen in Section VI, VII and VIII.

II. BASIC ENERGY OPERATIONS

There are two reasons why Li et al. [21] choose
to build the source code energy model based on
"energy operations". Firstly, an energy operation
is "atomic", which means that all the statements,
source lines, blocks and methods are made up of a
certain number of kinds of operations (in the exper-
iment, we have 120 operations). Secondly, it is fine-
grained. Energy information at the level of source
lines or methods is useful; however, information
at source line level could not distinguish energy
consumption of two operations in the same source
line, for example.

Energy operations are identified directly from
source code. The enumeration of the operations
is inspired by Java semantics [7], which specifies
the operational meaning, or behavior, of the Java
language, which is the target language in the exper-
iment. We intuitively identify semantic operations
that perform operations on the state and may be
energy-consuming, and let them be our energy op-
erations. Ones that have little or no energy effect
will automatically be identified by the regression
analysis in the later stage of the analysis. Table
I lists 14 representative operations out of a total
of 120 in the experiment. They include arithmetic
calculations like Multi_float_float, Addition_int_int,
in which operands types are explicit, as well as
Increment whose operand is implicitly an integer.
Boolean operations and comparisons, such as And,
Less_int_float and Equal_Object_null also form one
major part. Method Invocation and Block Goto are
important for the control flow which plays a key
role in the execution of the code. Assignments and
Array Reference will unexpectedly take a significant
amount of the application’s energy consumption, as
will be shown in Section VI-A.
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TABLE II: Examples of Library Functions

Class Function
ArrayList add, get, size, isEmpty, remove

glBindTexture, glDisableClientState
glDrawElements, glEnableClientState

GL10 glMultMatrixf, glTexCoordPointer
glPopMatrix, glPushMatrix
glTexParameterx, glVertexPointer

Math max, pow, sqrt, random
FloatBuffer position, put

The application also employs a diversity of li-
brary functions that may be written in different
languages and at lower levels of the software stack.
On the other hand, usually a limited number (67 in
the experiment) of library functions are frequently
called in one application. So we treat them as basic
modeling units. The examples of highly-used library
functions in the experiment are shown in Table II.
For instance, the functions in the class of GL10 are
responsible for graphic computing.

III. EXPERIMENTAL SETUP

In this section, we will introduce the setup of the
target device and source code. We also explain the
design principles of the execution cases.

A. Target Device

Experimental target: we employ an Odroid-XU+E
development board [30] as the target device. It
possesses two ARM quad-core CPUs, which are
Cortex-A15 with 2.0 GHz clock rate and Cortex-A7
with 1.5 GHz. The eight cores are logically grouped
into four pairs. Each pair consists of one big and one
small core. So from the operating system’s point of
view there are four logic cores. In our experiment,
we turn off the small cores and run workload on
big cores at a fixed clock frequency of 1.1 GHz.
We do this in order to remove the influence of
voltage, clock rate and CPU performance on the
power usage.

Power Reading Script: Odroid-XU+E has a built-
in power monitoring tool to measure the voltage
and current of CPUs with a frequency of 30 Hz and
updates the samples in a log file. We wrote a script
to obtain the samples from the file. During execution
we run the script on an idle core to minimize its
influence on the application.

Note that the power monitor gives two sequences
of power samples: one is for the big cores and the
other is for the small cores. We pick the sequence
of power samples of the big cores, because we only
run workload on them.

B. Target Source Code

The target source code is the Cocos2d-Android
[2] game engine, a framework for building games,

demos and other interactive applications. It also
implements a fully-featured physics engine. Games
are increasingly popular on mobile phones, and
the applications include more and more fancy and
energy-consuming features, requiring high CPU per-
formance. Energy modeling and accounting, ex-
plained in the rest of this paper, will present op-
portunities to guide software development towards
energy efficiency.

C. Design of Execution Cases

The execution cases whose energy usage is mea-
sured and analyzed represent typical sequences of
actions during game, including user inputs. We fo-
cus on three scenarios which are Click & Move,
Orbit and Waves.

In the Click & Move scenario, the sprite (the
character in the game) moves to the position where
the tap occurs. In the Orbit scenario, the sprite
together with the grid background spins in the three-
dimension space. In the Waves scenario, the sprite
scales up and down, meanwhile the grid background
waves like flow. In both the Orbit and Waves sce-
narios, the animation will restart from the starting
point whenever and wherever the tap occurs.

To simulate the game scenarios under different
sequences of user inputs, we script with the Android
Debug Bridge [1] (ADB) , a command line tool con-
necting the target device to the host, to automatically
feed the input sequences to the target device.

In order to obtain a more varied set of execution
cases, we vary the executions of individual basic
blocks in the code. This is achieved by systemati-
cally removing a set of blocks for each execution
case, using the control flow graph obtained using the
Soot tool [38]. We ensure that each block could be
removed in some execution case. Thus an execution
case is made up of one user input sequence and one
set of basic blocks.

IV. DATA COLLECTION

In this section, we describe the collection of data
on the number of times each operation executes and
the energy consumption of an execution case, based
on which we construct the energy model.

A. Number of Executions of Operations

To obtain the number of times that each operation
executes in an execution case, we need to determine
at which level of granularity to track the execution.
We choose the level of "blocks". A block is a
sequence of consecutive statements, without loops
or branches. It is sufficient to track block executions,
since if one part of a block is processed, the rest
certainly will be processed as well.
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(a) for loop (b) while loop

Fig. 1: Block division of for and while loops in control
flow graph.

Fig. 2: The flow of the operation-execution data collection.

We could consider collecting data at other levels
of granularity. Tracing individual statements might
overload the capacity of the target device. On the
other hand, methods or classes are unsuitable ex-
ecution units, since we cannot determine which
parts of the method or class will be active during
the execution, and this information about energy
operations is lost.

We then divide the source code into blocks. For
individual syntactic structures, we deal with block
division case by case. For loops and while loops
are handled as shown in Figure 1. In a for loop,
the header usually has three segments which are
initialization, boolean and update. They are divided
into three different blocks. Similarly, we set the
while header itself as a block ("block 2" in Figure
1b). In order to build the log, we instrument the
source code with a log instruction at the beginning
of each block.

The generic view of the collection of the
operation-execution data is displayed in Figure 2.
We build a dictionary showing, for each block, the
number of occurrences within it of each energy
operation, such as those in Table I. This dictionary
is built using a parser that traverses all the blocks

in the code.
Then, using the log file recording the processed

blocks, together with the dictionary, we can sum
up the number of times that each energy operation
is executed during an execution case. To be more
precise, let Bi be the number of times that the ith
block is executed (this is obtained from the log
file). Let Oi, j be the number of occurrences of
operation j in block i (this is obtained from the
dictionary). Then the total number of executions of
the jth operation is ∑

n
i=1(Bi ∗Oi, j), where n is the

total number of blocks.

B. Energy Approximation from Power Samples

We write a script to obtain the power samples
from the built-in measurement component with
a frequency of 30 Hz. The power samples are
the discrete values sampled from the power trace;
we approximate energy consumption by calculating
Equation (1): p = power(t) is the power trace, that
is, the continuous power-vs-time function; power(ti)
is the power sample at time-stamp ti; ∆i equals to
ti− ti−1, which is the interval between two sequen-
tial samples.

E =
∫ tn

t0
power(t)dt ≈

n

∑
i=1

power(ti) ·∆i (1)

where t0 ≤ t1 ≤ t2 · · · ≤ tn−1 ≤ tn

C. Challenges in Practice

Measurement limitation: the sampling rate of
the built-in power monitor is 30 Hz. However,
the instruction execution rate is about several mil-
lion per second. That means, one power sample
measures the energy cost of hundreds of thousand
instructions. Even though the state of the art of the
power measurement can reach a sampling rate of
tens of KHz [17], one power sample still includes
up to thousands of instructions.

To deal with this problem, we first lengthen the
sessions of all the execution cases to above 100
seconds, and then run each case for ten times to
calculate their average energy cost. Compared with
the execution cases that only run once with sessions
around one second, this approach can reduce the
error of measuring energy consumption of the code
by three orders of magnitude.

Run-time context: during the running of the
application, the Dalvik virtual machine performs
garbage collection, which is not part of the
application and still could be included in the power
samples.

The Dalvik virtual machine produce time-
stamp logs when launching the garbage collection
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procedure. We consider the garbage collection as
one library function, so it will be integrated in the
model.

Code instrumentation and power reading
script: although the instrumentation is at block
level rather than statement level, its impact on
energy consumption is still not negligible and
its cost is as much as 50% of the application’s
energy consumption itself. Also, the energy cost
of the power reading script is up to 5% of the
application’s consumption.

We followed three experimental principles to ad-
dress this problem. Firstly, for each execution case,
the log of the execution path and of the power sam-
ples are separated into two separate runs. In the first
round, we record the execution path without reading
power samples. In the second round, we only trace
power and disable the instrumented log instructions.
So for each execution case, the instrumentation for
logging the execution path will not influence the
power samples.

Secondly, in each of the two runs, the main
process of the application is allocated to one CPU
core, while the thread logging execution path or
power samples is allocated to another CPU core,
minimizing effects due to interaction of the threads.

Thirdly, we design one "idle execution case"
paired with each execution case; this only runs the
power reading script without the application. By
this means we can get the energy consumption of
the main application process by excluding the cost
of the "idle execution case" from the execution
case. Note that the durations of execution cases
are different, so we need to have a distinct "idle
execution case" for each execution case.

In summary, each execution case will be run 21
times: once for tracing the execution path; ten times
for calculating the average energy consumption of
the "idle execution case", and ten times for calcu-
lating average energy consumption of the execution
case.

V. MODEL CONSTRUCTION

The entire energy consumption is composed of
three parts: the cost of energy operations, the cost of
library functions and the idle cost. The aimed model
is formalized in Equation (2). The cost of energy
operations is the sum of Costopi ·Ne(opi) (the cost of
one operation multiplied by the number of its execu-
tions), where opi ∈ EnergyOps. EnergyOps is the
set containing all the operations. The cost of library
functions is the sum of Cost f unci ·Ne( f unci) (the cost
of one library function multiplied by the number of
its executions), where f unci ∈ LibFuncs. LibFuncs
is the set of library functions. The Idle Cost is the
energy consumption of the "idle execution case".

The lengths of case sessions are varying, so the
Idle Cost is different for each execution case.

E =
opi∈EnergyOps

∑ Costopi ·Ne(opi) (2)

+
f unci∈LibFuncs

∑ Cost f unci ·Ne( f unci)+ Idle Cost

The model construction is based on regression
analysis, finding out the correlation between energy
operations and their costs from the data obtained
in the execution cases. We set out the collected
data in the matrices in Equation (3). The leftmost
matrix (N) contains the execution numbers of l
operations (including energy operations and library
functions) in m execution cases, acquired as shown
in Section IV. Each row indicates one execution
case. Each column represents one operation. The
vector ( ~cost) in the middle contains the costs of l
operations, which are the values we are aiming to
estimate. The vector (~e) on the right of the equal
mark contains the measured entire energy costs of
the execution cases. So for each execution case,
the entire energy cost is the sum of the costs of
operations. It should be noticed that the energy
costs ~e exclude the Idle Cost which is measured
when no application workload is being processed.


n(1)1 n(1)2 ... n(1)l
n(2)1 n(2)2 ... n(2)l

... ...

n(m−1)
1 n(m−1)

2 ... n(m−1)
l

n(m)
1 n(m)

2 ... n(m)
l

×
cost1

cost2
...

costl

=


e1
e2
...

em−1
em


(3)

Inevitably, the power samples are not absolutely
accurate. Furthermore, the energy model in reality
is unlikely to be completely linear. For these reasons
Equation (3) may be unsolvable, that is, the vector
~e is out of the column space of N. We thus employ
the gradient descent algorithm [29] to compute the
approximate values of ~cost.

The elements of ~cost are randomly initialized and
then improved by the gradient descent algorithm
iteratively. We first introduce the error function J
(computed by Equation (4)) which indicates the
quality of the model. The smaller J is, the better the
model is. ~n(i) is the ith row in N, ~cost is the middle
vector above. ~n(i)× ~cost is the estimated energy cost
for the ithexecution case, e(i) is its observed energy
cost. J first computes the sum of the squared values
of the estimate errors of all the execution cases,
which is afterwards divided by 2m to get the average
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Fig. 3: The top 30 energy consuming operations in Click &
Move scenario.

value.

J(cost1,cost2, ...costl) =
1

2m

m

∑
i=1

( ~n(i)× ~cost− e(i))2

(4)

cost j := cost j−α
∂J(cost1, ...cost j, ...costl)

∂cost j
(5)

= cost j−α
1
m

m

∑
i=1

( ~n(i)× ~cost) ·n(i)j

j = 1,2, ...l

The idea of gradient descent is to minimize J by
repeatedly updating all the elements in ~cost with
Equation (5) until convergence. The partial deriva-
tive of the function J on cost j gives the direction
in which increasing or decreasing cost j will reduce
J. Every element (cost j) of ~cost is updated one
by one in each iteration. The value α determines
how large the step of each iteration is. If it is too
large, the extremum value will possibly be missed;
if too small, the minimizing process will be rather
time-consuming. It needs to be manually tuned.
Theoretically, the gradient descent algorithm could
only find the local optima. In practice, we randomly
set the values in ~cost and restart the entire gradient
decent procedure for several times to look for the
global optima.

In the experiment, the three scenarios (Click &
Move, Orbit and Waves) separately have their
own processes of data collection and model con-
struction since different scenarios may have dif-
ferent sets of parameters (costs of operations) for
the model (Equation (2)). The cost of the same

TABLE III: NMAE in Cross Validation

Scenario Set 1st 2nd 3rd 4th
Training 17.7% 15.0% 13.6% 18.9%

Click & Move Validation 14.2% 14.2% 19.7% 17.8%
Training 19.9% 17.9% 14.4% 16.8%Orbit Validation 11.7% 17.0% 18.0% 15.0%
Training 13.9% 14.1% 14.8% 15.0%Waves Validation 16.8% 16.7% 16.1% 17.2%

operation is not absolutely constant in certain cases,
one of the reasons is that the values of operands
influence the energy consumption of operations,
as seen in [31]. Our modeling approach is trying
to make a good approximation of the costs of
operations for individual scenarios.

To validate the reliability of model, we apply
the four-round cross validation. If the model is
proved to be reliable, then we use it for the energy
accounting in later stages, otherwise we try other
solutions to improve the model. The four-round
cross validation procedure is as following: the set
of execution cases are randomly divided into four
subsets; in each round, one of them is chosen to be
the validation set and the others together to be the
training set.

NMAE =
1
n

n

∑
i=1
|

ˆe(i)− e(i)

e(i)
| (6)

In Table III, we can see the Normalized Mean Ab-
solute Error (NMAE) of the model in three scenar-
ios in training and validation sets in the four rounds.
The NMAE is a well-known statistical criterion that
shows how well the estimated value matches the
measured one. It is computed by Equation (6), the
mean value of normalized difference between the
predicted energy cost ê and the measured cost e.
The lower the ratio the better the result. In the three
scenarios, the NMAE in training sets ranges from
13.6% to 19.9%, and in validation sets from 11.7%
to 19.7%.

For the three scenarios, the sets of parameters
respectively generated in the 2nd, 4th and 3rd
rounds of cross validation are chosen to help analyze
the energy property of the code in Section VI-A,
because they have good balance on both training and
validation sets. Their NMAEs are around 15.0%,
which means the model’s inference accuracy is
around 85.0%.

VI. THE CLICK & MOVE SCENARIO

In this section, we detail energy accounting at
operation and block level, according to which we
improve the most costly blocks by removing, re-
ducing or replacing the most expensive operations.
Later in Section VII and Section VIII, when we talk
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about the Orbit and Waves scenarios, we will
briefly introduce the energy characteristics of the
code and use larger part for the code improvements.

A. Energy Accounting

The energy model of app source code based on
energy operations facilitates comprehensive energy
accounting at different levels of granularity and
from various viewpoints. In this section, we will see
the rank of the most expensive operations, and the
contributions of different operations to the energy
consumption of each block.

Operation Level:
Figure 3 shows the top 30 energy consum-

ing operations, which are ranked by their single-
execution energy costs. "71.3% Energy Consump-
tion" presents the percentage of sum of costs of
top 10 operations in the total cost, considering
their different numbers of executions in the Click
& Move scenario. "26.1% Energy Consumption"
means the percentage of operations from 11th to
30th. The percentages indicate that the energy-usage
of the code is largely determined by a relatively
small number of operations. It is because these oper-
ations are frequently used and meanwhile expensive
themselves. The 30 operations out of 187 (including
library functions) take up 97.4% of the whole cost
of the code, in which the top 10 consumes the major
part with a percentage of 71.3%.

Usually, it is supposed that the sophisticated
arithmetic operations, such as multiplications and
divisions, should be the most costly. However, the
result shows that Method Invocation ranks the high-
est. This is due to a sequence of complex pro-
cesses to fulfill Method Invocation, such as storing
the return address and managing the stack frame.
Instance methods are always implicitly passed a
"this" reference as their first parameter. It suggests

a trade-off between the structure and the energy
saving when writing the code. That means, in certain
cases, we could unpack some thin methods that are
highly-invoked in the code, at the cost of losing the
integrity of the structure of the code to some extent.

Unexpectedly, only one arithmetic operation,
Multi_float_float, is a member of the top 10. And
there are only six arithmetic operations in the top 30.
They together cost only 6.1% of the overall energy
consumption of the application, which is contrary
to our instincts.

Later in block-level energy accounting, we will
see that assignments, comparisons and Array Ref-
erence play significant roles in the overall energy
consumption. This is not only because they are
frequently used, but also because they are costly
as operations themselves, as shown in Figure 3.

Block Goto operations are expensive as well.
Based on the types of conditionals and loops where
"Block Goto" occurs, they are classified into Block-
Goto_if, BlockGoto_for and BlockGoto_while. The
result shows that they cost different amounts of
energy as operations themselves, respectively 6.7
mJ, 4.1 mJ, 1.1 mJ. And together with Method
Invocation, they take up 37.6% of the total energy
consumption of the application.

Block Level:
In the execution cases, we have 108 active blocks

with a wide diversity of energy usage. As shown
in Figure 4a, "In Application" here means running
the Click & Move scenario with the full set
of blocks. The costs of blocks "In Application"
are plotted as orange bars. Note that, blocks here
obviously have distinct execution times. The cost of
a fixed number (3000) of executions of one block
are calculated by multiplying its single-execution
cost by 3000. This could help us compare the single-
execution costs of different blocks. The costs of
blocks at "3000-Times-Execution" are plotted as
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green bars.
Similar to energy distribution on operations, only

a small number (11 blocks) of all the blocks uses
up nearly half of the entire cost, which indicates
that putting efforts on optimising a small group of
blocks can achieve significant energy-saving.

There are two factors that make one block costly
"In Application". The first factor is a large number
of executions. For example, the most costly block
"In Application" (the rightmost orange bar in Figure
4a) has a large number of execution times. This
block takes only 30.6 mJ for single-execution but
2128.6 Joule when running "In Application". The
second factor is the energy consumption of the block
itself. For example, the three prominent green bars
in Figure 4a, whose single-execution costs are 201.5
mJ, 146.9 mJ and 142.8 mJ. We will later zoom in
these three blocks to see which operations contribute
to their energy costs.

We can further observe the energy proportions of
operations in each block in Figure 4b. To illustrate,
operations are grouped into eight classes. Specif-
ically, the "Block Goto" operations and Method
Invocation are gathered in Control Ops; the param-
eter passing and the value returns of methods are in
Function Ops; the comparisons and Booleans are in
Boolean Ops; all the arithmetic computations are in
Arithmetic Ops; all the library functions are in Lib
Functions.

Most of the blocks cost less than 25 mJ for single-
execution. In these blocks, Control Ops occupy the
major part of the energy consumption, in contrast,
Arithmetic Ops only take a tiny proportion.

For those three most prominent blocks, assign-
ments and Array Reference are the biggest energy
consumers. Furthermore one of the three blocks has
the largest proportion of Arithmetic Ops among all
the blocks.

The most expensive block "In Application" con-
sists of three even parts: Control Ops, Function Ops
and Boolean Ops. This block is the main entrance
of the game engine to draw and display frames,
so its works are conditional judgments and method
invocations.

B. Code Optimization

The most important consideration of app devel-
opers is to guarantee the correctness of software,
which should then be followed by energy-efficiency.
So our energy-aware programming approach is ap-
plied at the end of software engineering life circle
when the software system is roughly complete.

The overview of energy-aware programming ap-
proach is firstly finding the most costly blocks,
where we analyze the energy breakdown among the
operations, and make changes to the code to remove,
reduce or replace the costly operations.

TABLE IV: The top 10 costly blocks in Click & Move.

Block ID #Executions Energy Cost (J)
CCNode.visit() 19462 2128.6
CCNode.transform() 18903 1648.4
CCTextureAtlas.putVertex() 2119 1494.4
CCNode.visit().if_4.for_1 16880 1426.8
CCNode.transform().if_1 19664 1426.3
CCTextureAtlas.putTexCoords() 2120 1107.8
CCAtlas.updateValues().for_1 2173 1018.7
CCNode.visit().if_3.for_1 8356 915.7
CCSprite.draw() 8594 766.9
CCTexture2D.name() 13085 537.5

We look into the top 10 costly blocks "In Appli-
cation" (see Table IV). For example, CCNode.visit()
is the entrance block of the visit() function; CCN-
ode.visit().if_4.for_1 is the body block of the for
loop. These 10 blocks are distributed in seven meth-
ods, so the code review does not require heavy labor.
We find four easy optimization opportunities in
blocks, such as CCNode.visit(), CCNode.visit().if_4.
for_1 and CCTexture2D.name(). There are also
other opportunities in other blocks supposed to save
energy, but requiring more efforts and gaining lit-
tle. For example, CCAtlas.updateValues().for_1 has
several busy arithmetic expressions. Usually it is
believed that replacing the busy expression with an
variable could reduce energy cost, however in this
case the overhead of variable declaration counteracts
the energy-saving.

The four opportunities to improve the code are
very simple and effective, but can only be discov-
ered by the operation-level energy information. The
changes will be shown as following.

Program 1 Simplified parts of original code in CCNode.visit()

if (children_ != null) {
if_body1;

}
draw(gl);
if (children_ != null) {

if_body2;
}

Program 2 The changed Program 1
if (children_ != null) {

if_body1;
draw(gl);
if_body2;

} else {draw(gl);}

If Combination:
This change is made in the most costly block

CCNode.visit(), which has two comparisons, two
Boolean operations, one Method Invocation and one
parameter passing. In fact, the two if headers make
the same comparison, as shown in Program 1. We
change the code to Program 2, which combines the
two if statements and meanwhile keep it logically
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consistent with Program 1. By the means each
execution of the block can reduce one comparison,
and when the condition is false, it can additionally
reduce one BlockGoto_if .

Program 3 Simplified parts of original code in CCNode class
public void visit(GL10 gl) {

......
transform(gl);

......
}
public void transform(GL10 gl) {

tranform_body;
}

Program 4 The changed Program 3
public void visit(GL10 gl) {

......
transform_body;

......
}
public void transform(GL10 gl) {

transform_body;
}

Inner-Class Method Inline:
When "In Application", the transform() function

is invoked 18903 times and mostly by visit() func-
tion. We change the Program 3 to Program 4 by
inserting the body of transform() into visit(), mean-
while remaining the original transform() function in
case that other parts of the code call it. This change
can largely decrease the number of transform()’s
Method Invocations that are very expensive. How-
ever, it may be at the cost of losing readability of the
code, which could also be compensated by adding
explanatory comments.

Program 5 The full version of Program 2
if (children_ != null) {
for (int i=0; i<children_.size(); ++i) {

CCNode child = children_.get(i);
if (child.zOrder_ < 0) {

child.visit(gl);
} else

break;
}
draw(gl);
for (int i=0; i<children_.size(); ++i) {

CCNode child = children_.get(i);
if (child.zOrder_ >= 0) {

child.visit(gl);
}

}
} else {draw(gl);}

Loop-Invariant Code Motion:
CCNode.visit().if_3.for_1 and CCN-

ode.visit().if_4.for_1 are entrance blocks of the
two for loops as seen in Program 5. These
two loops have a quantity, children_.size(), which
is computed in each iteration but the value is
constant. We thus hoist it outside the loop, as

shown in Program 6, which can vastly save the
energy of invoking and executing the size() function
during every iteration. At the same time, we move
the declaration of the child outside the loop,
considering the cost of Declaration_Object is about
2.97 mJ and also in the top 30.

Program 6 The changed Program 5
CCNode child = new CCNode(); //added
int children_size = children_.size(); //added
if (children_ != null) {

for (int i=0; i<children_size; ++i) { //changed
child = children_.get(i); //changed
if (child.zOrder_ < 0) {

child.visit(gl);
} else

break;
}

draw(gl);
for (int i=0; i<children_size; ++i) { //changed

child = children_.get(i); //changed
if (child.zOrder_ >= 0) {

child.visit(gl);
}

}
} else {draw(gl);}

Inter-Class Method Inline:
CCTexture2D.name() is the 10th costly block and

costs 537.5 Joule "In Application". However, its job
is to simply get the value of the private member
variable, _name, of the class CCTexture2D. And this
method has only two callers in the code. So we
consider to make this variable public and let the
two callers directly get access to the variable, which
avoids the cost of Method Invocation. This change
may harm the encapsulation of data, however, only
one member of one class is changed. The trade-off
between energy-saving and data encapsulation will
be at last decided by developers.

C. Evaluation

Figure 5 illustrates the energy consumption of the
software without and with the changes introduced
in the previous section. From left to right, the bars
indicate accumulative effects of the changes. For
example, "+ If Comn" is the energy consumption
of the code with "If Combination"; "+ Inner-Class
MI" is the energy consumption of the code with the
changes of both "If Combination" and "Inner-Class
Method Inline". Totally, these four simple changes
save 6.4% of the entire energy consumption without
influencing the functionality of code. These changes
are made in the basic part of the game engine, where
most applications will base on, so any gain here
can have fundamental impact. Furthermore, these
changes are made with little knowledge about the
algorithm of code, the developers who wrote the
code are surely able to improve the code much more
and achieve more energy-saving.
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Fig. 5: Energy consumption of the code without and with the
changes in Click & Move.
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Fig. 6: In Orbit scenario, the energy proportions of blocks
"In Application".

VII. THE ORBIT SCENARIO

In this section, we briefly introduce the energy
characteristics of Orbit scenario. Afterward, we
improve the most costly blocks according to the
types of expensive operations. In Section VII-C, we
can see that the improvement can save as much as
50.2% of the overall energy consumption.

A. Energy Accounting

In the Orbit scenario, the block
CCGrid3d.blit().for_1 dominates the overall energy
consumption. As shown in Figure 6, 80.9% of the
entire cost is consumed by this block. The second
costly block consumes only 1.3%. "In Application"
here means running the Orbit scenario without
removing any block. Later in Section VII-B, we will
barely put attention on this single block, requiring
fairly little effort to achieve improvements.

B. Code Optimization

Program 7 shows the original code of CC-
Grid3D.blit().for_1. In this block, the Control Ops
(BlockGoto_for and Field Reference) use up 35.6%
energy; Boolean Ops use up 20.5%; the assignments
use up 16.7%; Arithmetic Ops use up 14.0%; Lib
Functions use up 13.3%. We find three easy changes
to reduce or replace the expensive operations.

Loop-Invariant Code Motion:
In this block, the value of vertices.limit() is con-

stantly 2112, we thus hoist it outside the loop and
replace it with the variable limit, as shown in Pro-
gram 8. This change avoids calls of vertices.limit()
and at the same time decreases a small amount of
Field Reference.

Loop Unrolling:
Also as shown in Program 8, we duplicate the

loop body eight times, which reduces the times
of comparisons, BlockGoto_fors, assignments and
additions. Note that, we set the value of increment
as 24 since 24 is a factor of the limit, 2112.

Full-Use of Library Function:
The job of Program 7 or Program 8 is getting all

the elements in vertices one by one and putting them
into mVertexBuffer one by one. The whole Program
7 in fact can be replaced by simply one line:
mVertexBuffer.put(vertices.asReadOnlyBuffer()),
which means putting the entire vertices into
mVerteBuffer. This change realizes the same
functionality using the already existing library
function, which is one of the key library functions
already compiled into native code.

Program 7 The original code of CCGrid3D.blit().for_1
for (int i = 0; i < vertices.limit(); i=i+3) {

mVertexBuffer.put(vertices.get(i));
mVertexBuffer.put(vertices.get(i+1));
mVertexBuffer.put(vertices.get(i+2));

}

Program 8 The changed Program 7
int limit = vertices.limit(); //added
for (int i = 0; i < limit; i=i+24) { //changed

mVertexBuffer.put(vertices.get(i));
mVertexBuffer.put(vertices.get(i+1));
mVertexBuffer.put(vertices.get(i+2));

...

...
mVertexBuffer.put(vertices.get(i+23)); //added

}

C. Evaluation

Figure 7 shows the accumulative effects of the
code changes on energy consumption. Exception-
ally, "Full-Use LF" does not take previous changes
into account and means only replacing Program 7
with the built-in library function as stated above.
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Fig. 7: Energy consumption of the code without and with the
changes in Orbit.

We can see that loop-invariant code motion does not
gain much energy saving because the vertices.limit()
which is a library function as well uses a very
small percentage of energy consumption. On the
other hand, loop unrolling achieves 25.8% energy
saving due to the reduction of amount of Control
Ops, comparisons and assignments, which occupy
most of the cost. And the most effective change is
the replacement to a library function, saving 50.2%
energy consumption because this library function
has been complied into native code before execu-
tion, in contrast the java source code need run-
time interpretation which is not free from energy
consumption. The result indicates that it is a good
idea for developers to make a good use of library
functions rather than implementing the same func-
tion themselves with java source code.

VIII. THE WAVES SCENARIO

In this section, similarly, we first analyze the
energy characteristics of the blocks in the Waves
scenario, based on which we modify the code and
then evaluate the effects of changes on energy
consumption.

A. Energy Accounting

Unlike the Orbit scenario where only one
block dominates energy consumption, in Waves
scenario, the costs of top seven blocks are at
the same order of magnitude of kJ, as listed in
Table V. The CCGrid3D.blit().for_1 is also em-
ployed in this scenario and is the most costly as
well among all the blocks. The majority of blocks
in Table V are directly or indirectly invoked by
CCWaves3D.update().for_1.for_1, as shown in Pro-
gram 9. And their jobs are mostly to set or get the
values of member variables, so a large part of energy
consumption goes to assignments and Function Ops.

It was not expected that the code spends such a
large amount of energy on simple setter and getter
functions.
Program 9 The original code in CCWaves3D.update()

int i, j;
for( i = 0; i < (gridSize.x+1); i++ ) {

for( j = 0; j <(gridSize.y+1); j++ ) {
CCVertex3D v = originalVertex(ccGridSize.ccg(i,j));

...
setVertex(ccGridSize.ccg(i,j), v);

}
}

Program 10 Program 9 after Method Inline & Code Motion
ccGridSize ccgridsize = new ccGridSize(0,0); //added
CCGrid3D ccgrid3d = (CCGrid3D) target.getGrid(); //added
CCVertex3D v = new CCVertex3D(0,0,0); //added
int i, j;
for( i = 0; i < (gridSize.x+1); i++ ) {

for( j = 0; j <(gridSize.y+1); j++ ) {
ccgridsize.x=i;ccgridsize.y=j; //added
v = ccgrid3d.originalVertex(ccgridsize); //changed

...
ccgrid3d.setVertex(ccgridsize, v); //changed
}

}

B. Code Optimization

Full-Use of Library Function:
We have talked about the optimization for

CCGrid3D.blit().for_1 in Section VII-B where we
replace the entire Program 7 with the one-line
code, which makes use of library functions. We
keep this change in this scenario. For other blocks,
we come up with one modification as following.

Method Inline & Code Motion:
As shown in Program 9, the three

functions called in the inner loop body are
CCGrid3DAction.originalVertex(), ccGridSize.ccg()
and CCGrid3DAction.setVertex(), which
respectively cost 2891.3 Joule, 3769.1 Joule
and 3285.4 Joule "In Application". Note that,
CCGrid3DAction is the parent class of CCWaves3D,
so originalVertext() and setVertex() can be directly
called without referring to their class names.
As seen in Program 10, we unpack these three
methods in this block: the first and fourth "added"
lines are unpacked ccGridSize.ccg(); the second
"added" and first "changed" lines are unpacked
CCGrid3DAction.originalVertex(); the second
"added" and second "changed" lines are unpacked
CCGrid3DAction.setVertex(). This change removes
all the Method Invocations, parameter passing
and value returns related to these three functions
invoked by this block. Note that, the first three
"added" lines are located outside the loop in order
to reduce energy consumption of the process of
initializing objects and calling CCNode.getGrid().
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TABLE V: In Waves scenario, the top 10 costly blocks "In Application". And the energy percentages of different kinds of
operations in each block.

Block ID #Executions Energy Cost (J) Assi. Decl. Cont. Func. Bool. Arit. Libr.
CCGrid3D.blit().for_1 112193 8094.1 16.7% 0% 35.6% 0% 20.5% 14.0% 13.3%
CCVertex3D.CCVertex3D() 40219 5232.0 27.2% 0% 10.0% 62.8% 0% 0% 0%
CCWaves3D.update().for_1.for_1 34604 4088.7 10.7% 0% 32.1% 0% 14.7% 39.0% 2.2%
ccGridSize.ccg() 42275 3769.1 0% 0% 32.1% 67.9% 0% 0% 0%
CCGrid3DAction.setVertex() 31856 3285.4 14.6% 7.8% 30.9% 46.7% 0% 0% 0%
CCGrid3DAction.originalVertex() 36566 2891.3 19.1% 10.2% 40.3% 30.4% 0% 0% 0%
CCNode.getGrid() 49119 2145.1 0% 0% 58.1% 41.9% 0% 0% 0%
ccGridSize.ccGridSize() 10570 1173.8 30.3% 0% 31.6% 38.0% 0% 0% 0%
CCGrid3D.setVertex() 3944 657.2 10.1% 1.6% 32.8% 28.9% 0% 26.4% 0.2%
CCGrid3D.originalVertex() 2785 374.2 14.0% 1.9% 33.4% 17.9% 0% 32.8% 0%
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Fig. 8: CPU and GPU Energy consumption of the code without
and with the changes in Waves.

C. Evaluation

Figure 8 shows the accumulative effects of
changes on energy consumption of CPU and GPU
(note that previous figures only showed the CPU
energy consumption because the GPU energy con-
sumption did not vary noticeably before), and the
dashed line indicates the linear trend of the GPU
energy consumption. In the case of game, usually
the aimed frames per second (FPS) is 60 Hz, when
the game overloads CPU, the FPS will decrease,
and when the workload is light, even very light,
the FPS is generally fixed to 60Hz. The FPS in
"Original" is around 36Hz; that in "+ Full-use LF"
is around 50Hz; that in "+ Method Inline & CM"
is around 60Hz. The change of Full-Use LF (full
use of library function) does not save energy for
CPU since the execution of original Waves actually
overloads the CPU capacity, so the improvement
of code enhances the performance and enables the
device to generate more frames every second. Con-
sequently, the GPU does more work and consumes
more energy, as seen in Figure 8. After this change,
when we apply the method inline and code motion,
27.7% of the overall CPU energy is saved, and
for the same reason GPU consumes slightly more.
This experimental result shows that our approach

not only saves energy but also potentially boosts
performance, which benefits users doubly.

IX. RELATED WORK

Energy Modeling:
From the hardware side, initial efforts on en-

ergy modeling research have been put on circuits-
level (see the survey [28]), gate-level [26], [27]
and register-transfer-level [15]. Later, research fo-
cus shifted towards high-level modelings, such as
software and behavioral levels [25].

Energy modeling techniques for software start
with the basic instruction level, which calculates the
sum of energy consumption of basic instructions and
transition overheads [8], [42]. Gang et al. [36] base
the model at the function-level while considering
the effects of cache misses and pipeline stalls on
functions. T. K. Tan et al. [41] utilize regression
analysis for high-level software energy modeling.

However, the run-time context considered in the
above works is unsophisticated, free from user in-
puts, a virtual machine, dynamic compilation and so
on. Furthermore the software stack below the level
that they deal with (such as the level of the basic
or assembly instruction) is relatively thin.

When research is focused on the energy of mobile
applications, the level of granularity of the tech-
niques is increased as well. An important part of
such efforts is the use of operating system and hard-
ware features as predictors to estimate the energy
consumption at the component, virtual machine and
application level [11], [18], [33], [37], [45], [46].

Shuai et al. [14] and Ding et al. [20] propose
approaches to get source line energy information.
The former requires the specific energy profile of the
target system, and the workload is fine-tuned. The
latter utilizes advanced measurement techniques to
obtain the source line energy cost.

Compared with approaches above, Li et al. [21]
explore the idea of identifying energy operations
and constructing a fine-grained model based on op-
erations which is able to capture energy information
at a level more fine-grained than source line.

Energy-Saving Techniques:
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A large amount of research efforts on energy-
saving for mobile devices have been put on the main
hardware components, such as the CPU, display
and network interface. The CPU low-power-design
techniques involve dynamic voltage-frequency scal-
ing [22] and heterogeneous architecture [13], [23].
Techniques for display contain dynamically dim-
ming the back-light [9], [32], tone-mapping based
back light scaling [5], [16]. The network-related
techniques try to exploit idle and deep sleep oppor-
tunities [24], [39], shape the traffic [10], [35] and
so on.

There are many pieces of work relevant to code
refactor for energy-saving . Vetro’ et al. [43] define
the concept of energy code smells that are the code
patterns (such as self assignment, repeated condi-
tionals and useless control flow) maybe energy-
consuming. However, the code patterns selected in
[43] have very little impact (less than 1.0%) on
energy consumption. Our experimental result shows
that our approach is able to save half of the entire
energy consumption in certain scenario.

Ding et al. [19] conducted a small scale evalua-
tion of several commonly suggested programming
practices that may reduce energy. Its result shows
that reading array length, accessing class field and
method invocation all cost noticeable energy. How-
ever, this work only provides a small number of
suggestions to developers on how to make the code
more energy-efficient.

Compared with previous work, our research pro-
pose a systematic energy-aware programming ap-
proach, which is guided by the operation-based
source-code-level energy model. The experimental
result shows that this approach is an effective guide-
line for energy-aware mobile application develop-
ment.

X. CONCLUSION

In this paper, we propose an energy-aware pro-
gramming approach for mobile app development,
which is guided by the operation-based source-
code-level energy model. The general steps of the
approach are as following: 1) we construct the
operation-based energy model by mining the data
generated in a range of well-designed execution
cases; 2) based on the model, we capture the energy
characteristics of the code; 3) we improve the code
by removing, reducing or replacing the expensive
operations in the costly blocks.

We evaluate this approach on a real-world game
engine and on a physical Android development
board with two ARM quad-core CPUs. The ex-
perimental result shows that our approach has a
significantly positive impact on energy-saving. For
different scenarios, this approach can save energy
by from 6.4% to 50.2%. The result also indicates

that the performance of code is a byproduct as well
of this approach, which potentially improves user
experience more.

REFERENCES

[1] Android Debug Bridge. http://developer.android.com/tools/help/adb.html.
[2] Cocos2d-Android. https://code.google.com/p/cocos2d-android/.
[3] Dalvik Virtual Machine. http://source.android.com/devices/tech/dalvik/.
[4] Report: U.S. Smartphone Penetration Now At 75 Percent.

http://marketingland.com/report-us-smartphone-penetration-now-75-
percent-117746, 2015.

[5] B. Anand, K. Thirugnanam, J. Sebastian, P. G. Kannan, A. L. Ananda,
M. C. Chan, and R. K. Balan. Adaptive display power management for
mobile games. In Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, MobiSys ’11, pages 57–70,
New York, NY, USA, 2011. ACM.

[6] Android. A JIT Compiler for Android’s Dalvik VM. http://www.android-
app-developer.co.uk/android-app-development-docs/android-jit-
compiler-androids-dalvik-vm.pdf.
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