
Probabilistic Resource Analysis by Program
Transformation

Maja H. Kirkeby and Mads Rosendahl

Computer Science, Roskilde University
Roskilde, Denmark

majaht@ruc.dk, madsr@ruc.dk ??

Abstract. The aim of a probabilistic resource analysis is to derive a
probability distribution of possible resource usage for a program from
a probability distribution of its input. We present an automated multi-
phase rewriting based method to analyze programs written in a subset
of C. It generates a probability distribution of the resource usage as a
possibly uncomputable expression and then transforms it into a closed
form expression using over-approximations. We present the technique,
outline the implementation and show results from experiments with the
system.

1 Introduction

The main contribution in this paper is to present a technique for probabilistic re-
source analysis where the analysis is seen as a program-to-program translation.
This means that the transformation to closed form is a source code program
transformation problem and not specific to the analysis. Any necessary approx-
imations in the analysis are performed at the source code level. The technique
also makes it possible to balance the precision of the analysis against the brevity
of the result.

Many optimizations for increased energy efficiency require probabilistic and
average case analysis as part of the transformations. Wierman et al. states that
“global energy consumption is affected by the average case, rather than the worst
case“ [37]. Also in scheduling “an accurate measurement of a task’s average-
case execution time can assist in the calculation of more appropriate deadlines”
[17]. For a subset of programs a precise average case execution time can be
found using static analysis [12, 31, 14]. Applications of such analysis may be in
improving scheduling of operations or in temperature management. Because the
analysis returns a distribution it can be used to calculate the probability of
energy consumptions above a certain limit, and thereby indicating the risk of
over-heating.

?? The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 318337,
ENTRA - Whole-Systems Energy Transparency.

The central idea in this paper is to use probabilistic output analysis in com-
bination with a preprocessing phase that instruments programs with resource
usage. We translate programs into an intermediate language program that com-
putes the probability distribution of resource usage. This program is then an-
alyzed, transformed, and approximated with the aim of obtaing a closed form
expression. It is an alternative to deriving cost relations directly from the pro-
gram [7] or expressing costs as abstract values in a semantics for the language.

As with automatic complexity analysis the aim of probabilistic resource anal-
ysis is to express the result as a parameterized expression. The time complexity
of a program should be expressed as a closed form expression in the input size,
and for probabilistic resource analysis the aim is to express the probability of
resource usage of the program parameterized by input size or range. If input
values are not independent we can specify a joint distribution for the values.
Values do not have to be restricted to a finite range but for infinite ranges the
distribution would converge to zero towards the limit.

The current work extends our previous work on probabilistic analysis [29]
in three ways. We show how to use a preprocessing phase to instrument pro-
grams with resource usage such that the resource analysis can be expressed as
an analysis of possible output of a program. The resource analysis can handle
an extended class of programs with structured data as long as the program flow
does not depend on the probabilistic data in composite data structures. Finally,
we present an implementation of the analysis in the Ciao language [5] which uses
algebraic reductions in the Mathematica system [39].

The focus in this paper is on using fairly simple local resource measures
where we count core operations on data. Since the instrumentation is done at
the source code level we can use flow information so that the local costs can
depend on actual data to operations and which operations are executed before
and after. This is not normally relevant for time complexity but does play an
important role for energy consumption analysis [19, 32].

2 Probability distributions in static analysis

In our approach to probabilistic analysis the result of an analysis is an approx-
imation of a probability distribution. We will here present the concepts and
notation we will use in the rest of the paper. A probability distribution is also
often referred to as the probability mass function in the discrete case, and in the
continuous case it is a probability density functions. We will use an upper case
P letter to denote a probability distribution.

Definition 1 (input probability). For a countable set X an input probability
distribution is a mapping Px : X → {r ∈ IR | 0 ≤ r ≤ 1}, where∑

x∈X
Px(x) = 1

2

We define the output probability distribution for a program p in a forward
manner. It is the weight or sum of all probabilities of input values where the
program returns the desired value z as output.

Definition 2 (output probability). Given a program, p : X → Z and a prob-
ability distribution for the input, PX , the output probability distribution, Pp(z),
is defined as:

Pp(z) =
∑

x∈X∧p(x)=z

PX(x)

Note that Kozen also uses a similar forward definition [20], whereas Monniaux
constructs the inverse mapping from output to input for each program statement
and express the relationship in a backwards style [23].

Lemma 1. The output probability distribution, Pp(z), satisfies

0 ≤
∑
z

Pp(z) ≤ 1

The program may not terminate for all input and this means that the sum
may be less than one. If we expand the domain Z with an element to denote
non-termination, Z⊥, the total sum of the output distribution Pp(z) would be 1.

In our static analysis we will use approximations to obtain safe and simpli-
fied results. Various approaches to approximations of probability distributions
have been proposed and can be interpreted as imprecise probabilities [1, 10, 9].
Dempster-Shafer structures [16, 2] and P-boxes [11] can be used to capture and
propagate uncertainties of probability distributions. There are several results on
extending arithmetic operations to probability distributions for both known de-
pendencies between random variables and when the dependency is unknown or
only partially known [3, 4, 18, 33, 38]. Algorithms for lifting basic operations on
numbers to basic operations on probability distributions can be used as abstrac-
tions in static analysis based on abstract interpretation. Our approach uses the
P-boxes as bounds of probability distributions. P-boxes are normally expressed
in terms of the cumulative probability distribution but we will here use the prob-
ability mass function. We do not, however, use the various basic operations on
P-boxes, but apply approximations to a probability program such that it forms
a P-box.

Definition 3 (over-approximation). For a distribution Pp an over-approxi-
mation (P p) of the distribution satisfies the condition:

P p : ∀z.Pp(z) ≤ P p(z) ≤ 1 .

The aim of the probabilistic resource analysis is to derive an approximation P p

as tight as possible.
The over-approximation of the probability distribution can be used to derive

lower and upper bounds of the expected value and will thus approximate the
expected value as an interval [29].

3

3 Architecture of the transformation system

The system contains five main phases. The input to the system is a program
in a small subset of C with annotations of which part we want to analyze. It
could be the whole program but can also be a specific subroutine which is called
repeatedly with varying arguments according to some input distribution.

The first phase will instrument the program with resource measuring op-
erations. The instrumented program will perform the same operations as the
original program in addition to recording and printing resource usage informa-
tion. This program can still be compiled and run, and it will also produce the
same results as the original program.

The second phase translates the program into an intermediate language for
further analysis. We use a small first order functional language for the analysis
process. The translation has two core elements. We slice [36] the program with
respect to the resource measuring operations and transform loops into primitive
recursion in the intermediate language. The transformed program can still be
executed and will produce the same resource usage information as the instru-
mented program. Since the instrumentation is done before the translation to
intermediate language any interpretation overhead or speed-up due to slicing
does not influence the result [28].

In the third phase we construct a probability output program that computes
the probability output function. In this case it is a probability distribution of
possible resource usages of the original program. This program can also run but
will often be extremely inefficient since it will merge information for all possible
input to the original program.

The fourth phase transforms the probability program into a large expression
without further function calls. Recursive calls are removed using summations and
the transformed program computes the same result as the program did before
this phase.

In the final phase the probability function is transformed into closed form
using symbolic summation and over-approximation. In this phase we exploit
the Mathematica system [39]. The final probability program computes the same
result or an over-approximation of the function produced in the fourth phase.

4 Instrumenting programs for resource analysis

The input to the analysis is a program in a subset of C. In the next section we
define the intermediate language for further analysis and it is the restrictions on
the intermediate language that limits the source programs we can analyze with
our system. The source program may contain integer variable and arrays, usual
loop constructs and non-recursive function calls. The program should be anno-
tated with specification on which part of the program to analyse. The following
is an example of such a program.

// ToAnalyse: multa(_,_,_,N)

4

void multa(int a1[MX],int a2[MX],int a3[MX],int n){

int i1,i2,i3,d;

for(i1 = 0; i1 < n; i1++) {

for(i2 = 0; i2 < n; i2++) {

d = 0;

for(i3 = 0; i3 < n; i3++) {

d = d + a1[i1*n+i3]*a2[i3*n+i2];

}

a3[i1*n+i2] = d;

}

}

}

This example program describes a matrix multiplication for which we would like
to analyze the probability distribution for the number of steps when parameter-
ized with the size (N) of the matrices.

Instrumentation. The program is then instrumented with resource usage in-
formation and translated into a intermediate language for further analysis. The
instrumented program is also a valid program in the source language and can
be executed with the same results as the original program. It will, however, also
collect resource usage information.

In our example we instrument the program with step counting information
where we count the number of assignment statement being executed. This is
done by inserting a variable into the program and incrementing it once for each
assignment statement.

int multa(int a1[MX],int a2[MX],int a3[MX],int n){

int i1,i2,i3,d;

int step; step=0;

for(i1 = 0; i1 < n; i1++) {

for(i2 = 0; i2 < n; i2++) {

d = 0; step++;

for(i3 = 0; i3 < n; i3++) {

d = d + a1[i1*n+i3]*a2[i3*n+i2]; step++;

}

a3[i1*n+i2] = d; step++;

}

}

return step;

}

The outer loop does not update the step counter, whereas the first inner loop
updates it twice per iteration and the innermost loop updates it once per loop
iteration.

Slicing. The second phase will slice the program with respect to resource usage
and translate the program into the intermediate language of first order functions
that we will use in the subsequent stages. Loops in the program are translated
into primitive recursion.

5

for3(i3, step, n) =

if(i3 = n) then step else for3(i3 + 1,step+1,n)

for2(i2, step, n) =

if(i2 = n) then step else for2(i2 + 1,for3(0,step+2,n),n)

for1(i1, step, n) =

if(i1 = n) then step else for1(i1 + 1,for2(0,step,n),n)

tmulta(n)= for1(0,step,n)

Each function in the recursive program corresponds to a for loop with their
related step-updates. The step counter is given as input argument to the next
function in a continuation-passing style.

Intermediate language. An intermediate program, Prg, consists of integer
functions, fi: Int

∗ → Int, as given by the abstract syntax given in Figure 1. In
the examples we relax the restrictions on function and parameter names.

fi(x1, . . . ,xn)
def
= 〈exp〉

〈aexp〉 |= xi | c | 〈aexp〉 +i 〈aexp〉 | 〈aexp〉 -i 〈aexp〉 |
〈aexp〉 ×i 〈aexp〉 | 〈aexp〉 divi 〈aexp〉

〈bexp〉 |= 〈aexp〉 =i 〈aexp〉 | 〈aexp〉 <i 〈aexp〉 | 〈aexp〉 ≤i 〈aexp〉 |
true | false | not(〈bexp〉)

〈exp〉 |= 〈aexp〉 | fi(〈exp1〉, ...,〈expn〉) |
if 〈bexp〉 then 〈exp〉 else 〈exp〉

Fig. 1. The abstract syntax describing the intermediate programs.

Definition 4. A program is well-formed if it follows the abstract syntax and
it contains a finite number of function definitions, that each is of one of the
following form and can internally be enumerated with a natural number such
that:

fi(x1, . . . , xn)
def
= if b then e0 else fi(e1, . . . , en)

where fi is simple, e0 only contains calls to functions fj where j < i.

fi(x1, . . . , xn)
def
= e

where e only contain calls to functions fj where j < i.

The enumeration prevents mutual recursion, and ensures that non-recursive calls
cannot create an infinite call-chain.

5 Probabilistic output analysis

The analysis is applied to the intermediate program and an input probability
program in the intermediate language. The output is a new program that can be

6

described by a subset of the intermediate language; this will be clarified later in
the definition of pure and closed form programs. The analysis consists of three
phases:

Create, where the probability program describing the output distribution is
created as a possibly uncomputable expression.

Separate, where we remove all calls from the probability program.
Simplify, where we transform the program into closed form using safe over-

approximations when necessary.

The analysis is constructed as three sets of transformation rules, one for each
of the three phases. All transformations are syntax directed, and a strategy is
to apply them in a depth-first manner. The program output analysis is imple-
mented in Ciao and integrates with Mathematica in the third phase to reduce
expressions.

In the following we use Var(e) to represent the set of variables occurring

in expression e, and f(x1, ..., xn)
def
= e to represent the function f is defined in

the input program. Some side conditions are explained in an informal way, as in

“f(x1, ..., xn)
def
= e, where e is non-recursive”.

name
precondition1 ... preconditionn

original term→ rewritten term

The preconditions are evaluated from left to right, and if all succeeds we can use
the transformation.When substituting a variable x to an expression e, we denote
it [x/e].

In the following we will begin by extending the intermediate language pre-
sented in Figure 1 such that it can express probabilities, and afterwards describe
the transformation rules for each phase.

The intermediate language. The intermediate language is, as previously
mentioned, a first order functional language. A probability program can be eval-
uated at any stage through the transformation process.

We extend the abstract syntax given in Figure 1 such that it can easily
describe probability distributions. We introduce probability functions, P: Int∗ →
Real, which follows the expanded syntax given in Figure 2. The dots indicate
the syntax described in Figure 1. Again, 〈aexp〉 and 〈exp〉 are of type integer,
〈bexp〉 is boolean, and the new 〈qexp〉 is a real. In 〈qexp〉 the method i2r type
casts an integer expression to a real. We introduce c, sum, prod and argDev

functions. c evaluates to either 1, if its boolean expression evaluates to true,
or 0 when it evaluates to false. Evaluating sum instantiates the variable with
all possible values and sum all the results of the evaluation the 〈qexp〉. prod
instantiates its variable with all values for which the first 〈qexp〉 evaluates to
1, and then it multiply all the results from evaluating the second 〈qexp〉. The
last expression introduced is argDev which describes the development of the
variable xi as a function of the number of updates, xj . The expression 〈exp〉
computes the development of xi for one incrementation of xj (e.g. the argument

7

xi in a function f(xi) with a recursive call f(xi−i2) has a argument development
argDev(xi,xi−2, xj)).

fi(x1, . . . ,xn)
def
= 〈exp〉

〈aexp〉 |= . . . | min(〈aexp〉,〈aexp〉) | max(〈aexp〉,〈aexp〉)
〈bexp〉 |= . . . | 〈aexp〉 =i 〈exp〉
〈exp〉 |= . . . | argDev(xi, 〈exp〉, xj)

Pi(x1, . . . ,xn)
def
= 〈qexp〉

〈qexp〉 |= i2r(〈aexp〉) | c(〈bexp〉) | 〈qexp〉 opq 〈qexp〉 |
sum(xi, 〈qexp〉) | prod(xi, 〈qexp〉, 〈qexp〉) |
Pi(〈aexp1〉, ...,〈aexpn〉)

opq = +q | -q | ×q | /q

Fig. 2. The expanded abstract syntax describing probability programs.

A program that computes a probability distribution is referred to as a prob-
ability program.

Definition 5. A probability program that has no if-expressions no function calls
is pure and a pure probability program without any sum and prod is in closed
form.

A program is pure after it is transformed in the separation phase and is pure
and in closed form after the simplification phase.

The create phase. This phase has only one rule which creates a program that
computes a probability distribution from the intermediate program and input
distributions.

create
f(u1, ..., un)

def
= e P(v1, ..., vn)

def
= ep

Pf(z)
def
= sum(x1 ; ...sum(xn ; c(z=i f(x1, ..., xn))×q P(x1, ..., xn)))

We use the create rule to make a new probability function describing the prob-
ability distribution for the integer function we are interested in.

The separate phase. In this phase function calls are removed by repeatedly
exposing calls and replacing them. Non-recursive function calls are unfolded
using their definitions. Function calls can occur inside if-expressions or as nested

8

calls; these are extracted and handled one at a time.

f-simple
f(y1, ..., yn)

def
= e , where e is non-recursive x1, ..., xn ∈ Var

c(z=i f(x1, ..., xn))→ c(z=i e[y1/x1, ..., yn/xn])

rem-P
P(x1, ..., xn)

def
= e

P(e1, ..., en)→ e[x1/e1, ..., xn/en]

rem-if
c(z=i if b then e0 else e1)→ (c(b)×qc(z=ie0) +q c(not(b))×qc(z=ie1))

no-nest(f)
{e1, ..., en} 6⊆ Var

c(z=i f(e1, ..., en))→
sum(u1 ; ...sum(un ; c(z=i f(u1, ..., un))×qc(u1 =i e1)×q...×qc(un =i en)))

We replace calls to recursive functions by a summation over the number of re-
cursions using argument development constructors to describe the value of each
argument as a function of the index of the summation. This way of defining
argument development has similarities with size change functions derived us-
ing recurrence equations. Argument development functions do not depend on
the base-case unlike size-change functions [40]. The summation also contains a
product which ensures that the condition evaluates to false for argument values
less than the current value of the index of summation. When the expression in
a product contains only c-constructors, then the product is evaluated to 1 if ei-
ther the range is empty or the expression is evaluated to true for the full range.
The following rewrite rules are all that is needed for transforming probability
programs into pure probability programs.

f-rec

f(y1, ..., yn)
def
= if b then e0 else f(e1, ..., en) x1, ...xn ∈ V ars

σy/i = [y1/i1, ..., yn/in]σy/x = [y1/x1, ..., yn/xn]σy/j = [y1/j1, ..., yn/jn]

c(z=i f(x1, ..., xn))→
sum(i ; c(0≤ii)×q

sum(i1 ; ...sum(in ; c(σy/i(b))×qc(i1 =i argDev(x1, σy/x(e1), i))×q

c(z=i σy/i(e0))×q...×qc(in =i argDev(xn, σy/x(en), i)))...)×q

prod(j ; c(0≤ij)×qc(j≤ii−i1) ;
sum(j1 ; ...sum(jn ; c(not(σy/j(b)))×q

c(j1 =i argDev(x1, σy/x(e1), j))×q...×qc(jn =i argDev(xn, σy/x(en), j))
)...)))

The argument development expression may contain function calls as well, and
these are extracted equivalently to nested functions.

no-nest(argDev)
c(z=i argDev(x, f(e1, ..., en) , i))→
sum(u ; c(z=i argDev(x, f(e1, ..., en) , i))×qc(u=i f(e1, ..., en)))

After applying these rules until they cannot be applied no more, the probability
program has been transformed to pure form.

The simplification phase. We have presented the rules for obtaining a pure
probability program, and in this section we outline the rules used to reach closed

9

form. A pure probability function consists of a series of nested summations
multiplied with an expression (e.g. input probability). The rules are applied
in no particular order and the phase ends when no more rules can be applied.
In this phase we integrate with Mathematica. A call to Mathematica is de-
noted mm:Function(Arg) = Answer, where Function denotes the actual func-
tion called in Mathematica (e.g. mm:Expand calls Mathematica’s Expand func-
tion). The translation between the intermediate language and Mathematica’s
representation will not be discussed further here. implicitly in the call.

The rules can be grouped by their functionality: preparing expressions, re-
moval of summations and removal of products. The latter are currently the only
rules containing over-approximations.

Preparing expressions for removal of either summations or products involve
moving expressions that do not depend on the index of summation outside the
summation, dividing summations of additions into simpler ones, reducing ex-
pressions, dividing summations in ranges, and remove argument development
constructors. Please notice that div-sum(x≤) has an equivalent rule for upper
bounds.

move-c
x /∈ Var(e1)

sum(x ; e1×qe2)→ e1×qsum(x ; e2)

div-sum(+)
x ∈ Var(e1) x ∈ Var(e2)

sum(x ; e1 +q e2)→ sum(x ; e1) +q sum(x ; e2)

div-sum(x≤)
x /∈ Var(e1, e2) x ∈ Var(e2)

sum(x ; c(x≤ie1)×qc(x≤ie2)×qe3)→
c(e1≤ie2)×qsum(x ; c(x≤ie1)×qe3) +q

c(e2≤ie1−i1)×qsum(x ; c(x≤ie2)×qe3)

rem(argDev)
c ∈ n

c(z=i argDev(x, x+i c, i))→ c(z=i x+i c×ii)

reduceAexp
mm:Reduce(e1) = e2

c(e1)→ c(e2)

reduce(=)
c(true)→ i2r(1)

Removal of summations can be done in two ways. Either the index of the
summation can only be one value or it can be a limited range of values, and de-
pending on which case different transformations are used. In the first case, there
exists an equation containing the variable index of the innermost summation.
The equation is solved for the variable and the rest of the variable occurrences
are replaced by the new value.

rem-sum(=)
mm:Solve(e1 =ie2, x) = c(x=ie3)

sum(x ; c(e1 =i e2)×qe)→ e[x/e3]

10

Removing a summation by its range involves using standard mathematical for-
mulas for rewriting series. The last part of the following rule uses

∑n
k=1 k

2 =
n(n+ 1)(2n+ 1)/6. We only present transformations up to quadratic series and
our pragmatic implementation contains rules for transforming series of power of
degree up to 10. A more general rewrite rule for series of power of degree up
p could be implemented, but is more complicated as it includes Bernoulli num-
bers and binomial coefficients. The precondition uses Mathematica’s Expand to
transform the expression into the right pattern.

rem-sum(≤)
x /∈Var(e1, ..., e6) mm:Expand(e3) = i2r(e4 +i e5×ix+i e6×ix×ix)

sum(x ; c(e1≤ix)×qc(x≤ie2)×qi2r(e3))→
i2r(e4)×qi2r(e2−ie1 +i 1) +q

i2r(e5)×qi2r(e2×i(e2+i1))/q 2−q

i2r(e5)×qi2r(e2×i(e2−i1))/q 2 +q

i2r(e6)×qi2r(e2×i(e2+i1)×i(2×ie2 +i 1))/q 6−q

i2r(e6)×qi2r(e2×i(e2−i1)×i(2×ie2−i1))/q 6

Removal of Product involves a safe over-approximation. The implementation
of POA contains two different over-approximations and in many cases the prob-
ability program can be transformed into closed form in a precise manner. In the
following paragraph we describe when the transformation preserves the accuracy
of the transformed term.

The probability function can always be over-approximated to 1. The rule
f-rec is an exact rule and introduces a product-expression which may not be
possible to rewrite into closed form. We only introduce the product-expression
with c-expressions in its body, and therefore it will always either evaluate to 1
or to 0. A safe over-approximation of such a product-expression is 1.

rem-prod-one
x /∈ Var(e1, e2) x ∈ Var(e3)

prod(x ; c(e1≤ix)×qc(x≤ie2) ; c(e3))→ 1

For the summation describing recursive calls, this transformation is exact when
the condition, b, evaluates to true for exactly one value (eg. it is an equation).

A broader class of recursive programs (than those having an equation in the
condition) is those where the c-expression is monotone in x; meaning that there
exists a k for which c(e3) = 1 for x ≤ k and c(e3) = 0 for x > k. This case covers
many for-loops. In this case we can accurately replace the prod-expression with
two c-expressions one checking the lower and one checking the upper range-limit.
The empty product (the lower limit is larger than the upper) is 1.

rem-prod-mon
x /∈ Var(e1, e2) x ∈ Var(e3) e3 is monotone in x

prod(x ; c(e1≤ix)×qc(x≤ie2) ; c(e3))→(
c(e3)[x/e1]×qc(e3)[x/e2]×qc(e1≤ie2) +q c(e2≤ie1−i1)

)
This rule does not preserve accuracy when the c-expression is not monotone in
x (e.g. c(2≤ix||4≤ix)).

11

6 Implementation and results

In the following we present three examples which show results of programs with
nested loops parameterized input distribution of multiple variables. The prob-
ability distribution computed by the output program varies in complexity; the
first program calculates a single parameterized output, the second program com-
putes a triangular shaped output distribution and third computes a distribution
converging towards a standard normal distribution. The results are presented in
a reduced and readable form extracted from our implementation.

Matrix multiplication. The original matrix multiplication program uses com-
posite types and contains nested loops. The intermediate program, defined in
Figure 3, contains nested recursive calls but has no dependency on data in com-
posite types.

for3(i3,step,n) = if(i3>=n) then step else for3(i3+1,step+1,n)

for2(i2,step,n) = if(i2>=n) then step else for2(i2+1,for3(0,step+2,n),n)

for1(i1,step,n) = if(i1>=n) then step else for1(i1+1,for2(0,step,n),n)

tmulta(step,n) = for1(0,step,n)

P(step,n1) = c(step=0)*c(n1=n)

Fig. 3. The intermediate program containing also the parameterized probability dis-
tribution. The parameter n can obtain only one value.

The nested calls create argument development functions that depend on func-
tion calls. These are transformed to a simple form and then removed. The intro-
duced products are over approximated, but due to the form of the condition the
result is precise. The output program computes a single value distribution (when
specialized with the size of the matrix). It is given in Figure 4 along with an
array describing a subset of specializations of the output program with respect
to a value of n.

Ptmulta(out) =

c(3=<out/(n*n))*

c(1=<n)*

c(out/n*n=2+n)*1

n program

1 Ptmulta(out) = c(out=3)

2 Ptmulta(out) = c(out=16)

3 Ptmulta(out) = c(out=45)

4 Ptmulta(out) = c(out=96)

.

Fig. 4. The general output probability program (left) and the program specialized
whith the value of n (right).

Adding parameterized distributions. This example is a recursive program
computing the addition of two numbers; the input program and the input proba-
bility distribution can be seen in Figure 5. The output depends on both increasing
and decreasing values. In this example we use a parameter n as the upper limit
of a range of input values. The input distribution describes two independent
variables, each having a uniform distribution from 1 to n.

12

add(x,y) = if x=<0 then y else add(x-1,y+1)

P(x) = c(1=<x)*c(x=<n)*1/n

Pxy(x,y) = P(x)*P(y)

Fig. 5. The intermediate program containing both the function add and the input
probability distribution. Here, the parameter n is used to describe a range.

The analysis gives a precise probability distribution and computes a tri-
angular distribution (or pyramid shaped distribution). The output probability
program is described in Figure 6 along with a graph depicturing the pyramid
shaped output probability distributions for different initializations of n. The
lower bound on out arises from the input probability distribution and not from
the condition. The upper bound 2*n of the analysis result shows that the output
depends on both input variables, despite that one is increasing and the other is
decreasing.

Padd(out) =

c(2<=out)*c(out<=n)*(1/n*1/n*(out-1))+

c(1+n<=out)*c(out<=2*n)*(1/n*1/n*(1+2*n-out))

Fig. 6. The general output program and the graphs for the output probability distri-
bution with n set to 3, 4, 5, and 6, respectively.

Adding 4 independent variables. The program sum4 adds four variables and
was presented by Monniaux [23]. Certain over-approximations were applied so
as to obtain a safe and simplified result.

The program is recursive and in this example we use independent input
variables each uniformly distributed input from 1 to 6, as described in Figure 7.

add(x,y) = if x=0 then y else add(x-1,y+1)

sum4(x,y,z,w) = add(x,add(y,add(z,w)))

tsum4(x,y,z,w) = sum4(x,y,z,w)

P(x) = c(1=<x)*c(x=<6)*1/6

Pxyzw(x,y,z,w) = P(x)*P(y)*P(z)*P(w)

Fig. 7. Intermediate program.

Despite the ranges and their associated value are not symmetric, the resulting
program computes a precise and perfectly symmetric probability distribution
as shown in Figure 8. The differences in the choice of ranges comes (among
other things) from the range dividing rules, as they do not divide the range
symmetrically. As expected from the central limit theorem of probability theory,

13

Psum4(out) =

c(4=<out)*c(out=<7)*(-6 + 11*out -

6*out^2 + out^3)/7776+

c(8=<out)*c(out=<12)*

(-1014+169*out+6*out^2-out^3)/7776+

c(9=<out)*c(out=<12)*

(1512-461*out+42*out^2-out^3)/3888+

c(out=13)*(265/648-5*out/216)+

c(14=<out)*c(out=<18)*

(-4790+923*out-54*out^2+out^3)/2592+

c(19=<out)*c(out=<24)*

(17550-2027*out+78*out^2-out^3)/7776

Fig. 8. The output program and graph for its computed probability distribution for
out from 3 to 25.

the resulting probability program describes a distribution that has similarities
with a normal distribution.

Monty Hall. The Monty Hall problem is often used to exemplify how gained
knowledge influences probabilities (conditional probability). In this problem there
are three closed doors; one hiding a price and two that are empty. The doors have
an equal chance of hiding the price. There is a contestant, who should choose
one of the doors, then the game host will open an empty door and the contestant
can either stick with the first choice or can change to the other unopened door.
The problem lies in showing whether the best winning-strategy is to stick with
the first choice or to switch to the other?

If the strategy is to stick with the first choice and that door has a price then
the contestant has won. If the contestant changes door he/she only loses if the
first choice was the door hiding the price; if the first choice was an empty door,
then the game host would open the other empty door leaving only the price door
for a second choice.

The program monty models the two strategies; if the strategy variable is 1
then the strategy is to change the door, and otherwise the strategy is to stick
with the first choice. The program takes as input the contestant’s first guess,
the door hiding the price, the empty door which is not opened by the game host
and the strategy the contestant uses.

Let us assume the contestant has an equal chance of choosing each of the
doors. The input variables guess, price, and empty models the first choice, the
price door and the empty door which is left after the game host has opened
an empty door. All three doors have a value between 1 and 3, and the empty
door cannot be the same as the price door. We have parametrized the strategy
with a weight p between the two, such that when p = 1 then the strategy is to
always change door, and when p=0 the strategy is to always keep the first choice
(e.g. letting p = 0.75 we change doors in 3/4 cases and 1/4 we keep the first
door). Such a parametrization allows us to execute the analysis once and use the
lighter closed form result for that calculation instead. In a problem where the
winning-probability of a strategy is dependent on the other input, such input

14

could be used for optimizing the choice of strategy. The program monty and the
parametrized input probability distribution can be seen in Figure 9.

monty(guess,price,empty,strategy)=

if strategy = 0

then finalGuess(guess,price)

else change(guess,price,empty)

finalGuess(guess,price)=

if price=guess then 1 else 0

change(guess,price,empty)=

if price=guess

then finalGuess(empty,price)

else finalGuess(price,price)

Pin(guess,price,empty,strategy) =

1/18*c(1=<guess)*c(guess=<3)

*c(1=<price)*c(price=<3)

*c(1=<empty)*c(empty=<3)

*c(not(price = empty))

*Pstrat(strategy)

Pstrat(strategy) =

p*c(1 = strategy)

+ (1-p)*c(0 = strategy)

Fig. 9. The program monty models the event flow depending on the chosen strategy;
if the strategy is 0 then the contestant keeps the first door and if it is 1 then the
contestant changes his mind. There are three doors and the input of monty describes the
contestants first guess, the door hiding the price, the empty door which is not opened by
the game host (and is different from the price door) and the strategy of the contestant.
If the final choice hides the price then the program returns 1 and otherwise 0. The
probability of the strategy is an expression parametrized with a weight, p between the
two strategies instead of executing the analysis twice with different strategy.

The analysis was capable of handling the program correctly and the result
can be seen in Figure 10.

pmonty(out) =

1/18 *

(c(out=0)*

(12*(1-p)+6*p)+

c(out=1)*

(6*(1-p)+12*p))

Fig. 10. The probability of winning the Monty Hall as a function of the weight given to
change-strategy. The probabilistic output analysis reveals that the best weight between
the keep strategy and the change strategy is to always use change strategy.

The probabilities 1/3 and 2/3 does not occur directly in the output proba-
bility program, but are found in the constants 6, 12 and 1/18.

Adding dependent non-uniform variables. A function call may have in-
terdependent and non-uniform arguments, and in this example we demonstrate
that the analysis can handle such function calls. We focus on the dependencies,
analyze a simple add program and discuss the limits of the interdependencies.

15

The program also shows that interdependencies quickly lead to the occurrence
of integer division in the output

The input arguments are interdependent; the second argument is always less
than or equal to the value of the first argument. The joint distribution depends
only on the value of the first argument resulting in a skewed probability distri-
bution. The probability program is defined in Figure 11.

Pxy(x,y) = c(1=<y)*c(y=<3) *

c(1=<x)*c(x=<y) * x/10

add(x,y) = x+z

Padd(out) =

c(2 =< out)*c(out=< 3) * 1/20 * out%2 * (1 + out%2) +

c(4 =< out)*c(out=< 6) * -(1/20)*(-4+out-out%2)*(-3+out+out%2)

Fig. 11. An input program, add, its skewed joint distribution, Pxy, and the closed form
probability program, Padd, produced by the analysis. The integer division is noted by
a “%”.

The create rule generates nested summations, and removing such inner sum-
mations imply that their values must be expressed using the variables of the
outer summations or the input variable (ie. out). Comparing the result from
this experiment with the output probability distribution for addition of two ran-
dom variable in Figure 6 indicates that integer division is a special case arising
from dependent input. The following interesting expressions are extracted during
analysis execution, and they shows how the integer division arises from depen-
dency of input. The first expressions is the result from the create rule and the
last expression is the result after removal of the inner y-summation.

Padd(out) =
sum(x ; sum(y ; c(out=i x+i y)×q

c(1≤ix)×qc(x≤iy)×qc(1≤iy)×qc(y≤i3)×q(i2r(x) /
q i2r(10)))) =

sum(x ; c(2≤iout)×qc(out≤i3)×qc(1≤ix)×q

c(2×ix≤iout)×q(i2r(x) /
q i2r(10))) +q

sum(x ; c(4≤iout)×qc(out≤i3 +i x)×qc(2×ix≤iout)×q(i2r(x) /
q i2r(10)))

In the last expression there are two summations, each leading to its own part
in the resulting program. Looking closely at each summation, we see that they
share the upper limit for x, c(2×ix≤iout), which currently contains an integer
multiplication and when solved with respect to x contains the integer division.
In the final result the second part of the expression has an upper limit for out,
c(out≤i6) which is a constraint that the summation-removal-rule introduces to
ensure that the lower limit of the summation (i.e. out−i3) is less than or equal
to the upper limit (i.e. out%i 2).

The original probability (i2r(x) /q i2r(10)) occurs directly in the summa-
tions, and this indicates a limit of this implementation and approach. To be
able to handle a probability, the rewrite rules for summations must transform
summations over the probability expression. There are limits to which series

16

the system currently can transform, Sum of reciprocals (e.g.
∑n

k=1
1
k) known as

harmonic series or variations hereof such as generalized harmonic series are cur-
rently not implemented. The current analysis is limited to finite summations of
at least order of 1, but a closer integration with Mathematica that exploits more
of Mathematicas rewriting mechanisms should be able to handle such series.

7 Related works

Probabilistic analysis is related to the analysis of probabilistic programs. Proba-
bilistic analysis is analysis of programs with a normal semantics where the input
variables are interpreted over probability distributions. Analysis of probabilistic
programs analyse programs with probabilistic semantics where the values of the
input variables are unknown (e.g. flow analysis [25]).

In probabilistic analysis it is important to determine how variables depend on
each other, but already in 1976 Denning proposed a flow analysis for revealing
whether variables depend on each other [8]. This was presented in the field
of secure flow analysis. Denning introduced a lattice-based analysis where she,
given the name of a variable, that should be kept secret, deducted which other
variables those should be kept secret in order to avoid leaking information. In
1996, Denning’s method was refined by Volpano et al. into a type system and
for the first time, it was proven sound [34].

Reasoning about probabilistic semantics is a closely related area to probabilis-
tic analysis, as they both work with nested probabilistic influence. The proba-
bilistic analysis work on standard semantic and analyze it using input probability
distributions, where a probabilistic semantics allow for random assignments and
probabilistic choices [20] and is normally analyzed using an expanded classical
analysis or verification method [6].

Probabilistic model checking is an automated technique for formally verifying
quantitative properties for systems with probabilistic behaviors. It is mainly
focused on Markov decision processes, which can model both stochastic and
non-deterministic behavior [13, 21]. It differs from probabilistic analysis as it
assumes the Markov property.

In 2000, Monniaux applied abstract interpretation to programs with prob-
abilistic semantics and gained safe bounds for worst case analysis [23]. Pierro
et al. introduce a linear mapping structure, a Moore-Penrose pseudo-inverse,
instead of a Galois connection. They use the linear structures to compare ’close-
ness’ of approximations as an expression using the average approximation error.
Pierro et al. further explores using probabilistic abstract interpretation to calcu-
late the average case analysis [24]. In 2012, Cousot and Monerau gave a general
probabilistic abstraction framework [6] and stated, in section 5.3, that Pierro et
al.’s method and many other abstraction methods can be expressed in this new
framework.

When analysing probabilities the main challenge is to maintain the dependen-
cies throughout the program. Schellekens defines this as Randomness preserva-
tion [31] (or random bag preservation) which in his (and Gao’s [14]) case enables

17

tracking of certain data structures and their distributions. They use special data
structures as they find these suitable to derive the average number of basic op-
erations. In another approach [35, 26], tests in programs has been assumed to
be independent of previous history, also known as the Markov property (the
probability of true is fixed). As Wegbreit remarked, this is true only for some
programs (e.g. linear search for repeating lists) and others, this is not the case
(linear search for non-repeating lists). The Markov property is the foundation
in Markov decision processes which is used in probabilistic model-checking [13].
Cousot et al. presents a probabilistic abstraction framework where they divide
the program semantics into probabilistic behavior and (non-)deterministic be-
havior. They propose handling of tests when it is possible to assume the Markov
property, and handle loops by using a probability distribution describing the
probability of entering the loop in the ith iteration. Monniaux propose another
approach for abstracting probabilistic semantics [23]; he first lifts a normal se-
mantics to a probabilistic semantics where random generators are allowed and
then uses an abstraction to reach a closed form. Monniaux’s semantic approach
uses a backward probabilistic semantics operating on measurable functions. This
is closely related to the forward probabilistic semantics proposed earlier by Kozen
[20].

An alternative approach to probabilistic analysis is based on symbolic exe-
cution of programs with symbolic values [15]. Such techniques can also be used
on programs with infinitely many execution paths by limiting the analysis to a
finite set of paths at the expense of tightness of probability intervals [30].

8 Conclusion

Probabilistic analysis of program has a renewed interest for analysing programs
for energy consumptions. Numerous embedded systems and mobile applications
are limited by restricted battery life on the hardware. In this paper we describe
a rewrite system that derives a resource probability distribution for programs
given distributions of the input. It can analyze programs in subset of C where we
have known distribution of input variables. From the original program we create
a probability distribution program, where we remove calls to original functions
and transform it into closed form. We have presented the transformation rules
for each step and outlined the implementation of the system. We discuss over-
approximating rules and their influence on the accuracy of the output probability
and show that our analysis improves on related analysis in the literature.

References

1. A. Adje, O. Bouissou, J. Goubault-Larrecq, E. Goubault, and S. Putot. Static
analysis of programs with imprecise probabilistic inputs. In In Verified Software:
Theories, Tools, Experiments, pages 22–47. Springer Berlin Heidelberg., 2014.

2. M. Bauer. Approximations for decision making in the Dempster-Shafer theory
of evidence. In E. Horvitz and F. V. Jensen, editors, UAI, pages 73–80. Morgan
Kaufmann, 1996.

18

3. D. Berleant and H. Cheng. A software tool for automatically verified operations
on intervals and probability distributions. Reliable Computing, 4(1):71–82, 1998.

4. O. Bouissou, E. Goubault, J. Goubault-Larrecq, and S. Putot. A generalization of
p-boxes to affine arithmetic. Computing, 94(2-4):189–201, 2012.

5. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garcıa, and G. Puebla.
The ciao prolog system. Reference Manual. The Ciao System Documentation
Series–TR CLIP3/97.1, School of Computer Science, Technical University of
Madrid (UPM), 95:96, 1997.

6. P. Cousot and M. Monerau. Probabilistic abstract interpretation. In H. Seidl,
editor, ESOP, volume 7211 of LNCS, pages 169–193. Springer, 2012.

7. Saumya K Debray, P López Garćıa, Manuel Hermenegildo, and N-W Lin. Estimat-
ing the computational cost of logic programs. In Static Analysis, pages 255–265.
Springer, 1994.

8. D. E. Denning. A lattice model of secure information flow. Commun. ACM,
19(5):236–243, 1976.

9. S. Destercke and D. Dubois. The role of generalised p-boxes in imprecise probability
models. In 6th International Symposium on Imprecise Probability: Theories and
Applications, 2009.

10. S. Ferson. Model uncertainty in risk analysis. Tech. report, Centre de Recherches
de Royallieu, Universite de Technologie de Compiegne, 2014.

11. S. Ferson, V. Kreinovich, L. Ginzburg, D. S. Myers, and K. Sentz. Constructing
probability boxes and Dempster-Shafer structures. Sand2002-4015, Sandia Na-
tional Laboratories, 2002.

12. P. Flajolet, B. Salvy, and P. Zimmermann. Automatic average-case analysis of
algorithm. Theor. Comput. Sci., 79(1):37–109, 1991.

13. V. Forejt, M. Z. Kwiatkowska, G. Norman, and D. Parker. Automated verification
techniques for probabilistic systems. In M. Bernardo and V. Issarny, editors, SFM,
volume 6659 of LNCS, pages 53–113. Springer, 2011.

14. A. Gao. Modular average case analysis: Language implementation and extension.
Ph.d. thesis, University College Cork, 2013.

15. J. Geldenhuys, M. B Dwyer, and W. Visser. Probabilistic symbolic execution. In
Proceedings of the 2012 International Symposium on Software Testing and Analy-
sis, pages 166–176. ACM, 2012.

16. J. Gordon and E. H. Shortliffe. The Dempster-Shafer theory of evidence. In
Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic
Programming Project, page 21 pp, 1984.

17. X. Guo, M. Boubekeur, J. McEnery, and D. Hickey. ACET based scheduling of
soft real-time systems: An approach to optimise resource budgeting. International
Journal of Computers and Communications, 1(1):82–86, 2007.

18. R. U. Kay. Fundamentals of the Dempster-Shafer theory and its applications to
system safety and reliability modelling. In RTA, pages 173–185, 2007.

19. S. Kerrison and K. Eder. Energy modelling and optimisation of software for a
hardware multi-threaded embedded microprocessor. University of Bristol, Bristol,
Tech. Rep, 2013.

20. D. Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22(3):328–
350, 1981.

21. M. Kwiatkowska, G. Norman, and D. Parker. Advances and challenges of proba-
bilistic model checking. In 48th Annual Allerton Conference on Communication,
Control, and Computing, pages 1691–1698. IEEE, September 2010.

19

22. U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech, M. V.
Hermenegildo, and K. Eder. Energy consumption analysis of programs based on
xmos isa level models. In 23rd International Symposium on Logic-Based Program
Synthesis and Transformation, LOPSTR, volume 8901 of LNCS, pages 72–90, 2013.

23. D. Monniaux. Abstract interpretation of probabilistic semantics. In Jens Palsberg,
editor, SAS, volume 1824 of LNCS, pages 322–339. Springer, 2000.

24. A. Di Pierro, C. Hankin, and H. Wiklicky. Abstract interpretation for worst and
average case analysis. In T. W. Reps, M. Sagiv, and J. Bauer, editors, Program
Analysis and Compilation, volume 4444 of LNCS, pages 160–174. Springer, 2006.

25. A. Di Pierro, H. Wiklicky, G. Puppis, and T. Villa. Probabilistic data flow analysis:
a linear equational approach. In Proceedings Fourth International Symposium,
volume 119, pages 150–165. Open Publishing Association, 2013.

26. H. Soza Pollman, M. Carro, and P. Lopez Garcia. Probabilistic cost analysis of
logic programs: A first case study. INGENIARE - Revista Chilena de Ingeniera,
17(2):195–204, 2009.

27. M. Rosendahl. Automatic program analysis. Master’s thesis, University of Copen-
hagen, 1986.

28. M. Rosendahl. Automatic complexity analysis. In FPCA, pages 144–156, 1989.
29. M. Rosendahl and M. H. Kirkeby. Probabilistic output analysis by program ma-

nipulation. In Quantitative Aspects of Programming Languages, EPTCS, 2015.
30. S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis for proba-

bilistic programs: inferring whole program properties from finitely many paths. In
In Proceedings of the 34th ACM SIGPLAN conference on Programming language
design and implementation, pages 447–458. ACM., June 2013.

31. M. P. Schellekens. A modular calculus for the average cost of data structuring.
Springer, 2008.

32. V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software: a first
step towards software power minimization. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 2(4):437–445, 1994.

33. A. Uwimbabazi. Extended probabilistic symbolic execution. Master’s thesis, Uni-
versity of Stellenbosch, 2013.

34. D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for secure flow
analysis. Journal of Computer Security, 4(2/3):167–188, 1996.

35. B. Wegbreit. Mechanical program analysis. Commun. ACM, 18(9):528–539, 1975.
36. M. Weiser. Program slicing. In Proceedings of the 5th international conference on

Software engineering, pages 439–449. IEEE Press, 1981.
37. A. Wierman, L. L. H. Andrew, and A. Tang. Stochastic analysis of power-aware

scheduling. In Proceedings of Allerton Conference on Communication, Control and
Computing. Urbana-Champaign, IL, 2008.

38. N. Wilson. Algorithms for Dempster-Shafer theory. In Handbook of defeasible
reasoning and uncertainty management systems, pages 421–475. Springer Nether-
lands, 2000.

39. S. Wolfram. The Mathematica book. Cambridge University Press and Wolfram
Research, Inc., New York, NY, USA and, 100:61820–7237, 2000.

40. F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound analysis of imperative
programs with the size-change abstraction. In Static Analysis, pages 280–297.
Springer, 2011.

20

