ENTRA

Whole-Systems
Energy Transparency

ENTRA
318337
Whole-Systems ENergy TRAnsparency

Energy-Aware Software Development
Methods and Tools

Deliverable number: D1.2

Work package: Energy-Aware Software Engineering (WP1)
Delivery date: 31 December 2015 (39 months)

Actual date: 1 March 2016

Nature: Prototype

Dissemination level: PU

Lead beneficiary: IMDEA Software Institute

Partners contributed: Roskilde University, University of Bristol, IMDEA Software Insti-
tute, XMOS Limited

Project funded by the European Union under the Seventh Framework Programme,
FP7-ICT-2011-8 FET Proactive call.

Short description:

This deliverable reviews the field of energy-aware software development and describes how the
areas most closely related to the ENTRA project have advanced during the execution of the
project. This establishes the context for a description of different activities and scenarios for
energy-aware software development. Then, it demonstrates (by using a tools front end developed
in the project) how the final energy-aware prototype tools for analysis, verification and optimi-
sation can be integrated into tool-chains for energy-aware software development processes and
life-cycle. Finally, such prototype tools, which are components providing the functionality sup-
porting the activities of energy-aware software development, are described. Links to repositories
containing the prototype tools and other software developed are available at the ENTRA project
websitd[l]

The deliverable includes the following attachments:

e D1.2.1 [LGK™16]: Inferring Parametric Energy Consumption Functions at Different Soft-
ware Levels: ISA vs. LLVM IR. Foundational and Practical Aspects of Resource Analysis.
Fourth International Workshop FOPARA 2015, Revised Selected Papers, Lecture Notes in
Computer Science, Springer. To appear.

e DI1.2.2 [HK16l: Swallow: Building an Energy-Transparent Many-Core Embedded Real-
Time System. International Conference on Design, Automation and Test in Europe (DATE
2016), Dresden, Germany, IEEE, March 2016.

e D1.2.3 [HLGL™16]: A Transformational Approach to Parametric Accumulated-cost Static
Profiling. Thirteenth International Symposium on Functional and Logic Programming
(FLOPS 2016), LNCS, Springer, March 2016.

o D1.2.4: Integrating energy modelling into the development process: A Makefile approach.
Technical brief, December 2015.

'"http://entraproject.eu/software—and-tools.

Contents

L__Introduction

2 Overview of the Field of Energy-aware Software Development|

[2.2 Energy-aware software development,

[2.3 Motivation for energy-aware software development|

[2.4 Techniques for application software energy efficiency|

DAT

Computational efficiency| L.

[2.4.2 Low-level or intermediate code optimisation|

2.4

Parallelism|o o oo

[2.4.4 Data and communication efficiency|

[2.5 Tool support for energy-aware software development|

3 Software Engineering Activities and Scenarios|

B

Energy-aware software engineering activities|

Specity application, including energy|

Construction of energy models|

Resource model of deployment platform|.

Selection of deployment platform|

Configure platform|

Design space exploration| o L 0oL

Initial energy profiling| o oL

Detailed energy analysis|

[3.1.1
[3.1.2
[3.1.3
[3.1.4
[3.1.5
[3.1.6
[3.1.7
[3.1.8
[3.1.9 Identify energy bugs|

[3.1.10 Energy optimisation or reconfiguring|

[3.1.11 Verify or certify energy consumption|

B2

Energy-aware software engineering scenarios|

321

Embedded system developmenton xCORE{

[3.2.2 Android app development] L.

4 The ENTRA tools front end

5 Energy-aware Software Development Tools: Description and Demos|

5.1

Multi-level energy analysis and verification tool based on HC IR transformation| .

511

Usage and 1nterface]|

11
11
12
12
12
13
13
13
13
14
14
14
14
14
15
15

17

[5.2 Multi-level mappertool| oo 23

[5.3 Performing parametric static profiling of energy consumption|. 23
[5.4 The Swallow platform| 24
5.5 Optimization via Dynamic Voltage and Frequency Scaling (DVFES) and task |
| scheduling|. 25
[5.6 XMOS tools: Supporting low power designin XC|. 26
5.6.1 Introduction to the interfacel 26
5.62 Combinablel. 29
0.6.3 Distributablel 30
0.64 Statusandusel. 30

[5.7 Implicit path enumeration ECSA applications| 30
[5.7.1 Design-space exploration for multi-threaded programs using ECSA| . . . 31
[5.7.2 Other ECSA applications|. 31

Tools for Horn ¢l rificationl Lo 32

[5.9 Integrating energy modelling into the development process: A Makefile approach| 34

[A__ENTRA tools front end mini-manuall 41
(Al Userinterfacel 41
[A.2 Analysis and intermediate version specification| L. 41
A3 Future versions| 42

[Attachments| 43
[D1.2.1: Inferring Parametric Energy Consumption Functions at Different Software |

| Levels: ISAvs. LIVMIR| o 45
[D1.2.2: Swallow: Building an Energy-Transparent Many-Core Embedded Real-Time |

| SYStEM|. e e e e e e e e 66

[D1.2.3: A Transformational Approach to Parametric Accumulated-cost Static Profiling] 73

[D1.2.4: Integrating energy modelling into the development process: A Makefile approach| 91

1 Introduction

Deliverable D1.1 gave a preliminary overview of the ENTRA tools supporting energy trans-
parency, in the context of the project’s emerging understanding, after two years, of the needs of
an energy-aware software development tool-chain. It included a broad description of the kinds
of information that energy-aware software engineers needs to know, as well as a summary of the
tool support that could provide such information and assist in energy optimization.

In this deliverable we start by reviewing the field of energy-aware software development,
identifying the areas most closely related to the ENTRA project, and describing how the field
has advanced during the lifetime of the ENTRA project (Section [2).

Then, we describe different activities and scenarios for energy-aware software development
(Section[3)). In order to demonstrate how the prototype tools and components for analysis, veri-
fication and optimisation can be integrated into a tool-chain for energy-aware software develop-
ment, we have implemented a front-end that provides a friendly Graphical User Interface, that
we call the ENTRA tools front end (Section). Such components, which provide functionality
supporting the activities of energy-aware software development, are described in Section [5

It is a research challenge in itself, quite apart from the tool functionalities, to consider how
they might be integrated into an energy-aware tool-chain. In the ENTRA project we have fol-
lowed two streams of work:

1. Integration in the XC tool-chain, which constitutes the proof of concept of the project,
where different components, such as the tools (or parts of them) presented in Section [5|can
be used, once they are in a mature and stable enough state. Such tools exploit the existing

infrastructure of the compiler, intermediate code, and other development tools.

2. Stand-alone tool development, which allows a more general investigation and the study of
other application areas. This development stream allows the invention of new approaches,
the experimentation and evaluation of already developed components, the identification of

new components and the investigation of a wider range of scenarios.

The strategy is to migrate tool components from the second stream to the XC tool-chain once
they reach a mature enough state (in the longer term). The ENTRA tools front end allows us to
experiment with integration of prototype tools with components from the mainstream tool-chain
such as the XC compiler and the LLVM framework.

Links to repositories containing the prototype tools and other software developed as part of
this deliverable are available at the ENTRA project websiteﬂ

’http://entraproject.eu/software—and-tools.

2 Overview of the Field of Energy-aware Software Develop-

ment

In this section we review the field of energy-aware software development, and identify the areas
most closely related to the ENTRA project. We also look at how the field has advanced during
the lifetime of the ENTRA project.

2.1 GreenIT

There has been a growth of interest in the field of Green IT [KCWCW10, NKD13), ICES12,
NKD13, IMA13] since approximately 2010; for example the conference series International
Green And Sustainable Computing Conferenceﬂ started in 2011 and the IEEE technical area of
Green Computingﬂ was launched in 2010. The Energy Aware COmputing workshop seriesﬂ was
initiated in Bristol in 2011. Since the start of the ENTRA project in 2012 dedicated workshops
such as GREENS®land SMARTGREENS| have been launched.

Green IT covers energy aspects of the complete life-cycle and context of ICT systems, in-
cluding software and hardware, development energy costs, maintenance and deployment energy
costs, cooling costs, the energy costs of communication infrastructure, raw materials and disposal
costs and a host of other energy costs and environmental effects associated directly or indirectly
with software systems.

2.2 Energy-aware software development

Energy-aware software development is only one aspect of Green IT; it is only concerned with
the energy efficiency of software, that is, the energy costs directly attributable to execution of
programs. The energy-aware software engineer cannot in general be aware of the whole Green
IT field, which involves complex dependencies and tradeoffs.

In short, energy-aware software development concerns the use of tools and methods to allow
energy consumption as a first-class software design goal. The goal could be to increase energy
efficiency or to achieve stated energy targets, for a given ICT application running on a given
hardware platform. Energy-awareness for software development thus requires an understanding

of the implications for energy consumption of design decisions in the software.

3http://igsc.eecs.wsu.edu/ (formerly International Green Computing Conference (IGCC))
y puting

“http://sameekhan.org/tagc/

Shttp://www.cs.bris.ac.uk/Research/Micro/eaco. jsp

Shttp://greens.cs.vu.nl/

"http://www.smartgreens.orqg/

Very few programmers at present have much idea of how much energy their programs con-
sume, or which parts of the program use the most energy. The development of software tools
and techniques for resource-awareness (including energy-awareness) is now attracting more at-
tention, but the field remains somewhat fragmented. Resource analysis is the topic of dedicated
workshops such as FOPARAﬂ However, energy modelling is mainly studied in different appli-
cation contexts such as embedded systems, high-performance systems, mobile systems and so
on, rather than as a coherent set of techniques applicable to any software-based system.

The ENTRA project marks itself out from the current state of the art in three main respects.

o [t takes a generic approach, not driven by any particular class of applications, platforms or

programming languages.
e [t combines energy analysis and energy modelling and the interaction between them.

e [t considers the tools needed to support energy-aware software development.

2.3 Motivation for energy-aware software development

Environmental impact. The energy consumed by ICT is growing both in absolute terms and
as a proportion of the global energy consumption and thus plays an important role in meeting the
targets of the Europe 2020 Agenda, which includes a goal to reduce greenhouse gas emissions by
at least 20% compared to 1990 levels. Every device, from autonomous sensor systems operating
at the mW level to high performance computing (HPC) systems and data centres requiring tens
of MWs for operation, consumes a certain amount of energy which results in the emission of
CO..

Although energy is ultimately consumed by physical processes in the hardware, the software
controls the hardware and indeed typically causes a great deal of energy waste by inefficient
use of the hardware. This waste cannot be recovered by relying on the development of more
energy-efficient hardware — increasing the energy efficiency of the software is the most effective
approach to reducing overall energy consumption.

In many cases the energy efficiency of software has a direct positive effect on the efficiency
of other energy-related aspects of systems. Obvious case are cooling costs and battery costs —
cooling requirements for data centres are directly related to the power dissipated by the compu-
tations, while for mobile systems the number of battery replacements or recharges is similarly

reduced if software is more energy-efficient.

8http://resourceanalysis.cs.ru.nl/fopara/

6

Strategic impact. The energy efficiency of ICT systems plays a critical role in exploiting the
massive amounts of information available in data centres, and the full vision of the so-called
Internet of Things. The power requirement of a data centre is typically measured in tens of MW,
including cooling costs, while the Internet of Things generates increasing demand for a huge
number of very low-power devices. The dream of “wireless sensors everywhere” is accompanied
by the nightmare of battery replacement and disposal unless the energy requirements of devices

can be lowered to enable them to be powered by energy harvesters or RF power sources.

Development costs of energy-efficient software. In the current state of the art, development
costs for energy-efficient systems are higher than for energy-wasteful systems due to the extra
effort required to take energy consumption into account. This is a significant barrier to making
energy efficiency a first-class design goal.

The motivations for ENTRA research in energy-aware software development can thus be

summarised as follows.

1. To lower the energy costs directly attributable to software execution, helping to reduce
the environmental impact of ICT and to enable the next generation of ambient low-power

devices.

2. To lower energy costs indirectly caused by software, such as the cost of cooling, power

supplies, battery replacement and recharging.

3. To reduce the costs of the process of developing energy-efficient systems, by developing

tools and techniques to assist the energy-aware developer.

2.4 Techniques for application software energy efficiency

One of the first works to stress the general importance of software energy efficiency, and iden-
tify aspects of software that affect energy consumption, was by Roy and Johnson [RJ97]]. Since
then the topic has been addressed mostly in the context of specialised application areas such
as high-performance computing, embedded systems and mobile systems. There has been some
more generic research in the past five years in the context of green computing [Goel3), Dew 14,
dSCM™12]]. However the mainstream view remains that energy efficiency is a concern for hard-
ware designers. Low-power architecture, for example, is still a very active area of research.

ENTRA Deliverable D4.1 [Gall4] summarised a number of software-based approaches to
achieving lower energy consumption. Here we briefly review these along with other techniques
described in [Larl1l ISA12]].

2.4.1 Computational efficiency

Firstly, there is a strong correlation between time and energy consumption for a given platform
running a single computation thread. There are two reasons for this: less time means fewer
instructions and secondly when the task is finished the processor can revert to a lower-power
state for the excess time that a less efficient algorithm would use. The latter is called the “race to
idle” in [SA12]]. The correlation between time and energy is especially strong when asymptotic
complexity is considered. It is highly likely, for example, that a single-threaded task that has
O(n?) time consumption also has O(n?) energy consumption. Thus one of the main concerns
of the energy-aware programmer, even with no knowledge of the energy consumption of the
hardware, is to find computationally efficient algorithms and data structures suited to the task at
hand.

2.4.2 Low-level or intermediate code optimisation

Deliverable D4.1 reviewed a range of techniques for low-level code energy optimisations, which
could in principle be carried out by a compiler. These range from register allocation policies to
avoid overheating a few intensively-used registers, use of VLIW (Very Long Instruction Word)
instructions and vectorisation, to exploitation of low-power processor states using frequency and
voltage scaling (DVFS). Note that such optimisations, in contrast to computational efficiency,
are highly platform-dependent and rely on a platform energy model expressed at the level of
low-level code. Computational efficiency as described in Section [2.4.1|is also important in that
low-level code optimisations are most effective when applied to frequently executed sections of
code, such as tight inner loops, where a small savings in energy can make a significant different
to the overall computation.

It was also noted in Deliverable D4.1 that some energy optimisations rely on advanced
compile-time (i.e. static) analysis. For example, knowledge of thread load imbalance and knowl-
edge of predictable idle periods when processors can be put into low-power states are difficult
to apply in the current compiler state of the art, since the analyses providing this knowledge are

still emerging research areas.

2.4.3 Parallelism

The relationship between computational efficiency, time consumption and energy consumption
is more complex for parallel than for sequential code. A multithreaded solution using multiple
cores is often more energy-efficient than a single-threaded solution, even though the total amount
of work done is greater for the multithreaded code, due to the extra instructions needed for

communication and synchronisation. The savings are mainly due to the fact that the overall task
time is reduced, and so the processor(s) can revert sooner to a low-power state (the “race to idle”
mentioned earlier).

Secondly, there can be energy savings if one or more cores can be run more slowly and still
achieve the same overall task time as the sequential code. This is because power (P), frequency
(f) and voltage (V) are related by the equation P = cV/2f where c is a constant. Thus slowing
down the processor (reducing f) saves power but not overall energy since the computation time
is increased proportionally. However, a lower frequency is typically accompanied by a lower
voltage, and the power/energy savings are quadratic in relation to voltage reduction.

2.4.4 Data and communication efficiency

Energy can be saved by minimising data movement. This can be achieved by writing software
that reduces data movement by using appropriate data structures, by understanding and exploiting
the underlying system’s memory hierarchy and by designing multithreaded code that reduces the
cost of communication among threads.

For example the size of blocks read and written to memory and external storage can have
a major impact on energy efficiency, while memory layout of compound data structures should
match the intended usage in the algorithm, so that consecutively referenced data items are stored
adjacently if possible. In multithreaded code, consolidating all read-writes to or from disk to
a single thread can reduce disk contention and consequent disk-head thrashing [SA12]. Fur-
thermore, knowledge of the relative communication distances for inter-core communication can
be used to place frequently communicating threads close to each other [HK16] thus reducing

communication energy costs.

2.5 Tool support for energy-aware software development

Given the potential energy optimisations in described above, we identify various classes of tool
support for energy-aware software development.

e Tools for energy modelling and transparency through the layers.

— Tool role: to make visible energy consumption associated with programs at different

levels.

— Energy mappings showing relation between energy of ISA blocks, intermediate code

blocks and source statement blocks.

e Energy consumption analysis.

— Tool role: to show how energy models can be used by static analysis to analyse energy

consumption.

— Parametric energy expressions derived and displayed (as functions, or as graphs).

Static profiling showing distribution of energy in a program, e.g. highlighting hot
blocks.

e Energy simulation.

— Tool role: similar to energy analysis tools, but using simulations based on an energy
model.

— Components: Simulation-based energy profiling of code, with suitable display of

results.
e Energy verification.

— Tool role: to show that energy specifications can be checked, and constraints derived

giving conditions under which specs are satisfied.

— Display of specifications, and results and interpretation of verification.
e Energy optimization and design space exploration.

— Tool role: to use energy information (from any of the above tools) in manual or

automatic (compiler-based) energy optimisation.
— Energy optimising compiler.
Exploration of thread and communication behaviour with implications for improved

design with respect to energy consumption.

10

I’ fit? Construct
—> energy
_———— models
| algorithms |, < ==~ platforms
I} \
Provide ’l Design space ‘|
energy 1 exploration I Choose/
spec ‘o / configure

I,

platform

energy
specs

Initial energy
profiling

CODE €--==C
Optimise/
reconfigure

energy

\

1

1

1
Y

Identify
energy bugs

Verify/certify
energy

Detailed
energy
analysis

Figure 1: Energy-aware software engineering activities.

3 Software Engineering Activities and Scenarios

We now look at energy-aware software from the designer’s and developer’s point of view. What
are the activities that distinguish energy-aware design and development from standard approaches
in which energy is considered at the end of the development process, if at all? In Section 3.1 we
identify a number of generic activities that play an important role in energy-aware software en-
gineering. In Section[3.2] we make the discussion a little more concrete by sketching scenarios in
which these activities are applied.

3.1 Energy-aware software engineering activities

In this section we describe the most important activities involved in energy-aware software en-
gineering. Some of these activities are extensions or modifications of conventional software
engineering practices; others are new activities that only exist when energy efficiency is a design
goal. Figure[I|shows a number of activities and (some of) the inter-dependencies that arise in the
context of different scenarios.

11

3.1.1 Specify application, including energy

The process of developing application software starts with a requirements specification that ex-
presses not only functional properties, as in the classical approach, but also non-functional prop-
erties, including energy consumption and other resources. Classical methods for requirements

specification need to be extended to allow non-functional specifications to be expressed.

Satisfying functional properties (in the sense of the classical concept of correctness with
respect to a test suite or a formal input-output specification) is as important as doing so for non-
functional properties: an application that makes a device run out of batteries before a task is

completed is as erroneous and useless as an application that does not compute the right result.

3.1.2 Construction of energy models

Creating energy models for different combinations of hardware platforms and programming lan-
guages is a part of the energy-aware development process. At one end of the spectrum, one might
expect future hardware manufacturers to deliver an energy model for their instruction set archi-
tecture and thus the model would be available “off the shelf”. At the other end, some projects
might require the construction of an energy model specific to that project, perhaps because the
hardware or software environment was not standard. In between these two extremes, energy

modelling for energy-aware software development is becoming a more well understood process.

3.1.3 Resource model of deployment platform

If energy efficiency is a design goal, we need to obtain an energy model of the platform on
which the system is to be deployed (even though the software might be developed on a different
platform).

Thus obtaining the appropriate energy model is a vital task in energy-aware software en-
gineering. Not only should an appropriate platform be selected, but its energy model should be
available during software development to support other activities (see for example Sections[3.1.6]
B.1.7,[3.1.8/ and [3.1.9). We note also that several different energy models for a given platform
might be selected, at different levels of abstraction suitable for different activities. For instance,

high-level approximate models might be suitable for design space exploration (Section [3.1.6))
and initial energy profiling (Section [3.1.7)), while more precise low-level models are needed for
detailed energy analysis (Section [3.1.8)) and optimisation (Section [3.1.10).

12

3.1.4 Selection of deployment platform

The choice of deployment platform itself might depend on its resource-usage model; thus this
activity and Section [3.1.3] are interdependent. By “platform” here is meant both the hardware
and the software platform; thus the model should be capable of predicting the energy usage of
software (in a given language and with a given runtime environment) being executed on a given

piece of hardware.

3.1.5 Configure platform

Some platforms allow configuration that can have implications for energy consumption. Among
such settings are clock frequency and voltage, the number of cores and the communication paths
among them. At the software level, operating system settings can also be considered, such as
the settings for power saving and the resolution of OS timer processes that can send interrupts to

other processes.

3.1.6 Design space exploration

Choices taken early on in the design process can have a profound effect on the energy efficiency
of the final result. Design space exploration as an energy-aware software development activ-
ity refers to the process of estimating energy implications of different possible design solutions,
before they are implemented. It may involve especially activities such as Selection of deploy-
ment platform (Section [3.1.4), Platform configuration (Section[3.1.5)) and Initial energy profiling
(Section [3.1.7). This involves energy modelling and analysis tools as in some other activities,
but with the difference that one is likely to be more satisfied with approximate models and thus

rougher estimates of energy consumption rather than precise predictions.

3.1.7 Initial energy profiling

At early stages of energy aware software design and implementation, tools are needed to perform
an initial energy analysis. The purpose of this is to produce statically an energy profile that
identifies the overall complexity of the energy consumption of the software and how energy
consumption is distributed over the parts of the program. It could also at this stage identify energy
bugs (parts of the application software that do not meet their energy consumption specification).

Initial energy analysis requires an an energy model of the deployment platform at an appro-
priate level of abstraction. At early stages, parts of the software may be missing and it might not
be possible to compile it to machine instructions; thus an approximate model based on a model
of source code might have to suffice.

13

3.1.8 Detailed energy analysis

During more advanced stages of energy aware software implementation, detailed energy analyses
at finer levels of granularity are needed. These are provided by tools containing more precise low-
level energy models of the platform, able to give precise estimates of the energy consumption of

critical parts of the code, which could be targets for energy optimisation.

3.1.9 Identify energy bugs

Energy bugs occur when software does not conform to an energy specification. The specifica-
tion might state some overall resource requirement in which energy consumption is implicit, for
example on the length of battery life. The bug in such a case could be some energy-consuming
process that is more expensive than necessary, a service that is not switched off when required,

threads that synchronise badly and spend too much time waiting, and so on.

3.1.10 Energy optimisation or reconfiguring

The broad concept of energy optimisation is applied throughout the whole software engineering
process, and starts right at the beginning with design space exploration and selection of appro-
priate platform, algorithms and data structures.

The specific energy optimisation performed in this activity is driven by the detailed energy
analysis and the energy model of the platform. Both manual and automatic optimisations can
be applied; the energy analysis should point to the sections of code that use the most energy,
either because they involve costly energy operations, or because they are frequently executed
(e.g., tight inner loops). This activity also includes application of energy-optimising compilers

and such generic optimisers.

3.1.11 Verify or certify energy consumption

Energy-critical applications need to be certified with respect to an energy specification. Tools
combining detailed energy models and precise energy analysis are required in order to compare
the inferred energy consumption with the specification, either verifying conformance or certify-
ing that it holds within some specified limits of behaviour such as input ranges.

3.2 Energy-aware software engineering scenarios

In this section we sketch scenarios in which the activities described in the previous section are
applied.

14

3.2.1 Embedded system development on xCORE

The ENTRA project case studies focussed on embedded systems implemented in the XC lan-
guage and deployed on the xCORE multicore architecture. An energy-aware software develop-

ment strategy for such applications might involve the following energy-aware activities.

e Energy specification by writing pragma comments in the XC source code. Such pragmas

could express energy constraints derived from customer requirements on the power supply.

e Platform selection and configuration. The xCORE architecture is highly configurable both
in terms of the number of cores and their interconnection. The choice and configuration is
guided by an energy model applied to proposed solutions, taking into account thread com-
munication energy costs in a given configuration, as described in more detail in Attachment
D1.2.2 (Swallow: Building an Energy-Transparent Many-Core Embedded Real-Time Sys-
tem [HK16]).

e Detailed program-independent energy models of the platform at ISA level, are available.
Program-dependent energy models are obtained for XC and LLVM IR code for the appli-
cation from the ISA model, and used to perform more precise and detailed energy analysis

of the application.

e Optimisations of expensive or frequently executed code is performed on the basis of the

energy analysis.
e The energy optimising compiler for XC is applied to the application.

e Pragmas in the code are verified using comparison of the energy consumption predicted by

the analysis with the constraints in the specification.

3.2.2 Android app development

A case study on Android app energy optimisation was carried out [LG16] (see Attachment D4.2.7
in Deliverable D4.2). The study involved energy modelling and optimisation of applications
based on an established game-engine. An energy specification was not given; the aim of the
study was to use a source-code-level energy model to identify the most energy-intensive parts of
the code in a number of typical use-cases, and then apply manual optimisations, reducing energy
usage directly and thus prolonging battery life.

Energy-aware software engineering activities included:

15

e Building a fine-grained source code energy model by regression analysis from energy mea-
surements on the target hardware and Android software platform of a set of test cases

exercising the functions of the underlying game engine.

e Dynamic profiling of the code, which provided an energy profile that allowed the most

energy-expensive basic blocks to be identified.

e Manual refactoring of the source code, targeted at the most expensive blocks, which suc-
ceeded in increasing energy efficient by a factor of 6% to 50% in various use-case scenar-

108.

16

4 The ENTRA tools front end

In order to clarify and demonstrate some of the functionality required to support the energy-aware
software development activities described in Section [3.1] we implemented a Java front-end that
provides a graphical user interface (the ENTRA tools front end) for some of the prototype tools
developed in the ENTRA project. The use of Java allowed tools running on different platforms
and operating systems to be provided with a common interface, and prototype tools to be rapidly
integrated into the common interface to emphasise their functionality. Note that the ENTRA
tools front end does not provide a suitable interface for all the tools, particularly those that are
already more closely integrated in the XMOS tool-chain.

A secondary goal of the ENTRA tools front end is to give hints on how the ENTRA proto-
type tools and components for analysis, verification and optimisation could be integrated into an
energy-aware software development tool-chain. The ENTRA tools front end contains tabs corre-
sponding to different tool functions; these can be manually combined to demonstrate tool-chains
providing the required functionality supporting energy-aware software engineering activities and

scenarios (Section [3).

800 Entra Front-end version 0.2
[Model/Compiler | LLVM | ISA | Control flow | Homn clause | An Verification Profiling Simulation Synchronization Mapping | b |
File selection Analysis
Xcprg: | xcprg/biguad.xc & Whole Program Energy Analysis | Run |

Output Analysis Level

#include “..sheaders/main.h" | LLYM o
#include ". . /headers/biquad.h”
#include <xsl.h>

Command

./ciaopp_analysis.sh tmp/ciaopp/analysis/%n.xc %f %i analyze
#pragma unsafe arrays
int biguadCascade (biquadState &state, int xn, int BANKS1) Output
i
unsigned int ynl;
int ynh;
for(int k=8; k<BANKS1; k++]
i
int i = BANKS1-k;
ynl = [1<<[FRACTIONALBITS-1]);
ynh = @;
{ynh, yn1} = macs{ biguads[il.b@, xn, ynh, ynli;
dynh, yn1} = macs(biguads[jl.bl, state.b[jl.xnl, ynh, ynl);
{ynh, yn1} = macs(biguads(jl.bz, state.b[ijl.xn2, ynh, ynll;
{ynh, yn1} = macs{ biguads[il.al, state.b[i+1l.xn1, ynh, ynl);
dynh, yn1} = macs(biguads[jl.a2, state.b[j+1l.xn2, ynh, ynl);
if (sextiynh, FRACTIONALBITS] == ynh) {
ynh = {ynh << [32-FRACTIONALBITS)) | (ynl »>> FRACTIONALEITS);
Y else if (ynh < @) {
ynh = 0x80000000 ;
Y else {
yhh = @x7FEFFFee;

3y
state.b[j].xn2Z = state.h[jl.xnl;
state.b[]].xn1 = xn;

xn = ynh;
¥
state.b [BANKS1].xn2 = state.b [BANKS1].xn1;
state.h [BANKS1] . xnl = ynh;
return xn;

R

Show plots

Figure 2: The ENTRA tools front end.

Figure Q shows a screenshot of the ENTRA tools front end, which has two main sections on

17

the left and the right. The source file is loaded into the buffer on the left section under the Source
tab. For demo purposes the user can load one of the benchmarks from the xcprog drop down.

The tabs Analysis and Verification (within the section on the right) are merely indicative of a
wide range of functions to which the front end can be adapted. In the two example tabs shown,
the user can select the Analysis Level to be either LLVM or ISA, which specify the level (LLVM
IR or ISA) to which the XC source is compiled and then analyzed by the underlying tool (e.g.,
CiaoPP). Once the user presses the button Run, the output of the analysis/verification is loaded
into the buffer on the right. The underlying command used to invoke the required functionality
(e.g., analysis, verification) is also shown under Command. The button Show plots allows the
user to see the output plotted graphically. It is shown using the gnuplot utility.

A short summary of the procedure for integrating a new tool into the ENTRA tools front
end is given in Appendix |Al The underlying assumption for integration is that the tool with its
parameters can be run from the command line. The command line string is incorporated into the
Java code and the input and output directed to the appropriate areas of the ENTRA tools front
end.

18

S Energy-aware Software Development Tools: Description and

Demos

In this section we describe the final versions of the energy-aware prototype tools (components)
for analysis, modelling, verification and optimization developed in the project, that can be inte-
grated to build tool-chains providing the required functionality for the activities and scenarios
described in Section

5.1 Multi-level energy analysis and verification tool based on HC IR trans-
formation

In this section we describe an experimental prototype tool for analysis and verification of energy,
execution time and general resource usage properties.

Main functionality. The tool can perform two main kinds of actions:

e Analysis: This action is used to estimate the energy consumed and time spent by the execu-
tion of XC programs and each of its procedures (even when there are parts not developed
yet). Such information is given in general as functions on some properties of the input
data (e.g., range of integers or length of arrays) and can be used by developers of energy-
efficient software to make informed design decisions (e.g., redesigning the most energy
consuming parts of the programs, using alternative data structures, ...) or optimizing the

XC programs, either manually or using a (semi-)automatic optimization tool.

e Verification: This action is used to prove whether resource usage specifications are met or
not, or to infer conditions under which such specifications are met.

Input to the tool. The input to the tool is a file with a program encoded in any of the four
following languages: XC source, Instruction Set Architecture (ISA), LLVM Intermediate Rep-
resentation (LLVM IR), or HC IR. These are recognized by their respective extensions: .xc for
XC, .asmforISA, .11 for LLVM IR, or .p1l for HC IR.

For an input file in HC IR format, it is the responsibility of the programmer to include asser-
tions in Internal Assertion Language (IAL) format describing the models for particular resources
used for the analysis / verification (see [EG13] for a detailed description of the IAL). Never-
theless, the tool provides some packages for predefined resource models in IAL format. For
example, the user can include the package ciaopp (xcore/model/energy) to use the en-
ergy model described in D2.2 [EKG14], or the package ciaopp (xcore/model/time) to

19

use a timing model. For a file in a format different from HC IR (i.e., XC, LLVM IR or ISA), the

tool automatically uses the energy and timing models defined by the packages above.

Output of the tool. The outcome of the analysis (or the verification) is subsequently included
as assertions in the output file in one of the two following formats. For XC, LLVM IR and ISA,
the results are formatted in the front end aspect of the Common Assertion Language described in
deliverable D2.1 [EG13]]. For HC IR the results are formatted in the IAL, i.e., the internal aspect
of the Common Assertion Language. The tool also generates graphics of the energy consumption
functions involved in the process and the input values for which energy specifications are met,

which facilitates the interpretation of the analysis and verification results.

Main features: multi-level analysis, experimental. The tool integrates two different instanti-
ations of the general resource analysis framework described in deliverable D1.1. Both instantia-
tions use energy models defined at the ISA level (see deliverable D2.2 [EKG14]), but one of them
performs the analysis at the ISA level (see deliverable D3.1 and [LKS™14]) and the other one
performs the analysis at the LLVM IR level [LGK™16] (included in this document as Attachment
D1.2.1).

In this sense, the tool is a multi-level analysis and verification tool, and the user can select at
which level (LLVM IR or ISA) the analysis is to be performed. In order to perform the analysis
at the LLVM IR (resp. ISA) level, the LLVM IR (resp. ISA) corresponding to the input XC file
is first generated (by using the standard xcc compiler), and then transformed into HC IR using
the LLVM IR (resp. ISA) HC IR translation. The HC IR is then analyzed by the analysis engine.
Technical details about such translations can be found in [LGK™16]] (Attachment D1.2.1).

The selection of the analysis level has an impact on the accuracy of the results and on the
class of programs that can be analyzed. Thus, the tool allows experimentation with energy (and

time) analysis at different levels of abstraction.

The tool has been integrated in an existing tool-chain for experimentation, the CiaoPP sys-
tem, leveraging the environment for program analysis, verification, and optimization offered by
it, which uses HC IR as internal program representation and is based on modular, incremental
abstract interpretation. Functional components from the CiaoPP system can potentially be inte-
grated with a compiler tool-chain, although it may require an implementation effort to make it
robust to the real life environment.

20

5.1.1 Usage and interface

The user can interact with the tool through a Graphical User Interface (GUI) or through a Unix
command line. The GUI has mainly used in the project to facilitate experimentation by tool
developers and to experiment with aspects of user interaction such as source assertions. We
focus here on the command line interface, which has been used for integration in the ENTRA
tools front end, in order to demonstrate that it can also be integrated in other tool-chains as well.

The command line interface can be used to perform analysis (and other actions) on XC,
LLVM IR and ISA files. The name of the command line executable is ciaopp_entra and can

be used as follows:
$ ciaopp_entra [Options] <InputFilename>

where <InputFilename>, the last argument, is the path of the input file that contains the
program to be processed. The format of this input file is determined by the file name extension
(e.g., XC, ISA or HC IR files are recognized by their respective extensions . xc, .asm, .11, or

.pl.). —and [Options] is a space separated sequence of the following possible options:

e The --analyze option is used to perform the resource usage analysis of the input file.

e The --verify option is used to perform the resource usage verification of the input
file, by checking the assertions present in the input file. In this case an analysis is first
performed — as it would be the case if the option were —-analyze — then the results are
compared with the input assertions to be checked.

In case neither the --analyze nor the --verify option is specified, no actions
(analysis nor verification) are performed on the input file. However, an output file is gen-
erated. This behaviour is useful for generating the HC IR representing the ISA or LLVM
IR code of the input program.

e The -o <OutputFileName> option specifies that <OutputFileName> is the path
of the target output file to be written.

e The --oformat=<OutputFormat> option specifies in which language the output

should be written. There are two options for “<OutputFormat>"":

— HC IR: the analysis / verification results are written in HC IR.

— source: the analysis / verification results are written in the source language.

21

e The ——level=<level> option determines at which level (LLVM IR or ISA) the anal-
ysis is to be performed. For this, the user can set the option to two different values: LLVM

or ISA respectively.

e The -—reg-solver=<solver> option specifies which recurrence equation solver must
be used by the resource analysis engine. Currently, the user can set the option to three dif-

ferent values:

— When the option is set to the builtin value (default value), the resource analy-
sis engine uses the builtin solver. This solver is directly incorporated into the CiaoPP
analyzer and consequently does not require the installation of any external tool. How-
ever, currently, the solver is less powerful than the external solver and therefore can

lead to more imprecise analysis results.

— The mathemat ica value forces the use of Wolfram Mathematica [Mat]. In general,
Mathematica is a more powerful recurrence equation solver than the builtin solver,
however being an external component, it has to be installed on the machine separately
from CiaoPP.

— The chain value forces to use the chain strategy from the modular solver imple-
mented in CiaoPP, which basically tries to solve a recurrence relation by calling in se-
quence each available back-end solver. These back-end solvers are mathematica,
builtin, or a specialized solver for recurrences with increasing arguments (that
uses ppl). In any case, the first solution found is the one that is returned, obtained
from one of the back-end solvers.

e The ——math-system=<cas> option specifies which algebraic system must be used
by the resource analysis engine to solve operations like simplification of expressions,
variable isolation, expression comparison, etc. Currently, the user can set the option to

mathematica or builtin (default value).

e The ——res—-analysis=<analysis> option specifies which analyzer must be used
for perform the resource analysis. Currently the options are:

— resources, which forces to use the legacy version of the resource analysis present
in CiaoPP.

- res_plai, indicating that the CiaoPP’s abstract interpretation-based resource anal-

ysis must be used (default value).

22

e The ——help option displays description of the command line usage including the different

options described above.

5.2 Multi-level mapper tool

In deliverable D3.1, we introduced a novel mapping technique to lift our ISA-level energy model
to a higher level, the intermediate representation of the compiler, namely LLVM IR [LAO4],
implemented within the LLVM tool chain [LLV14]. In deliverable D1.1 under Section 3.2, the
mapping tool was introduced, together with a use case example. The mapping techniques im-
plemented by the tool, were evaluated further on both single- and multi-threaded benchmarks,
and the results are reported in deliverable D2.3 under Section 2. The evaluation was done using
Energy Consumption Static Analysis (ECSA) based on an Implicit Path Enumeration Technique
(IPET) [LM93], which we introduced in deliverable D1.1 under Section 4, Work in Progress.
Our results show that the mapping technique allowed for energy consumption transparency at
the LLVM IR level, with accuracy keeping within 1% of ISA-level estimations in most cases.
The mapper tool makes energy consumption information accessible directly to the optimizer,
and therefore creates new opportunities towards energy specific compiler optimizations.

A paper detailing the mapping techniques together with their evaluation, the ECSA static
analysis used and ECSA practical applications at both the ISA and the LLVM IR levels, is at-
tached as D2.3.3 to D2.3.

5.3 Performing parametric static profiling of energy consumption

The standard or classical notion of cost (given in terms of different resources, e.g., energy or
execution time) inferred by the ENTRA analysers only partially fulfils typical requirements of
some energy-aware software development activities. For example, the software developer may
want to know which parts of a program are the most resource-consuming and which procedures
or functions should be optimised first, because of their greater impact on the overall energy
consumption of the main program. Procedures/functions with the highest (standard) costs may
not need to be optimised first, but perhaps, procedures/functions with lower costs but which are
called many times. In this context, what is really needed, is information about how much of the
total cost of a program is each procedure/function responsible for, i.e., the distribution of energy
consumption over the parts of the program. Such information is provided by the parametric static
profiling tool described in [HLGL™16] (also included in this document as Attachment D1.2.3).
The tool analyses a program and produces energy consumption functions giving the accumu-

lated cost in selected parts of the program (named cost centers) as a function of input data sizes.

23

Such parameterised information allows to know how the distribution of energy consumption
grows depending on the variation of the input, unlike the non-parametric information provided
by dynamic profilers. Moreover, the information inferred by the static profiler tool is valid for all
input values to the program, in contrast to the information provided by dynamic profilers, which
is only valid for particular inputs and execution traces, and hence, may give an incomplete view
about the distribution of the energy consumption in the program.

The (accumulated cost) information provided by our static profiling tool can be a more valu-
able aid for resource-aware software development than standard/classical resource usage analysis
as it helps identify parts that should be optimised first. It can provide a ranking of the procedures
of the program according to its accumulated cost to guide program optimisation. In addition,
such accumulated cost information can be used in combination with functions indicating the
number of times each procedure is called (which depend on input data sizes to the main pro-
gram). These functions can be inferred by specialising the general resource analysis developed
in WP3 by defining explicitly a resource for the number of calls performed by each cost cen-
ter procedure. A big complexity order in the number of calls to a procedure (in relation to that
of a single call) might give hints to reduce the number of calls to such procedure in order to
effectively reduce its impact on the overall energy of the program.

Other situation where the static profiler is useful is when the overall resource complexity of a
program might not be obtainable. For instance, some parts of it might be too complex for analysis
or else because the code for some parts is not available and the cost cannot even be reasonably
estimated. In this case useful information could still be obtained by excluding such parts from
the analysis, obtaining information about the resource usage for the rest of the program. We
refer to deliverable D3.3 for other aspects of the static profiling tool, such as an overview of the
technique behind the tool and other motivations to develop it.

5.4 The Swallow platform

Swallow is an experimental many-core system consisting of XMOS XS1 processors, intended for
use as a research tool and to aid the development and testing of software tools and programming
techniques in an energy-aware, multi-core context. The system is composed of slices, where
each slice is a board with sixteen XS1-L cores as a grid arrangement of dual-core chips. Slices
can be arranged into a larger grid-like structure, allowing hundreds of cores to be used in a single
system.

Although this is a significant leap in the number of cores examined, and goes beyond the lim-
its of the chip vendors development tools, the Swallow system has proved useful in the collection
of data for ENTRA related tools. In particular, the rich connectivity of Swallow has aided the

24

construction of the multi-core model parameters, particularly with respect to the communication
costs.

Attachment D1.2.2 is a paper detailing the Swallow platform, including the energy consump-
tion characteristics. This paper will appear at the Design Automation and Test in Europe (DATE)
conference 2016 in March. Data from this work has been used in tools from ENTRA, in combi-

nation with modelling techniques described in attachment D2.3.1 of Deliverable D2.3.

5.5 Optimization via Dynamic Voltage and Frequency Scaling (DVFS) and
task scheduling

In deliverable D1.1, we introduced an optimization tool that we have developed for solving a
general problem of optimal task scheduling in XMOS chips. These XMOS chips are DVFS-
enabled multicore systems able to execute multiple threads per core. The set of tasks to be
scheduled is represented by its release time, deadline, and estimated power consumption (if
available). The tool schedules the tasks in order to find an optimal task-core (thread) assignment,
so that all the deadlines are met and the energy consumption is minimised. Based on the way
the execution time and power consumption are estimated, a custom genetic algorithm based
scheduler is implemented for both stochastic and deterministic scheduling [BLG135]. In addition,
we have adapted the well-known YDS algorithm [YDS95], initially designed for DVFS-enabled
single core, to a multicore environment for the initial assignment of tasks to cores.

The evaluation of the tool have also been presented in D1.1 under Section 3.4.4 using syn-
thetic data and/or typical power consumption of XMOS chips. The results obtained (reported
in [BLG13) I BLG135]]) confirm the potential of energy-aware scheduling coupled with DVFS for
optimising energy consumption.

Further advancements have been reported in [?] and [?]. In [?], an approach to scheduling
problems based on a custom evolutionary algorithm (EA) is described. The algorithm is fed with
information provided by the CiaoPP static analyzer about predictions of the energy consumed by
tasks. The speed ups gained using static analysis predictions solve the time inefficiency problem
faced by EAs. In cases when our custom EA fails to produce a feasible solution, our approach
resort to a modified YDS algorithm, which is an adaptation to multicore environments and to
situations when the static power becomes the predominant part. This combined approach (custom
EA algorithm with modified YDS) produces an energy efficient scheduling in reasonable time,
that always finds a viable solution. Our approach has been tested on multicore XMOS chips in
different scenarios, and the experimental results show that the modified YDS algorithm improves
the original one up to 20%, while the custom EA can save 55 - 90% more energy on average than
the modified YDS.

25

In [?], a trade-off between accuracy and energy is studied for the problem of energy efficient
scheduling and allocation of tasks in multicore environments, where the tasks can permit certain
loss in accuracy of either final or intermediate results while still providing proper functionality.
Such situations allow the application of techniques that decrease the computational load, which
result in significant energy savings but also in certain accuracy loss. In particular, we have applied
the loop perforation [?] technique that transforms loops to execute a subset of their iterations.
The experiments conducted on a case study in different scenarios show that our new scheduler
enhanced with loop perforation improves the previous one, achieving significant energy savings
(31% on average) for acceptable levels of accuracy loss.

5.6 XMOS tools: Supporting low power design in XC

The XMOS tools 14.1 include a global optimiser and an implementation of interfaces; the latter
(described in deliverable D4.2) to enable modular development of software in an energy efficient
matter, the former, described in this section, to generally increase efficiency of applications.

The XMOS programming environment, centered around the XC programming language, re-
quires a program to be split into tasks that communicate over channels.

Although this model can naturally support low energy programs by enabling the programmer
to spread their load over devices that run at similar low frequencies, the process of splitting
tasks and balancing them is one that can be at odds with normal software engineering practices,
where software is split in modules that are based on their function, not on their load balancing
properties.

To this effect, we have developed an extension to the XC language, the inferface, that enables
software to be split functionally, yet still achieve load balancing as is needed to develop a low-

energy design.

5.6.1 Introduction to the interface

The idea behind the interface is to merge the traditional concept of a software module in an
imperative language, with the concept of threads communicating over channels.

When programming using an interface, there are at least two actors: a server and one or
more clients. The server implements the interface, and the client makes calls to the interface.
Notionally, the server runs in a separate thread to the client, and a channel connects the two. This
model is similar to that of an RPC (Remote Procedure Call), or to forms of distributed Object
Oriented programming models.

An example interface is shown below:

26

typedef enum { I2C_NACK, I2C_ACK } 1i2c_res_t;

typedef interface i2c_master_if {
i2c_res_t write(uint8_t device_addr, uint8_t buf[n], size_t n,
size_t &num_bytes_sent, int send_stop_bit);
i2c_res_t read(uint8_t device_addr, uint8_t buf[n], size_t n,
int send_stop_bit);
void send_stop_bit (void);
void shutdown (void);

} 1i2c_master_if;

This definition states that there are four calls that a client can make to a server: write,
read, send_stop_bit, and shutdown. The server side of the interface implements those

four calls, and the client side to the interface can make those calls. The calls themselves happen,

under the bonnet, over channels.
For a server with a single client the server side of the interface is implemented as follows:

void i2c_master (server interface i2c_master_if c,
port p_scl, port p_sda, unsigned kb_per_sec) {
unsigned bit_time = (XS1_TIMER_MHZ = 1000) / kb_per_sec;
p_scl :> void;
p_sda :> void;
while (1) {

select {

case c.read(uint8_t device, uint8_t buf[m], size_t m,
int send_stop_bit) -> i2c_res_t result:

result = (ack == 0) ? I2C_ACK : I2C_NACK;

break;
case c.send_stop_bit (void):

break;

27

The client can make calls 12c_server.send_stop_bit () akin to an object oriented
programming model. Multiple clients are also supported by using an array of channels. In this
particular example, a client can choose to make an atomic sequence of calls, which leads to a

rather complex case statement:

void i1i2c_master (server interface i2c_master_if c[n], size_t n,
port p_scl, port p_sda, unsigned kb_per_sec) {

unsigned bit_time = (XS1_TIMER_MHZ = 1000) / kb_per_sec;
unsigned locked_client = -1;
p_scl :> void;
p_sda :> void;
while (1) {

select {

case (size_t i =0; 1 < n; i++)

(n==1 || locked_client == -1 || 1 == locked_client) =>
c[i].read(uint8_t device, uint8_t buf[m], size_t m,

int send_stop_bit) -> i2c_res_t result:

locked_client = send_stop_bit 2?2 -1 : i;
result = (ack == 0) ? I2C_ACK : I2C_NACK;

break;
case c[int i].send_stop_bit (void) :

locked_client = -1;

break;

Here, 1locked_client is a variable that stores the client that is currently in an atomic
sequence of reads and or writes. There are two ways that the sequence can end: by a call to
read () with send_stop_bit set, or by acall to send_stop_bit ().

Analysing the first case statement reveals how the multiple interfaces work:

28

case (size_t i =0; i < n; i++)
(n==1 || locked_client == -1 || 1 == locked_client) =>

cl[i].read(...

That is short-hand for a series of n case statementson c [0]...c [n—1] with each case having

a guard that the case statement can only occur if at least one of three conditions is met:

1. n==1 (there is only one client - nobody else could have started an atomic sequence that is

being interrupted) or
2. locked_client == -1 (no atomic sequence has started) or
3. 1 == locked_client (itis this client who is running an atomic sequence)

This description is hence a complete generic description, that works for any number of clients
needing access to this single interface.

If there is only a single client, it may seem that the former implementation of the server is
more efficient; however, the global optimiser (developed in WP4), actually makes the implemen-
tations as efficient. If only a single client is used, then the call to i2c_master will use the
value 1 for n, and as there will only be one call the function 12c_master will be specialised
for the case where n equals 1. This specialisation will throw away all the guards (as the condi-
tion n==1 evaluates to true), and will subsequently throw away 1ocked_client since itis no
longer used.

5.6.2 Combinable

One common problem is that often tasks can be described as individual threads, but implementing
them as a single thread is energy inefficient, as the thread will be under-utilised: best energy
efficiency is obtained by balancing all threads.

For this purpose, we have defined the [[combinable]] attribute. Functions marked
[[combinable]] canbe merged together and implemented in a single thread by the toolchain.
When a function is marked as [[combinable]] it must be implemented using the following
template:

[[combinable]]

void ... (server interface c, ...) {

while (1) |

select {

29

case C...

break;

The programmer using the module can decide on whether and how to combine different
combinable servers, by placing all the servers in a single thread. This loads that one thread more
heavily, but reduces the total number of threads required, reducing energy load.

5.6.3 Distributable

The opposite of a [[combinable]] interfaceisa [[distributable]] interface; that is
an interface where the server is so simple that it can be assimilated in the client(s) side. This is

another way to balance load and thereby reduce energy.

5.6.4 Status and use

Interfaces have been released during the project in version 13 of the tools; and subsequent opti-
misations in version 14 of the tools.

Where appropriate, software libraries have been rewritten to make use of interfaces, simpli-
fying modularisation and software development.

Compared to the pre-interface status; modularised software engineering principles can now

be applied to a programming model that supports energy efficient design.

5.7 Implicit path enumeration ECSA applications

In this section we provide a set of ECSA applications. Software developers, compiler engineers,
development tools and RTOS can get advantage of these applications for making energy aware
decisions. ECSA using the Implicit Path Enumeration Technique (IPET) was introduced in D1.1
under section 4.1 and used together with the high level energy model as described in D2.3 under
Section 2. A paper detailing the ECSA techniques together with its practical applications is
attached as D2.3.3 to D2.3.

30

5.7.1 Design-space exploration for multi-threaded programs using ECSA

ECSA is applied to a set of multi-threaded programs for the first time to our knowledge. This
is a significant step beyond existing work that examines single-thread programs, because such
an analysis can provide significant guidance for time-energy design space exploration between
different numbers of threads and cores.

The first class of parallel programs to which ECSA was applied is the class of replicated non-
communicating threads. The user can make energy aware decisions on the number of threads to
use, with respect to time and energy estimations retrieved by our analysis. For example, take four
independent matrix multiplications on four pairs of equally sized matrices (28 x 28). Our analysis
will show that a single thread will have an execution time of 4x the time needed to execute one
matrix multiplication. However, two threads will half the execution time and decrease the energy
by 54%. Four threads which will half the execution time again, and decrease the energy by 41%
compared to the two-thread version. Using more threads increases the power dissipation, but the
reduction in execution time saves energy on the platform under investigation. Although there is
a different estimation error between different numbers of active threads, the error range of 6% is
small enough to allow comparison between these different versions.

The second class of parallel programs that our ECSA was applied to was streaming pipelines
of communicating threads. There is a choice in how to spread the computation across threads
to maximize throughput and therefore minimize execution time or lower the necessary device
operating frequency. Having a number of available threads, a number of cores and the ability
to apply voltage and frequency scaling, provides a wide range of configuration options in the
design phase, with multiple optimization targets. This can range from optimizing for quality of
service, time and energy, or a combination of all three. Our ECSA can take advantage of the fact
that the energy model used can be parametric to voltage and frequency, to statically identify the
most energy efficient configuration of the same program, among a number of different options
that deliver the same required performance. The first step of analyzing the pipelined versions of
industrial filter applications has been made. We are currently working on extending our ECSA
to automatically exploit the possible different configurations and provide the optimal solution,

within the user’s constraints.

5.7.2 Other ECSA applications

Figure (3| shows the ISA energy consumption upper and lower bounds retrieved by ECSA for the
Radix4Div and B.Radix4Div benchmarks. Radix4Div benchmark is a radix-4 software
divider and B.Radix4Div is a less efficient version which is added for comparison. This ver-
sion omits an early return when the dividend is greater than 255. A consequence of excluding this

31

302007 Radix4Div 301077 Balanced Radix4Div

VIV IdVVVAdVVddVVIdVVIIVPTYrY

951 NI R R R R R R R R E R R R R R R ERR Y]
220 Vg Bt e g {220 e o -]
<) e 2 sef e =P L e 2o Palast®?
@1'5 _@l'S,AﬂgA’AAA’AgAAAgA,AAAAA_
& e e ° & ® HW meas. > Simulation
3 e =

loph@aZaaaaBaraaniBaBakan™ ol v ISA WCEC 4 ISA BCEC

< LLVM-IR WCEC
0.5 0.5
’ Collection of sample runs (dividend, divisor) > Collection of sample runs (dividend, divisor)

Figure 3: Radix4 division benchmark ECSA estimations across all test cases.

optimization is that CFG paths become more balanced, with less variation between the possible
execution paths. The effect of this modification can be seen in Figure[3] In the optimized version,
the energy consumption across different test cases varies significantly, creating a large range be-
tween the upper and lower energy consumption bounds. Conversely, the unoptimized version
shows a lower variation, thus narrowing the margin between the upper and lower bounds, but has
a higher average energy consumption. Knowledge of such energy consumption behavior can be
of value for applications like cryptography, where the power profile of systems can be monitored
to reveal sensitive information in side channel attacks. In these situations, ECSA analysis can
help code developers to design code with low energy consumption variation, so that any potential
leak of information that could be obtained from power monitoring can be obfuscated.

5.8 Tools for Horn clause verification

Constrained Horn clauses (CHCs) are intermediate representations suitable for expressing the se-
mantics of a variety of programming languages and computational models. As a result, they have
become a popular formalism for verification [BGMRI1S, IGK14]; attracting both the logic pro-
gramming and software verification communities [BFERS14]]. Several verification techniques and
tools have been developed for CHCs, among others, SeaHorn [GKKN15]], QARMC [GLPR12],
VeriMap [DAFPP14], Convex polyhedral analyser [KG15], TRACER [JMNS12]], ELDARICA
[HKG™12], uZ [HBAM11]] and Trace abstraction refinement tool [WI13]].

The ENTRA project has adopted (constrained) Horn clauses as an internal representation
capable of representing source code, LLVM IR and ISA. The CiaoPP system incorporates Horn
clause analysis tools, including a generic framework for resource analysis (see Section[5.1)). The
tools described in this section are development intended to extend and strengthen these tools. We
present them here as stand-along tools operating on Horn clauses; in their intended application

32

the Horn clauses are derived from the application which is under (energy-aware) development.
State-of-the-art Horn clause verification tools verify functional properties of programs (prop-
erties relating program variables); they can also be used to verify non-functional properties like

energy if we instrument programs (clauses) with energy counters.
Energy-instrumented clauses Let P be a set of CHCs and P, be a set of CHC constructed
as follows.

e For each predicate p of arity m define a predicate p’ of arity m + 1.

e For each clause in P of the form

P(X) &, p1(X1), .. pa(Xn)

we have a clause
V(X K) ¢, p (X1, K1), ..., (X0, K, K = Ky + ...+ K,

in P,,, where K1,..., K,, K are energy variables added as the final argument for their

respective predicates.

Energy forms a part of a program with program instrumentation, which allows the use of
above mentioned tools to verify properties relating program’s input variables (equivalently other
variables) with its energy consumption.

During the ENTRA project, we have developed two Horn clause verification tools (for veri-

fying functional properties, and thus energy properties via instrumentation), namely,
e RAHFT}
e LHornSolved™

Both of these tools are based on the abstraction-refinement scheme, but the second one only
uses a linear Horn clause solver for solving non-linear Horn clauses, potentially allowed greater
scalability. These tools are also able to produce witnesses showing that a property is satisfied or
violated, in contrast to other resource analysis tools in the literature, including CiaoPP. Proper-
ties are represented as integrity constraints on the Horn clauses, which are easily expressed as

assertions in the CiaoPP assertion language.

%available from https://github.com/bishoksan/RAHFT
03vailable from https://github.com/bishoksan/LHornSolver

33

https://github.com/bishoksan/RAHFT
https://github.com/bishoksan/LHornSolver

Usage. The tools are all command-line runnable, taking a Horn clause file as input and gener-
ating various kinds of output file, containing invariants for each predicate, checks on the satis-
faction of integrity constraints and counterexamples if such constraints are violated.

The tools use as backends powerful solvers such as the Parma Polyhedra Library [BHZOS]|
and the Yices SMT solver [Dut14!], which need to be installed to run the tools.

5.9 Integrating energy modelling into the development process: A Make-
file approach

This tool serves to demonstrate how the Instruction Set Simulation (ISS) modelling tools, and
associated energy model that underpins much of the work used in ENTRA, can be integrated
directly into the software development process.

The output of the research effort is described in more detail in Deliverable D2.3 and its prede-
cessor, D2.2. In this deliverable, attachment D1.2.4 is a technical brief that gives a demonstration
of the integration of the tools used in these works. The motivation behind the approach of the
tool, is that the vendor’s existing tools are Makefile based, therefore it is intuitive in enable energy
modelling as part of this process.

A number of software components are required, some of which were developed during the
project, whilst others are supporting libraries. These are listed in attachment D1.2.4. An exam-
ple, based on the FIR filter code from work package 5, is used in the technical brief. The tool
is principally command-line based, but also has the facility to display modelling results graphi-
cally. In the example, this is done via the default PDF viewer of the user’s desktop environment,
although this could be integrated into any other graphical tool.

The code for the tools has been provided to the project, so that it can be made available in an

appropriate manner.

34

References

[BFRS14]

[BGMRI15]

[BHZ08]

[BLG13]

[BLG15]

[CFS12]

[DAFPP14]

[Dew14]

Nikolaj Bjgrner, Fabio Fioravanti, Andrey Rybalchenko, and Valerio Senni, edi-
tors. Proceedings First Workshop on Horn Clauses for Verification and Synthesis,
HCVS 2014, Vienna, Austria, 17 July 2014, volume 169 of EPTCS, 2014.

Nikolaj Bjgrner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Rybalchenko.
Horn clause solvers for program verification. In Lev D. Beklemishev, Andreas
Blass, Nachum Dershowitz, Bernd Finkbeiner, and Wolfram Schulte, editors,
Fields of Logic and Computation Il - Essays Dedicated to Yuri Gurevich on the
Occasion of His 75th Birthday, volume 9300 of Lecture Notes in Computer Sci-
ence, pages 24-51. Springer, 2015.

R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward
a complete set of numerical abstractions for the analysis and verification of hard-

ware and software systems. Science of Computer Programming, 72(1-2):3-21,
2008.

Z. Bankovi¢ and P. Lopez-Garcia. Genetic Algorithm-based Allocation and
Scheduling for Voltage and Frequency Scalable XMOS Chips. In Hybrid Artifi-
cial Intelligent Systems (HAIS 2013), volume 8073 of Lecture Notes in Computer
Science, pages 401-410. Springer, 2013.

Zorana Bankovi¢ and Pedro Lopez-Garcia. Stochastic vs. Deterministic Evolu-
tionary Algorithm-based Allocation and Scheduling for XMOS Chips. Neuro-
computing, 150:82-89, February 2015.

Eugenio Capra, Chiara Francalanci, and Sandra Slaughter. Is software ”green”?
application development environments and energy efficiency in open source ap-
plications. Information & Software Technology, 54(1):60-71, 2012.

Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi, and Maurizio Proi-
etti. Verimap: A tool for verifying programs through transformations. In Erika
Abrahdm and Klaus Havelund, editors, TACAS, volume 8413 of Lecture Notes in
Computer Science, pages 568—574. Springer, 2014.

Robert Dewor. Energy efficiency of web applications. Master’s thesis, Faculty of
Economics, 2014.

35

[dSCM*12]

[Dutl4]

[EG13]

[EKG14]

[Gall4]

[GK14]

[GKKN15]

[GLPR12]

Clauirton de Siebra, Paulo Costa, Regina C. G. Miranda, Fabio Q. B. da Silva,
and André Luis M. Santos. The software perspective for energy-efficient mo-
bile applications development. In Eric Pardede and David Taniar, editors, The
10th International Conference on Advances in Mobile Computing & Multimedia,
MoMM ’12, Bali, Indonesia - December 03 - 05, 2012, pages 143—-150. ACM,
2012.

Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors,
Computer-Aided Verification (CAV’2014), volume 8559 of Lecture Notes in Com-
puter Science, pages 737-744. Springer, July 2014.

K. Eder and N. Grech, editors. Common Assertion Language. ENTRA Project:
Whole-Systems Energy Transparency (FET project 318337), November 2013.
Deliverable 2.1, http://entraproject.eu.

K. Eder, S. Kerrison, and K. Georgiou, editors. Low-Level Energy Models. EN-
TRA Project: Whole-Systems Energy Transparency (FET project 318337), May
2014. Deliverable 2.2, http://entraproject.eu.

J.P. Gallagher, editor. Energy Optimization: Basic Static Techniques. ENTRA
Project: Whole-Systems Energy Transparency (FET project 318337), August
2014. Deliverable 4.1, http://entraproject.eu.

John P. Gallagher and Bishoksan Kafle. Analysis and transformation tools for
constrained Horn clause verification. TPLP, 14(4-5 (additional materials in online
edition)):90-101, 2014.

Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.
The seahorn verification framework. In Daniel Kroening and Corina S. Pasareanu,
editors, Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, volume 9206 of
Lecture Notes in Computer Science, pages 343-361. Springer, 2015.

Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Ry-
balchenko. Synthesizing software verifiers from proof rules. In Jan Vitek, Haibo
Lin, and Frank Tip, editors, ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012,
pages 405—416. ACM, 2012.

36

[Goel3]

[HBAM11]

[HK16]

[HKG*12]

[HLGL"16]

[JMNS12]

[KCWCW10]

[KG15]

[LAO4]

Fethullah Goekkus. Energy efficient programming: an overview of problems,

solutions and methodologies. Technical report, University of Zurich, 2013.

Krystof Hoder, Nikolaj Bjgrner, and Leonardo Mendonca de Moura. pZ- an ef-
ficient engine for fixed points with constraints. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, Computer Aided Verification - 23rd International Confer-
ence, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume
6806 of Lecture Notes in Computer Science, pages 457-462. Springer, 2011.

Simon J. Hollis and Steve Kerrison. Swallow: Building an Energy-Transparent
Many-Core Embedded Real-Time System. In 2016 Design, Automation & Test
in Europe (to appear). IEEE, March 2016.

Hossein Hojjat, Filip Konecny, Florent Garnier, Radu losif, Viktor Kuncak, and
Philipp Riimmer. A Verification Toolkit for Numerical Transition Systems - Tool
Paper. In Dimitra Giannakopoulou and Dominique M¢éry, editors, FM 2012: For-
mal Methods - 18th International Symposium, Paris, France, August 27-31, 2012.
Proceedings, volume 7436 of Lecture Notes in Computer Science, pages 247—
251. Springer, 2012.

R. Haemmerlé, P. Lopez-Garcia, U. Ligat, M. Klemen, J. P. Gallagher, and M. V.
Hermenegildo. A Transformational Approach to Parametric Accumulated-cost
Static Profiling. In Thirteenth International Symposium on Functional and Logic
Programming (FLOPS 2016), LNCS. Springer, 2016. To appear.

Joxan Jaffar, Vijayaraghavan Murali, Jorge A. Navas, and Andrew E. Santosa.
Tracer: A symbolic execution tool for verification. In P. Madhusudan and San-
jit A. Seshia, editors, CAV, volume 7358 of Lecture Notes in Computer Science,
pages 758-766. Springer, 2012.

P.J. Krause, K. Craig-Wood, and N. Craig-Wood. Green ICT: Oxymoron, or call
to innovation? In Proc. Green IT, Singapore, 2010.

Bishoksan Kafle and John P Gallagher. Horn clause verification with convex poly-
hedral abstraction and tree automata-based refinement. Computer Languages,

Systems & Structures, Nov. 2015. to appear.

C. Lattner and V.S. Adve. LLVM: A compilation framework for lifelong pro-

gram analysis and transformation. In Proc. of the 2004 International Symposium

37

[Larl1]

[LG16]

[LGK*16]

[LKS*14]

[LLV14]

[LM95]

[MA13]

[Mat]

[NKD13]

on Code Generation and Optimization (CGO), pages 75-88. IEEE Computer So-
ciety, March 2004.

Petter Larsson. Energy-efficient software guidelines. Technical report, Intel Soft-
ware Solutions Group, 2011.

Xueliang Li and John P. Gallagher. An energy-aware programming approach for
mobile application development guided by a fine-grained energy model. Techni-

cal report, Roskilde University, February 2016. submitted for publication.

U. Liqat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, M. V. Hermenegildo, J. P.
Gallagher, and K. Eder. Inferring Parametric Energy Consumption Functions at
Different Software Levels: ISA vs. LLVM IR. In M. Van Eekelen and U. Dal
Lago, editors, Foundational and Practical Aspects of Resource Analysis. Fourth
International Workshop FOPARA 2015, Revised Selected Papers, Lecture Notes

in Computer Science. Springer, 2016. To appear.

U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech, M.V.
Hermenegildo, and K. Eder. Energy Consumption Analysis of Programs based on
XMOS ISA-level Models. In Gopal Gupta and Ricardo Pea, editors, Logic-Based
Program Synthesis and Transformation, 23rd International Symposium, LOPSTR
2013, Revised Selected Papers, volume 8901 of Lecture Notes in Computer Sci-
ence, pages 72-90. Springer, 2014.

LLVMorg. The LLVM Compiler Infrastructure, November 2014.

Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded soft-
ware using implicit path enumeration. In Workshop on Languages, Compilers, &
Tools for Real-Time Systems, pages 88—98, 1995.

Sara S. Mahmoud and Imtiaz Ahmad. A green model for sustainable software
engineering. International Journal of Software Engineering and Its Applications,
7(4), July 2013.

Mathematica. http://www.wolfram.com/mathematica/.

Stefan Naumann, Eva Kern, and Markus Dick. Classifying green software engi-
neering - the GREENSOFT model. Softwaretechnik-Trends, 33(2), 2013.

38

http://www.wolfram.com/mathematica/

[RJ97]

[SA12]

[WI15]

[YDS95]

Kaushik Roy and Mark C. Johnson. Software Design for Low Power. In Wolf-
gang Nebel and Jean P. Mermet, editors, Low Power Design in Deep Submicron
Electronics, volume 337, pages 433—460. Kluwer Academic, 1997.

B. Steigerwald and A. Agrawal. Green software. In San Murugesan and G. R.
Gangadharan, editors, Harnessing Green IT : Principles and Practices, chapter 3.
John Wiley & Sons, Hoboken, NJ, USA, 2012.

Weifeng Wang and Li Jiao. Trace abstraction refinement for solving horn clauses.
Technical Report ISCAS-SKLCS-15-19, State Key Laboratory of Computer Sci-
ence, Institute of Software, Chinese Academy of Sciences, Dec. 2015.

F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy.
2013 IEEE 54th Annual Symposium on Foundations of Computer Science, 0:374,
1995.

39

40

A ENTRA tools front end mini-manual

The ENTRA tools front end is meant as a front-end for command-line compiler and analysis
tools. It is designed for analysing single file programs and for showing intermediate representa-

tions and analysis results from the program.

A.1 User interface

| £:| Entra Front-end version 0.2 |E=H Eol -
Source rMnde\tCump\Ier Wcunlm\ﬂuw anrn clause ‘ E Synchronization rl.'lappmg r/Probabmty rDDI\I‘"IlﬂlIOH rDebnggmg ‘
File selection Whole Program r Verification r Profiling r Simulation |
xeprg: fepmpsccamuinesoe |+ [
o | Wnole Program Energy Analysis
int accumulate(int numbers[], int size) { (=] || Whole Program
int i, j,k, temp=0; ||| cory tst\xl. txt tmplaccumulate3-1.txt
§§ Output
ER e e e R) | This file is a test f£il
for (j = size-1l; j >= 0; j--) { ; that contains
for (k = size-1; k >= 0; k--) { il lines that could be output
temp+=numbers [k] ; from an analysis

}
temp+=numbers[j];
}
temp+=numbers[i] ;

for (i = gize-1; i >= 0; i--) {
temp+=numbers[i] ;
for (j = size-1l; j >= 0; j—-) {
temp+=numbers[j];
}
temp+=numbers[i] ;
¥
return temp;

}

The left hand side contains tabs for the source program and intermediate representations. The
right hand side contains output from a collection of analysis. The system uses a fixed directory
for xc-programs and from the source code panel you can select a file. When you select a file the
intermediate representations are generated by running a command line program. The analysis
panels contain an Analyze button that can be used to call the command line program for the
analysis. The second tab on the left hand side is a Model/Compiler which can be used to specify

global parameters and to show the command lines for intermediate versions.

A.2 Analysis and intermediate version specification

The various intermediate representations and analysis tools are internally represented as Analysis
objects.
Analysis (

String shortName, // short name for tabs

41

String longTitle, // long title for the analysis

String inputText, // in non-empty the panel analysis may take text input
String commandLine, // the commandline that will be executed

String outputFile, // name of file to display

Source source) // reference to the source code

An analysis has a short name that is used in the tab, a long name which is used as title on
the panel for the analysis. An analysis may have some extra input (a name of a variable, energy
specification etc, and if the input Text parameter is non-empty the panel will contain a text field
which can be passed to the command line program. The commandLine and outputFile is the
command that is executed when you press the Analyze button and the file that will be shown
in the panel. Both fields can reference the name of the source program file using parameter
substitution:

%$f is replaced by the source program file name (including path)

%n is replaced by the source program file name (excluding path and extension)
%1 is replaced by the analysis input field

%m is replaced by input field on the "Model/Compiler” tab

A possible commandline could be
xc2ast.sh %f > tmp/%n_blocks.txt
and the outputFile would then be tmp/%n_ blocks.txt

If the output file name ends with .3jpg the output is shown as an image, otherwise it is
expected to be a text file and shown as such.

A.3 Future versions

The Front-end is designed to be a “thin” version such that analysis tools and compilers are run as
separate programs and should produce results that can be displayed by the front end. The input
specification is fairly rudimentary and could be extended with sliders or list selection. If this is

relevant for some analysis tools do pass on a request for it.

42

Attachments

43

Attachment D1.2.1

Inferring Parametric Energy

Consumption Functions at Different
Software Levels: ISA vs. LLVM IR

Accepted at the Foundational and Practical
Aspects of Resource Analysis (FOPARA 2015)

44

Inferring Parametric Energy Consumption
Functions at Different Software Levels:

ISA vs. LLVM IR

U. Liqat', K. Georgiou?, S. Kerrison?, P. Lopez-Garcial3, John P. Gallagher®,
M.V. Hermenegildo!*, and K. Eder?

1 IMDEA Software Institute, Madrid, Spain
{umer.liqgat,pedro.lopez,manuel.hermenegildo}@imdea.org
2 University of Bristol, Bristol, UK
{kyriakos.georgiou,steve.kerrison,kerstin.eder}@bristol.ac.uk
3 Spanish Council for Scientific Research (CSIC), Madrid, Spain
4 Universidad Politécnica de Madrid (UPM), Madrid, Spain
5 Roskilde University, Roskilde, Denmark
jpg@ruc.dk

Abstract. The static estimation of the energy consumed by program
executions is an important challenge, which has applications in program
optimization and verification, and is instrumental in energy-aware soft-
ware development. Our objective is to estimate such energy consumption
in the form of functions on the input data sizes of programs. We have de-
veloped a tool for experimentation with static analysis which infers such
energy functions at two levels, the instruction set architecture (ISA) and
the intermediate code (LLVM IR) levels, and reflects it upwards to the
higher source code level. This required the development of a translation
from LLVM IR to an intermediate representation and its integration
with existing components, a translation from ISA to the same represen-
tation, a resource analyzer, an ISA-level energy model, and a mapping
from this model to LLVM IR. The approach has been applied to pro-
grams written in the XC language running on XCore architectures, but
is general enough to be applied to other languages. Experimental results
show that our LLVM IR level analysis is reasonably accurate (less than
6.4% average error vs. hardware measurements) and more powerful than
analysis at the ISA level. This paper provides insights into the trade-off
of precision versus analyzability at these levels.

Keywords: Energy consumption analysis, resource usage analysis, static

analysis, embedded systems.

1 Introduction

Energy consumption and the environmental impact of computing technologies
have become a major worldwide concern. It is an important issue in high-
performance computing, distributed applications, and data centers. There is also

increased demand for complex computing systems which have to operate on bat-
teries, such as implantable/portable medical devices or mobile phones. Despite
advances in power-efficient hardware, more energy savings can be achieved by
improving the way current software technologies make use of such hardware.

The process of developing energy-efficient software can benefit greatly from
static analyses that estimate the energy consumed by program executions with-
out actually running them. Such estimations can be used for different software-
development tasks, such as performing automatic optimizations, verifying energy-
related specifications, and helping system developers to better understand the
impact of their designs on energy consumption. These tasks often relate to the
source code level. On the other hand, energy consumption analysis must typically
be performed at lower levels in order to take into account the effect of compiler
optimizations and to link to an energy model. Thus, the inference of energy con-
sumption information for lower levels such as the Instruction Set Architecture
(ISA) or intermediate compiler representations (such as LLVM IR [19]) is fun-
damental for two reasons: 1) It is an intermediate step that allows propagation
of energy consumption information from such lower levels up to the source code
level; and 2) it enables optimizations or other applications at the ISA and LLVM
IR levels.

In this paper (an improved version of [20]) we propose a static analysis ap-
proach that infers energy consumption information at the ISA and LLVM IR
levels, and reflects it up to the source code level. Such information is provided
in the form of functions on input data sizes, and is expressed by means of asser-
tions that are inserted in the program representation at each of these levels. The
user (i.e., the “energy-efficient software developer”) can customize the system
by selecting the level at which the analysis will be performed (ISA or LLVM
IR) and the level at which energy information will be output (ISA, LLVM IR or
source code). As we will show later, the selection of analysis level has an impact
on the analysis accuracy and on the class of programs that can be analyzed.

The main goal of this paper is to study the feasibility and practicability of
the proposed analysis approach and perform an initial experimental assessment
to shed light on the trade-offs implied by performing the analysis at the ISA or
LLVM levels. In our experiments we focus on the energy analysis of programs
written in XC [31] running on the XMOS XS1-L architecture. However, the con-
cepts presented here are neither language nor architecture dependent and thus
can be applied to the analysis of other programming languages (and associated
lower level program representations) and architectures as well. XC is a high-
level C-based programming language that includes extensions for concurrency,
communication, input/output operations, and real-time behavior. In order to
potentially support different programming languages and different program rep-
resentations at different levels of compilation (e.g., LLVM IR and ISA) in the
same analysis framework we differentiate between the input language (which
can be XC source, LLVM IR, or ISA) and the intermediate semantic program
representation that the resource analysis operates on. The latter is a series of
connected code blocks, represented by Horn Clauses, that we will refer to as “HC

IR” from now on. We then propose a transformation from each input language
into the HC IR and passing it to a resource analyzer. The HC IR representa-
tion as well as a transformation from LLVM IR into HC IR will be explained
in Section 3. In our implementation we use an extension of the CiaoPP [12] re-
source analyzer. This analyzer always deals with the HC IR in the same way,
independent of its origin, inferring energy consumption functions for all proce-
dures in the HC IR program. The main reason for choosing Horn Clauses as
the intermediate representation is that it offers a good number of features that
make it very convenient for the analysis [22]. For instance, it supports naturally
Static Single Assignment (SSA) and recursive forms, as will be explained later.
In fact, there is a current trend favoring the use of Horn Clause programs as
intermediate representations in analysis and verification tools [8, 15, 4, 3].

Although our experiments are based on single-threaded XC programs (which
do not use pointers, since XC does not support them), our claim about the
generality and feasibility of our proposed approach for static resource analysis
is supported by existing tools based on the Horn Clause representation that can
successfully deal with C source programs that exhibit interesting features such
as the use of pointers, arrays, shared-memory, or concurrency in order to analyze
and verify a wide range of properties [8, 15, 10]. For example [10] is a tool for the
verification of safety properties of C programs which can reason about scalars
and pointer addresses, as well as memory contents. It represents the bytecode
corresponding to a C program by using (constraint) Horn clauses.

Both static analysis and energy models can potentially relate to any language
level (such as XC source, LLVM IR, or ISA). Performing the analysis at a given
level means that the representation of the program at that level is transformed
into the HC IR, and the analyzer “mimics” the semantics of instructions at
that level. The energy model at a given level provides basic information on the
energy cost of instructions at that level. The analysis results at a given level
can be mapped upwards to a higher level, e.g. from ISA or LLVM IR to XC.
Furthermore, it is possible to perform analysis at a given level with an energy
model for a lower level. In this case the energy model must be reflected up to
the analysis level.

Our hypothesis is that the choice of level will affect the accuracy of the en-
ergy models and the precision of the analysis in opposite ways: energy models
at lower levels (e.g. at the ISA level) will be more precise than at higher levels
(e.g. XC source code), since the closer to the hardware, the easier it is to deter-
mine the effect of the execution on the hardware. However, at lower levels more
program structure and data type/shape information is lost due to lower-level
representations, and we expect a corresponding loss of analysis accuracy (with-
out using complex techniques for recovering type information and abstracting
memory operations). This hypothesis about the analysis/modelling level trade-
off (and potential choices) is illustrated in Figure 1. The possible choices are
classified into two groups: those that analyze and model at the same level, and
those that operate at different levels. For the latter, the problem is finding good
mappings between software segments from the level at which the model is de-

fined up to the level at which the analysis is performed, in a way that does not
lose accuracy in the energy information.

Energy Model + X Internal representation
Program (including assertions) Transformation (including assertions) Analysis
1 L L 1
{ 1 [1 [1 [1
()| Transformation
Energy |.g, Source code J HCIR
Model \
7 ' Compiler
@ layerd T
o e et B L C e LR P
= B N
c - §
(=} & : N N
2 =B : LLVM IR
£ = Ener Optimizations, Transformation
%D % 8y | N HCIR Analyser
£ 3 Model Optimized LLVM IR
K} @ !
-
H
= = Layer 2, LLVM Code Generator
o B e I L e
173 |
X a i
2 i
w —_— Energy consumption
Ener (| Transformation estimations
‘ & | L ISA J HCIR
Model -
layer3 _ _ .- .
A
Hardware

Fig. 1: Analysis/modelling level trade-off and potential choices.

In this paper we concentrate on two of these choices and their comparison,
to see if our hypothesis holds. In particular, the first approach (choice 1) is
represented by analysing the generated ISA-level code using models defined at
the ISA level that express the energy consumed by the execution of individual
ISA instructions. This approach was explored in [21]. It used the precise ISA-level
energy models presented in [17], which when used in the static analysis of [21] for
a number of small numerical programs resulted in the inference of functions that
provide reasonably accurate energy consumption estimations for any input data
size (3.9% average error vs. hardware measurements). However, when dealing
with programs involving structured types such as arrays, it also pointed out
that, due to the loss of information related to program structure and types of
arguments at the ISA level (since it is compiled away and no longer relates
cleanly to source code), the power of the analysis was limited. In this paper we
start by exploring an alternative approach: the analysis of the generated LLVM
IR (which retains much more of such information, enabling more direct analysis
as well as mapping of the analysis information back to source level) together
with techniques that map segments of ISA instructions to LLVM IR blocks [7]

(choice 2). This mapping is used to propagate the energy model information
defined at the ISA level up to the level at which the analysis is performed,
the LLVM IR level. In order to complete the LLVM IR-level analysis, we have
also developed and implemented a transformation from LLVM IR into HC IR
and used the CiaoPP resource analyzer. This results in a parametric analysis
that similarly to [21] infers energy consumption functions, but operating on the
LLVM IR level rather than the ISA level.

We have performed an experimental comparison of the two choices for gener-
ating energy consumption functions. Our results support our intuitions about the
trade-offs involved. They also provide evidence that the LLVM IR-level analysis
(choice 2) offers a good compromise within the level hierarchy, since it broadens
the class of programs that can be analyzed without significant loss of accuracy.

In summary, the original contributions of this paper are:

1. A translation from LLVM IR to HC IR (Section 3).

2. The integration of all components into an experimental tool architecture,
enabling the static inference of energy consumption information in the form
of functions on input data sizes and the experimentation with the trade-
offs described above (Section 2). The components are: LLVM IR and ISA
translations, ISA-level energy model and mapping technique (Section 4 and
[17,7]), and analysis tools (Section 5 and [25,28]).

3. The experimental results and evidence of trade-off of precision versus ana-
lyzability (Section 6).

4. A sketch of how the static analysis system can be integrated in a source-level
Integrated Development Environment (IDE) (Section 2).

Finally, some related work is discussed in Section 7, and Section 8 summarises
our conclusions and comments on ongoing and future work.

2 Overview of the Analysis at the LLVM IR Level

An overview of the proposed analysis system at the LLVM IR level using models
at the ISA level is depicted in Figure 2. The system takes as input an XC source
program that can (optionally) contain assertions (used to provide useful hints
and information to the analyzer), from which a Transformation and Mapping
process (dotted red box) generates first its associated LLVM IR using the xcc
compiler. Then, a transformation from LLVM IR into HC IR is performed (ex-
plained in Section 3) obtaining the intermediate representation (green box) that
is supplied to the CiaoPP analyzer. This representation includes assertions that
express the energy consumed by the LLVM IR blocks, generated from the infor-
mation produced by the mapper tool (as explained in Section 4). The CiaoPP
analyzer (blue box, described in Section 5) takes the HC IR, together with the
assertions which express the energy consumed by LLVM IR blocks, and possibly
some additional (trusted) information, and processes them, producing the anal-
ysis results, which are expressed also using assertions. Based on the procedural
interpretation of these HC IR programs and the resource-related information

y)
XC+
Annotations

Transformation
+ Mapping

" ISA/ LLVM IR +
Metadata

Energy
Models

Mapper

LLVM IR to HC IR

Mapping Info
“: pping Transformation

f HCIR+ Assertions

{ CiaoPP Analyzer /
Analysis results

CiaoPP printer

4 Energy
Annotated XC
with Assertions

Fig.2: An overview of the analysis at the LLVM IR level using ISA models.

contained in the assertions, the resource analysis can infer static bounds on the
energy consumption of the HC IR programs that are applicable to the original
LLVM IR and, hence, to their corresponding XC programs. The analysis results
include energy consumption information expressed as functions on data sizes
for the whole program and for all the procedures and functions in it. Such re-
sults are then processed by the CiaoPP printer (purple box) which presents the
information to the program developer in a user-friendly format.

3 LLVM IR to HC IR Transformation

In this section we describe the LLVM IR to HC IR transformation that we have
developed in order to achieve the complete analysis system at the LLVM IR level
proposed in the paper (as already mentioned in the overview given in Section 2
and depicted in Figure 2).

A Horn clause (HC) is a first-order predicate logic formula of the form V(S; A
...N\S, — Sp) where all variables in the clause are universally quantified over
the whole formula, and Sy, S1,...,S, are atomic formulas, also called literals. It
is usually written Sy :— S1,...,Sn-

The HC IR representation consists of a sequence of blocks where each block
is represented as a Horn clause:

< block_id > (< params >) :— Sy, ... ,Sp.

Each block has an entry point, that we call the head of the block (to the left of the

:— symbol), with a number of parameters < params >, and a sequence of steps
(the body, to the right of the :— symbol). Each of these S; steps (or literals)
is either (the representation of) an LLVM IR instruction, or a call to another
(or the same) block. The transformation ensures that the program information
relevant to resource usage is preserved, so that the energy consumption functions
of the HC IR programs inferred by the resource analysis are applicable to the
original LLVM IR programs.

The transformation also passes energy values for the LLVM IR level for dif-
ferent programs based on the ISA/LLVM IR mapping information that express
the energy consumed by the LLVM IR blocks, as explained in Section 4. Such
information is represented by means of ¢rust assertions (in the Ciao assertion
language [13]) that are included in the HC IR. In general, trust assertions can
be used to provide information about the program and its constituent parts
(e.g., individual instructions or whole procedures or functions) to be trusted by
the analysis system, i.e., they provide base information assumed to be true by
the inference mechanism of the analysis in order to propagate it throughout the
program and obtain information for the rest of its constituent parts.

LLVM IR programs are expressed using typed assembly-like instructions.
Each function is in SSA form, represented as a sequence of basic blocks. Each
basic block is a sequence of LLVM IR instructions that are guaranteed to be
executed in the same order. Each block ends in either a branching or a return
instruction. In order to transform an LLVM IR program into the HC IR, we
follow a similar approach as in a previous ISA-level transformation [21]. How-
ever, the LLVM IR includes an additional type transformation as well as better
memory modelling.

The following subsections describe the main aspects of the transformation.

3.1 Inferring Block Arguments

As described before, a block in the HC IR has an entry point (head) with in-
put/output parameters, and a body containing a sequence of steps (here, repre-
sentations of LLVM IR instructions). Since the scope of the variables in LLVM
IR blocks is at the function level, the blocks are not required to pass parameters
while making jumps to other blocks. Thus, in order to represent LLVM IR blocks
as HC IR blocks, we need to infer input/output parameters for each block.

For entry blocks, the input and output arguments are the same as the ones to
the function. We define the functions param;, and paramg,,; which infer input
and output parameters to a block respectively. These are recomputed according
to the following definitions until a fixpoint is reached:

params o, (b) = (kill(b) U params;,, (b)) 0 Uy e peat(p) PATAMS 0t (V)
params;, (b) = gen(b) U Uy cpeqtv) Params;, (V')

where next(b) denotes the set of immediate target blocks that can be reached
from block b with a jump instruction, while gen(b) and kill(b) are the read and

written variables in block b respectively, which are defined as:
n
kill(b) = U def (k)
k=1
gen(b) = kul{v | veref(k) AV(j <k).v ¢ def(j)}

where def (k) and ref (k) denote the variables written or referred to at a node
(instruction) k in the block, respectively, and n is the number of nodes in the
block.

Note that the LLVM IR is in SSA form at the function level, which means
that blocks may have ¢ nodes which are created while transforming the program
into SSA form. A ¢ node is essentially a function defining a new variable by
selecting one of the multiple instances of the same variable coming from multiple
predecessor blocks:

T = ¢(Z‘1,.’E2, a-rn)

def and ref for this instruction are {z} and {xi1,x2,...,z,} respectively. An
interesting feature of our approach is that ¢ nodes are not needed. Once the
input/output parameters are inferred for each block as explained above, a post-
process gets rid of all ¢ nodes by modifying block input arguments in such a
way that blocks receive x directly as an input and an appropriate z; is passed
by the call site. This will be illustrated later in Section 3.3.

Consider the example in Figure 4 (left), where the LLVM IR block looptest is
defined. The body of the block reads from 2 variables without previously defining
them in the same block. The fixpoint analysis would yield:

params;, (looptest) = {Arr, I'}

which is used to construct the HC IR representation of the looptest block shown
in Figure 4 (right), line 3.

3.2 Translating LLVM IR Types into HC IR Types

LLVM IR is a typed representation which allows retaining much more of the
(source) program information than the ISA representation (e.g., types defining
compound data structures). Thus, we define a mechanism to translate LLVM IR,
types into their counterparts in HC IR.

The LLVM type system defines primitive and derived types. The primitive
types are the fundamental building blocks of the type system. Primitive types
include label, void, integer, character, floating point, x86mmx, and metadata.
The z86mmax type represents a value held in an MMX register on an x86 ma-
chine and the metadata type represents embedded metadata. The derived types
are created from primitive types or other derived types. They include array,
function, pointer, structure, vector, opaque. Since the XCore platform supports
neither pointers nor floating point data types, the LLVM IR code generated from
XC programs uses only a subset of the LLVM types.

At the HC IR level we use regular types, one of the type systems supported by
CiaoPP [12]. Translating LLVM IR primitive types into regular types is straight-
forward. The integer and character types are abstracted as num regular type,
whereas the label, void, and metadata types are represented as atm (atoms).

For derived types, corresponding non-primitive regular types are constructed
during the transformation phase. Supporting non-primitive types is important
because it enables the analysis to infer energy consumption functions that depend
on the sizes of internal parts of complex data structures. The array, vector, and
structure types are represented as follows:

array-type — (nested)list
vector type — (nested)list
structure_type — functor_term

Both the array and vector types are represented by the list type in CiaoPP
which is a special case of compound term. The type of the elements of such lists
can be again a primitive or a derived type. The structure type is represented
by a compound term which is composed of an atom (called the functor, which
gives a name to the structure) and a number of arguments, which are again
either primitive or derived types. LLVM also introduces pointer types in the
intermediate representation, even if the front-end language does not support
them (as in the case of XC, as mentioned before). Pointers are used in the pass-
by-reference mechanism for arguments, in memory allocations in alloca blocks,
and in memory load and store operations. The types of these pointer variables
in the HC IR are the same as the types of the data these pointers point to.

struct mystruct{ :— regtype arrayl /1.
int x; arrayl:=[] | [~struct|arrayl].
int arr [5];

}; :— regtype struct /1.

void print(struct mystruct [] Arg, int N)|struct:=mystruct (~num,~array2).
:— regtype array2/1.

} array2:=[] | [~num]|array2].

Fig.3: An XC program and its type transformation into HC IR.

Consider for example the types in the XC program shown in Figure 3. The
type of argument Arg of the print function is an array of mystruct elements.
mystruct is further composed of an integer and an array of integers. The LLVM
IR code generated by xcc for the function signature print in Figure 3 (left) is:

define void @print([0 x {32, [5 x i32]}]* noalias nocapture)
The function argument type in the LLVM IR ([0 x {432, [5 x 432]}]) is the typed
representation of the argument Arg to the function in the XC program. It rep-
resents an array of arbitrary length with elements of {i32,[5 x i32]} structure
type which is further composed of an 32 integer type and a [5 x i32] array type,
i.e., an array of 5 elements of i32 integer type.%

6 [0 x i32] specifies an arbitrary length array of ¢32 integer type elements.

This type is represented in the HC IR using the set of regular types illus-
trated in Figure 3 (right). The regular type arrayl, is a list of struct elements
(which can also be simply written as arrayl := list(struct)). Each struct
type element is represented as a functor mystruct/2 where the first argument is
a num and the second is another list type array2. The type array2 is defined
to be a list of num (which, again, can also be simply written as array2 :=
list(num)).

3.3 Transforming LLVM IR Blocks/Instructions into HC IR

In order to represent an LLVM IR function by an HC IR function (i.e., a predi-
cate), we need to represent each LLVM IR block by an HC IR block (i.e., a Horn
clause) and hence each LLVM IR instruction by an HC IR literal.

1 | alloca: 1 | alloca (N, Arr):—

2 br label looptest 2 looptest (N, Arr).

3 |looptest: 3 | looptest (I, Arr):—

4 %I=phi i32[%N,%alloca], 4 icmp-ne(I, 0, Zcmp),

[%11,%loopbody] 5 loopbody_loopend (Zcmp, I, Arr) .

5 %Zcmp=icmp ne i32 %I, 0 6 |icmp-ne(X, Y, 1):— X \=Y.

6 br i1l %Zcmp, label %loopbody , 7 |icmp-ne(X, Y, 0):— X =Y.
label %loopend 8 | loopbody_loopend (Zcmp,I, Arr):—

9 Zcmp=1,

7 | loopbody:
8 %Elm=getelementptr [0xi32]*x%Arr, 10 nth(I, Arr, Elm),
i32 0,i32 %I 11 //process list element ‘Elm’

9 //process array element ‘Elm’ 12 I1 is I — 1, sub(I,1,I1),

10 %I1=sub i32 %I, 1 13 looptest (I1, Arr).

11 br label %looptest 14 | loopbody_-loopend (Zcmp, I, Arr):—
12 | loopend: 15 Zcmp=0.

13 ret void

Fig.4: LLVM IR Array traversal example (left) and its HC IR representation (right)

The LLVM IR instructions are transformed into equivalent HC IR literals
where the semantics of the execution of the LLVM IR instructions are either
described using trust assertions or by giving definition to HC IR literals. The
phi assignment instructions are removed and the semantics of the phi assignment
are preserved on the call sites. For example, the phi assignment is removed from
the HC IR block in Figure 4 (right) and the semantics of the phi assignment is
preserved on the call sites of the looptest (lines 2 and 14). The call sites alloca
(line 2) and loopbody (line 13) pass the corresponding value as an argument to
looptest, which is received by looptest in its first argument 1.

Consider the instruction getelementptr at line 8 in Figure 4 (left), which
computes the address of an element of an array %Arr indexed by %I and assigns
it to a variable %FEIm. Such an instruction is represented by a call to an abstract
predicate nth/3, which extracts a reference to an element from a list, and whose
effect of execution on energy consumption as well as the relationship between
the sizes of input and output arguments is described using trust assertions. For
example, the assertion:

:- trust pred nth(I, L, Elem)
:(um(I), list (L, num), var(Elem))
=> (num(I), list (L, num), num(Elem) ,
rsize (I, num(IL, IU)),
rsize (L, list(LL, LU, nun(EL, EU))),
rsize (Elem, num(EL, EU)))
+ (resource(avg, energy, 1215439)).

indicates that if the nth(I, L, Elem) predicate (representing the getelementptr
LLVM IR instruction) is called with I and L bound to an integer and a list of
numbers respectively, and Elem an unbound variable (precondition field “:”),
then, after the successful completion of the call (postcondition field “=>”), Elem
is an integer number and the lower and upper bounds on its size are equal to the
lower and upper bounds on the sizes of the elements of the list L. The sizes of
the arguments to nth/38 are expressed using the property rsize in the assertion
language. The lower and upper bounds on the length of the list L are LL and LU
respectively. Similarly, the lower and upper bounds on the elements of the list
are EL and EU respectively, which are also the bounds for Elem. The resource
property (global computational properties field +) expresses that the energy
consumption for the instruction is an average value (1215439 nano-joules”).

The branching instructions in LLVM IR are transformed into calls to target
blocks in HC IR. For example, the branching instruction at line 6 in Figure 4
(left), which jumps to one of the two blocks loopbody or loopend based on the
Boolean variable Zemp, is transformed into a call to a predicate with two clauses
(line 5 in Figure 4 (right)). The name of the predicate is the concatenation of
the names of the two LLVM IR blocks mentioned above. The two clauses of the
predicate defined at lines 8-13 and 14-15 in Figure 4 (right) represent the LLVM
IR blocks loopbody and loopend respectively. The test on the conditional variable
is placed in both clauses to preserve the semantics of the conditional branch.

4 Obtaining the Energy Consumption of LLVM IR
Blocks

Our approach requires producing assertions that express the energy consumed
by each call to an LLVM IR block (or parts of it) when it is executed. To achieve
this we take as starting point the energy consumption information available from
an existing XS1-L ISA Energy Model produced in our previous work of ISA level
analysis [21] using the techniques described in [17]. We refer the reader to [17] for
a detailed study of the energy consumption behaviour of the XS1-L architecture,
containing a description of the test and measurement process along with the
construction and full evaluation of such model. In the experiments performed in
this paper a single, constant energy value is assigned to each instruction in the
ISA based on this model.

A mechanism is then needed to propagate such ISA-level energy information
up to the LLVM IR level and obtain energy values for LLVM IR blocks. A set
of mapping techniques serve this purpose by creating a fine-grained mapping

" nJ, 1072 joules

between segments of ISA instructions and LLVM IR code segments, in order to
enable the energy characterization of each LLVM IR instruction in a program, by
aggregating the energy consumption of the ISA instructions mapped to it. Then,
the energy value assigned to each LLVM IR block is obtained by aggregating the
energy consumption of all its LLVM IR instructions. The mapping is done by
using the debug mechanism where the debug information, preserved during the
lowering phase of the compilation from LLVM IR to ISA, is used to track ISA
instructions against LLVM IR instructions. A full description and formalization
of the mapping techniques is given in [7].

5 Resource Analysis with CiaoPP

In order to perform the global energy consumption analysis, our approach lever-
ages the CiaoPP tool [12], the preprocessor of the Ciao programming environ-
ment [13]. CiaoPP includes a global static analyzer which is parametric with
respect to resources and type of approximation (lower and upper bounds) [25,
28]. The framework can be instantiated to infer bounds on a very general notion
of resources, which we adapt in our case to the inference of energy consumption.
In CiaoPP, a resource is a user-defined counter representing a (numerical) non-
functional global property, such as execution time, execution steps, number of
bits sent or received by an application over a socket, number of calls to a predi-
cate, number of accesses to a database, etc. The instantiation of the framework
for energy consumption (or any other resource) is done by means of an asser-
tion language that allows the user to define resources and other parameters of
the analysis by means of assertions. Such assertions are used to assign basic re-
source usage functions to elementary operations and certain program constructs
of the base language, thus expressing how the execution of such operations and
constructs affects the usage of a particular resource. The resource consumption
provided can be a constant or a function of some input data values or sizes. The
same mechanism is used as well to provide resource consumption information
for procedures from libraries or external code when code is not available or to
increase the precision of the analysis.

For example, in order to instantiate the CiaoPP general analysis framework
for estimating bounds on energy consumption, we start by defining the iden-
tifier (“counter”) associated to the energy consumption resource, through the
following Ciao declaration:

.- resource energy.

We then provide assertions for each HC IR block expressing the energy con-
sumed by the corresponding LLVM IR block, determined from the energy model,
as explained in Section 4. Based on this information, the global static analysis
can then infer bounds on the resource usage of the whole program (as well as
procedures and functions in it) as functions of input data sizes. A full description
of how this is done can be found in [28].

Consider the example in Figure 4 (right). Let P. denote the energy consump-
tion function for a predicate P in the HC IR representation (set of blocks with

the same name). Let ¢, represent the energy cost of an LLVM IR block b. Then,
the inferred equations for the HC IR blocks in Figure 4 (right) are:

allocac(N, Arr) = Calioca + loopteste (N, Arr)

loopteste (N, Arr) = Cipoptest + loopbody_loopend.(0 # N, N, Arr)
loopteste(N — 1, Arr) if B is true

loopbody_loopend. (B, N, Arr) = + Cloopbody
Cloopend if B is false

If we assume (for simplicity of exposition) that each LLVM IR block has
unitary cost, i.e., ¢, = 1 for all LLVM IR blocks b, solving the above recurrence
equations, we obtain the energy consumed by alloca as a function of its input
data size (N):

allocae(N,Arr) =2 x N +3

Note that using average energy values in the model implies that the energy
function for the whole program inferred by the upper-bound resource analysis
is an approximation of the actual upper bound (possibly below it). Thus, the-
oretically, to ensure that the analysis infers an upper bound, we need to use
upper bounds as well in the energy models. This is not a trivial task as the
worst case energy consumption depends on the data processed, is likely to be
different for different instructions, and unlikely to occur frequently in subsequent
instructions. A first investigation into the effect of different data on the energy
consumption of individual instructions, instruction sequences and full programs
is presented in [26]. A refinement of the energy model to capture upper bounds
for individual instructions, or a selected subset of instructions, is currently being
investigated, extending the first experiments into the impact of data into worst
case energy consumption at instruction level as described in Section 5.5 of [17].

6 Experimental Evaluation

We have performed an experimental evaluation of our techniques on a number of
selected benchmarks. Power measurement data was collected for the XCore plat-
form by using appropriately instrumented power supplies, a power-sense chip,
and an embedded system for controlling the measurements and collecting the
power data. Details about the power monitoring setup used to run our bench-
marks and measure their energy consumption can be found in [17]. The main
goal of our experiments was to shed light on the trade-offs implied by performing
the analysis at the ISA level (without using complex mechanisms for propagat-
ing type information and representing memory) and at the LLVM level using
models defined at the ISA level together with a mapping mechanism.

There are two groups of benchmarks that we have used in our experimental
study. The first group is composed of four small recursive numerical programs
that have a variety of user defined functions, arguments, and calling patterns

(first four benchmarks in Table 2). These benchmarks only operate over prim-
itive data types and do not involve any structured types. The second group of
benchmarks (the last five benchmarks in Table 2) differs from the first group in
the sense that they all involve structured types. These are recursive or iterative.

The second group of benchmarks includes fir (N) and biquad (N). The former
is a (finite impulse response) filter program, which attenuates or amplifies one
specific frequency range of a given input signal. It computes the inner-product
of two vectors: a vector of input samples, and a vector of coefficients. The latter
is an equaliser, which takes a signal and attenuates/amplifies different frequency
bands. It uses a cascade of Biquad filters where each filter attenuates or amplifies
one specific frequency range. The energy consumed depends on the number of
banks N.

None of the XC benchmarks contain any assertions that provide information
to help the analyzer. Table 1 shows detailed experimental results. Column SA
energy function shows the energy consumption functions, which depend on in-
put data sizes, inferred for each program by the static analyses performed at the
ISA and LLVM IR levels (denoted with subscripts isa and llvm respectively).
We can see that the analysis is able to infer different kinds of functions (poly-
nomial, exponential, etc.). Column HW shows the actual energy consumption
in nano-joules measured on the hardware corresponding to the execution of the
programs with input data of different sizes (shown in column Input Data Size).
Estimated presents the energy consumption estimated by static analysis. This
is obtained by evaluating the functions in column SA energy function for the
input data sizes in column Input Data Size. The value N/A in such column
means that the analysis has not been able to infer any useful energy consump-
tion function and, thus, no estimated value is obtained. Column Err vs. HW
shows the error of the values estimated by the static analysis with respect to
the actual energy consumption measured on the hardware, calculated as follows:
Err vs. HW = (LLVM(O;I‘IAS,A)_HW % 100)%. Finally, the last column shows the
ratio between the estimations of the analysis at the ISA and LLVM IR levels.

Table 2 shows a summary of results. The first two columns show the name
and short description of the benchmarks. The columns under Err vs. HW show
the average error obtained from the values given in Table 1 for different input
data sizes. The last row of the table shows the average error over the number of
benchmarks analyzed at each level.

The experimental results show that:

— For the benchmarks in the first group, both the ISA- and LLVM IR-level
analyses are able to infer useful energy consumption functions. On average,
the analysis performed at either level is reasonably accurate and the rel-
ative error between the two analyses at different levels is small. ISA-level
estimations are slightly more accurate than the ones at the LLVM IR level
(3.9% vs. 9% error on average with respect to the actual energy consump-
tion measured on the hardware, respectively). This is because the ISA-level
analysis uses very accurate energy models, obtained from measuring directly
at the ISA level, whereas at the LLVM IR level, such ISA-level model needs

SA energy| Input|{HW (nJ)| Estimated (nJ) |Err vs. HW%]|isa/
function (nJ) Size llvm| isa[llvm| isa llvim
Factisa(N)= N=8 227 237 212[4.6] -6.4 0.9
24.26 N +18.43 N=16 426 453 406] 6.5 -4.5 0.9
Factyym(N)= N=32 824 886 794| 7.6] -3.5 0.9
27.03 N 4 21.28] N=64 1690 1751 1571 3.6] -7.0 0.9
Fibisa(N)*=26.88 fib(N) N=2 75 74 65]-1.16]-12.5 0.89
+22.85 lucas(N)®—30.04 N=4 219 241 210[10| -4.1 0.87
N=8 1615 1853 1608]14.75] -0.4 0.87
Fibyym(N)*=32.5fib(N| N=15| 47 x 10°| b4 x 10°| 47 x 10°[16.47] 1.2 0.87
+25.6 lucas(N)® — 35.65] N=26[9.30 x 10%/10.9 x 10%] 9.5 x 10°] 17.3] 1.74 0.87
Sqrisa(N)= N=9 1242 1302 1148 4.8] -7.5 0.88
8.6 N +48.7 N +15.6] N=27 8135 8734 7579 7.4 -6.8 0.87
N=73] 52 x 10°| 57 x 10°| 49 x 10°] 8.5| -6.5 0.86
Sqrizem (N)= N=144[19.7 x 10*[21.4 x 10*[18.4 x 107 8.89| -6.4 0.86
10 N2 4+ 53 N +15.6] N=234| 51 x 107| 56 x 107| 48 x 10"| 9.61|-5.86 0.86
N=360[11.89x 10°| 13 x 10°[11.2 x 10°[10.49|-5.16 0.86
N=3 326 344 3.6] 5.7] -6.0 0.89
PowerO fTwo;sq(N)= N=6 2729 2965 2631 8.7| 3.6 0.89
41.5 x 2NV —25.9 N=9[21.9 x 10°[23.9 x 10°[21.2 x 10°| 9] 3.3 0.89
PowerO fTwoyem(N) =] N=12[17.57x10*[19.1 x 10*| 17 x 10*| 9| -3.3 0.89
46.8 x 2N —29.9 N=15[13.8 x 10°[15.3 x 10°[13.6 x 10°| 11| -1.5 0.89
N=57 1138 1179 N/AJ 3.60]N/A N/A|
reverseom (N)= N=160 3125 3185 N/A| 1.91|N/A N/A
19.47 N +69.33] N=320 6189 6301 N/A| 1.82|N/A N/A
N=720 13848 14092 N/A| 1.76|N/A N/A
N=1280 24634 24998 N/A| 1.48|N/A N/A
N=5 7453 7569 N/A| -2[N/A N/Al
matmultyyym(N)= N=15[15.79x 10*[15.9 x 10* N/A| 1.03|N/A N/A
42.47 N® + 68.85 N*+| N=20[36.29 x 107[36.8 x 107 N/A| 1.51|N/A N/A
49.9 N +24.22[N=25[69.56 x 10"| 70.8 x 107 N/A| 1.77|NJ/A N/A
N=31[13.07x10°[13.3 x 10° N/A| 1.98|N/A N/A
N=131;| 14.5 x 10°[13.2 x 107 N/A| 8.65|N/A N/A
M=69
concatiyym (N, M)= N=170;|25.44x 10°] 23.3 x 10° N/A| 8.60|N/A N/A
M=182
65.7 N +65.7 M 4 137| N=188;| 13.8 x 10°[12.6 x 10° N/A| 859|N/A N/A
M=2
N=13;[10.7 x 10*]9.79 x 10° N/A| 8.74|N/A N/A
M=134
biquadiiym (N)= N=5 871 836 N/A| -4|N/A N/A
157 N +51.7 N=7 1187 1151 N/A| -3.1|N/A N/A
N=10 1660 1622 N/A[-2.31|N/A N/A
N=14 2290 2250 N/A|-1.75|N/A N/A
firtom(N)= N=85 2999 2839 N/A| -5.3|N/A N/A
31.8 N + 137 N=97 3404 3221 N/A|-5.37|N/A N/A
N=109 3812 3602 N/A| -5.5|N/A N/A
N=121 4227 3984 N/A| -5.7|N/A N/A

Table 1: Comparison of the accuracy of energy analyses at the LLVM IR and ISA
levels.

¢ It uses mathematical functions fib and lucas, a function expansion would yield:
Fibisa(N)=34.87 x 1.62" +10.8 x (=0.62)~ — 30
Fibiom (N)=40.13 x 1.62~ 4+ 11.1 x (—0.62)~ — 35.65

b Lucas(n) satisfy the recurrence relation L, = Lp—1 + Lpn—2 with L1 =1,L, =3

Program Description Err vs. HW | isa/
llvm[isa|llvm
fact(N) Calculates N! 5.6%| 5.3%] 0.89
fibonacci(N) Nth Fibonacci number 11.9% 4%| 0.87
sqr (W) Computes N? performing additions | 9.3%| 3.1%] 0.86
pow_of _two(N) |Calculates 2~ without multiplication| 9.4%| 3.3%] 0.89
Average 9%| 3.9%|0.92
reverse(N, M) |Reverses an array 2.18%| N/A|N/A
concat (N, M) Concatenation of arrays 8.71%| N/A|N/A
matmult(N, M) |Matrix multiplication 1.47%| N/A|N/A
fir(N) Finite Impulse Response filter 5.47%| N/A|N/A
biquad (N) Biquad equaliser 3.70%| N/A|N/A
Average 3.0%| N/AIN/A
[Overall average] [6.4%] 3.9%][0.92]

Table 2: LLVM IR~ vs. ISA-level analysis accuracy.

to be propagated up to the LLVM IR level using (approximated) mapping
information. This causes a slight loss of accuracy.

— For the second group of benchmarks, the ISA level analysis is not able to
infer useful energy functions. This is due to the fact that significant pro-
gram structure and data type/shape information is lost due to lower-level
representations, which sometimes makes the analysis at the ISA level very
difficult or impossible. In order to overcome this limitation and improve
analysis accuracy, significantly more complex techniques for recovering type
information and representing memory in the HC IR would be needed. In
contrast, type/shape information is preserved at the LLVM IR level, which
allows analyzing programs using data structures (e.g., arrays). In particular,
all the benchmarks in the second group are analyzed at the LLVM IR level
with reasonable accuracy (3% error on average). In this sense, the LLVM
IR-level analysis is more powerful than the one at the ISA level. The anal-
ysis is also reasonably efficient, with analysis times of about 5 to 6 seconds
on average, despite the naive implementation of the interface with external
recurrence equation solvers, which can be improved significantly. The scala-
bility of the analysis follows from the fact that it is compositional and can
be performed in a modular way, making use of the Ciao assertion language
to store results of previously analyzed modules.

7 Related Work

Few papers can be found in the literature focusing on static analysis of energy
consumption. A similar approach to the one presented in this paper and our
previously developed analysis [21] (from which it builds on) was proposed for
upper-bound energy analysis of Java bytecode programs in [24], where the Jimple
(a typed three-address code) representation of Java bytecode was transformed
into Horn Clauses, and a simple energy model at the Java bytecode level [18]

was used. However, this work did not compare the results with actual, measured
energy consumption.

In all the approaches mentioned above, instantiations for energy consump-
tion of general resource analyzers are used, namely [25] in [24] and [21], and [28]
in this paper. Such resource analyzers are based on setting up and solving recur-
rence equations, an approach proposed by Wegbreit [32] that has been developed
significantly in subsequent work [27, 5, 6, 30, 25, 1, 28]. Other approaches to static
analysis based on the transformation of the analyzed code into another (interme-
diate) representation have been proposed for analyzing low-level languages [11]
and Java (by means of a transformation into Java bytecode) [2]. In [2], cost
relations are inferred directly for these bytecode programs, whereas in [24] the
bytecode is first transformed into Horn Clauses. The general resource analyzer
in [25] was also instantiated in [23] for the estimation of execution times of logic
programs running on a bytecode-based abstract machine. The approach used
timing models at the bytecode instruction level, for each particular platform,
and program-specific mappings to lift such models up to the Horn Clause level,
at which the analysis was performed.

By contrast to the generic approach based on CiaoPP, an approach operating
directly on the LLVM IR representation is explored in [9]. Though relying on
similar analysis techniques, the approach can be integrated more directly in the
LLVM toolchain and is in principle applicable to any languages targeting this
toolchain. The approach uses the same LLVM IR energy model and mapping
technique as the one applied in this paper.

A number of static analyses are also aimed at worst case execution time
(WCET), usually for imperative languages in different application domains (see
e.g., [33] and its references). The worst-case analysis presented in [16], which is
not based on recurrence equation solving, distinguishes instruction-specific (not
proportional to time, but to data) from pipeline-specific (roughly proportional to
time) energy consumption. However, in contrast to the work presented here and
n [23], these worst case analysis methods do not infer cost functions on input
data sizes but rather absolute maximum values, and they generally require the
manual annotation of loops to express an upper-bound on the number of itera-
tions. An alternative approach to WCET was presented in [14]. It is based on the
idea of amortisation, which allows to infer more accurate yet safe upper bounds
by averaging the worst execution time of operations over time. It was applied
to a functional language, but the approach is in principle generally applicable.
A timing analysis based on game-theoretic learning was presented in [29]. The
approach combines static analysis to find a set of basic paths which are then
tested. In principle, such approach could be adapted to infer energy usage. Its
main advantage is that this analysis can infer distributions on time, not only
average values.

8 Conclusions and Future Work

We have presented techniques for extending to the LLVM IR level our tool chain
for estimating energy consumption as functions on program input data sizes.
The approach uses a mapping technique that leverages the existing debugging
mechanisms in the XMOS XCore compiler tool chain to propagate an ISA-level
energy model to the LLVM IR level. A new transformation constructs a block
representation that is supplied, together with the propagated energy values, to
a parametric resource analyzer that infers the program energy cost as functions
on the input data sizes.

Our results suggest that performing the static analysis at the LLVM IR level
is a reasonable compromise, since 1) LLVM IR is close enough to the source code
level to preserve most of the program information needed by the static analysis,
and 2) the LLVM IR is close enough to the ISA level to allow the propagation
of the ISA energy model up to the LLVM IR level without significant loss of
accuracy for the examples studied. Our experiments are based on single-threaded
programs. We also have focused on the study of the energy consumption due to
computation, so that we have not tested programs where storage and networking
is important. However, this could potentially be done in future work, by using the
CiaoPP static analysis, which already infers bounds on data sizes, and combining
such information with appropriate energy models of communication and storage.
It remains to be seen whether the results would carry over to other classes
of programs, such as multi-threaded programs and programs where timing is
more important. In this sense our results are preliminary, yet they are promising
enough to continue research into analysis at LLVM IR level and into ISA-LLVM
IR energy mapping techniques to enable the analysis of a wider class of programs,
especially multi-threaded programs.

Acknowledgements

This research has received funding from the European Union 7th Framework Pro-
gram agreement no 318337, ENTRA, Spanish MINECO TIN’12-39391 Strong-
Soft project, and the Madrid M141047003 N-GREENS program.

References

1. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning, 46(2):161-203, February
2011.

2. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis
of Java Bytecode. In R. D. Nicola, editor, 16th European Symposium on Pro-
gramming, ESOP’07, volume 4421 of Lecture Notes in Computer Science, pages
157-172. Springer, March 2007.

3. N. Bjgrner, F. Fioravanti, A. Rybalchenko, and V. Senni, editors. Proceedings of
First Workshop on Horn Clauses for Verification and Synthesis, volume 169 of
EPTCS, July 2014.

10.

11.

12.

13.

14.

15.

16.

17.

18.

L. M. de Moura and N. Bjgrner. Z3: An Efficient SMT Solver. In C. R. Ramakrish-
nan and J. Rehof, editors, Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, volume 4963 of Lecture
Notes in Computer Science, pages 337-340. Springer, 2008.

S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic
Programs. In Proc. of the 1990 ACM Conf. on Programming Language Design and
Implementation, pages 174-188. ACM Press, June 1990.

S. K. Debray, P. Lopez-Garcia, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In 1997 International Logic Programming
Symposium, pages 291-305. MIT Press, Cambridge, MA, October 1997.

K. Georgiou, S. Kerrison, and K. Eder. On the Value and Limits of Multi-level En-
ergy Consumption Static Analysis for Deeply Embedded Single and Multi-threaded
Programs. ArXiv e-prints:1510.07095, Oct. 2015.

S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Rybalchenko.
HSF(C): A Software Verifier Based on Horn Clauses - (Competition Contribu-
tion). In C. Flanagan and B. Kénig, editors, TACAS, volume 7214 of LNCS, pages
549-551. Springer, 2012.

N. Grech, K. Georgiou, J. Pallister, S. Kerrison, J. Morse, and K. Eder. Static
analysis of energy consumption for LLVM IR programs. In Proceedings of the
18th International Workshop on Software and Compilers for Embedded Systems,
SCOPES ’15, New York, NY, USA, 2015. ACM.

A. Gurfinkel, T. Kahsai, and J. A. Navas. Seahorn: A framework for verifying C
programs (competition contribution). In Proc. of TACAS 2015, volume 9035 of
LNCS, pages 447-450. Springer, 2015.

K. S. Henriksen and J. P. Gallagher. Abstract interpretation of PIC programs
through logic programming. In Sizth IEEE International Workshop on Source
Code Analysis and Manipulation (SCAM 2006), pages 184-196. IEEE Computer
Society, 2006.

M. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1-2):115-140,
October 2005.

M. V. Hermenegildo, F. Bueno, M. Carro, P. Lépez, E. Mera, J. Morales, and
G. Puebla. An Overview of Ciao and its Design Philosophy. Theory and Practice
of Logic Programming, 12(1-2):219-252, January 2012.

C. Herrmann, A. Bonenfant, K. Hammond, S. Jost, H.-W. Loidl, and R. Pointon.
Automatic Amortised Worst-Case Execution Time Analysis. In 7th International
Workshop on Worst-Case Ezecution Time Analysis (WCET’07), volume 6 of OA-
Slcs. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2007.

H. Hojjat, F. Konecny, F. Garnier, R. Iosif, V. Kuncak, and P. Riimmer. A
Verification Toolkit for Numerical Transition Systems - Tool Paper. In Proc. of
FM 2012, volume 7436 of LNCS, pages 247-251. Springer, 2012.

R. Jayaseelan, T. Mitra, and X. Li. Estimating the worst-case energy consumption
of embedded software. In IEEE Real Time Technology and Applications Sympo-
sium, pages 81-90. IEEE Computer Society, 2006.

S. Kerrison and K. Eder. Energy Modeling of Software for a Hardware Multi-
threaded Embedded Microprocessor. ACM Transactions on Embedded Computing
Systems, 14(3):1-25, April 2015.

S. Lafond and J. Lilius. Energy consumption analysis for two embedded Java
virtual machines. J. Syst. Archit., 53(5-6):328-337, 2007.

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.
33.

C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis and transformation. In Proc. of the 2004 International Symposium on
Code Generation and Optimization (CGO), pages 75-88. IEEE Computer Society,
March 2004.

U. Liqat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, M. V. Hermenegildo, J. P.
Gallagher, and K. Eder. Inferring Energy Consumption at Different Software Lev-
els: ISA vs. LLVM IR. Technical report, FET 318337 ENTRA Project, April 2014.
Appendix D3.2.4 of Deliverable D3.2. Available at http://entraproject.eu.

U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech,
M. Hermenegildo, and K. Eder. Energy Consumption Analysis of Programs based
on XMOS ISA-level Models. In Logic-Based Program Synthesis and Transfor-
mation, 23rd International Symposium, LOPSTR 2013, Revised Selected Papers,
volume 8901 of Lecture Notes in Computer Science, pages 72—90. Springer, 2014.
M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A Flexible (C)LP-Based Ap-
proach to the Analysis of Object-Oriented Programs. In 17th International Sym-
posium on Logic-based Program Synthesis and Transformation (LOPSTR 2007),
number 4915 in LNCS, pages 154-168. Springer-Verlag, August 2007.

E. Mera, P. Léopez-Garcia, M. Carro, and M. Hermenegildo. Towards Execution
Time Estimation in Abstract Machine-Based Languages. In 10th Int’l. ACM
SIGPLAN Symposium on Principles and Practice of Declarative Programming
(PPDP’08), pages 174-184. ACM Press, July 2008.

J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Safe Upper-bounds Inference of
Energy Consumption for Java Bytecode Applications. In The Sizth NASA Langley
Formal Methods Workshop (LFM 08), April 2008. Extended Abstract.

J. Navas, E. Mera, P. Lépez-Garcia, and M. Hermenegildo. User-Definable Re-
source Bounds Analysis for Logic Programs. In International Conference on Logic
Programming (ICLP’07), Lecture Notes in Computer Science. Springer, 2007.

J. Pallister, S. Kerrison, J. Morse, and K. Eder. Data dependent energy modeling
for worst case energy consumption analysis. arXiv preprint arXiv:1505.03374,
2015.

M. Rosendahl. Automatic Complexity Analysis. In 4th ACM Conference on
Functional Programming Languages and Computer Architecture (FPCA’89). ACM
Press, 1989.

A. Serrano, P. Lopez-Garcia, and M. Hermenegildo. Resource Usage Analysis
of Logic Programs via Abstract Interpretation Using Sized Types. Theory and
Practice of Logic Programming, 30th Int’l. Conference on Logic Programming
(ICLP’14) Special Issue, 14(4-5):739-754, 2014.

S. A. Seshia and J. Kotker. Gametime: A toolkit for timing analysis of software.
In P. A. Abdulla and K. R. M. Leino, editors, TACAS, volume 6605 of Lecture
Notes in Computer Science, pages 388—-392. Springer, 2011.

P. Vasconcelos and K. Hammond. Inferring Cost Equations for Recursive, Polymor-
phic and Higher-Order Functional Programs. In 15th International Workshop on
Implementation of Functional Languages (IFL’03), Revised Papers, volume 3145
of Lecture Notes in Computer Science, pages 86—101. Springer-Verlag, Sep 2005.
D. Watt. Programming XC on XMOS Devices. XMOS Limited, 2009.

B. Wegbreit. Mechanical program analysis. Commun. ACM, 18(9):528-539, 1975.
R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenstrém. The worst-case execution-time prob-
lem - Overview of methods and survey of tools. ACM Trans. Embedded Comput.
Syst., 7(3), 2008.

Attachment D1.2.2

Swallow: Building an
Energy-Transparent Many-Core
Embedded Real-Time System

Accepted at the International Conference on
Design, Automation and Test in Europe (DATE
2016)

65

Swallow: Building an Energy-Transparent
Many-Core Embedded Real-Time System

To appear in DATE 2016, Dresden, Germany.
Simon J. Hollis and Steve Kerrison
Department of Computer Science, University of Bristol, United Kingdom
E-mail: harryhollis@cantab.net, steve.kerrison@bristol.ac.uk

Abstract—Swallow is a many-core platform of interconnected
embedded real time processors with time-deterministic execution
and a cache-less memory subsystem. Its largest current configu-
ration is 480 x 32-bit processors. It is open-source, designed
from the ground up to allow the exploration of flexibility,
scalability and energy efficiency in large systems of embedded
processors. Further, it enables the behavior of various structures
of parallel programs to be explored. It is a proof of concept
and design example for other potential systems of this kind.
We present the energy transparency features and proportional
energy scaling of the system that allows it to be expanded beyond
hundreds of cores. We discuss the design choices, construction
and novel network implementation of Swallow. Currently, the
system provides up to 240 GIPS, with each core consuming
71-193 mW, dependent on workload. Its power per instruction
is lower than almost all systems of comparable scale. We
discuss the challenges associated with efficiently utilizing this
system, particularly communication/computation ratios, and give
recommendations for future systems and their software.

I. INTRODUCTION

Swallow is a scalable many-core system of multi-threaded
real-time processors. Our contributions are the system itself,
and the design process used to construct an energy-transparent
multi-core research system. An energy-transparent system
provides a predictable relationship between software execution
and hardware energy consumption.

The XMOS xCORE XS1-L micro-architecture [1] is used for
the underlying compute and network architecture, providing
highly predictable time-deterministic program execution and
a low latency network. This is the first example of this
architecture assembled at this scale, with a network of 16 cores
per Swallow board (slice), that can be assembled into systems
of much larger sizes, such as in Fig. 1. The current largest
demonstrated system is 480 cores. The hardware designs are
available under an open source license.

Swallow has been developed as an experimental system
for investigating techniques to improve energy efficiency in
scalable parallel systems. Key aims of the platform include:

o Scale to hundreds of cores and beyond.

o Deliver proportional scaling in performance and energy.

o« Make energy consumption transparent to aid parallel
software design exploration for energy efficiency.

« Support a variety of parallel application types and data
sharing methods [2], including groups of tasks, pipelines,
client/server, message passing and shared memory.

Figure 1. An eight board, 128 core stack of Swallow slices.

e Use a real-time embedded system, in contrast to typical
heavyweight parallelism of application specific or non-
real-time domains.

To support these aims, we built a system that allows flexible
expansion and provides energy measurement capabilities. This
paper focuses on Swallow and the design challenges surround-
ing it. A distributed operating system has been developed for
Swallow [3], and a wider study of benchmarks and program
structures for Swallow and other platforms is future work.

In this paper, we first examine Swallow’s energy mea-
surement capabilities in Section II and its appealing energy
proportionality in Section III. Then, we discuss the design
considerations and decisions in Section IV, before explaining
the novel network implementation in Section V. This is
followed by Section VI, a survey of related work, and finally
conclusions are made in Section VII.

II. ENERGY MEASUREMENT

A number of power measurement points are designed into
the system to provide energy-transparency. Swallow cores are
powered by five separate switch-mode power supplies, each
fed from a main 5V supply. Four of these deliver 1V to two
chips each (four cores), the fifth supplies 3.3V for I/O, etc.

Each power supply has a shunt resistor on its output and
associated probe points. We created a daughter-board that
incorporates sensitive differential voltage amplifiers and a
high-speed multi-channel analogue-to-digital converter. The
resulting system is able to measure individual power supply
energy consumption at up to 2M samples/sec, or 1 M/s if all
supplies are sampled simultaneously. Schematics are available
online as part of the Swallow project open source contribution.

Table 1

Proportion of power per node (260 mW total)

PER-BIT ENERGIES OF Swallow LINKS.
Link type Data Rate | Max Link Power | Energy per bit Computation & Static iﬁf;r?:cri(]icl_/%c :g
On-chip 250 Mbit/s 1.4 mW 5.6 pJ/bit 71181111\({11’}’3(513(2 68 mW, 26 % 58 mW, 46mW, |z
On-board, | ¢, 5 Mbivss 13.3mW 212.8 pl/bit ’ 22% 18% 3
vertical
1(1);_122?;:1’ 62.5 Mbit/s 12.6 mW 201.6 pJ/bit Figure 2. Power distribution for each Swallow processor node.
Off-board, . .
30cm FEC 62.5 Mbit/s 680 mW 10880 pl/bit 900 : :
800 [{ &~ & Four active threads A g
. . < 700 m ®m Zero active threads ST R
A novel feature of this energy measurement is that the = 600 | — —Cj)mputaﬁonal‘[i
measurement data can be collected on the Swallow slice E 500 F P . dynamic power L]
itself. In this way, it is possible to create a program that can c;) 400+ Ve T e]
measure its own power consumption and adapt to the results. £ 288 | ax e e o Static + max. i
. - mE : 4
Alternatively, the results can be streamed out of the system | . dynamic leakage |
R R 100]— Static leakage
using an Ethernet interface. 0 ‘ ‘ ‘ ‘ ‘
. . =4
The separate measurement points allow Swallow to monitor 100 200 300 400 500
the balance of energy consumed by the processor cores and Frequency (MHz)

external communication links. We present the energy-per-bit
for each link in Table I. The system construction and network
are described in more detail in Sections IV and V respectively.

The links consume approximately 200 pJ/bit for package-
to-package data. The low value can be attributed to the link
protocol, which requires only four wire transitions per byte of
data. Therefore, the worst case energy usage in communication
is half that of a naive serial or parallel link. Once transmissions
go off-board via long flexible cables, the capacitance of those
cables becomes the dominating factor for energy, and the
energy cost per bit rises by a factor of 50.

Comparing communication costs to computation, profiling
of the XS1-L series of processors [4] shows that instructions
cause core energy consumption of in the range of 1.0-2.25 pJ
at 400MHz and 1V, including static power and dependent
upon the operations they perform. We can consider this to be
31-70nJ per bit operated upon. Data movement is therefore
relatively inexpensive compared to data processing, before
latency is considered.

III. ENERGY PROPORTIONALITY

In order for a many-core system to be scalable, its energy
consumption must be both efficient and proportional to the
computation it is undertaking. Modern high-performance com-
puting centers consume vast quantities of energy, and energy
density is the most important throttle of continued integration
of more and more compute power into a fixed space. In this
section, we demonstrate how Swallow is both energy efficient
and energy proportional, and is therefore scalable.

A. Swallow is energy efficient

The processor and memory architecture in Swallow are
targeted for the embedded application space, where low energy
is a primary design goal. A single processor consumes a
maximum of 193 mW when active, leading to 3.1 Wislice.
Losses in the on-board power supplies and other support
logic increase the overall power consumption to approximately
4.5 W/slice (equivalent to 260 mW/core), so a complete 480
core, 30 slice system consumes only 134 W.

Figure 3. Power consumption with frequency scaling (four cores).

Overall, we see that approximately 18 % of power is used
in power supply conversion, support logic and 1/0, 30 % is
consumed in performing computation, 26 % is spent in non-
computational static and dynamic power, and 22 % is used for
network interfacing (Fig. 2).

B. Swallow is energy proportional

The XS1-L used in Swallow supports dynamic frequency
scaling, based on run-time load factors [1]. Fig. 3 shows how
the power consumption of a group of four cores scales with
their clock frequency.

The power consumed per core, P., ranges from 193 mW at
500 MHz to 65mW at 71 MHz when under heavy load, and
113 mW at S00MHz to 50mW at 71 MHz when all cores and
threads are idle. The characteristics are linear, giving a directly
energy proportional response to clock speed, f, under load,

P. = (46 4 0.30f) mW.)

Thus, static power is 46 mW and dynamic is 0.3 mW/MHz.

Although the current version of Swallow does not support
voltage scaling, newer XCORE devices do support full DVFS.
The additional power savings from voltage scaling on top of
frequency scaling can be reliably calculated from knowing the
power formula P = CV?2f, where C is the capacitance of
the switching transistors and V' is Vz4. We have determined
the minimum allowable voltage experimentally to be 0.6 V at
71 MHz and 0.95V at 500 MHz, and calculate the equivalent
DVES savings for Swallow in Fig. 4.

IV. DESIGN OF SWALLOW

The Swallow project sought to build a system from com-
mercially available components, keeping costs and design
effort low when compared to building a custom processor or
collection of IPs in a bespoke SoC/NoC. This demonstrates
that many-core systems can be built and used for research
quickly, cheaply and with relatively low risk. The system is

200 —— : : : —
180} Lae :
= 160} e [
E 140} e T T e]
E 120 P . .]
5 100} et T e |
B 80[uwdun]
o 60) 4 _‘..' & 4 Power at 1V i
40 o™ B Power after voltage scaling [

20 L == : : : :

100 200 300 400 500
Frequency (MHz)

Figure 4. Impact of voltage and frequency scaling on power consumption

(four active thread load) for one core.

also designed to be energy-transparent, giving insight into how
many-core systems and software consume energy.

A. Processor selection

The choice of processor was governed by a desire to build a
system of many predictable embedded processors, upon which
novel parallel programming approaches and experiments could
be performed, exploiting this predictability. This necessitates
the processor have time-deterministic instruction execution
in terms of both instruction scheduling and the behavior of
the memory hierarchy. The interconnection capabilities must
also scale, at least into the hundreds of cores. A number of
candidate processors are summarized in Table II.

As is visible in this comparison, few commercial processors
present the necessary characteristics of a scalable architecture.
The XMOS XS1-L is the only candidate to provide all of
these. We further investigated the architecture and determined
that its feature set was an excellent match for our system
requirements. Key characteristics of XS1 are:

« 64 KiB of single-cycle SRAM local memory per core;
e message passing between cores;

o fast on-chip links, tunable off-chip links;

« fixed instruction completion time for most instructions;
o hardware threads with no context overhead;

o ISA-level primitives for I/O and networking; and

o a network of up to 2! interconnected XS1-L cores.

There are several chips available that are based on XS1-L
architecture, with core counts of one or two, with a range of
packages and integrated peripherals. To maximize the density
of the final configuration a dual-core XS/-L2A device was
selected. The maximum operating frequency is 500 MHz,
yielding 500 MIPS potential throughput per core.

B. Scalable construction

For economic and reliability reasons, we decided to con-
struct Swallow from slices. A slice is shown in Fig. 5. Each
Swallow slice comprises sixteen processors across eight chips,
with ten off-board network links.

Several components are highlighted in Fig. 5, including
the chips, external interconnect headers along all four board
edges, along with GPIO near the top edge of the board for
further interfaces. The slices are 105mm x 140 mm in size,
with a maximum operating power of 5W at 12 V. Slices are

Additional GPIO

JTAG routing

256Mbit
SDRAMJ

Swallow slice

Dual-core chip
64KiB SRAM
per core

(layer 1)

-

Dual-core

processor

‘ Vertical links (layer 0) -
Ethernet Power in

Figure 5. A Swallow slice, topology (left); photograph (right), one of forty
boards that can be assembled into a grid.

Grid interconnect
125Mbps per link

connected with flexible FFC-type ribbon cables. Mounting
holes allow vertical stacks to be assembled to minimize the
system’s footprint (see Fig. 1).

Forty Swallow slices have been manufactured, enabling the
construction of a 640 processor system. However, yield issues,
mostly with edge connectors, mean that the largest machine
we have been able to build and test is 480 cores.

C. Computational throughput

Equation (2) shows that the per-thread Instructions Per
Second, IPS;, and processor aggregate throughput, IPS_, scales
according to the number of active threads, V¢, on each core.

f , IPSC _ f X min(47Nt)
max (4, N;) 4
This is a property of the XS1-L processor’s four-stage execu-
tion pipeline [5] with overhead-free thread context switching.

IPS; = 2)

D. Network-on-Chip Implementation

Swallow exploits the network technology of the XSI1 ar-
chitecture. Each XS1-L processor has a number of external
communication links. Links are flexibly allocated, with soft-
ware configurable network partitioning and routing. Links can
be aggregated to form a single logical channel with increased
bandwidth; or connected separately to different parts of the
network, increasing the dimension of the network topology.
Links are managed by a switch, with one switch per core in
the XS1-L micro-architecture.

V. SWALLOW NETWORK

Swallow contains a low latency interconnect, suitable for
supporting arbitrary traffic types and a mix of parallel or
non-parallel applications. In the following section we give an
overview of the interconnect and implementation details.

A. Network topology

The device chosen for the Swallow system contains two
cores and exposes four external network links, in the way
shown in Fig. 6. The internal links have four times more

Table II
COMPARISON OF CANDIDATE SWALLOW PROCESSORS. ONLY THE XS1-LL MEETS ALL REQUIREMENTS.

125 Mbps|
External
X-links

125 Mbps
External
X-links

Switch

4 Gbps
switch links|

Core

Switch

4 Gbps
switch links

Core

500 Mbps
internal X-links

Un-bonded
X-links

Un-bonded

X-links

Figure 6. Network links of the XMOS XS1-L2 in a single Swallow node.

bandwidth than external links. Data words can be transferred
from the core to the network hardware with just three cycles of
latency (6 ns). This compares with 80ns for the BlueGene/Q
system [6]. In Swallow, four external links are then arranged
to connect North, South, East and West to other devices.

An interesting artifact of Swallow’s device selection is that,
as is evident in Fig. 6, it is not possible to make a conventional
2D mesh topology. The internal links are already utilized by
core-to-core connections. This, combined with the pin-out of
the package, means that the most effective grid-like structure is
an unwoven lattice, shown in Fig. 7. This presents interesting
routing challenges, requiring a unique strategy.

The unwoven lattice network is effectively composed of two
layers, with each layer containing half of the available cores.
One layer routes in the vertical dimension and the other layer
routes in the horizontal dimension. Each node in the network
also has a connection to a node in the opposite layer, which
takes place within a chip package. This topology requires
that two-dimensional routes be translated into a form of 2.5D
routing, where routing between layers is required to change
horizontal/vertical direction. The dimension order routing [7]
strategy that we use prioritizes the vertical dimension first.
If a node is attached to the horizontal layer and a vertical
communication is required, the message must therefore be sent
to the other layer first. In this scheme, there will be at most two
layer transitions; the exemplary case being two nodes attached
to the horizontal layer that do not share the same vertical index.

Links between Swallow slices use flexible cables, allowing
the physical topology of the network to be adjusted across a
wide variety of configurations, further extending the range of

Features Requirements

Processor Cores x Super- Cache Typical memory Multi-core Time

data width scalar configuration interconnect deterministic
ARM Cortex M 1x32-bit No Optional | <varies> No W/o cache
ARM Cortex A, single core 1x32-bit Yes Yes <varies> No No
ARM Cortex A, multi-core 4 x32-bit Yes Yes <varies> Coherent mem. No
Adapteva Epiphany 64 % 32-bit Yes No Local + global SRAM NoC + external No
XMOS XS1-L 1x32-bit No No Unified, single cycle SRAM NoC + external Yes
MSP430 1x16-bit No No I-Flash + D-SRAM No Yes
AVR 1x8-bit No No I-Flash + D-SRAM No No
Quark 1x32-bit No Yes Unified DRAM Ethernet No

XS1-L2 package experiments that can be carried out. New routing algorithms
: : can simply be programmed in software to cope with these.
XS1-L die XS1-L die

B. Network implementation

Each processor node in the XS1-L2 contains one core and
one switch, which has four internal links and two external
links, as per Fig. 7. Switches use wormhole routing with
credit-based flow control. The instruction set abstracts the
network into channel communication which can take the form
of either channel switched or packet operation.

Routes are opened with a three byte header prefixed to
the front of the first token emitted from a channel end.
Any network links utilized along the route are held open
until the source channel emits a closing control token. If
the close token is never emitted, links are permanently held
open, effectively creating a dedicated circuit between two
endpoints. The overhead of packet data reduces throughput to
approximately 87 % of the link speed, but is dependent upon
the packet size.

Multiple links can be assigned to the same routing direction,
where a new communication will use the next unused link.
This increases bandwidth, provided the number of concurrent
communications is equal to or greater than the number of links.
This is particularly exploitable for on-chip communication,
where there are four links between each core. Provided no
more than three links are used for channel switching, packeted
data can still flow through the network.

C. Network details

On- and off-chip links all use the same five wire proto-
col [1], but run at different speeds to preserve signal integrity.
The connections and speeds used in Swallow are shown
in Fig. 6. There is a maximum throughput of 500 Mbit/s
per internal link and 125 Mbit/s per external link, providing
2 Gbit/s in-package and 500 Mbit/s externally.

Links send data in eight-bit tokens comprised of two-bit
symbols. A token’s transmit time is 37 + T3, where Ty is the
inter-symbol delay and 7; the inter-token delay, measured in
clock cycles. The fastest possible mode is Ty = 2,T; = 1,
yielding the aforementioned 500 Mbit/s at 500 MHz.

The total core-to-core latency for an eight-bit token is
270ns. The total core-to-core latency for a 32-bit word be-
tween packages is 360 ns, equivalent to the time taken to for

* Chip : Chip
Core 1 Core 1 iﬁ E 3
Core 0 Core 0
Chip Chip Chip
4-———+Core1r Core 1 Corelig E
Core 0 Core 0 Core 0
X I
v \

Figure 7. Swallow’s unwoven lattice network topology.

the sending thread to execute 45 instructions. Between two
cores in a package, this reduces to 40 instructions. Core-local
communication takes 50ns, or approximately 6 instructions.

D. Ratio of communication to computation

The ratio of computation to communication is important to
the performance of all systems, where a processor’s ability to
process data is governed by how quickly data can be moved
through the system. This ratio has been termed % in some
work [8], but for clarity, we adopt the notation % [9], where
FE is execution or computation, and C' is communication.
Communication can be considered movement of data to/from
memory, or messages over a network. We define the scope of
the ratios (single cores or cross-system) as appropriate.

On Swallow, it is possible for a single thread of execution
to issue 125 MIPS. Instructions operating on 32-bit data give
a maximum per-thread communication throughput of 4 Gbit/s.
With four or more threads active threads, & = 16 Gbit/s. Core-
local communication can sustain this data rate, such that £ =
C' and therefore % = 1. However, where communication is not
core-local, worst case C' becomes 250 Mbps and 62.5 Mbps
for internal and external links respectively. Communication
instructions will block if the output buffer is full.

The total bandwidth of all four package-internal links, C' =
1 Gbps, gives % = 16. External links are a quarter of the
bandwidth, so externally this ratio increases to 64, assuming
non-contended links. If four threads contend for one link, g
becomes 256.

Considering a slice of sixteen cores, if we take the vertical
bisection bandwidth, then C' = 250 Mbps. If all available
compute resource attempts to communicate over the bisection,
then £ = 128Gbps and therefore % = 512, which is
undesirable. The impact of this on a full Swallow system
depends on the arrangement of slices and, most importantly,
the communication patterns of the programs running upon it.

The systems described in Section VI have system wide
computation to communication ratios ranging from 0.42 to
55. Larger, memory-oriented many-core processors such as the
Xeon Phi achieve analogous ratios for FLOPS/memory word

that sit in the top half of this range [10]. Based on the highly
desirable core- and chip-local ratio, and the potential impact
of contention over external links, the following considerations
should be made when running applications on Swallow:

o Prefer core-local communication where possible; it is low
latency, high bandwidth, with tight timing predictability.

e Chip-local communication should be the next preference.
Link reservation through channel switching can allow
similar levels of predictability, with a potential impact
on any external traffic routed through the chip.

o Off-chip communication is the most contentious, with
the least predictability in large systems, particularly with
complex communication patterns.

These problems are analogous to issues in memory hier-
archy of more conventional multi-core systems. However, in
Swallow, more control is placed in the hands of the developer,
where the allocation of work onto threads and cores, combined
with sensibly scheduled, mostly localized communication,
allowing predictability and good g to be achieved.

E. External network interface

Communication into and out of a Swallow system is per-
formed over an Ethernet bridge module. This module attaches
to the Swallow network and is addressable as a node in the
network, but forwards all data to and from an Ethernet inter-
face. Using this bridge, it is possible to both load programs’
into and stream data in/out of Swallow over Ethernet. Swallow
supports up to two Ethernet modules per slice (on the South
external links). Each bridge can support up to 80 Mbit/s of
full-duplex data transfer.

VI. RELATED WORK

There are few embedded systems made at the same scale
as Swallow, with even fewer designed for general purpose
computation. Here we identify noteworthy examples, and in
Table III provide a comparison of scaling, technology and
power characteristics of a number of recent systems.

The Tilera Tile [13] comes the closest to matching Swal-
low’s goals and form. The Tile64 is a 64-core device with five
overlaid networks to provide low latency and high throughput
between cores in a software configurable way. The effect is
to provide a very agreeable computation to communication
ratio of 2.4 with 64 cores, and general purpose computation
is supported as well as sophisticated network traffic manipu-
lation. The system is highly optimised for streaming traffic,
but relies on adding additional networks to improve network
performance in larger systems. Tilera’s 64 core device [15]
consumes 300 mW/core (19.2 W/device).

Adapteva’s specialized floating point Epiphany [14] archi-
tecture has a similar grid structure to Tilera Tile, with three
independent networks. It requires less than 2W for a 28 nm
64-core device (31 mW/core).

The Centip3De system [12] aims to use 3-D stacked dies
to implement a 64-core system based on the ARM Cortex-M3

ISwallow boot video: https://youtu.be/kUo11tTeYKO

Table III
COMPARISON OF SCALE, TECHNOLOGY AND POWER PROPERTIES OF RECENT MANY-CORE SYSTEMS.

System ISA Cores / chip Total cores | Tech. node Power / core Frequency pW/MHz
Swallow XS1 2 16-480 65 nm 193 mW 500 MHz 300
SpiNNaker [11] ARM9 17 1,036,800 130 nm 87 mW 200 MHz 435
Centip3De [12] Cortex-M3 64 64 130 nm 203-1851 mW 20-80 MHz 2540-2300
Tile64 [13] Tile 64 64-480 130 nm 300 mW 1000 MHz 300
Epiphany-IV [14] Epiphany 64 64 28 nm 31 mW 800 MHz 38.8

processor. Whilst its scale is within an order of magnitude of
Swallow, it relies on a series of crossbars and coherent DRAM
storage and thus scalability to larger sizes may be restricted.
Further, the design choices leave it with an undesirable com-
putation to communication ratio of 55. Centip3De exploits
near-threshold computing in 130 nm, small ARM Cortex-M3
cores and consumes 203-1851 mW/core, depending on its
configuration. Centip3De’s high power is mainly due its cache-
centric design, which is not present in Swallow.

The SpiNNaker system [11] is the best provisioned system
in the large scale. SpiNNaker, like Centip3De is based on
ARM cores, connecting up to one million ARM9 parts via
a highly-connected network. However, the system is targeted
at solving a single problem, making it very difficult to overlay
general computation tasks, and also making it hard to draw
parallels with Swallow and the other systems mentioned above.
It dissipates an average of 87 mW per core. It is more densely
integrated than Swallow, with 17 cores per chip. If Swallow
had these economies of scale, an equivalent level of power
efficiency is very possible to obtain, however this would
require the fabrication and packaging of new processors.

Swallow’s power per core is in the middle of the surveyed
range, in line with its operating frequency and process node
with respect to the other systems.

VII. CONCLUSIONS

We have presented a many-core real-time embedded system,
named Swallow, that has been demonstrated on a scale of
up to 480 cores, and can be scaled into the thousands. The
purpose of Swallow is to explore the challenges of building
a networked many-core system with predictable embedded
processors, and to demonstrate that such a feat is possible. It is
being used to investigate energy efficiency of parallel programs
and the impact of computation to communication ratios of such
systems on these programs. Swallow demonstrates excellent
core- and chip-local network latency and bandwidth, allow
predictable program behavior. The effects of slower, more
contended links can be mitigated through appropriate user-
controlled communication patterns and allocation of resources.

Swallow is energy efficient, using only 193 mW/core with
four active threads. XS1-L processors support dynamic fre-
quency scaling and this allows an energy reduction to as little
as 50 mW/core when idle. This could be lowered further in a
future revision, by using configurable power supplies.

The platform serves as a new case study and data source
in the spectrum of many-core systems, being the first with a
strong focus on using real-time, deterministic general purpose
embedded hardware.

OPEN SOURCE RELEASE

Swallow is an open source project released in several parts,
with licenses appropriate for the hardware, operating system,
supporting tools and application software. The latest status of
all releases can be found at https://swallow-project.github.io.

ACKNOWLEDGMENT

The authors would like to thank Jamie Hanlon for his advice
and technical discussions. The initial 10 prototypes of the
Swallow system were kindly sponsored by XMOS Ltd. The
full system was funded by the University of Bristol’s research
Pump-priming scheme. Research conducted on the Swallow
platform and the presentation of this work has received funding
from the European Union 7th Framework Program agreement
no 318337, ENTRA - Whole-Systems Energy Transparency.

REFERENCES

[1] D. May et al., “XS1-L System Specification,” pp. 1-40, 2008.

[2] J. Diaz et al., “A Survey of Parallel Programming Models and Tools
in the Multi and Many-Core Era,” IEEE Transactions on Parallel and
Distributed Systems, vol. 23, pp. 1369-1386, Aug. 2012.

[3] S.J. Hollis et al., “nOS: a nano-sized distributed operating system for
resource optimisation on many-core systems,” Tech. Rep., 2015.

[4] S. Kerrison et al., “Energy Modeling of Software for a Hardware Multi-
threaded Embedded Microprocessor,” ACM Transactions on Embedded
Computing Systems, vol. 14, pp. 56:1-56:25, Apr. 2015.

[5] XMOS, “XS1-L16A-128-QF124 Datasheet,” 2014.

[6] S. Kumar, “Challenges of Exascale Messaging Library Design: Case
Study with Blue Gene Machines,” in CASS Workshop, 2012. [Online].
Available: http://www.ccs3.1anl.gov/cass2012/talks/kumar.pdf

[7]1 H. Sullivan et al., “A large scale, homogeneous, fully distributed parallel
machine, I,” in Proceedings of the 4th annual symposium on Computer
architecture - ISCA ’77. New York, New York, USA: ACM Press, May
1977, pp. 105-117.

[8] M. Crovella et al., “Using communication-to-computation ratio in par-
allel program design and performance prediction,” in Proceedings of the
Fourth IEEE Symposium on Parallel and Distributed Processing. 1EEE,
1992, pp. 238-245.

[9] D. May, “Communicating Processors: Past, Present and Future,”
in Networks-on-Chip, International Symposium on, 2008. [Online].
Available: http://www.cs.bris.ac.uk/~dave/nocs.pdf

[10] K. S. Solnushkin, “Memory Bandwidth for Intel
Xeon Phi” [Online]. Available: http://clusterdesign.org/2013/02/
memory-bandwidth-for-intel-xeon-phi-and- friends/

S. Furber et al., “Overview of the spinnaker system architecture,” IEEE
Transactions on Computers, vol. 62, pp. 2454-2467, 2013.

D. Fick et al., “Centip3De: A cluster-based NTC architecture with 64
ARM cortex-M3 cores in 3D stacked 130 nm CMOS,” IEEE Journal of
Solid-State Circuits, vol. 48, pp. 104-117, 2013.

S. Bell et al., “TILE64™ processor: A 64-core SoC with mesh inter-
connect,” in Digest of Technical Papers - IEEE International Solid-State
Circuits Conference, vol. 51, 2008.

Adapteva, “E64G401 EPIPHANY™ 64-core microprocessor datasheet.”
[Online]. Available: http://www.adapteva.com/docs/e64g401_datasheet.
pdf

A. Agarwal et al., “The Tile Processor Architecture, Embedded Multi-
core for Networking and Multimedia,” in Hot Chips, 2007.

[11]

[12]

[13]

[14]

[15]

Attachment D1.2.3

A Transformational Approach to
Parametric Accumulated-cost Static
Profiling

Accepted at the 13th International Symposium
on Functional and Logic Programming (FLOPS
2016)

72

A Transformational Approach to Parametric
Accumulated-cost Static Profiling

R. Haemmerlé!, P. Lépez-Garcia®?, U. Liqat?!,
M. Klemen!, J.P. Gallagher!:?, and M.V. Hermenegildo!*

! IMDEA Software Institute
2 Spanish Council for Scientific Research (CSIC)
3 Roskilde University
4 Technical University of Madrid (UPM)

Abstract. Traditional static resource analyses estimate the total re-
source usage of a program, without executing it. In this paper we present
a novel resource analysis whose aim is instead the static profiling of ac-
cumulated cost, i.e., to discover, for selected parts of the program, an
estimate or bound of the resource usage accumulated in each of those
parts. Traditional resource analyses are parametric in the sense that the
results can be functions on input data sizes. Our static profiling is also
parametric, i.e., our accumulated cost estimates are also parameterized
by input data sizes. Our proposal is based on the concept of cost centers
and a program transformation that allows the static inference of func-
tions that return bounds on these accumulated costs depending on input
data sizes, for each cost center of interest. Such information is much
more useful to the software developer than the traditional resource us-
age functions, as it allows identifying the parts of a program that should
be optimized, because of their greater impact on the total cost of pro-
gram executions. We also report on our implementation of the proposed
technique using the CiaoPP program analysis framework, and provide
some experimental results.

1 Introduction and Motivation

The execution of software consumes resources such as time, energy, and memory.
The goal of automatic program resource analysis is to infer the resources that a
program uses as a function of the size of the input data or other environmental
parameters of the program, without actually executing the program. Previous
work on this topic, mainly for inferring asymptotic time complexity bounds, goes
back to the 1970s. Recent research has adapted and extended these techniques
for inferring other resources, including for example energy [15, 14].

In this paper we investigate an extension of this problem which, although
based on the same essential techniques, has a different range of applications.
Rather than estimating the total resource usage of a program, we wish to perform
static profiling of its resource usage. This means that we intend to discover, for
selected parts of the program, an estimate of the resources used by those parts.
As before, the estimates will be parameterised by input sizes. However, these

input sizes will be of the entry predicate/function, unlike the input sizes of the
selected parts, as in the standard resource analysis.

There are several motivations for this research. Firstly, a profile of the re-
source usage of the program can show the developer which parts of the program
are the most resource critical. For example, it can expose the cost of functions
that are perhaps not particularly resource hungry by themselves but which are
called many times. Such parts are natural targets for optimization, since there a
small improvement can yield important savings. Secondly, there are cases where
the overall resource functions of a program might not be obtainable. This can be
for instance because some program parts are too complex for analysis or because
the code for some parts is not available and the cost cannot even be reasonably
estimated. In this case useful information may still be obtained by excluding
such parts from the analysis, obtaining information about the resource usage for
the rest of the program. Thirdly, resource usage models (for example Tiwari’s
energy consumption model [29]) are sometimes based on summing the individual
resource usage of basic components of the program. The analysis presented here
fits naturally with such models. Finally, in cases where a program has mutually
recursive functions/predicates, the standard cost analysis infers similar resource
functions for each recursive function. In such cases, a static profile finds precisely
the resource functions for each mutually recursive part of the program, and helps
identify the parts that are responsible for most of the cost.

The traditional profiling techniques are dynamic (i.e., require executing the
program on some particular input) and are based either on code instrumenta-
tion, i.e., introducing additional pieces of code in the sections to be measured,
or on running a process that performs the profiling together with the measured
program. In both cases, the dynamic profiler introduces an overhead in the re-
source measured that needs to be properly discriminated, which is non trivial.
For example, it may be the case that an instruction in the original program has
a very different energy consumption in the presence of code added by the pro-
filer just before it. In contrast, the static profiling approach we propose in this
paper obtains safe upper and lower bounds on resource consumption, because it
is based on the semantics of the program rather than particular executions of it.
Le., the results are valid for all possible program inputs.

Our starting point is the well-developed technique of extracting recurrence
relations that express resource usage functions [32,25,6,5,7,1]. These are then
solved to get a closed-form function expressing the (bounds on) parameterised
resource usage. In our work we will make use the CiaoPP program analysis frame-
work, which includes a set of generic resource analyses based on these techniques.
In particular, we will use the analysis described in [28]. CiaoPP operates on an
intermediate semantic program representation based on Horn Clauses [16], that
we will refer to as the “HC IR.” By transforming the input language into this
intermediate representation, the CiaoPP framework has been shown capable of
analyzing imperative programs at the source, bytecode, or binary level with
competitive precision and efficiency (see [16,21, 20, 15, 14] for details).

Our approach to static profiling is based on a transformation that is per-
formed at the level of the CiaoPP Horn Clause-based intermediate representa-

®w N e o oA W N e

tion. The proposed transformation allows a standard cost analyzer (CiaoPP in
our experiments) to statically infer functions that return bounds on accumulated
costs depending on input data sizes, for a number of predefined program points
of interest (predicates in our case), referred to as cost centers. Intuitively, given
a program P, the cost accumulated in a given predicate p € P is defined in the
context of the execution of a single call to another predicate g € P. It expresses
the addition of (part of) the resource usages corresponding to the execution of
all calls to predicate p generated by a single call to predicate g € P.

In the rest of the paper, Section 2 presents informally a general model of
(dynamic) profiling and how we turn it into a static version. Section 3 reviews
established techniques for cost analysis based on extracting and solving cost
relations. Section 4 formalizes our notion of accumulated cost. Section 5 describes
the implementation of the technique, based on a source-to-source transformation.
Section 6 reports some experimental results. In Section 7 we comment on some
related work and finally Section 8 concludes, discussing future directions.

2 From Dynamic Profiling to Static Profiling

We start by presenting informally a general model of (dynamic) profiling and
how we turn it into a static version. Our model is based on the notion of cost
centers, inspired from the work of Sansom and Peyton Jones [26] and Morgan
and Jarvis [18]. This approach was also applied to Logic Programs and extended
to perform run-time checking of non-functional properties in [17]. Intuitively a
cost center provides a dynamic scoping mechanism to uniquely attribute the
execution costs of a part of the code to an identifier. The scope of the cost
center is dynamic in the sense that execution costs of code that are not explicitly
associated to a cost center are dynamically attributed to the same cost center
as the caller. For a number of languages it is convenient to identify the cost
centers with (a subset of) functions, procedures, or predicates. In this paper we
follow this path. Alternatively, cost centers can be defined by special scoping
constructs [26].

As an example,® assume that a programmer wishes to profile a program
which uses the following variance () function (variance () naively computes
the variance of an array of integers):

int wvariance(int * arr, int size) {

int tmp[size], i = size;

while(i > 0) {
i-—;
tmp[i] = (arr[i] - mean(arr, size));
tmp[i] = tmp[i] » tmp[i]; }

return mean (tmp, size);

}

5 As mentioned in the introduction, CiaoPP’s analyses deal with programs written
in such C-like languages (among others) by analyzing corresponding Horn Clause
representations.

Assume that mean () is a given function that computes the mean of an integer
array. First consider that both mean () and variance () are cost centers. In this
case the actual execution costs of the code that appears textually within the
variance () function will be aggregated at each call to such function and will
be attributed to the variance () cost center. However the cost of calls to mean ()
—including those made from variance () — will not be attributed to variance ().
Now consider the case where variance () is declared a cost center, but mean
() is not. In this case the execution costs of calls to mean () made from the
variance () function will be also aggregated to those of variance () (but not
those made from other points in the program).

Returning to the case where both variance() and mean() are declared
as cost centers, assume that the programmer profiles the energy consumption
(measured as nano joules, nJ) of a call to the variance () function over the array
{1,2, 3,4}, on some particular architecture. Assume that the result of the profiler
is that 74.7 units of energy are accumulated in the variance () cost center and
464.4 units in the mean () cost center. Since mean () is called 4 times, the cost
of a single call to it (with the array above) would be 116.1 nJ (464.4/4). If only
variance () were declared a cost center, the profiler would have accumulated
all the cost in it, i.e., 464.4 + 74.7 nJ. In such a case, the cost measured by the
profiler would be the same as what we call the standard cost of a (single) call to
variance () with the given array (i.e., 539 nJ).

Since the accumulated value in the mean () cost center is much larger than
that accumulated in the variance () cost center, this indicates that for this
particular call most of the energy is consumed inside the mean () function, i.e.,
that this function is responsible for most of the standard cost of the call to
variance (). This can be a strong indicator that it may be worthwhile to either
optimize the body of mean () or try to reduce the number of times it is called.
Note, however, that with just this data, which come from a run with a particular
input, the programmer does not really have any guarantees that the results are
representative of the general behavior of the program for all inputs. This problem
is usually tackled by repeating the process on a large set of different inputs.
This can lead to more indicative results, but still has several drawbacks. First,
this process can be very long, because profiling usually introduces additional
execution costs, which get multiplied by the number of inputs. Second, and
more importantly, even if a large number of inputs is used, this still does not
provide a strong guarantee, i.e., there may be some corner case inputs for which
the call behaves in a very different way. Finally, the approach does not allow the
comparison of the asymptotic cost accumulated in the different cost centers.

To overcome the problems outlined above, we propose to statically infer
(lower and upper) bounds on the cost accumulated in the cost centers as func-
tions of the sizes of the input data to the profiled call (the call variance () in our
example). In the example above, the system we have implemented infers (for the
resource “energy”%) that for a call to variance () with a list of size size, the costs

5 Using as back-end analysis the energy analysis of [15, 14] on an XCore XS1 processor
with the program compiled by the XMOS xcc compiler without optimization.

© o N e G A W N e

-
o

-
-

accumulated in the variance and mean () functions are 24.32+s1ize x12.59 and
23.03417.46 x size?+40.49 x size energy units (nano joules) respectively. In
this case the system infers these expressions for both the upper and lower bounds,
which means that they are exact costs. Hence, the programmer does have the
guarantee that for all non-trivial calls (i.e., for all calls with non-empty lists)
and for any input data, the code of mean () consumes most of the energy. In this
case an obvious improvement can be made, since the call to mean (arr, size)
can be safely moved outside the loop:

int wvariance(int » arr, int size) {
int tmpl[sizel;
int 1 = size;
int m = mean(arr, size);
while(i > 0) {

i-—;
tmp[i] = (arr[i] - m);
tmp[i] = tmp[i] * tmp[i];

}

return mean (tmp, size);

}

For this version of the program, the system infers that the costs accumulated in
the variance () and mean () functions are 28.184size x8.73 and 46.06+34.92 x
size energy units (nano joules) respectively. For brevity and simplicity we chose
a program that is rather naive and where the optimization is obvious (and would
in fact be done by some compilers automatically), but the same reasoning applies
to more complex cases that are not easy to spot without profiling information.
Furthermore, the static profiling functions can also be used for guiding automatic
optimization by the compiler.

3 The Classical Cost Relations-based Parametric Static
Analysis

The approach to cost analysis based on setting up and solving recurrence equa-
tions was proposed in [32] and has been developed significantly in subsequent
work. For example, in [25] an automatic upper-bound analysis was presented
based on an abstract interpretation of a step-counting version of a functional
program, in order to infer both execution time and execution steps. However,
size measures could not automatically be inferred and the experimental section
showed few details about the practicality of the analysis. In the context of Logic
Programming, a semi-automatic analysis was presented in [6,5] that inferred
upper-bounds on the number of execution steps, given as functions on the input
data sizes. This work also proposed techniques to address the additional chal-
lenges posed by the Logic Programming paradigm, as, for example, dealing with
the generation of multiple solutions via backtracking. However, a shortcoming
of the approach was its loss in precision in the presence of divide-and-conquer
programs in which the sizes of the output arguments of the “divide” predicates

BN N

are dependent. This approach was later fully automated (by integrating it into
the CiaoPP system and automatically providing modes and size measures) and
extended to inferring both upper- and lower-bounds on the number of ezrecu-
tion steps (which is non-trivial because of the possibility of failure) in [7,10]. In
addition, [7] introduced the setting up of non-deterministic recurrence relations
for the class of divide-and-conquer programs mentioned above, and proposed a
technique for computing approximated closed form bound functions for some
of them. Such a technique was based on bounding the number of terminal and
non-terminal nodes in the set of computation trees corresponding to the eval-
uation of the non-deterministic recurrence relations, and bounding the cost of
such nodes. Non-deterministic recurrence relations were also used and further
developed in [1] (named Cost Relations). The approach in [6,5, 7] was general-
ized in [22] to infer user-defined resources (by using an extension of the Ciao
assertion language [11]), and was further improved in [28] by defining the re-
source analysis itself as an abstract domain that is integrated into the PLAI
abstract interpretation framework [19, 24] of CiaoPP, obtaining features such as
multivariance, efficient fixpoints, and assertion-based verification and user in-
teraction. A significant additional improvement brought about by [28] is that it
is combined with a sized types abstract domain, which allows the inference of
non-trivial cost bounds when they depend on the sizes of input terms and their
subterms at any position and depth. Recently, many other approaches have been
proposed for resource analysis [30,12,9,13,23,8,1,2]. While based on different
techniques, all these analyses infer, for all predicates p of a given program P,
an approximation of the notion of cost that we call the standard cost or single
call cost. Most of them infer an upper bound, while others infer both upper and
lower bounds. The following example shows this (for the case of CiaoPP) and
also illustrates that this concept of cost may not be directly useful for locating
performance bottlenecks.

Example 1. Consider the following implementation of an eval (E, M, R) pred-
icate that evaluates modulo 2" a given expression E built from additions and
multiplications. This implementation assumes that two predicates are given:
add (A,B,M,R) and mult (A, B, M, R), that respectively add and multiply two
infinite precision numbers A and B modulo 2%, and unify the result with R.

eval (const (A),M,R) :- eval_const (A,M,R).
eval (A+B, M,R) :- eval_add(A,B,M,R).
eval (AxB, M,R) :- eval_mult(A,B,M,R).

eval_const (A,_,R) :— R=A.
eval_add(A,B,M,R) :- eval(A,M,RA), eval(B,M,RB), add(RA,RB,M,R).
eval_mult (A,B,M,R):— eval (A,M,RA), eval(B,M,RB),mult (RA,RB,M,R).

For the sake of simplicity, assume that all the costs are null except those re-
lated to the evaluation of add/4 and mult /4. Assume that the cost of the evalu-
ation of add (A, B, M, R) is M and the cost of the evaluation of mult (A, B, M, R)
is M2. Under these assumptions, the standard CiaoPP cost analysis infers that the
cost of the evaluation of eval (E, M, R) is bounded by (24°Pth(E) _ 1) x (M + M)

where depth(E) stands for the depth of the expression E — note that the exact
bound is (24¢PtR(E) _ 1) x M2, However, such an analysis does not help finding
precisely which part of the code is responsible for most of the cost. Indeed since
all the predicates (eval/3, eval_add/4, and eval mult/4) are mutually re-
cursive, the system will infer a similar cost for eval_add/4 and eval_mult/4.
Furthermore, those costs will be expressed in terms of different input variables
making the actual comparison difficult.

4 Parametric Accumulated-cost Static Profiling

We now formalize the new notion of cost that we propose, the accumulated cost,
which has been intuitively described in Section 1. As mentioned before, our
approach is based on the notion of cost centers: user-defined program points
(predicates, in our case) to which execution costs are assigned during the execu-
tion of a program. Data about computational events is accumulated by the cost
center each time the corresponding program point is reached by the program
execution control flow.

We start by presenting a formal profiled semantics for Logic Programming.
For this purpose we assume given a program P. We also assume that each predi-
cate p is associated with a cost cost, € R and that the cost centers are defined as
a set ¢ of predicate symbols. In the following we will use overlined symbols such
as t, %, or & to denote a sequence of terms, variables, or arithmetic expressions.

We define a predicate call with context as a tuple of the form r:p(t), where
r, the context, is a cost center (i.e., a predicate from ¢) and p(t) is a predicate
call. Then, we define profiled states as tuples of the form (« ;0 ; k) where « is a
sequence of predicate calls with context, € is a substitution that maps variables
to calling data, and k, the cost assignment, is a family of real numbers indexed
by the cost centers . The profiled resource semantics is defined as the smallest
relation —p over profiled states satisfying:

g = updatey(p,r) (p(8) :=) € Pp o isan m.gu. of 5 and t6

(r:p(t),a;0;k) —=p (q:B,a;000; Klqg— kg + costy])

o is an m.g.u. of t and [s#f]
(r:(t iss),a;0;Kk) =»p {(a;000;K)

where:

— g:f,a is a notation for the sequence q:p(51), ..., 9: P, (5n), @, assuming 3
is the sequence py(s1), .-, Pn(Sn).

[s] stands for the arithmetic evaluation of s (if s is not a ground arithmetic
expression, then [s] is not defined, as well as the rule using it),

p stands for a renaming with fresh variables,

klg > c] is the assignment that maps p to ¢ if p = g or to k, otherwise, and
— update (p, r) equals either p if p € ¢, or r otherwise.

The first rule can be understood as an extension of SLD resolution with cost.
Concretely, the cost cost, of the called predicate p is added to the value of the

current cost center, the cost center being updated beforehand to the current
predicate if the latter is in fact a cost center, and left unchanged otherwise. The
latter rule characterizes the semantics of the built-in is/2, where we assume
w.l.o.g. that the operation has no cost. Standard left-to-right evaluation is simply
recovered by ignoring the cost assignment together with the calling contexts. In
the following section, we will use the notation («;#), where « is a sequence
of predicate calls and 6 a substitution, to denote a standard (non-profiled) LP
state.

In the following, we use II as the set of tuples of terms, and R to denote
the set of real numbers. For any cost center p € ¢, the profiled resource usage
function is the function C5 : 27 — 2%" defined as:

{k|teT & (p:p(t);e;0) =5 (O;0;k)} if p(t) terminates
Cy(T) = universally V&t € T
R" otherwise

where 0 stands for the trivial cost assighment that maps any cost center to 0, —D
is the reflexive and transitive closure of —p, [0 denotes the empty sequence of
predicate calls, € is the identity substitution, and n is the number of cost centers.
We use the “top” element in 28" (i.e., R") to denote a “don’t know” cost for
non-terminating programs, which, for simplicity, are currently not defined in our
framework. Note that the cost &, in an infinite derivation can be (asymptotically)
different from +oo as (1) p can be the context of only a finite number of the
steps involved in an infinite derivation, and (2) because costs of predicates can
be zero or negative. The profiled semantics is a natural generalization of the
standard resource usage semantics which is able to handle several costs which
are accumulated in the cost centers. Indeed the resource usage function inferred
by the standard analysis can be understood as the function CP = Cf{’p} defined
over a unique cost center.

CE(T') denotes the cost accumulated in g from the calls p(t) (€ € T), that is,
the union of the ¢*" component of all tuples in C (T) if q is the i*" cost center in
O (formally C5(T) = {kq | K € C5(T)}). In particular, if p(t) deterministically
succeeds (e.g., when it is obtained by translation of some imperative program)
the cost accumulated in g from p(t) is unique, i.e., C5({t}) = {c} for some
¢ € R. In such a case, by a slight abuse of notation, we denote the unique value
by C5(t).

Ezample 2. Consider the deterministic program given in example 1. If we profile
the program, defining all the predicates of the program as cost centers except
add/4 and mult/4, the costs accumulated in eval_const/3, eval_add/4
and eval mult/4 for a call of the form eval (E, M, R) are respectively bounded
by 0, (0.5 x 24¢Pth(E) 5 M) and (0.5 x 24°Pth(E) » M2). This makes it easier to spot
the source of most of the cost, i.e., eval mult/4. Therefore, to improve the
efficiency of the whole program, it can be useful to concentrate on this predicate,
either by optimizing its implementation or by reducing the number of times it
is called.

We write p ~» q if g is reachable from q, that is, if g(t) =% (p(5),a) for
some calling data t and s, and some sequence of calls a. Given a set ¢ of cost
centers assigned to a program P and some predicate p, we define the set of
reachable cost centers from p as the sequence O, = {q| g€ O Ap ~* g}.

Theorem 1. Let P be a program and & C pred(P) a set of cost centers for it.
Then, for all p € O: for all T C II it holds that: Co(T) = {quop Cg(T)}. In

particular, if p(t) deterministically succeeds Co(t) =3 0 CE(E).

Note that theorem 1 provides the basis for a compositional and modular
definition of the standard (i.e., single call) cost analysis, from the results of the
accumulated cost analysis. Note also that (by definition of reachable cost center)
p is always reachable from itself, even though p does not call itself.

5 Inferring Accumulated Cost via Transformation

As mentioned before, our implementation of the static profiler is based on a
source-to-source transformation. In this section we show such a transformation
that allows obtaining accumulated cost information for cost centers by perform-
ing a sized type analysis in CiaoPP. Basically, the transformation consists of
adding shadow arguments to each predicate of the Horn clauses that represent
the accumulated cost for each cost center.

5.1 The Transformation

In this section we assume there is exactly n cost centers and ¢ is defined as the
family {p; }ico..n—1. The transformation proposed consists of adding n+1 shadow
arguments to each predicate, such that on success those variables will be assigned
to the costs accumulated in the program. There are n shadow arguments for the
cost accumulated in the cost centers called by the predicate, and an additional
one for the cost associated with the calling context, which is not known statically.

Formally, the transformation is defined by the functions [-]¢ and [-], that
respectively translate clauses and goals. The function [-],, : A* — (A* x E"T1)
(E is the set of possibly non-ground arithmetic expressions) that translates se-
quences of atoms is defined recursively on the length of the goal as:

- [q(E)va]]n = ((q(Ea i)vﬁ)vi + é) where (Bv é) = [[a]]n
- [D]]n = (D’O)

where % (resp. 0) stands for a sequence of (n + 1) fresh variables (a sequence of
(n + 1) zeros). On the other hand the function [-]¢ : ¢ — C is defined by cases
as follows:

(alt, %) := B,
) ol — %X is é[é, <+ 0][&; « (costq +e;+e,)] fg=p; €0
R PG

% is &le, < (costq + en)] otherwise

-

© ® N o oA W N

10

12

13

14

15

17
18
19
20
21
22
23

24

26

27

where (3,8) = [a]n, X is a sequence of n + 1 fresh variables, and x is &
is a notation for x¢ is eq, ..., X, is e, (assuming x = (xg,...,%,) and
e = (eo,...,en)).

The translation of a clause is defined by case on the predicate g it defines.
Suppose g is some cost center p; € ¢. In this case the costs associated with
q itself (i.e., costy) are assigned to the argument corresponding to g, namely
e;. Furthermore the costs in evaluating g that are not associated to any other
cost center (i.e., e,) are also assigned to e;. Thus we have &[e, « 0][&; +
(costq + €; + ey)]. On the other hand, if g is not a cost center, then the costs
associated with g are associated to its context, namely e,, and thus we have
gle, < (costq + e,)].

Example 3. We show now the translation of the code corresponding to our run-
ning example, given in Example 1, assuming that the cost centers are eval/3,
eval_const/4, eval_add/4, and eval mult/4. In the translation the out-
put arguments Ce, Cc, Ca, and Cm correspond to the cost accumulated in the
respective cost centers. On the other hand, the output C is the cost that has not
been accumulated in any of the cost centers. Within the translation we leave
the actual implementations of add/4 and mult/4 unspecified and marked by
(ooo).

eval (const (A) ,M,R,Ce,Cc,Ca,Cm,C) :-
eval_const (A,M,R,De,Dc,Da,Dm,D),
Ce is De+D, Cc is Dc, Ca is Da, Cm is Dm, C is 0.
eval (A+B,M,R,Ce,Cc,Ca,Cm,C) :-—
eval_add(A,B,M,R,De,Dc,Da,Dm,D),
Ce is De+D, Cc is D¢, Ca is Da, Cm is Dm, C is 0.
eval (AxB,M,R,Ce,Cc,Ca,Cm,C) :—
eval_mult (A,B,M,R,De,Dc,Da,Dm,D),
Ce is De+D, Cc is D¢, Ca is Da, Cm is Dm, C is 0.
eval_const (A,_M,R,Ce,Cc,Ca,Cm,C) :— R=A,
Ce is 0, Cc is 0, Ca is 0, Cm is 0, C is O.
eval_add(A,B,M,R,Ce,Cc,Ca,Cm,C) :-
eval (A,M,RA,De,Dc,Da,Dm,D), eval (B,M,RB,Ee,Ec,Ea,Em,E),
add (RA,RB,M,R,Fe,Fc,Fa,Fm,F),
Ce is De+Ee+Fe, Cc is Dc+Ec+Fc, Ca is Da+Ea+Fa+D+E+F,
Cm is Dm+Em+Fm, C is O.
eval_mult (A,B,M,R,Ce,Cc,Ca,Cm,C) :-
eval (A,M,RA,De,Dc,Da,Dm,D), eval(B,M,RB,Ee,Ec,Ea,Em,E),
mult (RA,RB,M,R,Fe,Fc,Fa,Fm,F),
Ce is De+Ee+Fe, Cc is Dc+Ec+Fc, Ca is Da+Ea+Fa,
Cm is Dm+Em+Fm+D+E+F, C is 0.
add (RA,RB,M,R,Ce,Cc,Ca,Cm,C) :—
(...)
Ce is 0, Cc is 0, Ca is M, Cm is 0, C is O.
mult (RA,RB,M,R,Ce,Cc,Ca,Cm,C) :-—
(...)
Ce is 0, Cc is 0, Ca is 0, Cm is MxM, C is O.

The following theorem states that the translation of a given program simu-
lates the original one, while reifying the cost assignment as a first-order argu-
ment.

Theorem 2. Assume a given program P profiled according n cost centers { =
{pPo;---,Pn_1} and a predicate p different from is.

(Soundness) If (p(t,%);0) —p), (H;0) (for some sequence of pairwise &
distinct variables free in t and 6) then there exists a derivation of the form
(pi:p(£);0;0) =% (O;0"; k), withto' = to, Kp, = x;0 (forj €1,..,n—1
and j # 1), and k; = %0 + X,0.

(Completeness) If (p;:p(t);e;0) =% (O;0; k), then there exists a deriva-
tion of the form (p(t,x);e€) %Epﬂo (O;0), with £t = to, ky, = xjo (for
jel,.,n—1andj#1i), and k; = x,0 + x,,0.

5.2 Performing the Resource Usage Analysis

The Horn Clause program resulting from the transformation described above,
whose predicates are augmented with shadow output arguments representing the
accumulated cost for each cost center, is analyzed in order to infer lower and
upper bounds on the sizes of such arguments, which actually represent bounds
on the respective accumulated costs.

In order to obtain such bounds, we use the size analysis presented in [27,
28], integrated in the CiaoPP system. The goal of this analysis is to infer lower
and upper bounds on the sizes of output arguments as a function on the sizes of
input arguments. This analysis is based on the abstract interpretation framework
present in CiaoPP, and basically infers sized types for output arguments. Sized
types are representations that incorporate structural (shape) information and
allow expressing both lower and upper bounds on the size of a set of terms and
their subterms at any position and depth. For a more detailed explanation of
this process, we refer the reader to [27].

Continuing with our running example, consider the output argument Ca,
which represents the accumulated cost of the cost center eval_add/4 when it
is called from eval/4. In a preprocessing step, the program is unfolded in order
to avoid mutual recursion, which makes the analysis harder. After the unfolding
step, the analysis infers types for the predicate arguments by using an existing
analysis for regular types [31]. This analysis infers that for a call to a transformed
version of eval/4 (with shadow variables) of the form:

eval (Exp,M,R,Ce,Cc,Ca,Cm,C)
with Exp and R bound and the rest of arguments as free variables, then Ca gets
bound to a number upon success, i.e., a term of type num. From the inferred
regular type, the analysis derives a sized type schema, which is just a sized type
with variables in bound positions, along with a set of constraints over those
variables.

In this case, the corresponding sized type for num is num(®?#), where o and
[are variables representing lower and upper bounds on the size of the elements

that belong to such type. The metric we use for the size of a number is its
actual value, since num is a basic type. For compound types, e.g., lists, trees
or arithmetic expressions, we can use several metrics for the size of any term
belonging to them, such as the depth of such term (as in our example), or the
number of type rule applications needed for the type definition to succeed for
such term.

The next step involves setting up recurrence relations between size variables.
Thus, for £, that represents the upper bound of the size of Ca, we obtain the
following equation (where Sizeﬁ;d is the size of the argument arg corresponding
to predicate pred):

2 x SizeZ (Sizeeyy, — 1, M) + M if Sizeey, > 1

- _eval .

P = Sizega (Sizecap, M) = {0 otherwise

At this point, we have obtained a recurrence relation that represents the size
of the output argument. However, such expression is not useful for some appli-
cations. One disadvantage of using recurrence relations is that the evaluation of
them given concrete input values usually takes longer than the evaluation of an
equivalent non-recursive expression. In addition, it is not easy to see the com-
plexity order of a given procedure just by looking at its recurrence relation, and
the comparison with other functions is also more difficult. For this reason, the
analysis uses a solver for obtaining closed-form representations for recurrence
relations. Such closed forms can be either exact solutions or safe overapproxi-
mations. In our example, the closed-form version for the recurrence is:

B = Sizel®(Sizeeyp, M) = (257%¢=r — 1) x M

Assuming that the metric for the size of arithmetic expressions is the depth
of the term representing them, we have that Size,, = depth(exp). Thus, we
can finally conclude that the accumulated cost of eval_add/4 when called from
eval/3 (i.e., the size of Ca in the transformed version of the program), is given
by

(2depth(emp) _ 1) M

6 Experimental Results

We have performed an experimental evaluation of our techniques with the pro-
totype implementation described in Section 5 over a number of selected bench-
marks from [28]. The benchmarks are written directly as Horn Clause programs
(in Ciao). In each benchmark, a number of predicates are marked as cost cen-
ters. The results are shown in Table 1. Static profiling was performed for each
cost center, capturing the accumulated cost with respect to an entry predicate
(marked with a star, e.g., appendAll2*). While in the experiments both upper
and lower bounds were inferred, for the sake of brevity we only show upper
bound functions. Also, each clause body is assumed to have unitary cost.

Table 1. Experimental results.

Program Cost-Center |Accumulated |[Static |Standard Cost|#Calls
Predicate Cost UB vs. Dyn |UB
appendAllQ* b1 0% 2b1bobs +b1ba+b |1
appendAll2 |appendAll b1bo 33% b1bs b1
append 2b1b2bs 61% ﬂ bibs + b1
hanoi hanot* 2V —1 0% vt 92 1
processMove |2 — 1 0% 1 2Y —1
coupled* 1 0% v+1 1
coupled f Ly (*i)" % 1.2% v - <7i)“ +i
g Eh e i I N s+
. minsort” B+1 0% 7([3-;1)2 + &1 1
minsort) (B4+1)2 51
findmin —— + 55 7% B B+1
dyade* 51 0% 51 (52 + 1) 1
dyade mult B1 > % |8 B
variance_ variance” 1 0% 232 1
naive Sq,di‘[f ﬁ -1 0% Qﬂgﬂl — Qﬂg ﬁ -1
mean 28% -3 0% B8—1 B
variance® 1 0% 58+ 3 1
variance sq_diff B8 0% B8 8
mean 48 + 2 0% 26+ 1 2
. listfact” B8 0% B0+ 2) 1
listfact fact 86+ 8 AT% S 1 3

— ln(ai‘ﬁi)(n(”";i)) represents the size of the list of numbers L;, where $; and §; (resp. «;

and ;) denote

the upper (resp. lower) bounds on the length of the list and the size of its numbers respectively.
— n @120 (1In(@2:52) (1n(23,03) (n(24:24)))) represents the size of the list of lists of lists of numbers simi-

larly.

— n{*?) denotes the size of a number with lower- and upper-bounds p and v respectively.

Column 1 of Table 1 shows the list of benchmarks while column 2 provides the
list of cost centers for each benchmark. Column 3 shows the parametric accumu-
lated cost inferred for each cost center, as a resource usage upper bound function
on input data sizes of the entry predicate. Column 4 compares the parametric
accumulated cost function of each cost center from column 3 with the results
from a dynamic profiling tool [17]. Although the analysis infers upper bounds
on the accumulated cost, for some benchmarks these are exact upper bounds (in
fact, exact costs) and for others these are correct but relatively imprecise. The
imprecision introduced in the benchmarks listfact and appendAll2 is due to the
fact that the cost not only depends on the input data sizes but also on the sizes
of the sub-terms in the input data, since the analysis statically assumes an upper
bound on the sizes of the sub-terms. Note that CiaoPP is the only analysis tool
that infers concrete upper bound functions over sized types (costs that depend
on the sizes of subterms) [28].

Column 5 shows for comparison the cost inferred by the standard (i.e., non-
accumulated) cost analysis [28] for each program and its auxiliary predicates
(also marked as cost centers). The comparison of the accumulated and standard
cost functions (columns 3 vs. 5) shows the usefulness of our approach: the upper
bounds on cost centers display accumulated costs for program parts that were
not visible with the standard analysis. For instance, similarly to Example 1,
the coupled benchmark has two auxiliary mutually recursive predicates f and g
that are processing elements of a list alternatively until the list becomes empty.
The standard analysis infers almost the same upper bound for both functions
due to the mutual recursion, whereas the accumulated cost precisely points out
the source of cost in the mutually recursive parts. Similarly, in hanoi, although
the cost of processMove (processing a single hanoi move) is unitary, we can see
that it is called an exponential number of times. The analysis is providing hints
to the programmer about the parts of the program that are most profitable
candidates for optimization. Note that the upper bound cost functions inferred
by static profiling for each cost center predicate are on the input data sizes of
the program (entry predicate), in contrast to the standard analysis where the
cost functions are on the input data sizes of the predicate that the cost function
corresponds to.

Finally, in column 6 an additional #Calls cost is presented, indicating the
number of times each predicate is called, as a function of input data sizes of the
entry predicate. These cost functions are inferred using the standard analysis
by defining explicitly a #Calls resource for each cost center predicate. A big
complexity order in the number of calls to a predicate (in relation to that of a
single call) might give hints to reduce the number of calls to such predicate in
order to effectively reduce its impact on the overall cost of the program (i.e., the
cost of a call to the entry point). More interestingly, since both the Accumulated
and #Clalls costs of a predicate g are expressed as functions of input data sizes
of the entry predicate, their quotient (Column 3 / Column 6) is meaningful and
will give an approximation of the cost of a single call to g as a function of the
input data sizes of the entry predicate. Note that the standard analysis (Column
5) also provides an upper-bound approximation of this cost but as a function of
the input data sizes of predicate q.

7 Related Work

Static profiling in the context of Worst Case Execution Time (WCET) Analysis
of real-time programs is presented in [4]. It proposes an approach to computing
worst-case timing information for all code parts of a program using a comple-
mentary metric, called criticality. Every statement of a real-time program is
assigned with a criticality value, expressing how critical the respective code is
for the global WCET. Our approach is not limited to WCET, since it is able
to obtain results for a general class of user-defined resources. Furthermore, our
inferred metrics are parametric on the input data sizes of the main program, in
contrast to the criticality metric, which is a numeric value in the range [0, 1]. In

addition, our approach is modular and compositional, able to compute accumu-
lated costs w.r.t. calls originating from different procedures of the program, and
not only the main program entry point. In [3] the authors present static profiling
techniques to estimate the execution likelihood and frequency of program points
in order to assess whether the cost of certain compile-time optimizations would
pay off. To this end, they explore the use of some static analysis techniques for
predicting the result of conditional branches, such as assuming uniform distribu-
tion over all branches, making heuristic based predictions, and performing value
range propagation. In this context, our approach can be used to infer bounds on
the number of times a certain program point will be called from a given entry
point, as functions on input data sizes, in contrast with a single value repre-
senting the execution likelihood or frequency. Besides, since our techniques are
supported mainly by the theory of abstract interpretation, the approximations
inferred are correct by design.

8 Conclusions

In this paper we have presented a novel approach of static profiling of accumu-
lated cost that infers upper- and lower-bounds of the resource usage accumulated
in particular parts of a program as a functions on the input data sizes of the
program. We have constructed a prototype implementation of the proposed ap-
proach using the CiaoPP program analysis framework. Preliminary experimental
results with the tool support the usefulness of our approach where precise accu-
mulated upper bound cost functions were inferred for parts of the program for
which the standard analysis was not able to infer precise information. The upper
bound functions inferred by the static profiling were also evaluated against a dy-
namic profiling tool [17], and showed promising accuracy for the static analysis.
However in cases where the cost depended on the sizes of the sub-terms of the
input, the upper bound accumulated cost loses precision.

Acknowledgements: This research has received funding from the European
Union 7th Framework Program agreement no 318337, ENTRA, Spanish MINECO
TIN’12-39391 StrongSoft project, and the Madrid M141047003 N-GREENS pro-
gram.

References

1. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning, 46(2):161-203, February
2011.

2. E. Albert, S. Genaim, and A. N. Masud. More Precise yet Widely Applicable
Cost Analysis. In 12th Verification, Model Checking, and Abstract Interpretation
(VMCAI’11), volume 6538 of Lecture Notes in Computer Science, pages 38-53.
Springer Verlag, January 2011.

3. C. Boogerd and L. Moonen. On the use of data flow analysis in static profiling. In
Source Code Analysis and Manipulation, 2008 Eighth IEEFE International Working
Conference on, pages 79-88, Sept 2008.

10.

11.

12.

13.

14.

15.

16.

17.

18.

F. Brandner, S. Hepp, and A. Jordan. Static profiling of the worst-case in real-time
programs. In Proceedings of the 20th International Conference on Real-Time and
Network Systems, RTNS 2012, pages 101-110, New York, NY, USA, 2012. ACM.
S. K. Debray and N. W. Lin. Cost Analysis of Logic Programs. ACM Transactions
on Programming Languages and Systems, 15(5):826-875, November 1993.

S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic
Programs. In Proc. of the 1990 ACM Conf. on Programming Language Design and
Implementation, pages 174-188. ACM Press, June 1990.

S. K. Debray, P. Lépez-Garcia, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In 1997 International Logic Programming
Symposium, pages 291-305. MIT Press, Cambridge, MA, October 1997.

J. Giesl, T. Stroder, P. Schneider-Kamp, F. Emmes, and C. Fuhs. Symbolic eval-
uation graphs and term rewriting: a general methodology for analyzing logic pro-
grams. In PPDP, pages 1-12. ACM, 2012.

B. Grobauer. Cost recurrences for DML programs. In Proceedings of the Sizth
ACM SIGPLAN International Conference on Functional Programming, ICFP 01,
pages 253264, New York, NY, USA, 2001. ACM.

M. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1-2):115-140,
October 2005.

M. V. Hermenegildo, F. Bueno, M. Carro, P. Lépez, E. Mera, J.F. Morales,
and G. Puebla. An Overview of Ciao and its Design Philosophy. The-
ory and Practice of Logic Programming, 12(1-2):219-252, January 2012.
http://arxiv.org/abs/1102.5497.

J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate amortized resource analy-
sis. ACM Transactions on Programming Languages and Systems, 34(3):14:1-14:62,
2012.

A. Igarashi and N. Kobayashi. Resource usage analysis. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’02, pages 331-342, New York, NY, USA, 2002. ACM.

U. Liqat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, M. V. Hermenegildo, J. P. Gal-
lagher, and K. Eder. Inferring Energy Consumption at Different Software Levels:
ISA vs. LLVM IR. In Proc. of the Foundational and Practical Aspects of Resource
Analysis, Lecture Notes in Computer Science. Springer, 2015. To Appear.

U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech, M.V.
Hermenegildo, and K. Eder. Energy Consumption Analysis of Programs based on
XMOS ISA-level Models. In Logic-Based Program Synthesis and Transformation,
23rd International Symposium, LOPSTR 2013, Revised Selected Papers, volume
8901 of Lecture Notes in Computer Science, pages 72-90. Springer, 2014.

M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A Flexible (C)LP-Based Ap-
proach to the Analysis of Object-Oriented Programs. In 17th International Sym-
posium on Logic-based Program Synthesis and Transformation (LOPSTR 2007),
number 4915 in Lecture Notes in Computer Science, pages 154-168. Springer-
Verlag, August 2007.

E. Mera, T. Trigo, P. Léopez-Garcia, and M. Hermenegildo. Profiling for Run-Time
Checking of Computational Properties and Performance Debugging. In Practical
Aspects of Declarative Languages (PADL’11), volume 6539 of Lecture Notes in
Computer Science, pages 38-53. Springer-Verlag, January 2011.

R. G. Morgan and S. A. Jarvis. Profiling Large-Scale Lazy Functional Programs.
Journal of Functional Programing, 8(3):201-237, 1998.

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315-347, July 1992.

J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Safe Upper-bounds Inference of
Energy Consumption for Java Bytecode Applications. In The Sizth NASA Langley
Formal Methods Workshop (LFM 08), pages 29-32, April 2008. Extended Abstract.
J. Navas, M. Méndez-Lojo, and M. Hermenegildo. User-Definable Resource Usage
Bounds Analysis for Java Bytecode. In Proceedings of the Workshop on Bytecode
Semantics, Verification, Analysis and Transformation (BYTECODE’09), volume
253 of Electronic Notes in Theoretical Computer Science, pages 65—82. Elsevier -
North Holland, March 2009.

J. Navas, E. Mera, P. Lépez-Garcia, and M. Hermenegildo. User-Definable Re-
source Bounds Analysis for Logic Programs. In 23rd International Conference on
Logic Programming (ICLP’07), volume 4670 of Lecture Notes in Computer Science.
Springer, 2007.

F. Nielson, H. Nielson, and H. Seidl. Automatic complexity analysis. In Program-
ming Languages and Systems, volume 2305 of Lecture Notes in Computer Science,
pages 243—261. Springer Berlin Heidelberg, 2002.

G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Anal-
ysis of Logic Programs. In International Static Analysis Symposium (SAS 1996),
number 1145 in Lecture Notes in Computer Science, pages 270-284. Springer-
Verlag, September 1996.

M. Rosendahl. Automatic Complexity Analysis. In 4th ACM Conference on Func-
tional Programming Languages and Computer Architecture (FPCA’89), pages 144—
156. ACM Press, 1989.

Patrick M. Sansom and Simon L. Peyton Jones. Time and Space Profiling
for Non-Strict, Higher-Order Functional Languages. In Proceedings of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL’95, pages 355-366, New York, NY, USA, 1995. ACM.

A. Serrano, P. Lopez-Garcia, F. Bueno, and M. Hermenegildo. Sized Type Analysis
for Logic Programs (technical communication). In T. Swift and E. Lamma, editors,
Theory and Practice of Logic Programming, 29th Int’l. Conference on Logic Pro-
gramming (ICLP’13) Special Issue, On-line Supplement, volume 13, pages 1-14.
Cambridge U. Press, August 2013.

A. Serrano, P. Lopez-Garcia, and M. Hermenegildo. Resource Usage Analysis
of Logic Programs via Abstract Interpretation Using Sized Types. Theory and
Practice of Logic Programming, 30th Int’l. Conference on Logic Programming
(ICLP’14) Special Issue, 14(4-5):739-754, 2014.

V. Tiwari, S. Malik, and A. Wolfe. Power Analysis of Embedded Software: a First
Step Towards Software Power Minimization. IEEE Trans. VLSI Syst., 2(4):437—
445, 1994.

P. Vasconcelos and K. Hammond. Inferring Cost Equations for Recursive, Polymor-
phic and Higher-Order Functional Programs. In Proceedings of the International
Workshop on Implementation of Functional Languages, volume 3145 of Lecture
Notes in Computer Science, pages 86—101. Springer-Verlag, September 2003.

C. Vaucheret and F. Bueno. More Precise yet Efficient Type Inference for Logic
Programs. In International Static Analysis Symposium, volume 2477 of Lecture
Notes in Computer Science, pages 102-116. Springer-Verlag, September 2002.

B. Wegbreit. Mechanical Program Analysis. Communications of the ACM,
18(9):528-539, September 1975.

Attachment D1.2.4

Integrating energy modelling into the
development process: A Makefile
approach

90

Integrating energy modelling into the development
process: A Makefile approach

Steve Kerrison

December 2015

Abstract

This technical report demonstrates the integration of ENTRA energy modelling tools into the development
workflow through the use of Makefiles. This is an experimental demonstration, showing a potential path to
integration into development tools.

1 Tools

This demo uses the following tools and related material:

Compiler XMOS xTIMEcomposer version 14.0.2, available from the vendor website.

Simulator Axe open source XS1 simulator, modified per [1], available from
https://github.com/stevekerrison/tool_axe/tree/credit.

Model The xmtracem trace modeller. Experimental version used in [1].

Code A modified version of the parallel FIR implementation delivered in D5.1 of ENTRA.

These tools carry their own dependencies, but these are the top-level requirements of this demo.

2 Explanation of integration

For this demonstration, we use a vanilla Makefile structure, rather than the enhanced version that is typically
provided with xTIMEcomposer build environments. This is in line with the deliverable D5.1, and simplifies
the integration process for demonstrative purposes.

The FIR code is modified in four main ways:

1. The program performs a single iteration of the FIR filtering run on a set of 192 samples.

2. Workload is spread across two cores to demonstrate communication modelling.

3. Voltage adjustments are removed, for compatibility with axe.

4. Port based measurement triggering is issued, unifying model and hardware measurement methods.

All other changes related to the Makefile and development flow.
2.1 Makefile

The differences between the original Makefile and the modified Makefile are detailed in section 3. The
important differences are explained here.

The Makefile now includes reference to the necessary model parameter files used by the energy modelling
tool, xmtracem.

The use of the SLICEKIT’s voltage adjustment code is removed for compatibility with the axe simulator,
and so the Makefile is updated to reflect this.

1
0x8005
163.06e-6)

B —

S
‘ 4
id

- @

\/v

2
0x8006
N/A

Figure 1: Two-core FIR modelling visualisation

The most important change is the addition of a model target, that will invoke the simulation and modelling
process against the compiled program binary. This target invokes two commands: axe, the XS1 instruction
set simulator, and xmtracem for modelling.

The axe tools is configured to emit JSON instruction traces. These are read by xmtracem and used to
estimate the device energy consumption. A number of arguments are supplied to the tool, the most important
of which are explained here:

model The energy model file.

vfs-params The voltage and frequency scaling parameters, which can be experimentally applied as per [1].

trigger This allows an I/O port to be used as a trigger for either energy modelling or hardware energy
monitoring. In hardware, this I/O pin would be the trigger pin for the measurement hardware. In our
modelling environment, xmtracem is used is a similar fashion. The modelling run will terminate as
soon as the falling-edge of of the trigger signal is observed.

plot Specifies the output file for a visualisation of modelled energy consumption per core, switch and link.
By default, this is the binary filename with “-energy.pdf” appended to it.

xn The location of the platform description. In current versions of xmtracem, this is extracted from the
binary XE file, so the Makefile configures this likewise.

2.2 Running the modelling

Issuing the “make model” command will compile the code (if necessary), then run the simulator and trace
modeller. After a few seconds, it will complete, producing a text report (below) as well as PDF visualisation

(fig. 1).

The information in both forms requires some knowledge to interpret, which beyond the scope of this report.

Text output

$ make model

axe -t --trace-json fir.xe | xmtracem2.py --core-voltage=1.0 --model model-20150204.pkl \
—--vis-params=vfs-params-20150716. json —-trigger=0x10a00

--xn=fir.xe —-plot fir.xe-energy.pdf --nodump -

Connecting to stdin...

Model stats

Base power: 97.24e-03 W
Max time: 0.000678718000001
Time (Wall | Recorded): 741.13e-06 S | 678.72e-06 S
Core 1 (8005):
Energy (static | dynamic | comms | total):
28.20e-06 J | 134.86e-06 J | 0 J | 163.06e-06 J
Total instructions: 119788, FNOPS: 10706

Time (Wall | Recorded): 711.34e-06 S | 678.72e-06 S
Core 0 (8004):
Energy (static | dynamic | comms | total):
28.20e-06 J | 166.00e-06 J | 759.70e-09 J | 194.96e-06 J
Total instructions: 302740, FNOPS: 27651

Total Energy (static | dynamic | comms | total):
56.40e-06 J | 300.86e-06 J | 759.70e-09 J | 358.02e-06 J

Total Power (static | dynamic | comms | total):
83.10e-03 W | 443.28e-03 W | 1.12e-03 W | 527.50e-03 W

3 Summary
This report has shown modelling tools developed during the course of the ENTRA project can be integrated
into development work-flow through standard Makefile-based methods.

The XMOS toolchain makes heavy use of rich Makefiles. Although complete integration would require more
engineering effort, this report has shown a path towards this.

The state of the modelling and simulation tools used in this demo are in-line with with what is detailed in [1].

Makefile diff

$ diff par/Makefile par-model/Makefile
1c1,4

< XCFLAGS=-g -03 SLICEKIT-A16.xn

> XNFILE=SLICEKIT-A16.xn

> XCFLAGS=-g -03 $(XNFILE)

> MODELFILE=model-20150204.pkl

> VFSFILE=vfs-params-20150716. json
3,7c6,7

< fir.xe: main.o fir.o voltage.o

< xcc $(XCFLAGS) -o fir.xe main.o fir.o voltage.o
<

< voltage.o: voltage.xc

< xcc $(XCFLAGS) -c voltage.xc

> fir.xe: main.o fir.o

> xcc $(XCFLAGS) -o fir.xe main.o fir.o
14a15,17

> clean:

> rm -f *.0 *.xe

>

19a23,26

>

> model: fir.xe

> axe -t --trace-json fir.xe | xmtracem2.py --core-voltage=1.0 --model $(MODELFILE) \

> —-vfs-params=$(VFSFILE) --trigger=0x10a00 --xn=$7 --plot $7-energy.pdf --nodump -
>

References
[1] S. Kerrison and K. Eder. “Modeling and visualizing networked multi-core embedded software energy

consumption”. In: ArXiv e-prints (Sept. 2015). arXiv: 1509.02830 [cs.DC]. URL: http://arxiv.org/
abs/1509.02830.

	Introduction
	Overview of the Field of Energy-aware Software Development
	Green IT
	Energy-aware software development
	Motivation for energy-aware software development
	Techniques for application software energy efficiency
	Computational efficiency
	Low-level or intermediate code optimisation
	Parallelism
	Data and communication efficiency

	Tool support for energy-aware software development

	Software Engineering Activities and Scenarios
	Energy-aware software engineering activities
	Specify application, including energy
	Construction of energy models
	Resource model of deployment platform
	Selection of deployment platform
	Configure platform
	Design space exploration
	Initial energy profiling
	Detailed energy analysis
	Identify energy bugs
	Energy optimisation or reconfiguring
	Verify or certify energy consumption

	Energy-aware software engineering scenarios
	Embedded system development on xCORE
	Android app development

	The ENTRA tools front end
	Energy-aware Software Development Tools: Description and Demos
	Multi-level energy analysis and verification tool based on HC IR transformation
	Usage and interface

	Multi-level mapper tool
	Performing parametric static profiling of energy consumption
	The Swallow platform
	Optimization via Dynamic Voltage and Frequency Scaling (DVFS) and task scheduling
	XMOS tools: Supporting low power design in XC
	Introduction to the interface
	Combinable
	Distributable
	Status and use

	Implicit path enumeration ECSA applications
	Design-space exploration for multi-threaded programs using ECSA
	Other ECSA applications

	Tools for Horn clause verification
	Integrating energy modelling into the development process: A Makefile approach

	ENTRA tools front end mini-manual
	User interface
	Analysis and intermediate version specification
	Future versions

	Attachments
	D1.2.1: Inferring Parametric Energy Consumption Functions at Different Software Levels: ISA vs. LLVM IR
	D1.2.2: Swallow: Building an Energy-Transparent Many-Core Embedded Real-Time System
	D1.2.3: A Transformational Approach to Parametric Accumulated-cost Static Profiling
	D1.2.4: Integrating energy modelling into the development process: A Makefile approach

