
Whole-Systems
Energy Transparency

ENTRA
318337

Whole-Systems ENergy TRAnsparency

High-Level Energy Models

Deliverable number: D2.3
Work package: Energy Modelling Through the System Layers (WP2)
Delivery date: 1 July 2015 (33 months)
Actual date: 11 September 2015 (revised 01.03.2016)
Nature: Report
Dissemination level: PU
Lead beneficiary: University of Bristol
Partners contributed: Roskilde University, University of Bristol, IMDEA Software Insti-

tute, XMOS Limited

Project funded by the European Union under the Seventh Framework Programme,
FP7-ICT-2011-8 FET Proactive call.

Short description:
This deliverable presents energy models that apply higher levels of abstractions or new levels of
information and detail, building upon the work conducted earlier in the project and previously
presented in D2.1. The work herein comprises extensions into several areas, each of which
provides new dimensions for further design space exploration by software developers. It feeds
into several tasks of other work packages, namely energy aware tools (T1.1) in energy-aware
software engineering (WP1), along with energy and quality trade-offs (T4.2) and energy aware
scheduling (T4.3) in optimization (WP4).

There are four main topics that this deliverable contributes to: energy modelling at the in-
termediate representation used during code compilation, multi-core communication modelling,
worst case data-aware energy modelling, and modelling of application source code.

This deliverable includes the following attachments:

• D2.3.1. Modelling software energy consumption in a multi-core network of embedded
multi-threaded processors. In preparation for conference submission.

• D2.3.2. Data dependent energy modelling: A worst case perspective. In preparation for
conference submission.

• D2.3.3. On the Value and Limits of Multi-level Energy Consumption Static Analysis for
Deeply Embedded Single and Multi-threaded Programs. arXiv preprint arXiv:1510.07095,
2015.

• D2.3.4. On the infeasibility of analysing worst-case dynamic energy. To be submitted to
the ACM Journal of Transactions on Embedded Computing (TECS).

Contents

1 Introduction 3

2 Energy modelling at the LLVM IR level 4
2.1 Benchmarks and results . 5
2.2 LLVM IR analysis accuracy . 7
2.3 LLVM IR level ECSA applications . 7
2.4 Related publications and dissemination . 8

3 Multi-core modelling with communication costs 9
3.1 Improved core energy model . 9
3.2 VFS energy consumption modelling . 9
3.3 Multi-core energy consumption and communication 10
3.4 Dissemination . 11

4 Worst case energy and defining data-aware energy models 12

5 Energy modelling of application source code 13
5.1 Introduction and Motivation . 13

5.1.1 An experiment in source-code energy modelling 14
5.2 Code to Energy . 14

5.2.1 Block Division . 14
5.2.2 Basic Energy Operations . 16
5.2.3 Data Collection . 16
5.2.4 Power Tracing & Model . 17

5.3 Experiment Setup . 17
5.3.1 Target & Power Measurement . 17
5.3.2 Source Code & Case Design . 18

5.4 Model Construction . 18
5.5 Preliminary Results (Inference Accuracy) . 20
5.6 Dissemination . 22

Attachments 27
D2.3.1: Modelling software energy consumption in a multi-core network of embedded

multi-threaded processors . 29
D2.3.2: Data dependent energy modelling: A worst case perspective 40

1

D2.3.3: On the Value and Limits of Multi-level Energy Consumption Static Analysis
for Deeply Embedded Single and Multi-threaded Programs 50

D2.3.4: On the infeasibility of analysing worst-case dynamic energy 80

2

1 Introduction

The ENTRA project strives to communicate energy consumption data through the many layers
of abstraction that are present in the engineering of modern embedded systems. The previous
deliverable from work package 2, D2.2, presented low-level energy modelling techniques, that
could be used to inform analysis tools, potentially directed by the common assertion language
defined in deliverable D2.1. This deliverable extends the modelling upwards, into higher levels
of abstraction, as well as looking at new parameters that can aid design space exploration.

Several areas of work have contributed to achieving this. The accuracy of higher level mod-
elling and analysis is often dependent upon the accuracy of the underlying models, so refine-
ments to low-level models and simulators have been made in order to improve the foundational
aspects of this work. The parametrisation of models has also been broadened, in order to explore
opportunities for wider ranging design exploration, as well as the potential to define more de-
tailed bounds that can be used for example with the common assertion language. These include
data-dependent energy modelling, where the data values processed by a device have an influence
on the energy consumption, not just the instructions (Section 4), and voltage frequency scaling
(VFS) parameters that can be applied to processors to constrain performance whilst reducing
power (Section 3).

Three higher level approaches are detailed. The first (Section 2) demonstrates and evaluates
an application of a mapping from the LLVM compiler’s Intermediate Representation (IR) to the
low level energy model of a processor’s Instruction Set Architecture (ISA). The second approach
extends our core energy modelling efforts to multiple networked cores (Section 3), with new sim-
ulation improvements as well as higher level modelling and visualisation of energy consumption.
Finally, we propose a new method for modelling energy consumption at application source code
level, specifically for software targeting the Android Operating System (Section 5).

3

2 Energy modelling at the LLVM IR level

In deliverable D3.1, we introduced a novel mapping technique to lift our ISA-level energy model
to a higher level, the intermediate representation of the compiler, namely LLVM IR [LA04],
implemented within the LLVM tool chain [LLV14]. This enables Energy Consumption Static
Analysis (ECSA) to be performed at a higher level than Instruction Set Architecture (ISA), thus
introducing energy transparency into the compiler tool chain by making energy consumption
information accessible directly to the optimizer.

Figure 1: Overview of the mapping process.

A prototype version of a mapping tool implementing the mapping techniques was described
in Deliverable D1.1. An overview of this tool is given in Figure 1. Our mapping pass is intro-
duced into the compilation process after LLVM optimizations to tag each LLVM IR instruction
with a unique debug location. The mapping phase runs after the LLVM lowering phase and maps
LLVM IR instructions with the new debug locations to the emitted ISA instructions. The ISA
energy model is then used to accumulate the energy value of each LLVM IR instruction based on
its mapped ISA instructions. This technique was further calibrated and evaluated using a set of
single- and multi-threaded benchmarks, mainly selected from a number of industrial embedded
applications. For the evaluation we performed ECSA based on two techniques.

The first ECSA technique is based on setting up a system of recursive cost equations over
a program P that capture its cost (energy consumption) as a function of the sizes of its input
arguments. This work has been performed for single threaded benchmarks and the results were
presented in deliverable D3.2 (Attachment D3.2.4) as well as in deliverable D1.1 and integrated
into CiaoPP tool. An improved version of this work has been accepted for publication [LGK+15].
This work studies the ECSA analysis at different levels (ISA vs. LLVM IR), the results show
that LLVM IR level analysis using mapping techniques to lift an ISA model to LLVM IR level is
a good compromise since 1) much of the program information (e.g. types) is available at LLVM
IR level, unlike at ISA level, allowing analysis of bigger class of programs, and 2) the analysis
performed at either level is reasonably accurate and the relative error between the two analyses
at different levels is small. ISA-level estimations are slightly more accurate than the ones at the

4

LLVM IR level (3.9% vs. 6.4% error on average with respect to the actual energy consumption
measured on the hardware, respectively).

The second ECSA technique is based on Implicit Path Enumeration Technique (IPET) [LM95]
and performed for both single- and multi-threaded benchmarks, which we introduced in deliv-
erable D1.1 under Section 4, Work in Progress. Our results show that the mapping technique
allowed for energy consumption transparency at the LLVM IR level, with accuracy keeping
within 1% of ISA-level estimations in most cases. The rest of this section provides an evaluation
of this technique.

2.1 Benchmarks and results

Our objective is to calibrate and evaluate the effectiveness of our mapping technique on common
industrial, deeply embedded applications. Table 1 summarizes all of the benchmarks’ attributes.
The meaning of the columns is as follows: Source indicates where the benchmark was obtained,
Description provides insight into the benchmarks’ functionality, NCSL is the number of non-
commentary source lines of code, T is the number of threads used, and the remaining columns
indicate the presence of loops (L), nested loops (N), arrays and/or matrices (A), bitwise operations
(B), a complex CFG structure (CP), multiple functions (MF) and thread communications (C).

To do so, three analysis techniques were compared to hardware energy measurements for our
benchmarks. Figure 2a presents the error margin of ISA energy model combined with the three
analysis techniques compared to hardware energy measurements for our benchmarks. Trace Sim
produces instruction traces from simulation, ISA ECSA uses the model for static analysis at the
ISA level and LLVM IR ECSA uses our mapping technique to apply the model and analysis
at LLVM IR level. For all benchmarks with multiple test parameters, the geometric mean of
the errors is used. Figure 2b compares energy estimates to hardware measurements for a range
of parameters in three appropriate benchmarks. Benchmarks were compiled with xcc version
12 [XMO14] at optimization level O2, which is the default for most compilers.

For the software division and floating point benchmarks, ECSA provides a constant energy
consumption across all test cases, as they contain no loops that are directly affected by the func-
tions’ arguments. Figure 3 demonstrates this for Radix4Div and B. Radix4Div. Consider-
ing that IPET is intended to provide bounds based on a given cost model, in our case it tries to
select the worst case execution paths in terms of the energy consumption, and therefore ECSA
estimations seen in Figure 3 represent a loose upper bound on the energy consumption of each
benchmark. Similar figures were also retrieved for the two SoftFloat benchmarks. These
bounds in most cases can not be considered safe, as they might be undermined by the use of
a non data sensitive energy model and analysis. However, they can still give the application

5

ba
se

64

m
ac

le
ve

ns
ht

ei
n

cn
t

st
at

is
ti

cs fir

p.
fir

7t

m
at

m
ul

m
at

m
ul

2t
m

at
m

ul
4t

bi
qu

ad
bi

qu
ad

2t
bi

qu
ad

4t
p.

bi
qu

ad
7t

jp
eg

dc
t

jp
eg

dc
t

2t
jp

eg
dc

t
4t

−6

−4

−2

0

2

4

6

8

%
E

rr
o
r

v
s.

h
a
rd

w
ar

e

Trace sim ISA SA LLVM IR SA

(a) All benchmarks.

5 10 15 20 25 30
Matrix size (NxN)

0

1

2

3

4

5

E
ne

rg
y

(J
ou

le
s)

×10−4 MatMul, 1 thread

Hardware measurement
ISA ECSA
LLVM-IR ECSA
Simulation

5 10 15 20 25 30
Matrix size (NxN)

0

1

2

3

4

5

E
ne

rg
y

(J
ou

le
s)

×10−4 MatMul, 4 threads

0 50 100 150 200 250 300 350
Input length

0.0

0.5

1.0

1.5

2.0

2.5

E
ne

rg
y

(J
ou

le
s)

×10−5 Base64

(b) Parametric benchmarks.

Figure 2: Hardware measurements compared to ECSA and ISA trace estimation.

6

Collection of sample runs (dividend, divisor)
0.5

1.0

1.5

2.0

2.5

3.0

E
ne

rg
y

(J
ou

le
s)

×10−7

Worst case

Radix4Div

Collection of sample runs (dividend, divisor)
0.5

1.0

1.5

2.0

2.5

3.0

E
ne

rg
y

(J
ou

le
s)

×10−7

Worst case

Balanced Radix4Div

HW meas.
ISA WCEC
LLVM-IR WCEC

Simulation
LLVM-IR BCEC

Figure 3: Results for benchmarks with constant ECSA estimations across all test cases.

programmer valuable guidance towards energy aware software development in the absence of
energy measurements.

Generally, for all results shown here a proportion of error is present in both forms of static
analysis as well as simulation based energy modelling. The error in the simulation based model
is a baseline for the best achievable error in static analysis, as simulation has more accurate
execution information available to it. For all the benchmarks, the ISA ECSA results are over-
approximating the trace based energy estimations. This applies also to the LLVM IR ECSA
results with exception of the statistics benchmark. This over-approximation is a product
of the bound analysis used which is trying to select the most energy costly CFG path based on the
provided cost model. A smaller difference between the results of the ISA ECSA results and the
trace based energy estimations indicates that the execution path selected by the IPET fits better
the actual execution path of a benchmark than LLVM IR ECSA.

2.2 LLVM IR analysis accuracy

This form of analysis is solely dependent on the accuracy of the mapping technique. As can been
seen in Figure 2a, for all benchmarks the LLVM IR ECSA results are within one percentage point
error of ISA ECSA results, except for Base64 benchmark with a further 5.3 percentage points
error. In this case the CFGs of the two levels were significantly different due to basic blocks
introduced from branches in the ISA level CFG. This is one of the few cases where the mapper
was unable to accurately track the differences between the two CFGs.

2.3 LLVM IR level ECSA applications

Our LLVM IR analysis results demonstrate a high accuracy with a deviation in the range of 1%
from the ISA ECSA. Some LLVM IR estimations may not always be as accurate as at ISA level,

7

but they are still of value to developers. The LLVM optimizer and code emitter are the natural
place for compiler optimizations. Transparency of energy consumption at this level enables
programmers to investigate how optimizations affect their program’s energy consumption, or
even help introduce new low energy optimizations. This is more applicable at the LLVM IR
level than at the ISA level, because more program information exists at that level, such as types
and loop structures. The presented mapping techniques and analysis framework at the LLVM
IR level are applicable to any compilers that use the LLVM common optimizer, provided that an
energy model for the target architecture is available.

For some programs, indirect jumps that are introduced at the ISA level can make it impos-
sible to extract a CFG. While this prevents ISA level ECSA, it can still be performed for these
programs at LLVM IR, allowing programmers to gain energy consumption insight even where
ISA level analysis is not feasible.

2.4 Related publications and dissemination

The mapping techniques for LLVM IR energy characterization have been used into two papers,
for energy static analysis at the LLVM IR level. The first one, [GGP+15], was presented at
SCOPES 2015 [Sco], and the second one, [LGK+15], is accepted to appear in Foundational and
Practical Aspects of Resource Analysis (FOPARA) 2015 [Fop]. A paper detailing the mapping
techniques and their evaluation is attached as D2.3.3.

8

3 Multi-core modelling with communication costs

In a multi-core system of communicating software, both the core energy consumption and the
communication energy consumption must be considered. Further, the timing impact of multi-
core communication, and the increased latency in the movement of data, can have an impact
upon execution time and therefore total system energy consumption.

Work during the D2.3 period has endeavoured to improve existing energy models and extend
them to support these types of systems and software. An overview of this work is given here,
and a paper detailing the research contributions and results from this work is attached as D2.3.1.

3.1 Improved core energy model

The work of [KE15a] is expanded upon in order to produce a more refined core energy model.
This is achieved by performing additional profiling, capturing the energy consumption of a larger
number of instructions. The remaining un-profiled instructions are modelled using a decision
tree regression technique, where key instruction features are used to estimate energy, based on
the demonstrated impact of those features when present in profiled instructions.

This work resulted in an improvement in average error to 2.67 % and also reduced the stan-
dard deviation of the results in the same set of benchmarks used on the original model. These
model improvements can be fed into the higher level analysis that have been presented in deliv-
erables D3.1 and D3.2, such as those published as [LKS+14] and [GGP+15].

3.2 VFS energy consumption modelling

Although not specific to multi-core or communication modelling, part of the modelling effort
was put into voltage and frequency scaling (VFS), in response to the identification of savings
that could be had when applying VFS in the examples given deliverable D5.1. Modelling that
can be parametrised by operating voltage and frequency allows a broader range of design space
exploration for the software developer.

A VFS capable model was created by profiling a dual-core XMOS device with voltage scaling
capabilities, the SLICEKIT-A16. This device contains two of the XS1-L cores modelled in
[KE15a] and so provides a good base upon which to perform this further work. In addition to the
processor cores, an analogue peripheral block sits on the processor network, one of the features
of which is the control of the cores’ 1 V supplies.

A set of profiling tests were constructed that exercised the SLICEKIT-A16 at idle and under
load in various VFS states. The power data from this was then used to construct a characteristic

9

equation, parametrised by voltage, top-level system frequency and divided core frequency. The
characteristic equations and their coefficients are given in the attachment D2.3.1.

The performance of the VFS modelling is good, with the model yielding a mean squared
error against the profiling data of 2.6 % and total error range of 15.72 %. Given that the focus of
research effort was put into multi-core and communication costs, further effort would be required
in order to refine this version of the model and also demonstrate how it can be exploited. This is
proposed as future work in D2.3.1.

3.3 Multi-core energy consumption and communication

The multi-core energy modelling effort seeks to achieve two things:

1. Accurately estimate the overall energy consumption of a multi-core system when running
communicating multi-core software.

2. Demonstrate effective methods for conveying where energy is consumed in the system, in
order to guide the optimisation efforts of either tools or the developer.

Additional profiling was performed to establish the cost of communicating data tokens across
the XMOS XS1’s inter-node links. Simple models are then produced for the switch and inter-
connect based on the quantity of traffic that they carry.

A multi-core model is then created by assembling a graph representing the target XMOS
system, reading data from the platform specification “XN” files used in the XMOS toolchain.
Nodes in the graph are either cores or switches, and have the appropriate energy models at-
tached to them. Edges represent links between these components, which again can have a model
attached.

The modelling is enabled by trace data from the axe instruction set simulator. Several en-
hancements were made to axe, including:

• Accurately tracing fetch no-op FNOP activity in the core, to improve core model accuracy.

• Provide more accurate instruction traces, with finer-grained timing precision, to assist the
core model’s pipeline occupancy parametrisation.

• Issue traces for tokens traversing links, allowing them to be modelled.

• Implement the credit based flow control used within the XS1 switch network, providing
more accurate multi-core communication timing and contention behaviours.

10

The latter point is particularly important as without it, no instruction set simulator for the XS1
architecture correctly simulates the time taken to communicate between cores. Our contributions
use the link parameters given in the XN file to simulate the same communication speeds and
latencies as realised in the hardware. This significantly improves timing accuracy of multi-core
simulations, where previously the timing error would lead to very large, potentially unusable
energy modelling errors.

The timing model is demonstrated to have a sub-1 % error in the characterisation tests, and
in larger benchmarks maintains single digit percentage error. This is two orders of magnitude
better than what was previously available.

The simulator improvements are combined with the new graph-based network energy model
and tested under the FIR and Biquad benchmarks presented in deliverable D5.1. The energy
model error is shown to be less than ±10 %, with an average of -4.92 % error.

In addition, a unique presentation method is shown, that highlights where the model has
determined energy is being consumed. This is divided into cores, switches and links. This
provides finer grained detail than normal hardware measurements provide, which typically give
the overall system energy consumption, or a limited number of measurement points that capture
multiple components simultaneously. This is used to demonstrate how a developer can identify
the best way in which the software can utilise the hardware, considering optimal core utilisation
as well as communication patterns. An explanation with examples, in the context of the Biquad
filter benchmark, is given in attachment D2.3.1.

3.4 Dissemination

The work presented in this section is captured an attachment as D2.3.1 and is also available as
a technical report [KE15b]. It will also shortly be submitted for peer-review with the intent to
publish at an appropriate conference venue.

11

4 Worst case energy and defining data-aware energy models

Prior to concerns about energy consumption, execution time was an essential consideration for
embedded systems software. Significant work has been presented that seeks to analyse programs
to determine properties such as Worst-Case Execution Time (WCET) [WEE+08]. The ENTRA
project’s research into estimation of software energy consumption, can be framed in a similar
way, whereby a worst case energy consumption is sought from the analysis of a program.

However, by the nature of energy consumption’s relationship to power and time where E =

P ·T , an extra dimension of complexity is introduced. This is because the power term, P , cannot
be determined solely with respect to the instructions that a processor executes; the data that is
used as input to, and produced as output from an instruction, has an effect on P even if T does
not change.

Examination of prior work shows that data-dependant energy models for worst case or other-
wise bounded energy consumption metrics have not been given any in-depth exploration. Thus,
for more sophisticated, data dependant energy models to be applicable with confidence, further
investigation was needed. In answer to this, in [PKME15] we present our methods and findings
for the exploration of data dependant energy behaviour, as well as first steps towards modelling
in this dimension. At the time of writing, this paper is currently being prepared for conference
submission, and has been published in pre-print on arXiv. It is also included with this deliverable
as attachment D2.3.2.

However, further research has revealed, that in the most general case, worst case analysis
of data switching costs is infeasibly complex, both for a precise analysis and for any level of
approximation. The optimization problem corresponding to calculating the worst case switch-
ing cost can be shown to be NP-hard, and in addition it can be shown that any approximation
algorithm that guarantees a level of accuracy must also be NP-hard.

This theoretical result mandates a certain level of uncertainty in any worst-case energy es-
timation as the switching costs cannot be accurately estimated. Fundamentally, it must be
asked whether worst case analysis can deliver a useful energy estimate given this limitation,
and whether other avenues of exploration are worth following. Techniques such as the statistical
analysis of data-dependent energy may become more significant given this uncertainty.

Our work on this topic is included with this deliverable as attachment D2.3.4, including back-
ground and analysis of the significance of data switching costs. It is currently under consideration
for acceptance to a journal.

12

5 Energy modelling of application source code

A source-code level energy model is motivated by the gap that must be bridged in order to relate
low level energy behaviour to the high level software. This work focuses on complex Java code
forming a library for mobile gaming on Android devices. As such, this is substantially different
to the pure C, embedded real time code examined in other parts of this and previous deliverables.
However, the goals of the project still apply to this type of software development scenario and
the techniques investigated in this section could be applied to other high-level languages.

This work establishes an energy model at the source code level, extracting energy costs for
operations performed in the code from empirical measurement, which are then used to build a
vector of energy costs for those operations. This model can then be applied to other applications
that utilise the library to estimate their energy consumption characteristics.

This work reported in this deliverable is ongoing work.

5.1 Introduction and Motivation

The ENTRA project aims to support energy-aware software development, in contrast to the
energy-oblivious manner typical today. Throughout the engineering life-cycle, developers are
blind to the energy usage of the code written by themselves. On the other hand, it is estimated
that energy saving by a factor of three to five could be achieved solely by software optimization
[Edw11]. The approach of the ENTRA project is to achieve energy transparency through a com-
bination of static analysis and energy modelling techniques, enabling the developer to understand
the energy distribution among different parts of the source code.

In this section we focus on energy modelling. Traditional energy modelling methodology
[TMW94, vBDMH00], including approaches adopted in the ENTRA project, is bottom-to-top.
In this approach an energy model for machine level instructions is constructed, and this low-level
model is mapped upwards to intermediate code and source code. This approach faces obstacles
when the software stack consists of a number of abstract layers.

An alternative approach could be called top-to-bottom, and aims to construct a model directly
for the source code, without any explicit low-level model. Intuitively, given a target device and
power management strategy, the source code completely determines the energy consumption.
The overall goal is to identify the basic energy-consuming operations from the source code and
find the correlations to energy cost by analyzing a large amount of test cases. The resulting
energy model implicitly includes the effect of all the layers of the software stack down to the
hardware.

13

5.1.1 An experiment in source-code energy modelling

The target of the experiments described below is the Android platform. In February 2015, the
penetration of smartphones was about 75% in the U.S. This figure is expected to reach 85% by
December 2015 [Mar15]. With the improvement of hardware processing capability and software
libraries for smartphones, applications are becoming heavier and more PC-like. At the same
time, users are annoyed by limited battery capacity, as parallel-running applications could easily
drain the full-charged battery within 24 hours. Thus energy-aware development for smartphones
is becoming a critical requirement.

On the Android platform, say, the source code is in Java and translated to Java byte-code, fur-
ther to Dalvik [Andb] (simplified Java virtual machine for Android) byte-code, native code and
machine code and finally has chance to execute on the processors. Consequently, the modelling
and mapping tasks in a bottom-to-top approach would have to address the complex problem of
characterizing the links among all the layers. For this reason we attempt a top-to-bottom mod-
elling approach for Android source code.

In the experiment, our target platform is an Android development board with two ARM quad-
core CPUs, and the employed source code is a game engine which is for constructing games,
demos and other interactive applications. The result shows that the inference model achieves
an accuracy about 80%. Based on this model, we aim to capture the energy properties of the
source code, such as energy hotspots, energy bugs and other opportunities for optimizing energy
consumption.

5.2 Code to Energy

We build the energy model by analyzing a large set of execution cases. The brief procedure
of mapping the source code to energy is 1) obtaining the precise execution path, 2) tracing the
corresponding power consumption, 3) labelling test cases with the energy cost and 4) employing
the labelled data to train the energy model.

Three factors play significant roles in building the inference model, which are execution-path
obtaining, statement breakdown and model training. In the following sections, we will illustrate
how to accurately acquire executed source code, why we need to breakdown statements and
approaches in model construction.

5.2.1 Block Division

We designed a large range of execution cases (in Section 5.3) to guarantee most corners in the
source code are able to be covered. Not only the breadth of code coverage, the user interaction

14

(a) For loop (b) While loop

Figure 4: Block division of for and while loops in control flow graph

is also a significant dimension in the design space. As game applications are highly interactive,
distinct input sequences result in huge varieties. The details of case design will be presented in
Section 5.3.

Definition 1 A block is a set of gathered statements. In the block, each node has only one in-
edge and one out-edge in the control flow graph, but the start point of the block could have more
than one in-edge and the end point could have more than one out-edge.

A block is a fixed execution unit. That means, always if one part of the block is processed,
the rest certainly will be executed. Its concept is declared in Definition 1. We choose the block
as our basic sampling unit because tracing statements one by one has a vital impact on energy
consuming and running time which damages the sampling precision. On the other hand, func-
tions or classes are unstable execution unit, since we can not point out which certain parts the
function or class will be active during run time.

For individual syntax structures, we deal with block division case by case. For loop an while
loop are taken for examples as shown in Figure 4. In a for loop, the header usually has three
segments which are initialization, boolean and update. According to Definition 1, the segments
are divided into three different blocks. Following the same logic, we set the while header itself
as a block.

The complete set of reached code points is acquired by recording the executions of blocks.
We instrument the source code with a log instruction at the beginning of each blocks. It generates
a block ID and a time stamp as one record in the log file which will be analyzed in later stage
to obtain the execution path. As shown in Section 5.2.4, one execution case is corresponding to
one input of the training model. The input features are extracted based on the path.

15

5.2.2 Basic Energy Operations

It is impossible to characterize the energy cost straightly based on individual statements because
they varies largely, any pair of statements in the code are probably distinct. An arithmetic expres-
sion, say, could have two operators or three or more which could be additions or multiplications
or mixed. In contrast, if we go to the function level, the model will be restricted to the domain of
our target source code, since it’s unlikely to find identical functions in different applications. We
employ the “energy operation” as the basic modelling unit, such as arithmetic operations, com-
parison operations, method invocations etc. At the end, we in fact model the energy of individual
operations. The entire energy consumption is made up of the cost of all operations in the code.

The operations (ops) are grouped into eight classes as shown in Table 2. In practice, these
ops refer to one or more virtual machine instructions, but it is not important for the method to
know exactly which ones. For example, the multiplication op with integer operands could be
implemented by the imul instruction in the Java virtual machine instruction set [Ora] and then by
other Dalvik opcodes [Andb]. The block goto op corresponds to the jsr instruction whose job is
leading the CPU to an aimed subroutine. A basic assumption of our approach is that each of the
source-level ops corresponds to a set of machine instruction which use a certain set of hardware
components, which results in approximately the same energy cost each time it is called. This
assumption may not always hold and other factors might also lead to different energy costs for
different occurrences of the same op, leading to imprecision in the model, but it is an assumption
that allows a reasonable estimate of energy consumption. Our experimental results show that the
energy op is an appropriate intermediate representation to bridge the gap from source code to
machine instructions, with regard to energy consumption.

5.2.3 Data Collection

Ne(opi) =

blockj ∈BLK(opi)∑
{Ne(blockj) · No(opi, blockj)} (1)

where opi ∈ Energy Ops

We developed a parser to extract the energy ops from the source code. All of the ops are la-
belled with the ID of the block where it resides. Note that, in the model building stage one record
of training data couples one execution case, which is an one-on-one relation. One record consists
of the numbers of executions of individual ops which are figured up according to Equation (1).
BLK(opi) is the set of blocks that contain opi. No(opi, blockj) means the occurrence of opi in
blockj . Ne(blockj) is the executions of blockj . Basically, the executions of opi is equivalent to

16

the sum of the products of Ne(blockj) and No(opi, blockj).

Android applications utilize a rich range of Android’s APIs and Java library classes where
the fine-grained execution path is hard to capture. On the other hand, only a small proportion is
frequently used during run time. We list the highly-referred library functions (Lib Funcs) in table
3, which are treated as special energy ops in the training stage. In particular, the GL10 class is
the key interface for applications to implement their graphic computing.

5.2.4 Power Tracing & Model

In the experiment stage (Section 5.3), each execution case runs twice. In the first run, we record
the execution path without power measuring. In the second time, we only trace power and disable
the log instructions. We split the path and power obtaining work because the log instructions take
up a part of the entire energy consumption which could not be neglected.

E =
n∑

i=1

power(ti) ·∆i, (t0 ≤ t1 ≤ t2 · · · ≤ tn−1 ≤ tn) (2)

The power trace is acquired by the measurement equipment, after which we approximate the
energy cost (E) by calculating the integral of power, as shown in Equation 2. p = power(t) is
the power-vs-time function, so power(ti) is the measured power value at time stamp ti. We let
∆i = ti − ti−1 which is the interval between two sequential samplings.

E =

opi∈Energy Ops∑
Costopi ·Ne(opi) (3)

+

funci∈Lib Funcs∑
Costfunci ·Ne(funci) + Idle Cost

The aimed model is formalized in Equation 3. The entire energy consumption consists of the
sum of the costs of operations and library functions and idle cost. Notice that the idle costs of
individual cases are different, since they are executed in distinct sequences of inputs, thus the
lengths of sessions are also varying.

5.3 Experiment Setup

5.3.1 Target & Power Measurement

Experiment target: Odroid-XU+E development board [Odr]. It possesses two ARM quad-core
CPUs, Cortex-A15 with 2.0Ghz clock rate and Cortex-A7 with 1.5Ghz. The eight cores are

17

grouped into four pairs. Each pair consists of one big and one small core. So in the view of
operation system, there are four logic cores. In our experiment, we turn off the small cores and
only run workload on big cores at a fixed clock frequency of 1.1Ghz. This is for removing the
influence of voltage, clock rate and CPU performance on power usage.

Power Measurement: Odroid-XU+E has a built-in power monitor tool to measure the voltage
and current of CPUs with a sampling frequency of 30Hz and update the values in a file. We
wrote a script to obtain the readings from the file every 0.1 second. During the test case, we run
the script on a different core from where the application runs to minimize the interruption.

5.3.2 Source Code & Case Design

Our target source code is the Cocos2d-Android [Goo] game engine, a framework for building
games, demos and other interactive applications. It also implements a fully-featured physics
engine. The game is one of the main applications on smart devices, which has developed more
and more PC-game-like, requiring a high CPU performance. The energy modelling and analysis
research in this paper shows the opportunity to improve the source code and guide the software
development towards energy efficiency.

We designed a large range of execution cases to simulate the game scenarios under different
sequences of user inputs. We script with the Android Debug Bridge [Anda] (adb) , a command
line tool connecting target device to the host, to automatically feed the input sequences to the
target board. For instance, in the Click & move scenario, the sprite (the character in the
game) moves to the position where the tap is. We designed 10 input sequences with distinct tap
positions and intervals. Each sequence is executed three times repeatedly. So for the Click &

move, we have 30 execution cases.

5.4 Model Construction

The model construction is on the strength of machine learning, finding out the correlation be-
tween energy ops and costs from a large amount of data. We set out our collected data in the
following matrices. The first one (N) from left is execution numbers of l ops (including energy
ops and library funcs) in m test cases, which is observed by logging and calculating, as shown in
Section 5.2. Each row indicates one test case. The vector (~cost) in the middle contains the costs
of l ops, which are the values we are aiming to obtain. The vector (~e) on the right of equation
mark is the energy cost computed by Equation 2. So for each test case, the energy cost is the sum
of the costs of all the ops. It should be noticed that the energy cost has excluded the idle cost
which is measured when no application workload is processing.

18




n
(1)
1 n

(1)
2 ... n

(1)
l

n
(2)
1 n

(2)
2 ... n

(2)
l

... ...

n
(m−1)
1 n

(m−1)
2 ... n

(m−1)
l

n
(m)
1 n

(m)
2 ... n

(m)
l



×




cost1

cost2

...

costl


 =




e1

e2

...

em−1

em




(4)

Inevitably, the execution tracing and power measurement is not absolutely accurate. Mean-
while, the energy model is not exactly subject to the linear property. As a result, the equation
above is unsolvable since the vector ~e is out of the column space of N . To address this problem,
we employ the well-known gradient descent algorithm [Ng12] to approximate the values of ~cost.

The values of ~cost are randomly set and then improved by the gradient descent algorithm
step by step. We first introduce the error function J (Equation 5) which indicates the quality of
the model. ~n(i) is the ith row in the first matrix, ~cost is the middle vector above. ~n(i) × ~cost is
the predicted energy cost for the ith test case, e(i) is the observed energy cost. J is the sum of the
squared errors of all the test cases, which is afterwards divided by 2m to get the average values.
The reason why 2m is applied, but not m, is that 2m is convenient for the derivative computation
later. So the smaller J is, the better ~cost is.

J(cost1, cost2, ...costl) =
1

2m

m∑

i=1

(~n(i) × ~cost− e(i))2 (5)

The idea of gradient descent is to minimize J by repeatedly updating each element in ~cost

with Equation 6 until convergence. The partial derivative of J function on costj gives the direc-
tion in which increasing or decreasing costj will cut down J . The value α determines how large
the stride is in each iteration. If it is too large, the extremum value possibly will be missed; if
too tiny, the minimizing process will be time-consuming. It needs to be manually tuned. Theo-
retically, the gradient descent algorithm could only find the local optimal value. In practice, the
initial values in ~cost are randomly set several times to look for the global optimization.

costj := costj − α
∂J(cost1, ...costj, ...costl)

∂costj
(6)

= costj − α
1

m

m∑

i=1

(~n(i) × ~cost) · n(i)
j

j = 1, 2, ...l

The algorithm above may produce ~cost with negative elements, however as a matter of fact,
the energy costs should be above zero. In view of this, we customize the original error functions

19

by adding a correction part for negative values, as shown in Equation 7. Smaller the negative
cost is, larger the penalty is. The λ value balances the weight of correction part and that of the
original part. The ρ value determines how aggressive the correction is. Both λ and ρ should be
adjusted by hand. Consequently, the Equation 6 is re-written as Equation 8.

J =
1

2m

m∑

i=1

(~n(i) × ~cost− e(i))2 + λ
1

l

l∑

j=1

ρ−costj (7)

ρ > 1

costj := costj − α
1

m

m∑

i=1

(~n(i) × ~cost) · n(i)
j + αλ

ln(ρ)

l
ρ−costj (8)

j = 1, 2, · · · , l

5.5 Preliminary Results (Inference Accuracy)

The key point of case design is to vary the executions of individual blocks, so we are able to
enlarge the column space of the N matrix (in Section 5.4) to raise the possibilities to solve all the
values in ~cost. We try to achieve it by commenting out different sets of blocks in each test case.
With the data collected in training cases, we obtain the approximate ~cost. It is not trivial to note
that the session lengths of test cases are about 5s, those of training cases are rather various from
5s to 40s, so as to broaden the view of the model. The inference accuracy of ~cost in training and
test cases is shown in Figure 5. The model fit the training cases quite well with an error margin
of 2.2%. However, the error rate is unacceptably high in test, which is around 43.0%.

We find that the over-fit in train stage is because in most situations a set of energy ops are
executed together, they are very hard to separate, for example, the comparison ops are al-
ways coupled with a block-goto op. To settle this, we apply an feature selection procedure.
According to the training data, we put the op with strong linear execution correlations (above
0.9 and below 1.1) in the same group. The correlation is the covariance over the product of the
standard deviations of two variables (op executions).

We then similarly treat one group of ops as one op to train the model. Figure 6 demonstrates
that the inference error rate in training stage is higher than that before feature selection, about
7.2% and in test stage is much lower as 21.7%.

20

Figure 5: The predicted, observed energy consumption in training and test cases BEFORE fea-
ture selection. The bars show the errors of predicted values.

Figure 6: The predicted, observed energy consumption in training and test cases AFTER feature
selection. The bars show the errors of predicted values

21

5.6 Dissemination

An article based on the work presented in this section has been submitted for peer-reviewed
publication at a leading international conference venue.

22

Code structure & characteristics
Benchmark Source Description

NCSL T L N A B CP MF C

Base64 Online1 Computes the base64
encoding

32 1 � � �

Mac
MDH

WCET
Dot product of two vectors
and sum of squares

11 1 � �

Levenshtein BEEBS
Measures the difference
between two strings

26 1 � � � � �

Radix4Div Online2
Optimized Software Division
for platforms without
hardware support

63 1 � � �

B. Radix4Div
Online,

modified

Software Division for
platforms without hardware
support

37 1 � � �

Cnt
MDH

WCET
Counts non-negative numbers
in a matrix

29 1 � � �

Statistics
MDH

WCET
Statistics program 85 1 � � �

FIR
XMOS

Finite Impulse Response
filter

40 1 � � �
P. FIR 7T 103 7 � � � �

MatMul

MDH WCET
Matrix multiplication of two
square matrices

15 1 � � �

MatMul 2T 25 2 � � �
MatMul 4T 27 4 � � �

Biquad

XMOS
Signal equaliser using
biquad filtering

49 1 � �
Biquad 2T 55 2 � � �
Biquad 4T 57 4 � � �

P. Biquad 7T 94 7 � � � �

Jpegdct

MDH WCET
Performs a JPEG discrete
cosine transform

35 1 � � � �

Jpegdct 2T 43 2 � � � � �
Jpegdct 4T 45 4 � � � � �

NCSL: Non-comment source-lines T: Number of threads L: Contains loops N: Nested loops A: Uses
arrays/matrices B: Bitwise operations CP: Complex CFG structure MF: Multiple functions C: Contains

thread communications.
1 Retrieved from http://stackoverflow.com/questions/342409, Nov 2014.
2 Retrieved from http://tinyurl.com/ld7exmd, Nov 2014.

Table 1: Description and attributes of benchmarks.

23

http://stackoverflow.com/questions/342409
http://ec2-122-248-210-243.ap-southeast-1.compute.amazonaws.com/mediawiki/index.php/Binary_division

Table 2: Energy Operations

Addition, Subtraction
Arithmetic Ops Multiplication, Division

Increment, Decrement
Boolean Ops And, Or, Not

Greater, Less, Equal
Comparison Ops Greater or equal

Less or equal
BitAnd, BitOr

Bitwise Ops SignedBitShiftRight
SignedBitShiftLeft

Reference Ops Array reference
Field reference

Function Ops Argument passing
Returning value

Control Ops Block goto
Function Invocation

Others Declaration
Type conversion

Table 3: Library Functions

Class Functions
ArrayList add, get, size, isEmpty, remove

glBindTexture, glDisableClientState
glDrawElements, glEnableClientState

GL10 glMultMatrixf, glTexCoordPointer
glPopMatrix, glPushMatrix

glTexParameterx, glVertexPointer
Math max, pow, sqrt, random

FloatBuffer position, put

24

References

[ACM] Acm transactions on architecture and code optimization, at http://taco.acm.org/.

[Anda] Android. Android debug bridge. [Online: accessed 10.08.2015].

[Andb] Android. Dalvik virtual machine. [Online: accessed 10.08.2015].

[Edw11] Chris Edwards. Lack of software support marks the low power scorecard at DAC.
In Electronics Weekly., pages 15–21, June 2011.

[Fop] Foundational and practical aspects of resource analysis, at
http://resourceanalysis.cs.ru.nl/fopara/.

[GGP+15] Neville Grech, Kyriakos Georgiou, James Pallister, Steve Kerrison, Jeremy Morse,
and Kerstin Eder. Static analysis of energy consumption for llvm ir programs. In
Proceedings of the 18th International Workshop on Software and Compilers for
Embedded Systems, SCOPES ’15, New York, NY, USA, 2015. ACM.

[Goo] Google. Cocos2d-android. [Online: accessed 10.08.2015].

[KE15a] S. Kerrison and K. Eder. Energy Modeling of Software for a Hardware Multi-
threaded Embedded Microprocessor. ACM Transactions on Embedded Computing
Systems, 14(3):1–25, April 2015.

[KE15b] S. Kerrison and K. Eder. Modeling and visualizing networked multi-core embed-
ded software energy consumption. ArXiv e-prints, September 2015.

[LA04] C. Lattner and V.S. Adve. LLVM: A compilation framework for lifelong program
analysis and transformation. In Proc. of the 2004 International Symposium on
Code Generation and Optimization (CGO), pages 75–88. IEEE Computer Society,
March 2004.

[LGK+15] U. Liqat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, M. V. Hermenegildo, J. P.
Gallagher, and K. Eder. Inferring Energy Consumption at Different Software Lev-
els: ISA vs. LLVM IR. In Proc. of the Foundational and Practical Aspects of
Resource Analysis, LNCS. Springer, 2015. To Appear.

[LKS+14] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech, M.V.
Hermenegildo, and K. Eder. Energy Consumption Analysis of Programs based on
XMOS ISA-level Models. In Logic-Based Program Synthesis and Transformation,

25

23rd International Symposium, LOPSTR 2013, Revised Selected Papers, volume
8901 of Lecture Notes in Computer Science, pages 72–90. Springer, 2014.

[LLV14] LLVMorg. The LLVM Compiler Infrastructure, November 2014.

[LM95] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded soft-
ware using implicit path enumeration. In Workshop on Languages, Compilers, &
Tools for Real-Time Systems, pages 88–98, 1995.

[Mar15] Marketing Land. Report: U.S. smartphone penetration now at 75 percent, 2015.
[Online: accessed 10.08.2015].

[Ng12] Andrew Ng. CS229 lecture notes, 2012. [Online: accessed 10.08.2015].

[Odr] Odroid. Odroid-XUE. [Online: accessed 10.08.2015].

[Ora] Oracle. Java virtual machine instruction set. [Online: accessed 10.08.2015].

[PKME15] James Pallister, Steve Kerrison, Jeremy Morse, and Kerstin Eder. Data dependent
energy modelling: A worst case perspective. arXiv preprint arXiv:1505.03374,
Submitted to PATMOS 2015, under review, 2015.

[Sco] 18th International Workshop on Software and Compilers for Embedded Systems,
at http://www.scopesconf.org/scopes-15/.

[TMW94] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software: a first
step towards software power minimization. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 2(4):437–445, Dec 1994.

[vBDMH00] Tajana Šimunić, Luca Benini, Giovanni De Micheli, and Mat Hans. Source code
optimization and profiling of energy consumption in embedded systems. In Pro-
ceedings of the 13th International Symposium on System Synthesis, ISSS ’00,
pages 193–198, Washington, DC, USA, 2000. IEEE Computer Society.

[WEE+08] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D.B. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P.P.
Puschner, J. Staschulat, and P. Stenström. The worst-case execution-time prob-
lem - Overview of methods and survey of tools. ACM Trans. Embedded Comput.
Syst., 7(3), 2008.

[XMO14] XMOS. xTimecomposer, November 2014.

26

Attachments

The attachments referenced throughout this deliverable are included in this appendix.

27

Attachment D2.3.1

Modelling software energy consumption

in a multi-core network of embedded

multi-threaded processors

In draft, awaiting submission.

28

Modeling and visualizing networked multi-core
embedded software energy consumption

Steve Kerrison and Kerstin Eder
University of Bristol, United Kingdom
firstname.lastname@bristol.ac.uk

Technical Report, August 2015

Abstract

In this report we present a network-level multi-core energy model and a software development process workflow that allows
software developers to estimate the energy consumption of multi-core embedded programs. This work focuses on a high
performance, cache-less and timing predictable embedded processor architecture, XS1. Prior modelling work is improved to
increase accuracy, then extended to be parametric with respect to voltage and frequency scaling (VFS) and then integrated into
a larger scale model of a network of interconnected cores. The modelling is supported by enhancements to an open source
instruction set simulator to provide the first network timing aware simulations of the target architecture. Simulation based
modelling techniques are combined with methods of results presentation to demonstrate how such work can be integrated into
a software developer’s workflow, enabling the developer to make informed, energy aware coding decisions. A set of single-,
multi-threaded and multi-core benchmarks are used to exercise and evaluate the models and provide use case examples for how
results can be presented and interpreted. The models all yield accuracy within an average ±5 % error margin.

1 Introduction

An increasing number of embedded systems now express
their workloads through concurrent software. The paral-
lelism present in modern devices, in forms such as multi-
threading and multiple cores, allow this concurrency to be
exploited. This progression towards parallel systems has
two main motivations. The first is in response to hitting
operating frequency limits, where more work must now be
done per clock in order to achieve performance gains in
each new device generation. The other uses parallelism to
allow work to be completed on time at a lower operating
frequency, which can yield significant energy reductions.

However, parallel systems and concurrent software intro-
duce complexities over traditional sequential variants that
simply valued “straight-line speed”. In particular, synchro-
nisation of and exchanging information between concurrent
components can negatively impact parallel performance if
done inefficiently as per the well known Amdahl’s Law. A
good understanding of the software’s behaviour, coupled
with appropriate underlying hardware can overcome this if
used correctly.

In embedded systems software, predictability is essential,
both in terms of execution time, where real-time deadlines
must be met, and in terms of energy consumption, where
the supply of energy may be scarce. Time and energy
are related through power, and while significant effort is
put into timing predictable software, there remains both a
lack of intuition and a lack of tools to help software devel-
opers determine the energy consumption of their modern
embedded software components.

The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement no 318337, ENTRA - Whole-
Systems Energy Transparency.

This report presents an energy model for a family of
cache-less, time-deterministic, hardware multi-threaded
embedded processors, the XMOS XS1-L series, which im-
plements the XS1 architecture. These processors are pro-
grammed in a C-like language with message passing present
in both the architecture and the programming model. The
processors can be assembled into networks of interconnected
cores, where the communication paradigm then extends
across this network. The energy model must therefore be
able to account for software energy consumption within
each core as well as the timing and power effects of network
traffic. To achieve this and also give developers better
energy estimation tools, the following contributions are
made:

• A multi-threaded energy model for the XS1-L [15] is
extended to include more accurate instruction energy
data, through greater instruction profiling and regression
tree techniques.

• Support for Voltage and Frequency Scaling (VFS) is inte-
grated into the model, the provide a richer environment
for design space exploration by software developers.

• Several new features are added to axe, an Instruction Set
Simulator (ISS) for the XS1-L, improving its core tim-
ing accuracy and introducing network timing behaviour,
which has until now not been present in any simulators
for these devices.

• The energy consumption of network communication is
profiled, in order to extend the energy model to account
for communication between multi-cores.

These contributions allow traces from the axe ISS to be
analysed by the modelling framework, producing both text
reports and visualisation of energy consumption across the
network of processors in the system. The accuracy of this
work is established through a series of multi-threaded, multi-
core embedded software benchmarks. These are used to
evaluate the effectiveness of the modelling and detail how it

1

can be used to aid a developer’s design and implementation
decisions.

Results show that the core model average error is 2.67 %
with a standard deviation of 4.40 %, improving upon the
prior work. The network capable model demonstrate an av-
erage error of −4.92 %, with a standard deviation of 3.92 %,
supported by the VFS model with a mean squared error of
2.60 % and total error range of 15.72 %. The network model
is shown to be suitable for determining the best approach
for implementing two concurrent signal processing tasks on
a target dual-core XS1-L platform.

Structure

The rest of this report is structured as follows. Related work
is presented in Section 2, which looks at energy modelling
of modern embedded processors, multi-core communica-
tion techniques and parallelism in embedded architectures,
and summarises the particular implementations used in
the XS1-L processor. The core- and network-level energy
models are explained in Section 3, then the necessary ISS
changes to support the model are presented in Section 4.
Results from benchmarks exercising various parts of the
model and simulation framework are discussed in Section 5
along with an evaluation of their performance in terms of
accuracy and usability. Finally, Section 6 draws conclusions
from this research and proposes future work.

2 Related work and background

Energy modelling of software is motivated by a need to
reduce global ICT energy consumption as well as to enable
devices such as embedded systems to provide more features
and last longer on limited source of energy. Although
hardware actually consumes energy, it does so at the behest
of software, which can be inefficient if the software does
not fit well to the target hardware, or does not allow the
hardware to exploit its own energy saving features [20].

Multi-core systems have proliferated through ICT, from
servers in datacenters down to smart phones, and now
even deeply embedded systems. Any endeavour to provide
software energy consumption metrics must therefore be
multi-core aware. In the rest of this section we discuss
related work in three background areas. First is multi-core
processors in embedded systems, next is energy modelling
of processors, with a focus on software level energy con-
sumption, and finally we introduce the XS1-L processor,
the particular micro-architecture used as a case study for
this research.

2.1 Parallelism and multi-core embedded
processors

There are various ways of realising parallelism in proces-
sors. In embedded systems, many methods have been used.
VLIW (Very Long Instruction Word) has been used for
some time, particularly in DSPs (Digital Signal Processors),
where instruction packets enable software pipelining to be
parallelised.Multi-core is becoming more prevalent, where it
is beneficial to replicate a core several times and distribute
work between cores. This has become necessary to pro-
vide performance gains as frequency increases have become
harder to realise within practical power budgets [13].

High performance embedded processors, such as those
found in smart phones, can feature multiple cores with
different micro-architectures. ARM’s big.LITTLE is the
seminal example of this, where programs can be scheduled
onto simpler cores when low-energy operation is necessary
or appropriate. The little cores are slower, but can be
operated at a lower voltage and frequency point than their
big counterparts, consuming significantly less energy. In
big.LITTLE, significant effort is put into cache coherency
between the cores, and migrating tasks can require flushing
and copying of core-local caches in order to keep consistent
state.

Smaller processors, such as ARM’s Cortex-M series, can
also be used in multi-core, but the implementation is defined
by the manufacturer. ARM has made recommendations
on how to construct such devices, including cache and
memory arbitration mechanisms [27]. Older generation
ARM9 processors have been assembled in their thousands
in the SpiNNaker system [5].

Rather than connecting processors via a cache hierar-
chy and memory bus, some systems implement a network
of cores. Devices such as the Adapteva Epiphany [1]
and EZChip TILE [4] processors feature many cores in
a Network-on-Chip, with a grid topology of interconnects
between them. In both of these processors there are multi-
ple networks, each serving a unique purpose, such as I/O,
cache coherency and direct inter-tile communication. The
Intel Xeon Phi [12] uses a ring network and a hierarchy of
processors, caches, tag directories and memory controllers
to create a NoC that can also be viewed as a traditional
memory hierarchy. Its use is not in embedded systems, but
rather as a high performance computing accelerator.

The XS1-L processor features no cache hierarchy and
can be assembled into a network of cores where channel
style communication is possible both on- or off-chip. This
is discussed in more detail in Section 2.3.

2.2 Energy modelling of processors

A program’s energy consumption is the integral of a device’s
power dissipation during the course of execution:

E =

∫ T

t=0

P (t) dt, (1)

although this is frequently represented using an average
power, giving E = P × T . To energy model a processor,
P must be estimated over the course of T with sufficient
granularity and precision to provide a desired accuracy. At
the hardware level, detailed transistor or CMOS device
models can be used, and every change in circuit state
simulated to determine a fine-grained power estimation.
This is time consuming and requires access to the RTL
description of a processor, making this form of analysis
infeasible for software developers.

Higher level models can be used instead, such as those
modelling the processor as functional blocks. Instructions
issued by the processor trigger activity in the functional
blocks, and a cost is associated with that, which can be
used to estimate the energy consumption of a sequence of
instructions. At this level, the instructions are an essential
part, as these drive the modelling, but also form a con-
nection to the software — the instruction sequences for a
given architecture are related to the software developer’s

2

program via transformation by a compiler. The ISA there-
fore provides a good level at which to perform analysis of
hardware energy consumption at the behest of software.

Seminal work in ISA level energy modelling includes
that of Tiwari et al. [26], where sequences of instructions
are assigned costs, as well as the transitions between in-
structions, which causes circuit switching as new control
paths are enabled. This work has been drawn up upon to
enable energy consumption simulation frameworks such as
Wattch [3] and SimPanalyzer [24]. This style of ISA level
modelling has also been refined to include finer grained
detail on the activity along the processor data path, where
data value changes also influence energy consumption [25].

Energy modelling has been performed for a wide variety
of processors with various micro-architectural character-
istics, for example VLIW DSP devices [10], both simple
and high performance ARM variants, as well as very large
processors such modern server grade x86 devices [8] and
the 61 core Xeon Phi [23]. These all draw from similar
background, but account for different processor features,
and obtain their model data from different sources. For
example, high performance ARM and x86 models can use
hardware performance counters to model activities such
as cache misses, which have a significant impact on en-
ergy consumption. Simpler devices may not be so affected,
and thus direct instruction level costs can be attributed.
Parametrised energy models that consider properties such
as operating frequency and voltage have been created for
other processors, such as the Intel Xeon in [2], to inform
a model predictive controller in order to smooth thermal
hotspots in such dense multi core devices.

A single core model of the XMOS XS1-L architecture is
presented in [15], which uses data from a series of instruc-
tion energy profiling tests in order to build the model. The
architecture’s hardware multi-threading is accounted for,
with the level of parallelism (active threads) contributing
to energy consumption during the course of the analysed
program. This model has been applied using instruction set
simulation, and also via static analysis at the ISA level [7,
16] as well as the LLVM IR level [6].

2.3 The XS1-L processor and network

The XS1-L family is a group of processors implementing the
XMOS XS1 ISA in a 65 nm process technology, featuring
a configurable network upon which arbitrary topologies of
interconnected processors can be built. Each core has a
four stage pipeline and support for up to eight hardware
scheduled threads. A thread can have no more than one
instruction in the pipeline at any given time, therefore
the XS1-L parallelism is only fully utilised if four or more
threads are active.

These processors include 64 KiB of single cycle SRAM
and have no cache, therefore the memory subsystem is
flat and requires no special considerations with respect
to timing. The majority of instructions complete in four
clock cycles, with the exception of the divide and remainder
instructions and any instructions that block on some form
of I/O. If more than four threads are active, then the
instruction issue rate per thread will reduce proportionally,
but the instruction throughput of the processor remains
the same. This makes timing analysis of the processor very

Thr ead 0

Node swi t ch
I D: 0x0000

Thr ead 4 Thr ead 1

Channel end 0x07
I D: 0x00010702
Dst : 0x00000202

Node swi t ch
(SSwi t ch)

I D: 0x0001

Channel end 0x00
I D: 0x00000002
Dst : 0x00000102

Channel end 0x01
I D: 0x00000102
Dst : 0x00000002

Channel end 0x02
I D: 0x00000202
Dst : 0x00010702

Cor e 0 Cor e 1

Figure 1: Visualisation of channel based communication
between threads both locally and between cores.

predictable, allowing tight bounds or even exact values to
be produced.

The XS1 instruction set includes provisions for resource
operations. These are interactions with peripheral devices,
such as I/O ports, synchronisers and communication chan-
nel endpoints (chanends). As such, activities such as I/O
are a first class member of the instruction set. Other in-
struction sets, such as x86, have similar provisions [11,
pp.115,176]. However, the XS1 architecture takes this fur-
ther, and places these peripherals outside of the memory
space, such that I/O and other resource operations are not
translated into memory mapped reads and writes, but are
instead a completely separate data path. This separation of
memory and resources aids in the modelling processor, par-
ticularly when communication between threads and cores
is considered.

On a single core, it is possible for threads to communicate
or access common data using shared memory paradigms.
This can be expressed in software through appropriate use
of regular pointers in C, or through specially attributed
pointers in version 2 of the XC language that was devel-
oped to complement XS1. However, CSP style channel
communication is more prevalent in XC. Channels in XC
translate into channel endpoints in the XS1 architecture,
where two chanends are logically connected together. Com-
munication then takes the form of in and out instructions.
Control tokens can be used to provide synchronisation,
and instructions will block if buffers are full or no data is
available to read. This paradigm extends beyond core-local
communication and out onto a network of cores. Therefore,
concurrent programs can grow to use multiple processors
with relative ease.

A network of XS1-L processors consists of multiple cores
each connected to their own integrated switch. This switch
provides a number of links, which can be connected to other
switches, either on- or off-chip. These links can operate in
either five- or two-wire mode in each direction, where the
former can carry two bits per symbol and the latter one
bit per symbol in an 8b/10b encoding. The five wire mode
is therefore faster at the same frequency, but requires ten
wires total per link. Each link possesses a receive buffer
and credit based flow control is used to prevent overrun.
When a link is first enabled, the sending switch must solicit
credit from the switch at the other end of the link with
a hello token. During normal operation, credit tokens are

3

sent from the receiver to the sender as buffer space becomes
available.

Routing between switches is configurable based on IDs
assigned to each node, where a node is a switch and its
associated core. When a message is first sent from the cha-
nend of a core, the ID of the destination node is prepended
to the message. Receiving switches then compare this ID to
their own. If they are different, the first bit that is different
is used to determine the direction along which the message
will be routed. A direction can be assigned one or more
links, and the next available link in that direction will then
be used for forwarding. Typically, dimension-order routing
is used to create a deadlock avoiding network, but this is
dependent upon the topology network that is physically
assembled. Links are held exclusively by the source cha-
nend either indefinitely, or until a closing control token
is transmitted from the source. Through this approach,
both wormhole routed packets and permanently reserved
streaming routes can be created.

A high level view of threads communicating through
chanends and switches, both locally and between cores is
shown in Figure 1. The precise implementation details and
configuration parameters are detailed in [18, 19]. Examples
of multi-core XS1 implementations include the XMP-64,
which features 64 cores, using the older XS1-G family,
and the Swallow project, which assembles multiple dual-
core XS1-L family processors into a system of hundreds
of cores [9]. These use hypercube and lattice network
topologies, respectively.

3 XS1-L core and network energy model

In this report, the modelling effort of [15] is extended in
several ways. Firstly, more instructions are directly en-
ergy profiled, and for those that cannot, a regression tree
approach is implemented to estimate their energy cost.
Secondly, additional voltage and frequency profiling is per-
formed, using a suitable variant of the XS1-L, to produce a
VFS aware model version, retaining good error bounds. Fi-
nally, network communication costs are considered, through
further profiling, and a network level, communication ware
model produced, integrating core, switch and interconnect
components within the model.

3.1 Regression tree

The prior work of [15] investigated grouping instructions
by operand count in order to provide an energy estimate
for un-profiled instructions, as well as to reduce model
complexity. However, the evaluation showed that this was
not suitably fined grained or sufficiently accurate. Instead,
each profiled instruction is accounted for individually, and
un-profiled instructions are assigned a default value, based
on the observed average of all profiled instructions.

Here, a different approach is used, where a set of instruc-
tion features are used to classify each instruction. This is
combined with the direct instruction profiling data into
a regression tree, allowing un-profiled instructions to re-
ceive an energy estimate based on profiled instructions with
similar features.

X[1] <= 1.5000
mse = 0.0427725968638

samples = 66

X[0] <= 1.5000
mse = 0.0126295939259

samples = 37

X[0] <= 1.5000
mse = 0.00925359829324

samples = 29

X[1] <= 0.5000
mse = 0.002032572944

samples = 10

X[3] <= 8.0000
mse = 1.568636475e-05

samples = 4

X[3] <= 2.0000
mse = 0.000870766658833

samples = 6

mse = 0.0000
samples = 2

value = [0.064438]

mse = 0.0000
samples = 2

value = [0.0609285]

mse = 0.0006
samples = 3

value = [0.078138]

mse = 0.0000
samples = 3

value = [0.09093433]

mse = 0.0080
samples = 15

value = [0.08914941]

X[2] <= 1.5000
mse = 0.0003346462675

samples = 14

mse = 0.0000
samples = 8

value = [0.09690312]

Figure 2: Visualisation of part of the model regression tree.
Leaves provide energy estimations, all other nodes
are decisions based on a particular instruction
feature X[f]. Not all branches are shown; the
full tree is 29 nodes.

Features
Instr. L S D I M R Energy

add 3r 1 2 1 0 0 0 185 mW

ldc lru6 2 0 1 10 0 0 160 mW

outct rus 1 1 0 4 0 1 134 mW

Table 1: Input data for regression tree constructor

3.1.1 Tree construction

First, a set of features are identified, which from empirical
data, demonstrate a correlation with energy consumption.
These are specific to the XS1-L processor, although can
be re-defined for other processors in order to re-use the
technique. In the case of the XS1-L, the features are:

L: Instruction length (short or long: 1 or 2).

S: Number of source registers (count: 0–4).

D: Number of destination registers (count: 0–2).

I: Length of immediate operand (num. bits: 4–16).

M: A memory operation is performed (Boolean).

R: A resource operation is performed (Boolean).

The Scikit-Learn DecisionTreeRegressor [21] is used
to build the regression tree. The data is presented as an
matrix of instruction features and a vector of measured
energy for each profiled instruction. From this, a regression
based decision tree is constructed. A sample of the input
data is provided in Table 1.

The regression tree construction library uses floating
point feature parameters. For the given feature set, both
the integer and Boolean features can be converted to their
nearest floating point equivalent without consequence.

4

3.1.2 Tree traversal

A cutting of the regression tree for our energy model is
depicted in Figure 2. When the energy cost of an instruction
must be determined, a check first determines if a direct
energy measurement exists. If so, it can be used within the
model equation. If not, then the instruction’s features are
used to traverse the decision tree. Each feature is indexed
numerically by the DecisionTreeRegressor, and map to
the features in the order we have declared them.

For example, the first decision, at the root of tree, is
dependent upon the number of source operands. Those
with fewer than two (or ≤ 1.5) follow the left branch,
whilst those with two or more follow the right branch. The
instruction length is considered next. However, descending
into the tree further, the feature selection that minimises
the mean squared error (mse), will differ depending on
the instruction and the collected energy data. This makes
the decision tree more versatile than a flat ordinary least
squares regression. For example, there are no instructions
with four source operands that use memory, therefore X[4]
or feature M has no influence upon such instructions. The
tree is also unbalanced; some branches reach leaves in fewer
levels, due to no variation in features beyond a certain
decision point.

The accuracy of this approach is tested and evaluated in
Section 5, where a reduction in both error and variance is
shown when compared to the previous model.

3.2 VFS modelling

The XS1-L series of processors can dynamically adjust their
core clock frequency when idle, and some devices support
variable voltage. The low speed of voltage adjustment
makes dynamic voltage and frequency scaling (DVFS) im-
practical for most of the real-time embedded tasks targeted
to the XS1-L. However, it is still possible to statically select
a best voltage and frequency for a given set of tasks, and so
there is motivation to provide an energy model can support
this exploration in order to determine what savings can be
made.

An XMOS SLICEKIT-A16 is used for VFS profiling, a
board containing an XS1-A16 processor. The A16 contains
two XS1-L family processor cores, as well as an analogue
component block containing components such as ADCs
and most importantly configurable DC-DC power supplies,
one of which services the cores. The SLICEKIT-A16 board
provides two shunt resistors for power sensing, one for the
3.3 V I/O used by the chip and one for the 3.3 V supply
fed to the on-chip voltage regulators. Measurements are
performed with a MAGEEC power measurement board [17],
which provides 2 MSPS at 12-bit resolution with a noise
floor at approximately 0.1 % of measured power in our test
setup, depending on the current supplied. The measure-
ment setup and power supply structure is different to that
used in [15], so the power supplies must be considered in
the new model.

3.2.1 Profiling method

VFS profiling is performed by a series of tests both at idle
and high power, where each test is performed at different
voltage and frequency operating points. Three configurable
parameters are exercised:

0 100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

0.6

Po
w

er
(W

)

0.85 V
Mode, PLL freq (MHz)

Idle, 300
Idle, 400
Idle, 500

Hot, 300
Hot, 400
Hot, 500

0 100 200 300 400 500

1.00 V

Core frequency (MHz)

Figure 3: Power measurements at two voltage points for
idle and high power tests over a range of system
frequencies and dividers.

System frequency The frequency produced by the PLL,
which is integrated into each processor’s switch. This
sets the frequency of the switch and core, each of which
can then be divided further.

Core divider The divider applied to the system frequency
to produce the core frequency. Typically this is zero.
The specified divider can be applied dynamically when
there are no active threads, or permanently.

Core voltage The power supply to the device’s cores is
configurable in 10 mV steps.

Other parameters, such as the reference clock, can be
also be changed. However, the reference clock is used for
timing ports and other synchronisation activities, thus we
keep it at its default of 100 MHz to prevent unexpected
timing changes in programs. As a result of this, profiling is
limited to system frequencies of 500, 400 and 300 MHz and
a core divider in the range 0–3. Error free operation was
achieved with a core voltage range of 0.85–1.15 V. However,
the vendor only certifies devices for operation at 1.0 V, and
extensive testing at each voltage point was not performed;
they were used purely for VFS characterisation.

3.2.2 VFS profiling data

Figure 3 shows the profiling data for two of the voltage
points that were tested. Each plot shows six series; three
for idle tests and three for high power tests, each at one of
three system frequencies. Points along the x axis determine
the core frequency after the divider is applied.

The 100 MHz operating point is achieved twice during
tests, with F = 400

4
and F = 300

3
. From this we see

that there is an overhead in having a higher system clock,
regardless of the resultant core clock. This is intuitive,
as there is still some part of the system operating at the
higher frequency.

3.2.3 Energy model

To produce a VFS capable energy model, we incorporate
the configurable parameters defined in Section 3.2.1 into a
suitably modified model equation. Curve fitting is used to

5

determine the contribution that these parameters have to
the equation.

SciPy ’s Nelder-Mead method [22] is used to minimize
the error of the function Equation (2) against the idle
test profile data collected, for the following parameters.
Cpll is the characteristic capacitance present at the system
frequency (or PLL frequency). Cidle is the characteristic
capacitance in the core at idle. Ileak is the static leakage
current. Finally, Iext captures other effects parametric to
the supply voltage and scaled by the power dissipated in
the device, approximating power supply efficiency.

F = (V 2CpllFpll + V 2CidleFcore + V Ileak) × V Iext (2)

The resultant parameters are:

Cpll = 675 × 10−12, Cidle = 1.68 × 10−9

Ileak = 334 × 10−3, Iext = 106 × 10−3. (3)

A parameter is also determined for the high-power tests,
Chot = 2.15 × 10−9, although it is used only for validation,
and not in the final energy model. Testing these parameters
against the profiling data, a mean squared error of 2.60 % is
achieved. The minimum error is −3.58 % and the maximum
12.14 %, giving a full error range of 15.72 %.

These parameters are then used in a modified version of
the instruction level energy model from [15]. This yields
Equation (4) as the new model:

Einstr = (V 2CpllFpll

+ V 2Fcore(Cidle + Cinstr)MNpipeO

+ V Ileak) × V Iext × 4Tclk (4)

where Mpipe = min(4, Nt).

This captures the previous components of the model, plus
the frequency and voltage dependent parameters. Npipe

is the number of threads present in the pipeline when the
instruction’s energy is measured, which is the minimum
of 4 and the number of active threads. This is used select
a scaling factor due to parallelism, M . An average inter-
instruction overhead, O, is also included, as per the original
model.

The remainder of this report focuses more on network
aware energy modelling, rather than VFS design space
exploration. Future work could include exercising the VFS
aspect of the energy model more heavily, and so is included
here for the benefit of such endeavours.

3.3 Network modelling

A system level model of a network of XS1-L processors is
comprised of multiple core model instances, as well addi-
tional modelling components to capture network switch
and link activity. The core model requires either simulated
instruction sequences or appropriately parametrised static
analysis. A system level model must support the interac-
tion between multiple cores. The implementation details
of this at a simulation level, are covered in Section 4.

3.3.1 Parameters

Communication costs must be accounted for in three sys-
tem components. Firstly, the core, where the in and out

instructions are executed. These are already captured in

the core energy model. Second is the switch, which con-
sumes energy as it routes tokens through it. Finally, the
interconnects over which tokens are transmitted must be
considered.

Switch energy consumption data is acquired from profil-
ing of the larger Swallow XS1-L system [14, p. 124]. Link
energy for the SLICEKIT-A16 is determined from direct
profiling. These are shown in terms of Joules per token in
Equation (5).

Eswitch = 70.8 × 10−12 J, Elink = 221 × 10−12 J (5)

Currently, these are fixed values. However, it is possible
to parametrise these by link length (where longer wiring
has a higher capacitance), as well as by switch frequency
and voltage. This may form future work, joining well with
the proposed further work on VFS modelling.

3.3.2 Construction

The network level model is constructed using the NetworkX

library for Python, which allows networks with nodes and
edges that have arbitrary attributes. The XML file used by
the developer or vendor to describe an XMOS based system
(the XN file), is read by the energy modelling framework
and used to construct a graph of the system’s cores, switches
and links.

When a simulation trace is analysed by the modelling
tool, energy is incremented in each graph node or edge
as appropriate. Instructions increase the core energy of
the relevant core, whilst token traces increase the source
switch and traversed link energy. For this trace analysis to
account for network activity, the trace must include network
activity that identifies tokens traversing links. This change
was made to axe as part of the modifications described in
Section 4.

At the end of the modelling run, this data can be ag-
gregated into a text report, broken down by core, or as a
visualisation. These will be shown in Section 5.

4 ISS network and timing implementation

XS1-L energy modelling has been demonstrated using statis-
tics from instruction set simulation as well as various levels
of static analysis. Using full instruction set simulation
traces provide more detail, at the cost of simulation time.
However, by improving analysis of traces to complete once
a function or section of interest has completed, simulation
time can be kept low. The same triggering methods used
by the hardware measurement, can easily be used to define
sections of interest by identifying the relevant I/O resource
instructions in a trace. This means single iterations of func-
tions or algorithms can be observed by modelling, where
repeated iterations are required for physical measurement.
The slowdown of simulation is mitigated to some degree
by this. This is mitigated further by the use of axe, an
open source XS1 simulator that is faster than its closed
source xsim counterpart, although it can be less accurate.
A number of axe enhancements are detailed in this section
that improve its accuracy, whilst preserving some of its
performance advantage.

6

Enabling full trace simulation allows better debugging
of the energy model, as well as the opportunity to more
closely scrutinise where energy is being consumed. To that
end, this work focuses on full traces. However, the models
underpinning this work can be adapted for use at other
levels of abstraction, as with previous model versions.

4.1 Instruction scheduling

The modified version of axe enforces strict instruction
scheduling, where each active thread may only issue one
instruction before the next queued thread is given an op-
portunity. The timestamps of subsequent instructions in a
thread are incremented by min(4, Nt), to reflect the four-
stage, hazard free pipeline.

This more closely follows the micro-architecture, whereas
the original axe implementation may issue multiple instruc-
tions from one active thread even when another thread is
also in an active state. This also ensures that the times-
tamps in instruction traces are ordered, greatly simplifying
the process of determining pipeline occupation during en-
ergy modelling.

4.2 FNOP simulation

In addition to instruction scheduling changes, occurrences
of fetch no-ops (FNOPs) are also recorded in the modified
simulator. A simple model of the processor’s instruction
buffers is used to determine when a thread must stall in
order to fetch the next instruction word. The conditions
leading to an FNOP include:

• Sequences of memory operations in a thread, preventing
any instructions being fetched for that thread during the
memory stage of the pipeline.

• Branching to an unaligned 4-byte instruction, where only
the first half of the instruction is fetched during the
memory stage of the branch instruction.

Many FNOPs can be avoided by re-scheduling long instruc-
tions and memory instructions amongst short, non-memory
instructions, as well as word aligning entry points to loops
where the first instruction is long. However, the compiler
does not currently do all of these automatically. The impact
of FNOPs can be significant if they are present in tight loops,
increasing execution time and therefore energy. Thus, is it
important to correctly simulate this behaviour for accurate
energy modelling.

4.3 Switch and link control flow

Both the axe and xsim XS1-L instruction set simulators
support channel communication in multi-core programs.
However, even with accurate core-local instruction schedul-
ing, neither include accurate simulation of network be-
haviour. At a functional level, link utilisation and route
reservation are simulated, such that protocol violations
can be detected and appropriate exceptions raised, as well
as some degree of performance limiting due to route con-
tention. However, multi-core message tokens are transmit-
ted in zero time. This can create significant timing error
when simulating communicating multi-core programs.

To address this, we have added a model of the link
control flow mechanisms from XS1-L into axe’s switch, link

Recorded time (µs) Error (%)
Test HW xsim axe xsim axe

One core 2.270 1.118 2.272 -50.75 0.09

Two core 8.300 2.150 8.287 -74.10 -0.16

Table 2: 1024-word message timing, comparing dual-core
hardware to xsim and modified axe simulators.

Compilation

System
description

Compilation

Sources

XE binary Simulation
JSON
trace Modelling

Libraries

Energy
report

Energy
model

Modelling
parameters

Network
view

Simulation & modelling Inspection

Figure 4: Energy aware multi-core software development
workflow.

and channel end code. Control tokens such as HELLO and
the initial CREDIT issue [19, pp. 10–13] are now handled
rather than ignored. Symbol and token delays on links,
as specified in the XN platform description file at compile
time, are also obeyed. This ensures that messages traverse
the network in a realistic time-scale, and that as buffers
fill, network throughput is throttled.

The current changes are not completely faithful to the
hardware, but yield a significant improvement on the pre-
vious simulation capabilities. This is evident in Table 2,
which compares a 1024-word transfer between two channel
ends on a SLICEKIT-A16 in both core-local and dual-core
variants, with respect to the actual hardware timing, xsim
simulation and the modified axe simulation. The error in
xsim exceeds 50 % in both cases, whereas axe achieves less
than 0.2 %. Over a broader range of similar tests, with dif-
ferent message lengths and producer/consume rates, axe is
able to maintain an average error of 0.80 % with a standard
deviation of 1.26 %.

To aid modelling, switch and link activity are added
to axe simulation traces. These resemble the switch
tracing present in the vendor’s xsim simulator with the
--tracing-switch parameter set, but are in a JSON format
that is more readily consumable by the energy modelling
framework.

5 Benchmarking and evaluation

This evaluation considers enhancements to the core model
as well as the multi-core communication model. However,
VFS modelling, as discussed in Section 3.2, remains for
future work, due to the current instruction set simulation
framework not supporting configurable operating frequen-
cies and clock dividers without significant further develop-
ment. This does not exclude the VFS model from use in
other forms of non-simulation based analysis, however.

5.1 Core benchmarks

The extended core energy model is evaluated using the
same benchmark suite as the original model in [15] and on
the same single core XS1-L hardware. This provides direct

7

−30 −25 −20 −15 −10 −5 0 5 10

Error (percent)

4T mat-mul

4T arr-mul

4T sca-add

4T mix

6T mix

2T SHA2

1T LZWK

1T Dhry

2T Dhry

2T mix alt

1t idle

Grouped model Instruction model Regression tree model

Figure 5: Error of previous (grouped, instruction) models
versus new (regression tree) model.

Model version Error (%) Std. dev. (%)

Grouped −16.42 6.91

Instruction −7.23 7.45

Regression tree 2.67 4.40

Table 3: Geometric mean model error and standard devia-
tion of the tested energy models.

comparison between the accuracy of both model versions
with respect to the target hardware. The benchmarks used
include the system at idle, various audio sample mixing
variants, operating on multiple independent streams with
various levels of concurrency, one and two concurrent Dhry-
stone instances, as well as multi-threaded parallel matrix
operations. They are explained in more detail in [15, pp.
20–21].

Figure 5 shows the model error for each benchmark with
respect to the hardware measured energy consumption.
The regression tree model performs better than both of
the previous model versions in the majority of benchmarks.
Where the original instruction model out-performs the
regression tree model, the difference is approximately a
single percentage point of error. The average and standard
deviation of the errors is summarised in Table 3, where it
is evident that the regression tree model improves overall
accuracy whilst reducing variance and the overall range of
error across benchmarks.

5.2 Multi-core benchmarks

To test the multi-core model, suitable benchmarks must
be used. Those used to test the core model do not lend
themselves to multi-core deployment, due to their structure
and limited, if any, use of channel communication. Instead,
two new applications are used for multi-core benchmarking.
These are a Finite Impulse Reponse filter (FIR), and the
Infinite Impulse Response (IIR) Biquad filter, which will
be referred to fir and biq respectively.

Both of these benchmarks are used for applying signal
processing, in this case to streams of audio samples. This is

Biq 1C Biq 2C Biq B2C Fir 1C Fir 2C
−10
−8
−6
−4
−2

0
2
4
6
8

E
rr

or
vs

.h
ar

dw
ar

e
(%

) Energy model and simulation time errors

Time
Energy

Figure 6: Time and energy errors for fir and biq bench-
marks in single (1C) dual core (2C) and for biq,
bad dual core (B2C) configurations.

Property G. mean (%) Std. dev. (%)

Time 3.10 2.16

Energy -4.92 3.92

Table 4: Geometric mean and standard deviation of timing
simulation and energy model errors for all biq and
fir benchmarks.

a typical application area for the target processor, and so a
good benchmark selection. Both benchmarks feature multi-
ple stages, fir implementing seven taps and biq featuring
seven individual biquads.

The concurrent implementation of these applications
represent each stage as a thread, with the progressively
filtered samples passed over channels between threads.
The seven threads can be allocated onto a single core
the SLICEKIT-A16, or distributed across the device’s two
cores. We test both 7 : 0 and 4 : 3 thread distributions
between the two cores, giving consideration to the fact
that both thread and processor instruction throughput are
optimal when a core has four active threads. We also im-
plement a poorly allocated version of biq where threads
communicate between cores sub-optimally.

In Figure 6 the energy and timing errors for the bench-
marks are presented. We observe that in all cases, the
simulation over-estimates execution time, but by less than
7 %. the energy model under predicts in the majority of
cases, but remains within a 10 % error margin.

The overall results are summarised in Table 4, which
demonstrates single-digit percentage mean and standard de-
viations for the errors. Note that the timing over-prediction
counteracts the energy model under-prediction. Improving
one in isolation may in fact reduce the visible accuracy of
the process overall. It is therefore essential to examine the
multiple dimensions of error that are present, in order to
direct effort appropriately.

Figure 7 shows a visualisation of energy consumption in
the cores, switces and interconnect of the SLICEKIT-A16.
Cores are annotated with the modelled energy consumption,
and switches show their energy consumption as well as the
aggregated energy consumed on outbound links. Links
are also coloured by energy. The colouring of the graphs
has been scaled to be directly comparable. Hot/cold are
represented as pink/blue for switches and green/red for
cores. Links turn orange as they consume more energy.
Only links between switches are energy modelled, as the

8

1
0x8005

 33.13e-6 J

0_sw
0x8004

0 J

1_sw
0x8005

0 J

0
0x8004

 47.56e-6 J

(a) Single-core

1
0x8005

 26.66e-6 J

0_sw
0x8004

224.88e-9 J

1_sw
0x8005

292.43e-12 J

0
0x8004

 27.58e-6 J

(b) Dual-core

1
0x8005

 26.71e-6 J

0_sw
0x8004

450.05e-9 J

1_sw
0x8005

225.46e-9 J

0
0x8004

 27.66e-6 J

(c) Dual-core with poorly allocated threads

Figure 7: Network level energy consumption visualisations
the biq benchmark.

core to switch links are captured implicitly within the core
model.

Although visualisation is a less precise representation,
it does allow for comparison and inspection in order to
determine where energy is consumed. From these examples,
we see that the single core implementation in fig. 7(a) is the
least efficient, taking more energy on the active core, and
resulting in significant energy consumption from leakage in
the otherwise idle core. In fig. 7(b), the benchmark com-
pletes quicker and work is distributed, so the cores consume
less total energy. The communication cost is insignificant
in comparison; some three orders of magnitude less. Fi-
nally, fig. 7(c) is again dual core, but allocates the soft-
ware pipeline stages poorly, resulting in three times more
core-to-core communication. The cores consume slightly
more energy due to a marginally longer run-time, and the
network cost is three times higher. Not only does this
demonstrate the desirability of distributing the workload
across the available cores, it also demonstrates that energy
inefficiency can be introduced with minimal timing impact,
where communication latency may be hidden.

6 Conclusions and future work

In this work, a single core, multi-threaded energy model is
presented with an average error of less than 5 %. This is en-
abled through both instruction set simulator enhancements
and a regression tree approach to modelling instructions
that cannot be directly energy profiled.

A multi-core model is then described and tested, again
supported by instruction set simulation enhancements. The
timing error of the simulator is shown to be within 7 % and
the energy estimation error within −10 % for two multi-core
audio filtering benchmarks, with average errors of 3.10 %
and −4.92 % respectively.

This combination of tools and the demonstrated workflow
allows for multi-threaded, multi-core software design space
exploration, in order to establish which software definable

properties, such as thread allocation and communication
patterns, impact the energy consumption of a target device.

A voltage and frequency scaling adaptation of the core
energy model is also presented, with a mean squared error
of 2.6 %. In future work, we propose that the axe simu-
lation tool can be further improved to support frequency
selection, allowing instruction set simulation, VFS-aware
energy modelling, and thus design exploration including
VFS parameters.

Additional opportunities for future work include incor-
porating these new models into static analysis techniques.
Some static analysis techniques have been demonstrated
against prior work on multi-threaded energy models [16, 7,
6], and so there is a strong case for extending such work to
the multi-core level. Simulation based modelling could also
be further extended by examining larger systems, such as
the many-core Swallow system [9], which assembles poten-
tially hundreds of XS1-L processors into a compute grid.
However, appropriately sized benchmark applications, or
compositions of smaller related tasks, would need to be
identified , adapted or developed in order to exercise the
model and such a system in an appropriate context.

References

[1] Adapteva. Ephiphany Introduction. 2015. url: http :
/ / www . adapteva . com / introduction/ (visited on
03/30/2015).

[2] A. Bartolini et al. “A Distributed and Self-Calibrating
Model-Predictive Controller for Energy and Thermal man-
agement of High-Performance Multicores”. In: Energy
(2011).

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations. May 2000. doi: 10.1145/342001.339657.
url: http : / / portal . acm . org / citation . cfm ? doid =
342001.339657.

[4] EZChip Semicondutor. TILE-Gx72 Processor. Tech. rep.
2009, pp. 1–2.

[5] S Furber et al. “Overview of the SpiNNaker System Ar-
chitecture”. In: IEEE Transactions on Computers 62.12
(2013), pp. 2454–2467. url: http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=6226357.

[6] K. Georgiou, S. Kerrison, and K. Eder. A Multi-level
Worst Case Energy Consumption Static Analysis for Sin-
gle and Multi-threaded Embedded Programs. Tech. rep.
University of Bristol, 2014. url: http://www.cs.bris.ac.
uk/Publications/pub_master.jsp?id=2001701.

[7] N. Grech et al. “Static analysis of energy consumption
for LLVM IR programs”. In: Proceedings of the 18th In-
ternational Workshop on Software and Compilers for
Embedded Systems. SCOPES ’15. Sankt Goar, Germany:
ACM, 2015. doi: 10.1145/2764967.2764974.

[8] W. Heirman et al. “Power-aware multi-core simulation for
early design stage hardware/software co-optimization”.
In: Proceedings of the 21st international conferencge hard-
ware/software co-optimizatione on Parallel architectures
and compilation techniques - PACT ’12. New York, New
York, USA: ACM Press, 2012, p. 3. isbn: 9781450311823.
doi: 10.1145/2370816.2370820. url: http://dl.acm.
org/citation.cfm?doid=2370816.2370820.

[9] S. J. Hollis and S. Kerrison. “Overview of Swallow - A
Scalable 480-core System for Investigating the Perfor-
mance and Energy Efficiency of Many-core Applications
and Operating Systems”. In: arXiv (2015). url: http:
//arxiv.org/abs/1504.06357.

9

[10] M. Ibrahim, M. Rupp, and S. Habib. Power consumption
model at functional level for VLIW digital signal pro-
cessors. Tech. rep. 1. 2008, pp. 2–7. url: http://www.
researchgate . net / publication / 228947933 \ _Power \
_consumption \ _model \ _at \ _functional \ _level \
_for \ _VLIW \ _digital \ _signal \ _processors / file /
e0b49521c2bc72bd43.pdf.

[11] Intel Corporation. Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Combined Volumes. December.
2011, p. 3463.

[12] Intel Corporation. Intel Xeon Phi Coprocessor. Tech. rep.
2013.

[13] A. B. Kahng. “The ITRS design technology and sys-
tem drivers roadmap”. In: Proceedings of the 50th An-
nual Design Automation Conference on - DAC ’13. New
York, New York, USA: ACM Press, 2013, p. 1. isbn:
9781450320719. doi: 10 . 1145 / 2463209 . 2488776. url:
http : / / dl . acm . org / citation . cfm ? doid = 2463209 .
2488776.

[14] S. Kerrison. “Energy modelling of multi-threaded, multi-
core software for embedded systems”. PhD thesis. Univer-
sity of Bristol, Dept. of Computer Science, 2015.

[15] S. Kerrison and K. Eder. “Energy Modeling of Software for
a Hardware Multithreaded Embedded Microprocessor”. In:
ACM Transactions on Embedded Computing Systems 14.3
(Apr. 2015), 56:1–56:25. issn: 1539-9087. doi: 10.1145/
2700104. url: http://doi.acm.org/10.1145/2700104.

[16] U. Liqat et al. “Energy Consumption Analysis of Programs
based on XMOS ISA-Level Models”. In: 23rd Interna-
tional Symposium on Logic-Based Program Synthesis and
Transformation (LOPSTR’13). Springer, Sept. 2015.

[17] MAGEEC Project. MAGEEC Power Measurement Board.
2014. url: http : / / mageec . org / wiki / Power _
Measurement_Board (visited on 07/04/2015).

[18] D. May. The XMOS XS1 Architecture. 2009. isbn:
9781907361012.

[19] D. May et al. XS1-L System Specification. 2008.

[20] K. Roy and M. C. Johnson. “Software design for low
power”. In: Low power design in deep submicron electron-
ics. Kluwer Academic Publishers, 1997. Chap. 6, pp. 433–
460. isbn: 0-7923-4569-X. url: http://dl.acm.org/
citation.cfm?id=265902.

[21] Scikit-Learn. Scikit-Learn Decision Trees. 2015. url: http:
//scikit-learn.org/stable/modules/tree.html (vis-
ited on 03/18/2015).

[22] SciPy. scipy.optimize.minimize — SciPy v0.15.1 Refer-
ence Guide. 2015. url: http://docs.scipy.org/doc/
scipy-0.15.1/reference/generated/scipy.optimize.
minimize.html (visited on 08/12/2015).

[23] Y. S. Shao and D. Brooks. “Energy characterization and
instruction-level energy model of Intel’s Xeon Phi proces-
sor”. In: International Symposium on Low Power Elec-
tronics and Design (ISLPED). November. IEEE, Sept.
2013, pp. 389–394. isbn: 978-1-4799-1235-3. doi: 10.1109/
ISLPED.2013.6629328. url: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=6629328.

[24] Sim-Panalyser. Sim-Panalyser 2.0 Reference Manual.
2004, pp. 1–54.

[25] S. Steinke et al. “An accurate and fine grain instruction-
level energy model supporting software optimizations”.
In: Proc. of PATMOS. Citeseer, 2001. doi: 10.1.1.115.
3528. url: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.21.6971\&rep=rep1\&type=pdf.

[26] V. Tiwari, S. Malik, and A. Wolfe. “Compilation tech-
niques for low energy: An overview”. In: Low Power Elec-
tronics, 1994. Digest of Technical Papers., IEEE Sym-
posium. IEEE, 1994, pp. 38–39. isbn: 0780319532. url:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=573195.

[27] J. Yiu and I. Johnson. Multi-core microcontroller design
with Cortex-M processors and CoreSight SoC. Tech. rep.
ARM, 2013.

10

Attachment D2.3.2

Data dependent energy modelling: A

worst case perspective

In draft, awaiting submission.

39

Data dependent energy modelling:
A worst case perspective

James Pallister, Steve Kerrison, Jeremy Morse and Kerstin Eder
Dept. Computer Science, Merchant Venturers Building,

Bristol, BS8 1UB. Email: firstname.lastname@bristol.ac.uk

Abstract—Energy consumption of the software running on a
device has become increasingly important as a growing number
of devices rely on batteries or other limited sources of power.
Of particular interest is constructing a bounded measure of the
energy consumption — the maximum energy a program could
consume for any input given to it.

We explore the effect of different data on the energy con-
sumption of individual instructions, instruction sequences and
full programs. The whole program energy consumption of two
benchmarks is analysed over random and hand-crafted data, and
maximized with genetic algorithms for two embedded processors.
We find that the worst case can be predicted from the distribution
created by the random data, however, hand-crafted data can often
achieve lower energy consumption.

A model is constructed that allows the worst case energy for
a sequence of instructions to be predicted. This is based on the
observation that the transition between instructions is important
and thus is not a single energy cost — it is a distribution
dependent on the input and output values of the two consecutive
instructions. We characterise the transition distributions for
several instructions in the AVR instruction set, and show that
this gives a useful upper bound on the energy consumption. We
explore the effect that the transfer function of the instruction has
on the data, and give an example which leads to a bimodal energy
distribution. Finally, we conclude that a probabilistic approach is
appropriate for estimating the energy consumption of programs.

I. INTRODUCTION
The energy consumption of our embedded devices is

becoming ever more important to characterize and account
for, since battery capacity has not increased along with our
energy needs. To combat this, many methods of reducing energy
consumption have been proposed, both in hardware and in
software. Fundamentally, the software controls the hardware,
thus any technique implemented in hardware must also be
complemented with software support. It is all too easy for
the software to ignore hardware optimizations, negating any
beneficial impact. As such, it is important to enable the software
to make effective use of the hardware to minimize energy.

Energy modelling is a technique which allows the energy
consumption of software to be estimated without measuring a
physical device. For example, a model may take the form of
assigning an energy value to each instruction [1], an energy
value to each state the processor [2], or a detailed approach
utilising a large amount of the processor’s state, including
data for each instruction [3]. Although taking measurements
is typically superior to using an energy model in terms of
accuracy, a model is much more versatile and can be used
in many more situations, such as statically predicting energy
consumption [4] and making optimization decisions to reduce
energy consumption [5].

0 16 32 48 64 80 96 112128144160176192208224240256
Operand 2

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

256

O
p

er
an

d
1

18.3

18.6

18.9

19.2

19.5

19.8

20.1

20.4

20.7

P
ow

er
(m

W
)

Fig. 1: A heat map showing how data affects the energy
consumed by a mul instruction.

In real-time embedded systems, the execution time of a
program must be bounded. This can provide guarantees that
tasks within a program will meet hard deadlines. Recently,
efforts have been made to ensure the energy consumption can
also be given an upper bound, with the intent of guaranteeing
that a task will complete within an available energy budget.
However, these efforts are often based upon energy models
that do not explicitly consider the dynamic power drawn by
switching of data, instead estimating an upper bound using
either average or otherwise scaled instruction models.

The change in energy consumption caused by different data
can have a significant impact on the overall energy consumption
of a program. Previous work [6] has reported up to 20%
difference in energy consumption with different data being
operated on. This work finds 15% energy difference in a simple
AVR [7] processor. As an example of the variability within an
instruction, Figure 1 shows the difference in power for a single
cycle, 8-bit multiply instruction in this processor1, where the
worst case input for this instruction is 15% higher than the
most energy efficient input. The diagram was constructed by
taking measurements for every possible input, which was only
feasible due to the processor being 8-bit.

Accounting for data dependent effects in an energy model
is a challenging task, which we split into two parts. Firstly, the
energy effect of applying an instruction to the processor state
needs to be modelled. This is an infeasible amount of data

1All measurements in this paper are taken on physical hardware.

ar
X

iv
:1

50
5.

03
37

4v
1

 [
cs

.P
F]

 1
3

M
ay

 2
01

5

to exhaustively collect, for instance for a 32-bit architecture
with a three-operand instruction, 296 combinations of data
values are used in the instruction. Secondly, a technique is
required to derive the energy consumption for a sequence
of instructions from such a model. The composition of data
dependent instruction energy models is a particularly difficult
task, as the data causing maximum energy consumption for one
instruction may minimize the cost in a subsequent, dependent
instruction. Finding the greatest cost for such sequences
would require searching for inputs that maxmimize a property
after an arbitary computation, which is an infeasibly large
task. Overapproximating by summing the worst possible data
dependent consumption of each instruction in a sequence,
regardless of whether such a computation can occur, would
lead to a very inaccurate upper bound.

We explore the effect of data on the maximal energy
consumption of programs, and instructions, performing prob-
abilistic analysis on the distributions of energy consumption
obtained. The data’s effect on the entire program is explored
with random data, a genetic algorithm, and carefully crafted
data, finding that random data can form a distribution from
which a maximum energy can be estimated. Individual in-
structions are analysed, and several probabilistic modelling
approaches are being explored to accurately determine the
maximum energy consumption of sequences of instructions.
This analysis highlights how correlations between the data
reduce the maximum energy. A degenerate case is discovered,
where the sequence of instructions results in a bimodal energy
distribution.

This paper is organised as follows. The next section
discusses related work. In Section III the effect of data on
two full programs is explored for two different embedded
processors. Section IV examines and models individual and
sequences of instructions in the AVR, including a sequence of
instructions which causes a bimodal distribution. Section VI
concludes and gives an outlook on future work.

II. RELATED WORK
Worst Case Execution Time (WCET) analysis attempts to

find an upper bound on the time taken for an arbitrary program
to execute [8, 9]. A key approach is a method called Implicit
Path Enumeration Technique (IPET) [10], which estimates an
upper bound given information about a program’s control flow
graph. Of recent interest has been work on Worst Case Energy
Consumption (WCEC), utilizing methods from the WCET area,
and combining them with energy modelling techniques to bound
the program’s energy consumption [11]. However in many of
these studies, the energy model used is not tailored for the
worst case, nor is the impact of data on energy consumption
adequately reflected. This can lead to unsafe results.

Much work has gone into creating energy models, so
that the overhead of taking physical measurements can be
avoided. The most common form of model for embedded
systems is an instruction level model. The instruction level
model proposed by Tiwari [12] uses an energy cost for each
instruction, and an energy cost for the circuit switching effect
between each instruction, as well as a final catch-all factor to
cover other effects. The model does not consider data at all,
instead assuming that all of the data dependent effects have
been captured in the other coefficients.

Steinke et al. [3] construct a more detailed energy model that
does consider the effects of data as well as the instructions. The

data energy is based on several variables, both using the Ham-
ming distance between consecutive values and their Hamming
weights. The pertinent variables used in this calculation are the
value in the register, the data and the address of any memory
access. The technique achieved impressive results, with only
1.7% error. However, it is not known if the Hamming distance
between register values is a sufficiently detailed indicator to
capture the full energy behaviour.

Many studies agree that the Hamming distance between
consecutive operand values has a positive correlation with
power dissipation, however, the correlation is only moder-
ate, with many other factors also having an effect. Park et
al. [13] consider how different operand values affect the energy
consumption, using a range of values between 0x0000 and
0xFFFF to ensure that there is a large number of different
Hamming distances between operands. A similar approach,
based on the Hamming weight is used in [14].

Further studies have extensively used the Hamming weight
to account for data energy [15]. The study notes that the
Hamming distance and weight are particularly useful for
subsequent values on buses in the processor, and less useful for
combinatorial instructions, such as arithmetic. Ascia et al. [16]
build upon the approach, exploring how the data transitions
from 0 to 1 and 1 to 0 can be given different energy costs. In
a study of the Leon3 processor [17], taking data into account
was found to reduce the model error when a ‘typical’ number
of switching bits was factored in.

Kojima et al. [18] measure the data’s effect on power for
the adder and the multiplier in a DSP, as well as the register file.
The register file power was found to show linear dependence
on the Hamming weight of the data operand, while the adder
shows moderate correlation with the number of transitions in the
input data (i.e. Hamming distance between successive operands).
However, the multiplier shows very little correlation with the
Hamming distance, except when one of the inputs is held
constant. This backs up the suggestion in [15] that combinatorial
blocks require parameters other than the Hamming distance
and weight.

Similar conclusions have been reached in studies which
attempt to find the maximum power a circuit may trigger [19].
Many studies attempt to maximize the power consumption of a
circuit, using a weighted maximum satisfiability approach [20],
and genetic algorithms [21].

The reachability of a particular state has large implications
for maximum energy consumption. Hsiao et al. [22] use a
genetic algorithm to determine the maximum power per cycle
in VLSI circuits, discovering that the peak power for a single
cycle was higher than the peak sustainable power. This is
due to the state that would be triggering maximum power
dissipation not being reachable from the current circuit state,
and instead the only reachable states dissipate less power.
This reasoning can be applied to processor instructions too
— the data triggering highest energy consumption in one
instruction may be transformed in such a way the the subsequent
instructions cannot consume maximal energy.

Probability theory has also been used to characterize how
circuits dissipate power. Burch et al. [23] take a Monte Carlo
approach, simulating the power of different input patterns to a
circuit. The paper hypothesizes that the distribution of powers
can frequently be approximated by a normal distribution, as
a consequence of the central limit theorem [24]. While the
central portions of the probability distribution fit well to a

20.3 20.4 20.5 20.6 20.7 20.8 20.9 21.0 21.1 21.2

Average power (mW)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000
D

en
si

ty
fdct

G
en

et
ic

m
in

im
u

m
(f

dc
t)

G
en

et
ic

m
ax

im
u

m
(f

dc
t)

P
ro

b
ab

il
is

ti
c

m
ax

im
u

m
(f

dc
t)

matmult

G
en

et
ic

m
in

im
u

m
(m

at
m

u
lt

)

G
en

et
ic

m
ax

im
u

m
(m

at
m

u
lt

)

P
ro

b
ab

il
is

ti
c

m
ax

im
u

m
(m

at
m

u
lt

)

A
V

R

113.0 113.5 114.0 114.5 115.0 115.5 116.0 116.5 117.0 117.5

Average power (mW)

0

10000

20000

30000

40000

50000

60000

D
en

si
ty

fdct

G
en

et
ic

m
in

im
u

m
(f

dc
t)

G
en

et
ic

m
ax

im
u

m
(f

dc
t)

P
ro

b
ab

il
is

ti
c

m
ax

im
u

m
(f

dc
t)

matmult

G
en

et
ic

m
in

im
u

m
(m

at
m

u
lt

)

G
en

et
ic

m
ax

im
u

m
(m

at
m

u
lt

)

P
ro

b
ab

il
is

ti
c

m
ax

im
u

m
(m

at
m

u
lt

)

X
M

O
S

Fig. 2: The distributions obtained for random datasets with the fdct and matmult-int benchmarks, on the AVR and XMOS
processors.

TABLE I: The number of possible datasets for each benchmarks.
Benchmark Elements Size (bits) Total space (bits)

matmult 800 8 6,400
fdct 64 16 1,024

normal distribution, the tails diverge, implying that a different
distribution would be a better fit when maximum power is
of interest. Studies have used extreme value theory to rectify
this issue. The extreme value distribution is of importance
when the maximum of a series of random variables is needed.
This has been applied to maximum power estimation in VLSI
circuits [25, 26], enabling a probabilistic estimate of the
maximum power with only a limited number of simulations.
Probabilistic modelling for power dissipation has also been
performed at high levels [27], with server processors and
network interface cards.

In summary, energy consumption and data dependency has
been considered at the VLSI level using a variety of techniques.
However, there has been little exploration of data dependency
at the instruction or application level for the worst case energy
consumption.

III. WHOLE PROGRAM DATA DEPENDENCE
In this section we examine how a program’s energy

consumption changes as data is being processed, giving a
measure of how much a program’s energy consumption depends
on its data. Programs that have no data dependent branches
are chosen, therefore changes in energy are purely due to
different data progressing through the computational path in
the processor. Having no data dependent branches simplifies the
analysis, since choosing data which takes a different execution
path changes which instructions are executed, which would
skew the average power and energy consumption.

The benchmarks used for this test are fdct and matmult-
int, taken from BEEBS, an embedded benchmark suite [28].
These tests are purely integer, because the target processors
in this work have no hardware floating-point support and soft
floating-point libraries often branch for specific corner cases

during computation. Neither chosen benchmarks have data
dependent branches, thus their execution time is identical even
with different input data.

These benchmarks are run on two distinct architectures,
Atmel AVR and XMOS XS1 [29]. The AVR has an 8-bit
data-path whereas XS1 is 32 bits wide. Additionally, the
XS1 features hardware multi-threading, in this case with a
four-stage pipeline. The specific XS1 device under test is
the single core, eight thread XS1-L1, operating at 400 MHz.
Using single threaded benchmarks, the pipeline is only 25%
utilised. However, the effects of data on these benchmarks is
still measurable. An example of synthetically constructed worst
case data for power in a multi-threaded scenario is given for
the XS1-L1 in [6].

The entire data space of the program cannot be explored
exhaustively. For example, in a 20 by 20 matrix multiplication
of 8-bit integers there are 3, 200 bits of data for each matrix,
which is an infeasibly large space to fully explore. The
following sections apply several search methods for maximizing
a program’s data dependent energy consumption. First, a profile
of the typical energy consumption is built by using random
data. Then, the energy is minimized and maximized using a
genetic algorithm to guide the search. Finally, hand crafted test
patterns are used to trigger different energy consumption.

We fit the Weibull distribution to random data, under the
hypothesis that the switching and hence power dissipation
caused by random data will be close to the maximum. The
distribution can then be examined to estimate an upper bound.
The reversed Weibull distribution is used in extreme value
theory, however, it may underestimate since it has a finite cut-
off point which must be estimated accurately. Empirically, it
is found that the regular Weibull distribution can model the
distributions found (see Figure 4 for a comparison between the
two). The Weibull cumulative probability distribution is given
by,

F (x; k, µ, σ) = 1− e−(
x−µ
σ)

k

. (1)

This is in contrast to the type III extreme value distribution,

the reversed Weibull,

F (x; k, µ, σ) = 1− e−(
−x−µ
σ)

k

, (2)

which is only defined for x up to µ.

A. Random data
Figure 2 shows the average power obtained when the fdct

and matmult-int benchmarks use random data. The red line
shows the Weibull distribution fitted to these data. Overall,
the distributions are narrow, indicating a low variation caused
by the data. The variations for both benchmarks on AVR are
similar, however, each has a different mean, since different
instructions are executed, each with a different average power.

Using the distribution calculated, and the total size of the
input data space, an estimate of the maximum possible average
power can be calculated,

(1− CDF (x)) · S = 1, (3)

where CDF (x) is the cumulative density function of the
probability distribution, and S is the total size of the data
space. Intuitively, this is equivalent to finding the value of the
percentile representing the highest power dataset in the entire
data space.

Fitting these parameters to the distribution parameters for
each of the benchmarks results in an estimation of the maximum
achievable average power for each benchmark. For example
the probabilistic maximums for AVR are,

fdct = 20.64 mW (4)
matmult = 21.20 mW. (5)

These upper bounds are shown by the solid vertical lines
on the graph.

B. Genetic algorithm
The related work showed that genetic algorithms were an

effective technique to finding the maximum power dissipation
for a circuit [22]. Genetic algorithms can also be applied to the
data a program operates on. In this paper, a genetic algorithm
is instantiated that attempts to find a dataset which increases
the energy or power for the entire program.

The results of this are included in Figure 2 as vertical
dotted lines. These data points are slightly higher and lower
than the points found by the random data — the guidance
provided by the genetic algorithm allows both higher and
lower solutions to be found quickly. Since the parameters to
the Weibull distribution were found for each distribution, the
probability of finding a more extreme solution can be calculated,
e.g. for AVR,

P (x > fdctmax) = 6.92× 10−10 (6)
P (x > matmult-intmax) = 1.00× 10−14. (7)

The probability of finding a solution more extreme than
the current ones is very low, provided the assumption of the
distribution being a good fit holds. However, the size of the
data input space is so large that there are many possible states
which may trigger a larger energy consumption.

C. Hand-crafted data
Due to the extremely large number of input states to both

of the benchmarks, there are certain configurations of input
that are never considered by the random search or the genetic
algorithm. This includes data such as every bit set and every
bit cleared, could be important and trigger an unusually high
or low energy consumption.

The types of hand-crafted data fed into each benchmark
are listed below.

All bits zero. All of data values are set to zero.
All bits one. All of the bits in the data values are set.
Strided data. The data element is set to one at various

strides, such as every 2, 4, 8 or 16 bytes.
Strided random data. The data is set to a random value

at various strides, such as every 2, 4, 8 or 16 bytes.
Patterns. Some patterns are known to cause high energy

consumption for particular instructions. For example,
0xaaaaaaaa and 0x55555555 are known to be
power intensive for certain multipliers [6].

Sparse data. Very sparse data, such as only one element
being set to one in various positions is tested.

Restricted bit-width. Setting random values to a re-
stricted portion of the element is tested. The diagram
below shows which bits are set randomly.

PositionNumber of bits

All elements the same. Every element in the data is set
to the same value. A range of values are tested.

Figure 3 shows the average power when all of these hand-
crafted sets of data are measured on each benchmark. There
are many different components of these graphs — each caused
by a different part of the hand-crafted data.

A This mode is around the lowest average power achiev-
able for the matmult benchmark, caused by the all bits
zero data and the sparse data.

B The distribution at B consists of data sets for which
most elements are 1, and few elements are set to zero.
This causes a low average power since the matrix
multiply is most frequently performing 1 × 1 —
an operation which takes little power compared to
multiplying larger numbers (but more than 0× 0).

C There are a spread of points at this location, across
a wide range of power values — these are the other
tests which involve more dense data.

D The highest consumption in the non-sparse tests is
21.04 mW for AVR, and is caused by data which has
the same value in all the elements. The values of the
elements for the top results are 247, 253, 181, 221
and 245 — close to having all bits set. These are the
only tests which significantly exceed the distribution
obtained from random data. For the XS1-L, a larger
proportion of tests dissipate a higher power, visible in
the form of a third peak.

E For the fdct, there are three data points which are far
lower than any other. These are the all zero data, and
two instances of strided data — when the first in every
32 elements is one and all elements are zero. This
is sparse data, however any of the other sparse data
still triggers much higher power. This characteristic is

18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0 20.2 20.4 20.6 20.8 21.0 21.2 21.4

Average power (mW)

0

5

10

15

20

25

D
en

si
ty

A B C D

E F G

A
V

R

matmult

fdct

110.0 110.5 111.0 111.5 112.0 112.5 113.0 113.5 114.0 114.5 115.0 115.5 116.0 116.5 117.0 117.5 118.0

Average power (mW)

0

2

4

6

8

10

D
en

si
ty

A B C D

E

F, G

X
M

O
S

matmult

fdct

Fig. 3: Distribution of average power measured for both benchmarks on both platforms, when run with hand-crafted datasets.

observed on both architectures.
F The majority of tests occur in this bracket, below the

expectation given by random data. Since the AVR is
an 8-bit processor, the 16-bit arithmetic is emulated
with at-least two instructions per operation. Many of
the hand-crafted data sets used zero or close to zero
value data, resulting in the second operation having
zero value and thus lower power. This is not the case
with the XS1-L, giving a possible explanation for the
presence of a single peak in its case.

G These data points tend to be triggered by high data —
the fdct operates on 16-bit data. With high valued data,
the second operation in the emulated arithmetic (for
the upper bits) has non-zero value — corresponding
to a higher average power.

Overall, there is a trend towards higher average power
as the data becomes more random or dense. The distribution
predicted by purely random data is good as an estimation of
the upper bound — very few tests exceeded the limits found
earlier with genetic algorithms, and all were bounded by the
probabilistic highest value. This suggests that the distribution
obtained from random data can be used to estimate a worst
case energy consumption, but not a best case.

Comparing the characteristics observed for each benchmark
on AVR versus XS1-L, the distributions take similar forms for
both matmult and fdct. The XS1-L1 dissipates more power, but
is a more complex device with a higher operating frequency.
However, the separation between the distributions A and B
in matmult are within the same order of magnitude for both
devices, at approximately 25 µW and 65 µW for AVR and XS1-
L1 respectively. Similarly, the widths of the features denoted
F in fdct differs by a comparable amount.

IV. MODELLING
It has been seen that the entire program can be modelled

using the Weibull distribution, however, this is at a very
coarse granularity, and will reduce accuracy with programs that
have data dependent branches. To cope with data dependent
branches, each basic block in the program should have an energy
distribution associated with it. These can then be combined

6.8 7.0 7.2 7.4 7.6 7.8 8.0

Energy (mJ)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
ro

b
ab

il
it

y
d

en
si

ty

Extreme value
distribution fit

Weibull
distribution fit

Test data

Fig. 4: Distribution of energy values for the lsl instruction.

using standard techniques to estimate the worst case, such as
IPET [10]. This section covers the creation of a model that
will output an energy distribution for each basic block.

A simplistic method to generate each basic block’s energy
distribution would be to measure each block in isolation, and
input random data. The energy cost of each block could then be
measured and a distribution built up. However, even for small
programs this is a large amount of work, and the amount of
work scales up as the program size increases. A more tractable
approach is to model each instruction in the basic block and
compose these models. Information about each instruction can
be characterized, and then reused for each basic block, requiring
no further measurements than the initial collection of data for
each instruction.

In most cases, a typical instruction has too many possible
data values to exhaustively explore all of them. The key insight
in this section is that, as with the total energy for a program,
the overall distribution of instruction’s energy consumption
typically conforms to the Weibull distribution.

Initial attempts to model a single instruction distribution
with the Weibull, and the extreme value distribution are
successful, as seen in Figure 4. The distribution was constructed
by repeatedly placing random data into each register the

2 3 4 5 6 7

Energy (mJ)

0.00

0.02

0.04

0.06

0.08

0.10
P

ro
b

ab
il

it
y

d
en

si
ty

lsl

com

Prediction

lsl-com measured

com-lsl measured

Fig. 5: Comparison of prediction energy for the combination
of a com and a lsl instruction with a simplistic model.

instruction operates on, and measuring each test. By convolving
the individual distributions of instructions together, a prediction
of multiple instruction can be constructed. Figure 5 shows the
distributions for the instructions, com (bitwise complement) and
lsl (logical shift left). The dashed curve shows the expected
distribution. The two curves marked in green and orange show
the actual distributions of the energy for each instruction —
one for com, then lsl, and the second for lsl, then com.
These distributions are not similar, and more importantly are
higher than the prediction resulting in an underestimate of the
worst case energy consumption.

The difference in distributions stems from the surrounding
instructions — to evaluate the instructions, the sequence is
prefixed with a mov instruction to set up the values going into
com and lsl. This suggests that the actual switching of data
between the instructions can have a significant impact on not
only the average energy, but the shape of the distribution too.

By using a model based on Tiwari et al. [1], a transition
distribution to represent the data dependent transition between
instructions can be used,

Ep =
∑

i,j∈I
Ei,j (8)

Ei,j ∼ Weibull distribution. (9)

Ep can be calculated by convolving the individual proba-
bility distributions,

fp(x) =
⊗

i,j∈I
f(x; ki,j , µi,j , σi,j). (10)

where µ, σ and k are the parameters into the Weibull probability
density function, f ,

⊗
is the convolution operator, and fp is

the probability density function of the instruction sequence. The
convolution of two Weibull probability density functions is not
known to have an analytical solution, so is solved numerically
for the purposes of this study.

A. Data collection
The collection of transition distributions for each pair of

instructions is particularly challenging. The most simplistic
way to approach this is to repeat a pair of instructions with
specified data, and measure the energy,

add r0, r1, r2
sub r3, r4, r5.

However, after the first repetition r0 and r3 will not exhibit
the same switching as they did in the first iteration — the value
in the register will not change. This means that the values in the
register should be randomised before and after the execution
of the instructions,

mov r0, X
mov r3, Y
add r0, r1, r2
sub r3, r4, r5
...

Emov,mov

Emov,add

Eadd,sub

Esub,mov

where X and Y are independent, uniform random variables.
In addition to X and Y , the registers r1, r2, r4 and r5
are initialised to random values. This ensures that all the
variables that could affect the transition distribution between
two instructions are random. As seen before this should
lead to each transition distribution conforming to the Weibull
distribution. The above test forms the distributions seen to the
right of the instructions.

By adding in the extra instructions to ensure each register
contains a random variable, additional mov instructions are
inserted. These are convolved with the distribution that is of
interest; they must first be found so that they can be removed.

A large number of different values can then be assigned to
all the variables in the sequence, and the energy, Es measured
for each. This forms the following equation which must be
solved to find Eadd,sub,

Es = Emov,mov ⊗ Emov,add ⊗ Eadd,sub ⊗ Esub,mov. (11)

Equation 11 can be solved by first finding the distribution for
Emov,mov , and then finding the distributions for Emov,i, where
i is an instruction from the instruction set. For simplicity it is
assumed that the distribution Ei,j is identical to the distribution
Ej,i. The Emov,mov distribution can be found by finding the
distribution for the following code sequence,

mov r0, X
mov r1, Y
mov r0, Z
mov r1, W
...

Emov,mov(Z,X,W, Y)
Emov,mov(W,Y,X,Z)
Emov,mov(X,Z, Y,W)
Emov,mov(Y,W,Z,X)

The resulting distribution of energy values is Emov,mov

convolved with itself 4 times. Solving for this distribution, and
then using this along with similarly formed tests to find Emov,i

and Emov,j , the transition distribution for any Ei,j can be
found. The above sequence also displays the random variables
that affect the distributions — two for the first mov instruction
(the values in the output and the input registers) and two for
the subsequent mov instruction.

The transition distributions for a subset of the AVR’s
instruction set have been found, and are using in the following
section to predicting distributions for multiple instructions.

B. Instruction sequence tests
Using the transition distributions between consecutive

instructions, a prediction for a sequence of instructions can be
made. Figure 6 shows the predicted distributions for three short
instruction sequences, as marked on the graph. In all cases

25
.0

30
.0

35
.0

40
.0

45
.0

50
.0

55
.0

60
.0

65
.0

Energy (mJ)

0.000

0.005

0.010

0.015

0.020
P

ro
b

ab
il
it

y
d

en
si

ty

inc
lsr
dec
dec
inc
lsr

com
lsl
com
lsl
com
lsl
com
lsl

com
lsl
com
lsl

Independent (prediction)

Independent (measured)

Dependent (measured)

Fig. 6: Comparison of prediction for three instruction sequences, using transition distributions. For the independent tests, each
register in the sequence has an independent value (independent random variables). For the dependent test, each register is r0,
and thus the data value operated on by successive instructions is dependent on the previous instruction.

mov r3, r20
mov r4, r21
mul r3, r4
mov r2, r0
mul r2, r3
mov r4, r0
mul r4, r2
mov r3, r0 R

ep
ea

t
3

tim
es

Fig. 7: Sequence of mov and mul instructions causing a
bimodal distribution. A mul implicitly writes to r0.

the prediction is conservative — the mean of the distribution
is overestimated. This makes it useful as a worst case energy
model, since the 99th percentile can be taken as a probabilistic
estimation of maximum energy (for example).

The figure also demonstrates the case where the values
in the registers are not randomly distributed, and are instead
dependent on the transformations by previous instructions. All
of these distributions have a smaller mean — the correlation
between registers causes a lower energy overall and the worst
case bound holds.

The tests in this section only showed arithmetic instructions.
However, the distributions for load and store instructions are
similar and can be composed similarly. It is expected that
branch instructions will be simple to characterize — while
there are often no direct inputs to a conditional branch, the
state of the control flags influences the direction of the branch.

V. DATA DEPENDENCY BETWEEN INSTRUCTIONS
The previous section mentioned that the effects of the

computation may impact the location of the distribution.
This section presents a case where this occurs when certain
sequences of multiply instructions are used. Figure 7 shows
a sequence of mul and mov instructions, which calculates
a13 · b8, where r2 = a and r1 = b.

The sequence was measured for its energy under different
inputs, and a histogram of these data is shown in Figure 8. The
number of data values causing each energy consumption is on
the y-axis. The distribution has two large peaks, labelled with
two modes in the figure. In this particular example the lower
energy peak is caused by the computation collapsing to a 0

62 64 66 68 70 72 74 76 78 80

Energy (mJ)

0

50

100

150

200

250

300

N
u

m
b

er
of

te
st

s

Mode 1 Mode 2 Prediction

Fig. 8: A histogram showing the distribution of energy values
for all data values when executing a sequence of multiplies.

value. When a 0 is fed into the multiply it is typically very
low energy — and the output is 0, ensuring that in a sequence
of multiplies this will achieve a very low energy.

The higher mode is caused by neither of the inputs to any of
the multiplies being zero, which occurs for every multiply when
both inputs are odd. Overall the higher energy requirements of
this computation cause a separate mode to occur.

The sequence of instructions is unusual in that it may
not typically appear in a program. However, this kind of
behaviour could possibly be triggered by other instructions,
causing particularly high or low energy to occur. The bimodal
behaviour is perhaps more likely to occur when the instruction
itself is bimodal. These instructions are typically comparisons
which output two possible values2, and the results of these
operations are not typically used for computation other than
deciding whether or not to take a branch.

While this type of behaviour will affect the tightness of the
energy’s upper bound, it does not affect its safety, since it is
the upper mode that is captured by the model.

VI. CONCLUSION AND FUTURE WORK
This paper has analysed how the data a processor operates

on affects its energy consumption. Initial analysis for a full
program suggests that using random data to create a Weibull

2Another example is the lss instruction on the XMOS processor, which
places a one or zero in the register, based on the result of a signed less than
comparison.

distribution allows a probabilistic worst case for that program
to be estimated. The probabilistic worst case was higher than
could be found using random data, a genetic algorithm, or
hand-crafted data. The hand-crafted data more often resulted
in an energy consumption that was significantly lower than
expected — these data fed to these tests often caused little
bit-switching, and so took a smaller amount of energy.

While the upper bound of these two benchmarks could
be modelled this way, other programs with data dependent
branches would be much more challenging to model. In
an effort to create a composable analysis, the transition
between each instruction was modelled as a Weibull distribution.
Once each distribution for each pair of instructions has been
characterized, the distributions can be convolved, giving a
probability distribution for a sequence of instructions.

Several instruction sequences were tested, comparing the
predictions to the actual measured distributions. The prediction
is close, and overestimates the energy consumption in all cases,
providing a conservative estimate of the worst case energy
consumption. The prediction assumes that all of the instructions
are independent of effects upon each other, however in a real
program this is not true. The measurements are repeated, for
when the same instruction sequence had dependencies between
instructions, finding that added correlation between the values
always decreased the total energy consumption — the prediction
still provides an upper bound.

The correlation between data values input and output from
instruction can lead to unusual energy behaviour. One sequence
was explored, a series of multiplications and data movement,
which resulted in bimodal energy behaviour across a range
of random data. The bimodal distribution was caused from
some register values ‘collapsing’ to zero partway through the
computation (when at least one input is even), and remaining
at zero due to the multiplication. Since a zero operand causes
much lower than average energy consumption, the tests where
this happens achieve lower energy. In this case of extreme
correlation between data values, the modelling effect will over
predict, but is still a safe upper bound, and these contrived
cases are unlikely to occur frequently in realistic programs.

The next step is to gather these distributions for the entire
instruction set, and combine it with a technique such as implicit
path enumeration, so that larger programs with data dependent
branches can be analysed, and a probabilistic worst case given
to the developer.

Another observation is that programs have differing degrees
of data dependency — some instructions in the program are
purely control overhead, and do not operate on the data input
to the program. A static analysis could find just the instructions
which are in the data path of the program, and an estimate
of the total variability due to data could be constructed from
these instructions which operate on data, and the transition
distributions.

VII. ACKNOWLEDGEMENTS
The research leading to these results has received funding

from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no 318337, EN-
TRA - Whole-Systems Energy Transparency. This study was
partly sponsored by EPSRCs Doctoral Training Account
EP/K502996/1. The energy measurement hardware (MAGEEC
WAND) used for measuring the energy of the AVR hardware
was funded by Innovate UK, award 131198.

REFERENCES
[1] Tiwari et al. “Power analysis of embedded software: a first step

towards software power minimization”. In: IEEE Transactions
on VLSI Systems 2.4 (Dec. 1994), pp. 437–445.

[2] Nunez-Yanez et al. “Enabling accurate modeling of power and
energy consumption in an ARM-based System-on-Chip”. In:
Microprocessors and Microsystems 37.3 (May 2013), pp. 319–
332.

[3] Steinke et al. “An accurate and fine grain instruction-level
energy model supporting software optimizations”. In: Proc.
PATMOS. 2001.

[4] Liqat et al. “Energy Consumption Analysis of Programs based
on XMOS ISA-Level Models”. In: 23rd Int. Symp. Logic-Based
Program Synthesis and Transformation. Springer, Sept. 2015.

[5] Pallister et al. “Optimizing the flash-RAM energy trade-off in
deeply embedded systems”. In: Proc. 13th Annual IEEE/ACM
Int. Symp. on Code Generation and Optimization abs/1406.0
(May 2015), pp. 115–124. arXiv:1406.0403.

[6] Kerrison et al. “Energy Modeling of Software for a Hardware
Multithreaded Embedded Microprocessor”. In: ACM Trans.
Embed. Comput. Syst. 14.3 (Apr. 2015), 56:1–56:25.

[7] Atmel. Atmel 8-bit Microcontroller. 2013.
[8] Hahn et al. “Towards compositionality in execution time analy-

sis”. In: ACM SIGBED Review 12.1 (Mar. 2015), pp. 28–36.
[9] Engblom et al. “Comparing different worst-case execution time

analysis methods”. In: Proc. Work-in-progress Session at the
21st Real-Time Systems. 2000, pp. 1–4.

[10] Li et al. “Performance analysis of embedded software using
implicit path enumeration”. In: ACM SIGPLAN Notices 30.11
(Nov. 1995), pp. 88–98.

[11] Jayaseelan et al. “Estimating the Worst-Case Energy Con-
sumption of Embedded Software”. In: Symp. Real-Time and
Embedded Technology and Applications. IEEE, 2006, pp. 81–90.

[12] Tiwari et al. “Instruction level power analysis and optimization
of software”. In: Journal of VLSI Signal Processing Systems for
Signal, Image, and Video Technology 13.2-3 (1996), pp. 223–
238.

[13] Park et al. “A Multi-Granularity Power Modeling Methodology
for Embedded Processors”. In: IEEE Trans. VLSI Systems 19.4
(Apr. 2011), pp. 668–681.

[14] Zaid A. M. Al-Khatib. “Operand Value Based Modeling and
Estimation of Dynamic Energy Consumption of Soft Processors
in FPGA”. PhD thesis. Concordia University, Montreal, Canada,
2013.

[15] Sarta et al. “A data dependent approach to instruction level
power estimation”. In: Proc. Workshop on Low-Power Design.
IEEE, 1999, pp. 182–190.

[16] Ascia et al. “An Instruction-Level Power Analysis Model with
Data Dependency”. In: VLSI Design 12.2 (2001), pp. 245–273.

[17] Penolazzi et al. “Energy and Performance Model of a SPARC
Leon3 Processor”. In: Euromicro Conf. Digital System Design,
Architectures, Methods and Tools (Aug. 2009), pp. 651–656.

[18] Kojima et al. “Power analysis of a programmable DSP for
architecture/program optimization”. In: Symp. Low Power
Electronics. Digest of Technical Papers. IEEE, 1995, pp. 26–27.

[19] F.N. Najm. “A survey of power estimation techniques in VLSI
circuits”. In: Trans. VLSI Systems 2.4 (Dec. 1994), pp. 446–455.

[20] Devadas et al. “Estimation of power dissipation in CMOS
combinational circuits using boolean function manipulation”.
In: Trans. Computer-Aided Design II.3 (1992).

[21] Michael S. Hsiao. “Peak Power Estimation Using Genetic Spot
Optimization for Large VLSI Circuits”. In: Design, Automation
and Test in Europe. March. 1999, pp. 175–179.

[22] Hsiao et al. “K2: an estimator for peak sustainable power of
VLSI circuits”. In: Low Power Electronics and Design (1997).

[23] Burch et al. “A Monte Carlo approach for power estimation”.
In: Trans. VLSI Systems 1.1 (Mar. 1993), pp. 63–71.

[24] W. Feller. “The fundamental limit theorems in probability”.
In: Bulletin of the American Mathematical Society 51.11 (Nov.
1945), pp. 800–833.

[25] Evmorfopoulos et al. “A Monte Carlo approach for maximum
power estimation based on extreme value theory”. In: Trans.
Computer-Aided Design of Integrated Circuits and Systems 21.4
(Apr. 2002), pp. 415–432.

[26] M. Pedram. “Maximum power estimation using the limiting
distributions of extreme order statistics”. In: Proc. 1998 Design
and Automation Conference. Ieee, 1998, pp. 684–689.

[27] Dargie et al. “A Probabilistic Model for Estimating the Power
Consumption of Processors and Network Interface Cards”.
In: Int. Conf. Trust, Security and Privacy in Computing and
Communications (July 2013), pp. 845–852.

[28] Pallister et al. “BEEBS: Open Benchmarks for Energy Mea-
surements on Embedded Platforms”. 2013.

[29] David May. The XMOS XS1 Architecture. 2009.

Attachment D2.3.3

On the Value and Limits of Multi-level

Energy Consumption Static Analysis for

Deeply Embedded Single and

Multi-threaded Programs

Under review at the ACM journal Transactions
on Architecture and Code Optimization

(TACO).

49

On the Value and Limits of Multi-level Energy
Consumption Static Analysis for Deeply

Embedded Single and Multi-threaded Programs

Kyriakos Georgiou, Steve Kerrison, Kerstin Eder

University of Bristol

Abstract. There is growing interest in lowering the energy consump-
tion of computation. Energy transparency is a concept that makes a pro-
gram’s energy consumption visible from software to hardware through
the different system layers. Such transparency can enable energy op-
timizations at each layer and between layers, and help both program-
mers and operating systems make energy aware decisions. The com-
mon methodology of extracting the energy consumption of a program is
through direct measurement of the target hardware. This usually involves
specialized equipment and knowledge most programmers do not have. In
this paper, we examine how existing methods for static resource analysis
and energy modeling can be utilized to perform Energy Consumption
Static Analysis (ECSA) for deeply embedded programs. To investigate
this, we have developed ECSA techniques that work at the instruction
set level and at a higher level, the LLVM IR, through a novel mapping
technique. We apply our ECSA to a comprehensive set of mainly in-
dustrial benchmarks, including single-threaded and also multi-threaded
embedded programs from two commonly used concurrency patterns, task
farms and pipelines. We compare our ECSA results to hardware measure-
ments and predictions obtained based on simulation traces. We discuss
a number of application scenarios for which ECSA results can provide
energy transparency and conclude with a set of new research questions
for future work.

1 Introduction

A substantial amount of effort has been invested into predicting the execution
time of a program. However, there is little in the complementary area of energy
consumption. Such information can be of significant value during the develop-
ment and life time of critical systems. For example, energy consumption infor-
mation can be crucial for devices that depend on unreliable, limited sources of
power such as energy harvesters. Giving consideration to the energy consump-
tion of a system at development time can avoid potential system failures due
to inadequate energy supply at runtime. For systems that operate on a battery,
this can provide a good approximation of the time frame in which the battery
needs replacement.

ar
X

iv
:1

51
0.

07
09

5v
1

 [
cs

.P
L

]
 2

4
O

ct
 2

01
5

2 K. Georgiou et al.

The energy consumption of a program on specific hardware can always be de-
termined through physical measurements. Although this is potentially the most
accurate method, it is often not easily accessible. Measuring energy consumption
can involve sophisticated equipment and special hardware knowledge. Custom
modifications may be needed to probe the power supply. These conditions make
it very difficult for the majority of software developers to assess a program’s
energy consumption.

Static Resource Analysis (SRA) provides an alternative to measurement.
Significant progress has been made in the area of Worst Case Execution Time
(WCET) prediction using static techniques that determine safe upper bounds for
the execution time of programs. This naturally leads to the question of whether
similar techniques can be used to bound the energy consumption of programs,
and, if so, how effective they can be. A popular approach used for WCET is the
Implicit Path Enumeration Technique (IPET), which retrieves the worst case
control flow path of programs based on a timing cost model. Instead, in [1], an
energy model that assigns energy values to blocks of Instruction Set Architecture
(ISA) code is used, and the authors claim to statically estimate Worst Case
Energy Consumption (WCEC).

However, in contrast to timing, energy consumption is data sensitive, i.e. the
energy cost of executing an instruction varies depending on (the circuit switching
activity caused by) the operands used. This effect is not captured in non data
sensitive energy models, i.e. models that assign a single energy consumption value
to each entity, e.g. to each instruction. Such models typically are characterized
based on averages obtained from measuring the energy consumed when random
data is being processed [2]. Alternatively, the highest energy consumption mea-
sured could be used for model characterization. As a consequence, when a non
data sensitive energy model is used, the safety of the bounds retrieved from a
worst case path static analysis might be undermined by worst case data scenarios
for models that provide average energy consumption costs. On the other hand,
the use of worst case models is known to lead to over-estimations [3] affecting
the tightness of the retrieved bounds, because it is unlikely that the data that
triggers the worst case energy consumption for one instruction also does this for
all subsequent instructions in a program. This problem applies to all previous
works that perform static analysis for energy consumption, as they combine non
data sensitive bound analysis techniques with non data sensitive energy models.
In [1] static analysis for WCEC is claimed by maximising the switching activity
factor for each simulated component. However, the model abstraction level used
does not guarantee that a physical implementation would behave in this way. We
use a model with a similar constraint, where the data input that would trigger
the worst case per instruction is not known, and so cannot assert the results to
be WCEC.

In this paper we thoroughly investigate the value and limitations of using
IPET in combination with non data sensitive energy models to perform Energy
Consumption Static Analysis (ECSA) in the context of deeply embedded hard-
ware, in our case the XMOS XS1-L “Xcore” [4]. The Xcore is a multi-threaded

Energy Consumption Static Analysis 3

deeply embedded processor with time-deterministic instruction execution. Such
systems are simpler than general purpose processors and favor predictability and
low energy consumption over maximizing performance. The absence of perfor-
mance enhancing complexity at the hardware level, such as caches, provides us
with an ideal setting to evaluate ECSA.

We base our investigation on an ISA-level multi-threaded energy model for
the Xcore [5]. This model was characterized using constrained pseudorandom
input data and associates a single averaged energy cost with each instruction
in the XMOS ISA. We refined this model to one that is well suited for ECSA
as it represents both static and dynamic power contributions to better reflect
inter-instruction and inter-thread overheads; this improved model accuracy by
an average of 4%. In addition to using this model for ECSA, we also used it
to compare ECSA results with predictions based on statistics obtained from
simulation traces.

For our study we have developed an IPET-based ECSA, which we use to-
gether with the non data sensitive ISA-level energy model described above, to
predict the energy consumption of single and multi-threaded programs. With
respect to the latter we focus on two commonly used concurrency patterns in
embedded programs, task farms and pipelined programs with evenly distributed
workloads across threads. In addition, we have developed a novel mapping tech-
nique to lift our ISA-level energy model to a higher level, the intermediate repre-
sentation of the compiler, namely LLVM IR [6], implemented within the LLVM
tool chain [7]. This enables ECSA to be performed at a higher level than ISA,
thus introducing energy transparency into the compiler tool chain by making
energy consumption information accessible directly to the optimizer.

Performing ECSA on multi-threaded programs and at the LLVM IR allows
a comprehensive analysis of the energy consumption predictions that can be
obtained using this technique. Our ECSA technique is evaluated using a set of
single- and multi-threaded benchmarks, mainly selected from a number of indus-
trial embedded applications. Our results show that accurate energy estimations
can be retrieved at the ISA level. The mapping technique allowed for energy
consumption transparency at the LLVM IR level, with accuracy keeping within
1% of ISA-level estimations in most cases. The main contributions of this paper
are:

1. Modeling the target architecture to capture its behavior statically, including
refinement of an existing ISA-level energy model, improving its accuracy by
around 4% (Section 3.1);

2. Formalization and implementation of a novel mapping technique that lifts
an ISA-level energy model to a higher level, the intermediate representation
of the LLVM compiler, which allows ECSA of programs at the LLVM IR
level (Section 3.2);

3. ECSA on a set of multi-threaded programs (Section 3.5), focusing on task
farms and pipelines, two commonly used concurrency patterns in embedded
computing;

4 K. Georgiou et al.

4. Comprehensive evaluation of our ECSA on a set of industrial benchmarks
and detailed analysis of results (Section 4.2);

5. Discussion of the practical value and limitations of how such analysis can
be useful for software developers, compiler engineers, development tools and
Real Time Operating Systems (RTOS) (Section 4.3).

The rest of the paper is organized as follows. Section 2 critically reviews
previous work on energy modeling and SRA, with a focus on SRA for energy
consumption and the effects of combining non data sensitive bound analysis
techniques with non data sensitive energy models. Section 3 introduces in detail
the components of our analysis, in particular the formalization and implementa-
tion of our mapping technique, and how ECSA can be applied to multi-threaded
programs. Our experimental evaluation methodology, benchmarks and results
are presented and discussed in Section 4. Section 5 concludes the paper, out-
lines opportunities for future work and raises a number of research questions to
stimulate further research in ECSA.

2 Background

The work presented in this paper builds upon two areas: processor energy mod-
eling and SRA. This section establishes the background work of both.

2.1 Energy modeling of embedded processors

Energy modeling can be performed at various levels of abstraction, from gate-
or transistor-level in detailed hardware simulation [8], up to high-level modeling
of whole applications. Although the hardware components are responsible for
power dissipation and thus consumption of energy, the behavior of that hardware
is largely controlled by the software running upon it. As such, writing software
that makes efficient use of the underlying hardware has been identified as the
most important step in energy efficient software development [9]. For energy
modeling to be useful to a software developer, models must convey information
that can be related to the code the developer is writing.

The ISA is a practical level of abstraction for energy modeling of software,
because it expresses the underlying operations performed by the hardware and
its relationship with the intent of the software. In [2] an ISA-level energy model
is proposed that obtained energy consumption data through hardware measure-
ments of large loops of individual instructions. The total cost of a program is
composed of instruction costs, inter-instruction costs (the effects of switching
from one instruction to the next), and externally modeled behaviour such as
activity in the memory hierarchy.

This work was initially applied to x86 and SPARC architecture processors,
operating with an accuracy of within 10% of the hardware. It was extended
to form a framework for architecture-level power analysis, Wattch [10]. The
Sim-Panalyser [11] uses a similar approach, built on top of the SimpleScalar
architecture simulation framework [12].

Energy Consumption Static Analysis 5

If additional characteristics of processor activity are considered, such as bit-
flips in the data-path, a more accurate data-dependent model can be produced,
such as that of [13, 14]. This requires more detailed information from simulation
in order to supply additional model parameters, but has been demonstrated to
bring accuracy to within 1.7% of the hardware. It is still an abstraction away
from the internal switching activity of functional units, however. Observing the
results in [15], some functional units may be more dependent on their internal
structure than input/output Hamming weight with respect to data-dependent
power.

Using similar approaches to Steinke and Tiwari, additional processor ar-
chitectures such as VLIW DSPs have also been modeled, with 4.8% [16] and
1.05% [17] accuracy. Alternative approaches to modeling include representing
activity in terms of the processor’s functional blocks [17], energy profiling of the
most commonly used software library functions [18], and construction of model
parameters through linear regression [19].

In [1], a micro-architectural energy model was created, considering functional
units activity, clock gating and pipeline progression for a simulated processor.
This model was used for WCEC static analysis. To retrieve safe bounds, the
switching activity factor was set to the maximum, 1.0, for each component. This
led to significant energy consumption over-estimations in some cases, up to 33%,
and assumes that the model accurately reflects a physical implementation.

In architectures where performance counters are available, these can be used
to characterize the processor energy consumption based on the conditions affect-
ing these counters, such as cache misses and pre-fetches. Simulations that model
these performance events can then be used to predict the energy consumption
of an application. This has been applied to processors of various levels, from
embedded XScale [20] to Xeon Phi accelerators [21].

The discussed approaches achieve varying levels of accuracy, all within a 10%
error margin. The comparison points vary between methods, so the accuracies
are not necessarily directly comparable. However, the prior work motivates new
models to achieve a similar margin. In many of the above examples, the models
target a ‘typical’ energy characterization, where the modeled energy consump-
tion is based on random or non-exhaustive input data sets. For a given appli-
cation, some additional error margin will be introduced based on the particular
characteristics of its dataset. This forms a part of the model error, in addition
to the errors arising from the abstractions applied in each model type. The work
presented in this paper, which examines multiple abstraction levels, seeks to
identify each point at which inaccuracies may be introduced into the estima-
tion process. This is important to assesses usefulness of estimations produced by
static analysis, and will be discussed in Section 4.2

2.2 Static Resource Analysis

SRA is a methodology to determine the usage of a resource (usually time or en-
ergy or both) for a specific task when executed on a piece of hardware, without
actually executing the task. This requires accurate modeling of the hardware’s

6 K. Georgiou et al.

behavior in order to capture the dynamic functional and non-functional proper-
ties of task execution. Determining these properties accurately is known to be
undecidable in general. Therefore, to extract safe values for the resource usage
of a task, a sound approximation is needed [22, 23].

SRA has been mainly driven by the timing analysis community. Static cost
analysis techniques based on setting up and solving recurrence equations date
back to Wegbreit’s [24] seminal paper, and have been developed significantly in
subsequent work [25, 26, 27, 28, 29, 30]. Other classes of approaches to cost anal-
ysis use dependent types [31], SMT solvers [32], or size change abstraction [33].

For performing an accurate WCET static analysis, there are four essential
components [22]:

1. Value analysis: mainly used to analyze the behavior of the data cache.
2. Control flow analysis: used to identify the dynamic behavior of a program.
3. Low level or processor behavior analysis: attempts to retrieve timing costs

for each atomic unit on a given hardware platform, such as an instruction
or a basic block (BB) in a Control Flow Graph (CFG) for a processor.

4. Calculation: uses the results from the two previous components to estimate
the WCET. Most common techniques used for calculation of the WCET are
the IPET, the path-based techniques and the tree-based methods [34].

Three of the above components, namely the control flow analysis, low level
analysis and calculation, are adopted in our work and will be further explained
in Section 3.

IPET is one of the most popular methods used for WCET analysis [35, 36,
37, 34, 38]. In this approach, the CFG of a program is expressed as an Inte-
ger Linear Programming (ILP) system, where the objective function represents
the execution time of the program. The problem then becomes a search for the
WCET by maximizing the retrieved objective function under some constraints
on the execution counts of the CFG’s basic blocks. The main advantage of this
technique is the ability to determine the basic blocks in the worst case execu-
tion path and their respective execution counts without the need to extract the
explicit worst execution path (ordered list of the executed basic blocks). This is
more efficient than path based techniques for retrieving WCET bounds [34].

In the presence of caches or a complex processor pipeline, the ILP solving
complexity can increase dramatically, making IPET not practical for WCET.
Abstract interpretation [39], a technique used to facilitate data flow analysis,
can then be used in conjunction with IPET to allow WCET in such cases [36].

Although significant research has been conducted in static analysis for the
execution time estimation of a program, there is little on energy consumption.
One of the few approaches [40] seeks to statically infer the energy consumption
of Java programs as functions of input data sizes, by specializing a generic re-
source analyzer [29, 41] to Java bytecode analysis [42]. However, a comparison
of the results to actual measurements was not performed. Later, in [43], the
same generic resource analyzer was instantiated to perform energy analysis of
XC programs [44] at the ISA level based on ISA-level energy models and includ-
ing a comparison to actual hardware measurements. However, the scope of this

Energy Consumption Static Analysis 7

particular analysis approach was limited to a small set of simple benchmarks
because information required for the analysis of more complex programs, such
as program structure and types, is not available at the ISA level. The analysis
presented in this paper does not rely on such information. A similar approach,
using cost functions, was used in [45]. The analysis was performed at the LLVM
IR level, using the mapping technique that we formalise and describe in full de-
tail for the first time in this paper. Although the range of programs that could be
analyzed was improved compared to [43], the complexity of solving recurrence
equations for analysing larger programs proved a limiting factor.

In [1] the WCEC for a program was inferred by using the IPET first in-
troduced in [35]. They claim WCEC analysis, and experimental results indicate
that all energy estimations over-approximate the energy consumptions retrieved
from simulation. However, infeasible paths were not excluded from analysis, and
there is no guarantee that the comparison test cases used in simulation were the
actual worst cases.

Similarly, in [46] the authors attempt to perform static worst case energy
consumption analysis for a simple embedded processor, the Cortex M0+. This
analysis is also based on IPET combined with a so called absolute energy model,
an energy model that is said to provide the “maximum energy consumption of
each instruction”. The authors argue that they can retrieve a safe bound. How-
ever, this is demonstrated on a single benchmark, bubblesort, only. The bound
is 19% above a single hardware measurement; the authors acknowledge that this
approach leads to over-approximations. Furthermore, the hardware measurement
used as a base line to evaluate the prediction obtained from static analysis only
captures the algorithm’s worst case complexity scenario, no information is given
on the actual data to provide insight into the effect of data switching activity
on energy consumption. This can be misleading, since two sets of different in-
put data might have the same algorithmic worst case behavior, but can be very
different with respect to their total energy consumption. In practice, this gives
rise to a range of energy consumption measurements for different input data all
triggering the algorithmic worst case path. For instance, for the Xcore architec-
ture the energy consumption of the MatMult 4 threads benchmark [47] for the
same size of matrices, ranges from 4.1 to 4.9 nJ depending on the used data. We
have closely investigated this and discuss our findings in Figure 5.

All of the reviewed previous works for static energy consumption analy-
sis used worst case path analysis methods combined with non input pattern-
depended energy models. Currently, there is no practical method to perform
average case static analysis [48]. One of the most recent works towards average
case SRA, demonstrates that compositionality combined with the capacity for
tracking data distributions unlocks the average case analysis, but novel language
features and hardware designs are required to support these properties [49]. Fur-
thermore, developing a data sensitive energy model requires detailed knowledge
of and access to the RTL, since the power dissipation is highly depended on the
switching activity inside the circuits [50]; this is a challenge in itself. This situa-
tion has motivated us to conduct a comprehensive study to fully understand the

8 K. Georgiou et al.

value and limitations of ECSA, using IPET-based analysis in combination with
a single cost energy model, for both single and multi-threaded code at the ISA
and LLVM IR levels of abstraction.

3 Energy Consumption Static Analysis

Fig. 1: Overview of our energy consumption static analysis.

Figure 1 shows the ECSA process for both, analysis at ISA and LLVM IR
level. The source code together with any user annotations (e.g. to provide loop
bounds) is sent to the compiler which emits the LLVM IR and the ISA code.
Low level analysis, analysis of program control flow and computation of the
energy consumption estimations is then applied on both levels. For the LLVM
IR analysis an extra step is required at the compilation phase for the energy
characterization of the LLVM IR instructions as detailed in Section 3.2. In the
rest of this section we briefly introduce each ECSA stage.

3.1 Low Level Analysis

This stage aims to model the micro-architecture dynamic behavior of the pro-
cessor based on an ISA-level energy model.

XMOS Xcore ISA level Energy Modeling The Xcore processor is hardware
multi-threaded, providing inter-thread communication and I/O port control di-
rectly in the ISA. It is event-driven; busy waiting is avoided in favor of hardware
scheduled idle periods. This makes the Xcore well suited to embedded applica-
tions requiring multiple hardware interfaces with real-time responsiveness.

The underlying energy model for this work is captured at the ISA level. Indi-
vidual instructions from the ISA are assigned a single cost each. These can then
be used to compute power or energy for sequences of instructions. The model
also captures the cost of thread scheduling performed by the hardware, in accor-
dance with a series of profiling tests and measurements, because it influences the
energy consumption of program execution. Instructions from runnable threads
are scheduled round-robin by the hardware. To avoid data hazards, the proces-
sor’s four stage pipeline may only contain one instruction from each thread. If
the number of runnable threads is less than four, there will be empty pipeline
stages.

Energy Consumption Static Analysis 9

The modeling technique is built upon [2], as discussed in Section 2.1, which
is adapted and extended to consider the scheduling behavior and pipeline char-
acteristics of the Xcore [5]. A new version of this model that is well suited for
static analysis has been developed. It represents energy in terms of static and
dynamic power components to better reflect inter-instruction and inter-thread
overheads. This has improved model accuracy by an average of 4%.

Eprg = (Ps + Pdi)·Tidl+
∑

i∈prg

(
Ps + PiMNp

O

Np
· 4 · Tclk

)
, where Np = min(Nt, 4)

(1)
In Equation (1), Eprg is the energy of a program, formed by adding the en-

ergy consumed at idle to the energy consumed by every instruction, i, executed
in the program. At idle, only a base processor power, the sum of its static, Ps,
and dynamic idle power, Pdi, is dissipated for the total idle time, Tidl. For each
instruction, static power is again considered, with additional dynamic power for
each particular instruction, Pi. The dynamic power contribution is then multi-
plied by a constant inter-instruction overhead, O, that has been established as
the average overhead of instruction interleaving. This is then multiplied by a
scaling factor to account for the number of threads in the pipeline, MNp

. The
result is divided by the number of instructions in the pipeline, which is at most
four and is dependent upon the number of active threads, Nt. Each instruction
completes in four cycles, so 4 · Tclk gives the energy contribution of the given
instruction, based on the calculated power.

When more than four threads are active, the issue rate of instructions per
thread will be reduced. The energy model accounts for this with the min term in
Equation (1). From a purely timing perspective, the latency between instruction
issues for a thread is max (Nt, 4) ·Tclk. This property means that instructions are
time-deterministic, provided the number of active threads is known. A thread
may stall in order to fetch the next instruction. This is also deterministic and can
be statically identified [51, pp. 8–10]. These instruction timing rules have been
used in simulation based energy estimation, and are also utilized in the multi-
threaded static analysis performed in this paper. Both simulation and static
analysis must be able to determine Nt, the number of active threads, in order
to accurately estimate energy consumption.

A limited number of instructions can be exceptions to these timing rules.
The divide and remainder instructions are bit-serial and take up to 32 cycles to
complete. Resource instructions may block if a condition of their execution is
not met, e.g. waiting on inbound communication causes the instruction’s thread
to be de-scheduled until the condition becomes satisfied. This paper focuses its
contributions on fully predictable instructions, with timing disturbances from
communication forming future work.

The cost associated with an instruction represents the average energy con-
sumption obtained from measuring the energy consumed during instruction ex-
ecution based on constrained pseudo-randomly generated operands using the
setup described in [5]. Thus, this model does not explicitly consider the range of

10 K. Georgiou et al.

input data values and how this may affect consumption. Empirical evidence in-
dicates that such factors can contribute to the dynamic energy consumption [3].
The implications of using a random data constructed single value energy model
with a bound SRA for ECSA are discussed in Section 4.2.

Utilizing the Xcore energy model in static analysis To determine the en-
ergy consumption of a program based on Equation (1) the program’s instruction
sequence, 〈i1, . . . , in〉, the idle time Tidl, and the number of active threads Np

during instruction execution must be known. In [5] Instruction Set Simulation
(ISS) was used to gather full trace data or execution statistics to obtain these
parameters. In this work we use ISS only as a reference for comparison of ECSA
results, with a second reference being direct hardware measurement.

ECSA thus needs to extract the CFGs for each thread and identify the in-
terleavings between them. This allows for each instruction in the program to
identify the Np component in Equation (1). It also allows to estimate the total
idle time, Tidl of the program. For single-threaded programs the energy charac-
terization of the CFG is straightforward as there is no thread interleaving. The
IPET can be directly applied on the energy characterized CFG to extract a path
that bounds the energy consumption of the program, as described in Section 3.4.
For arbitrary multi-threaded programs, energy characterizing the CFGs of each
thread using static analysis is challenging. We have therefore concentrated on
two commonly used concurrency patterns, task farms and pipelines, which we
use with evenly distributed workloads across threads.

In addition to the instructions defined in the ISA, a Fetch No-Op (FNOP)
can also be issued by the processor. These occur deterministically [51, pp. 8–10].
FNOPs can have a significant impact on energy consumption, particularly within
loops. To account for FNOPs in static analysis, the program’s CFG at ISA level
is analyzed. An instruction buffer model is used to determine where FNOPs
will occur in a basic block. However, one particular FNOP case is dependent
on the dynamic branching behavior of the program, in which case we over-
estimate FNOPs. Further implementation details on FNOPs modeling can be
found in [52].

3.2 Mapping an ISA Energy Model to LLVM IR

Although substantial effort has been devoted to ISA energy modeling, there is
little research into modeling at higher levels of program representation, where
precision can decrease. In [53], statistical analysis and characterization of LLVM
IR code is performed. This is combined with instrumentation and execution on
a target host machine to estimate the performance and energy requirements in
embedded software. Transferring the LLVM IR energy model to a new platform
requires performing the statistical analysis again. The mapping technique we
present here is fully portable. It requires only the adjustment of the LLVM
mapping pass to the new architecture. Furthermore, our LLVM IR mapping
technique provides on-the-fly energy characterization that allows to take into

Energy Consumption Static Analysis 11

consideration the compiler behavior, CFG structure, types and other aspects of
instructions.

Formal specification of the mapping Our mapping technique determines
the energy characteristics of LLVM IR instructions. Thus, mapping links LLVM
IR instructions with machine specific ISA instructions. ISA level energy models
can then be propagated up to LLVM IR level, allowing energy consumption
estimation of programs at that level. We formalize the mapping as follows. For
a program P , let

IRprogL = {1, 2, ..., n} (2)

be the ID numbers of P ’s LLVM IR instructions and therefore

IRprog = 〈ir1, ir2, ..., irn〉 (3)

is the sequence of LLVM IR instructions for P .

Tarch(IRprog) = ISAprog (4)

is an architecture specific compiler back end that can translate the IRprog to

ISAprog = 〈(isa1,m1), (isa2,m2), ..., (isak,ml)〉 where m1,m2, ...,ml ∈ IRprogL

(5)
which is the sequence of ISA instructions for P , together with the ID of the
LLVMIR instruction from which each isak originated. If an isak comes from
more than one LLVM IR instructions, then Tarch chooses the ID of one of them
to assign to isak.

M(iri) = {isaj |iri ∈ IRprog ∧ ISAprog = Tarch(IRprog) ∧ (isaj , i) ∈ ISAprog} and

∀ irn, irk ∈ IRprog ∧ irn 6= irk then M(irn) ∩M(irk) = ∅
(6)

is a mapping function that captures a 1:m relation from IRprog to ISAprog
instructions. Therefore,

E(iri) =
∑

isaj∈S

E(isaj) where iri ∈ IRprog ∧ isaj ∈ ISAprog ∧ S = M(iri) (7)

represents the energy consumption of an LLVM IR instruction as the sum of
the energy consumed by all ISA instructions associated with that LLVM IR
instruction.

By instantiating the above mapping to a specific architecture, LLVM IR en-
ergy characterization can be retrieved. The accuracy of this characterization can
vary for different architectures. If the accuracy is not adequate, then a tunning
phase can be introduced to account for any specific compiler or architecture be-
havior. An example of such tunning is given in the next section, which accounts
for phi-nodes and FNOPs.

12 K. Georgiou et al.

Xcore mapping instantiation and tuning In our case, the Tarch function
is the XMOS tool chain lowering phase that translates the LLVM IR to Xcore
specific ISA. Our mapping implementation leverages the debug mechanism in
the XMOS compiler tool chain, in order to enable Tarch to assign to each ISA
instruction the ID of the LLVM IR instruction it originated from. This is typically
used by the programmer to identify and fix problems in application code. Debug
symbols are created during compilation to assist with this. These symbols are
propagated to all intermediate code layers and down to the ISA code. Debug
symbols can express which programming language constructs generated a specific
piece of machine code in a given executable module. In our case, these symbols
are generated by the front end of the XMOS compiler in standard DWARF
format [54]. These are transformed to LLVM metadata [55] and attached to the
LLVM IR.

During the lowering phase of compilation, LLVM IR code is transformed to
a target ISA by the back end of the compiler, with debug information stored
alongside it as LLVM metadata. Naturally, the accuracy of debug information
in the output executable is reduced if the number of optimization passes is
increased. This is due to portions of the initial LLVM IR either being discarded
or merged during these passes.

Tracking this information gives an n : m relationship between instructions at
the different layers, because source code instructions can be translated to many
LLVM IR instructions, and these again into many ISA instructions. This n : m
relation prevents ECSA from providing accurate energy values and therefore
the mapping introduced in Section 3.2, requires Equation (6) to create an 1:m
relation between the LLVM IR and ISA code.

To address this issue, we created an LLVM pass that traverses the LLVM IR
and replaces source location information with LLVM IR location information.
The location information represents the IRprogL in Equation (2). The LLVM
pass runs after all optimization passes, just before emitting ISA code. The op-
timized LLVM IR is closer in structure to the ISA code than the unoptimized
version. Using this method a 1 : m mapping between LLVM IR instructions
and ISA instructions can be extracted by Equation (6). Once the mapping has
been performed for a program, the energy values for groups of ISA instructions
are aggregated and then associated with their single corresponding LLVM IR
instruction using Equation (7).

An example mapping is given in Figure 2. On the left hand side is a part of
the LLVM IR CFG of a program, which represents the IRprog in Equation (3),
along with the debug location, LLVMIRL in Equation (2), for each LLVM IR in-
struction. The right hand side shows the corresponding ISA CFG, together with
the debug locations for each ISA instruction, given by Tarch. The coloring of
the instructions demonstrates the mapping between the two CFGs’ instructions
using Equation (6). Now, one LLVM IR instruction is matched to many ISA
instructions, but each ISA instruction is mapped to only one LLVM IR instruc-
tion. Some LLVM IR instructions are not mapped, because they are removed
during the lowering phase of the compiler. This mapping also guarantees that all

Energy Consumption Static Analysis 13

%i.0 = phi i32 [%postinc, %LoopBody], [0, %allocas] 71

%ic.0 = phi i32 [%postdec, %LoopBody], [%2, %allocas] 72

%subscript3 = getelementptr [51 x [51 x i32]]* %d, i32 0, i32 %i.0 73

store i32 %i.0, i32* %subscript3, align 4 74

%postdec = add i32 %ic.0, -1 75

call void @llvm.dbg.value(metadata !{i32 %postdec}, i64 0, metadata !29) 76

%postinc = add i32 %i.0, 1, !dbg !43 : 16 77

call void @llvm.dbg.value(metadata !{i32 %postinc}, i64 0, metadata !26) 78

%zerocmp8 = icmp eq i32 %postdec, 0 79

br i1 %zerocmp8, label %ifdone, label %LoopBody 80

call void @llvm.dbg.value(metadata !2, i64 0, metadata !28) 10

call void @llvm.dbg.value(metadata !{i32 %3}, i64 0, metadata !30) 11

%zerocmp13 = icmp eq i32 %3, 0 12

br i1 %zerocmp13, label %ifdone30, label %LoopBody15 13

0x000102ee: ldw (ru6) r0, sp[0x1] 13

0x000102f0: bf (lru6) r0, 0x43 <.label16> 13

0x000102f4: ldc (ru6) r0, 0x0 13

0x000102f6: ldaw (ru6) r11, sp[0x8] 13

0x000102f8: ldw (ru6) r1, sp[0x1] 72

0x000102fa: stw (l3r) r0, r11[r0] 74

fnop 74

0x000102fe: add (2rus) r0, r0, 0x1 77

0x00010300: sub (2rus) r1, r1, 0x1 75

0x00010302: bt (ru6) r1, -0x5 <.label17> 80

IS
A

 B
B

1
IS

A
 B

B
2

IS
A

 B
B

3

L
LV

M
 B

B
1

LL
V

M
 B

B
2

CFG edge Phi-node adjustment

LLVM IR to
ISA Lowering

Fig. 2: Fine grained 1:m mapping including our LLVM mapping pass.

ISA instructions are mapped to LLVM IR, so there is no loss of recorded energy
between the two levels.

Additional optimizations are performed during the lowering phase from LLVM
IR to ISA, such as peephole optimizations and target specific optimizations.
These can affect the mapping, but not to the same degree as the LLVM opti-
mizations. A tuning phase can be introduced after the mapping, to account for
them.

The mapping instantiation for the Xcore architecture was able to provide an
average energy estimation deviation of 6% from the predictions on the ISA level.
An additional tuning phase is introduced after the mapping, to account for spe-
cific compiler and architecture behavior. This improved the mapping accuracy,
narrowing the gap between ISA and LLVM IR energy predictions to an average
of 1% as discussed in 4.3.

LLVM IR phi-nodes are an example of such tuning. Phi-nodes can be in-
troduced at the start of a BB as a side effect of the Single Static Assignment
(SSA) used for variables in the LLVM IR. A phi-node takes a list of pairs, where
each pair contains a reference to the predecessor block together with the vari-
able that is propagated from there to the current block. The number of pairs is
equal to the number of predecessor blocks to the current block. A phi-node can
create inaccuracies in the mapping when LLVM IR is lowered to ISA code that
no longer supports SSA, because it can be hoisted out from its current block
to the corresponding predecessor block. For blocks in loops this can lead to a
significant analysis error.

Whenever the tuning phase is able to track these cases, it can adjust the
energy figures for each LLVM IR BB accordingly. An example of this is given
in Figure 2 at debug location number 72. Its corresponding ISA instruction is
hoisted out from the loop BB ISA BB3 and into ISA BB2. This is tracked by the
mapping, and the equivalent hoisting is done at LLVM IR level, thus correctly
assigning energy values to each LLVM IR block. Similar errors can be introduced
by branching LLVM IR instructions with multiple targets, since in the Xcore

14 K. Georgiou et al.

ISA only single target branches are supported. This is also handled during the
mapping phase.

As discussed in Equation (1), FNOPs can be issued by the processor and this
can be statically determined at the ISA level. LLVM IR has no way to represent
this. Ignoring them can therefore lead to a significant underestimation of energy
at LLVM IR level. To address this, FNOPs in the lowered ISA code are assigned
the debug location of an adjacent ISA instruction in the same BB by the tuning
phase, thus they are accounted for in the mapped LLVM IR block.

LLVM IR instructions can be combined into a single ISA instruction. An
example of such instructions are the add and multiplication ones which can be
translated to the Xcore macc (multiply-accumulate) ISA instruction. The Tarch

will assign the energy cost to only one of the LLVM IR instructions. Although,
this is adequate for the energy characterization of LLVM IR basic blocks, if
needed the tuning phase allows to associate the cost with both instructions.

Fig. 3: Overview of the mapping process.

An overview of the mapping technique is given in Figure 3. Our mapping
pass is introduced into the compilation process after LLVM optimizations. The
pass also includes tuning. The mapping phase implements Relations 6 and 7. It
runs after the LLVM lowering phase and maps LLVM IR instructions with the
new debug locations to the emitted ISA instructions. The ISA energy model is
then used to accumulate the energy value of each LLVM IR instruction based
on its mapped ISA instructions.

3.3 Control Flow Analysis

This component aims to capture the dynamic behavior of the program and
associates CFG BBs with the information needed for the computation step of
analysis. IPET requires the CFG and call graph of a program to be constructed
at the same level as the analysis. At LLVM IR level, the compiler can generate
them. At ISA level a tool was created to construct them. To detect BBs that
belong to a loop or recursion, we adopted and extended the algorithm in [56]. The
CFGs are annotated according to the needs of the IPET described in Section 3.4.
Finally, the annotated CFGs are used in the computation step to produce ILP
formulations and constraints.

Energy Consumption Static Analysis 15

3.4 Computation

The IPET adopted in our work to estimate the energy consumption of a pro-
gram is based on [57]. To construct the ILP system needed for IPET, we use
information produced from the previous two components. The method of ILP
formulation along with the constraints needed to bound the problem and opti-
mize it’s solution can be found in the seminal paper [57]. To infer the energy
consumption, instead of using the time cost of a CFG basic block we are using
its energy cost, as provided by the respective energy model.

Constraints are used to capture information that can affect a program’s dy-
namic behavior, such as bounded loop iterations, or path information, such as
infeasible paths. Usually, this information can only be specified by the program-
mer, as it depends on the program semantics and cannot be extracted by the
static analysis. The minimum required user input to enable bounding of the
problem is the declaration of loop bounds. This is also standard practice in tim-
ing analysis [22]. Providing this kind of information is usually easy, as the loop
bounds are typically known by programmers of timing critical embedded pro-
grams. Further constraints, such as denoting infeasible paths in a CFG, can be
provided to extract more accurate estimations. The user provides this informa-
tion as source code annotations. The annotation language used in this work can
be found in [58].

3.5 Analysis of multi-threaded programs

In this paper we present the first steps towards ECSA of multi-threaded pro-
grams. Two concurrency patterns are considered: replicated threads with no
inter-thread communication, working on different sets of data (task farms), and
pipelines of communicating threads. For both cases, we consider evenly dis-
tributed, balanced work loads. In the former case, an example use is simul-
taneously processing multiple independent data. In the latter case, pipelining
enables parallelism to be used to improve performance when processing a single
data stream.

There is a fundamental difference when statically predicting the case of in-
terest (worst, best, average case) for time and for energy for multi-threaded
programs. Generally, for time only the computations that contribute to the path
forming the case of interest must be considered. For energy, all computations
taking place during the case of interest must be considered. For instance, in
an unbalanced task farm, the WCET will be equivalent to the longest running
thread. To bound energy, the energy consumption of each thread needs to be
aggregated. This is harder since the static analysis needs to determine the num-
ber of active threads at each point in time in order to apply the energy model
from Equation (1) and characterize the CFG of each thread. Then, IPET can
be applied to each thread’s CFG, extracting energy consumption bounds. Ag-
gregating these together will give a loose upper bound on the program’s energy
consumption, meaning that the safety of the bound cannot be guaranteed.

16 K. Georgiou et al.

In our balanced task farm examples, all task threads are active in parallel
for the duration of the test. Thus, the number of active threads is constant,
giving a constant Nt, used to determine the pipeline occupancy scaling factor,
M , in Equation (1). For balanced pipelined programs, we consider the continu-
ous, streaming data use case, so the same constant thread count property holds.
In both cases IPET can be performed on each thread’s CFG and the results
aggregated to retrieve the total energy consumption. In this work, core-local
communication is considered, which uses the same instructions as off-core com-
munication, but no external link energy needs to be accounted for. Therefore
the core energy model provides sufficient data.

For multi-threaded programs with synchronous communications, to retrieve
a WCET, IPET can be applied on a global graph, connecting the CFGs of all
threads along communication edges. The communication edges can be treated by
the IPET as normal CFG edges and WCET can be extracted by solving the for-
mulated problem [38]. This will return a single worst case path across the global
graph. Bounding energy in this way is not possible, as parallel thread activity
over time needs to be considered. Here the task is even harder in comparison
to programs without communication, as activity can be blocked if the threads’
workloads are unbalanced. In this case, statically determining the number of
active threads at each point in time is a hard challenge.

Although the concurrency patterns addressed here can be considered as easy
targets for the ECSA, they are typical embedded use cases, and as is explained
in Table 1, ECSA can provide sufficiently accurate information to enable energy
aware decision making. Building on this, more complex programs will be ana-
lyzed in future work, such as unique non-communicating threads rather than
replicated threads, unbalanced farm and pipeline workloads and other concur-
rency patterns. Such programs will feature varying numbers of active threads
over the course of execution. In these cases the ECSA must be extended to per-
form analysis that extracts all the possible combinations of thread interleaving.

This work focuses on multi-threaded communication on a single core. How-
ever, for communicating threads, the channel communication paradigms that
are used by the programs at the source code level and within the ISA can also
be used in a multi-core environment, creating scope for the analysis of larger
systems.

4 Experimental Evaluation

To evaluate our ECSA, a series of mainly industrial benchmarks were selected
with representative test cases. Both our ECSA results and estimations from
ISS using the same energy model are compared to hardware measurements.
The benchmarks, evaluation methodology, results and further observations are
discussed in this section.

Energy Consumption Static Analysis 17

4.1 Benchmarks

Our objective is to demonstrate the value of our ECSA for common industrial,
deeply embedded applications. A complete list of all the 21 benchmarks’ code
and summary of their attributes, can be found in [47]. Benchmarks were compiled
with xcc version 12 [59] at optimization level O2; the default for most compilers.

Deeply embedded processors do not typically have hardware support for di-
vision or floating point operations, using software libraries instead. Software im-
plementations are usually far less efficient than their hardware equivalent, both
in terms of execution time and energy consumption. The effect of these soft-
ware implementations on energy consumption should be known by developers,
therefore we include soft division and soft float benchmarks.

A radix-4 software divider, Radix4Div [60], is used. A less efficient version,
B.Radix4Div, is added for comparison. This version omits an early return when
the dividend is greater than 255. A consequence of excluding this optimization is
that CFG paths become more balanced, with less variation between the possible
execution paths. The effect of this on the energy consumption is discussed later
in this section. For software floating point, single precision SFloatAdd32bit and
SFloatSub32bit operations from [61] are analyzed.

To represent common signal processing tasks, FIR and Biquad benchmarks
written for the Xcore processor [62], are analyzed. In addition, a series of open
source benchmarks of core algorithmic functions were selected from the MDH WCET

benchmark suite [63]. They were modified to work with our test harness and, in
some cases, to make them more parametric to function input arguments. Some
were extended to be multi-threaded task farms, where the same code runs on
two or four threads. To extend our analysis to multi-threaded communication
programs, we analyze pipelined versions of FIR and Biquad, each formed of
seven threads. These programs are the preferred form for Xcore, as spreading
the computation across threads allows the voltage and frequency of the core to be
lowered, significantly reducing energy consumption with the same performance
as the single threaded version.

4.2 Results Analysis

The experimental results show several features, influenced by the level of multi-
threading, the properties of the benchmarks, and the levels at which ECSA
and modeling are performed. In this section we examine all of these in order
to determine what influences ECSA accuracy at each level, highlighting both
strengths and limitations.

Figure 4a presents the error margin of using our energy model with three
energy estimation techniques compared to hardware energy measurements for
our benchmarks. Trace Sim produces instruction traces from ISS, ISA ECSA
uses the model for static analysis at the ISA level and LLVM IR ECSA uses
our mapping technique to apply the model and analysis at LLVM IR level. For
all benchmarks with multiple test parameters, the geometric mean of the errors

18 K. Georgiou et al.

ba
se

64
m

ac

lev
en

sh
te

in cn
t

st
at

ist
ics fir

p.
fir

7t

m
at

m
ul

m
at

m
ul

2t

m
at

m
ul

4t

bi
qu

ad

bi
qu

ad
2t

bi
qu

ad
4t

p.
bi

qu
ad

7t

jp
eg

dc
t

jp
eg

dc
t
2t

jp
eg

dc
t
4t

−6

−4

−2

0

2

4

6

8

%
E

rr
or

v
s.

h
ar

d
w

ar
e

Trace sim ISA SA LLVM IR SA

(a) All benchmarks.

5 10 15 20 25 30
Matrix size (NxN)

0

1

2

3

4

5

E
ne

rg
y

(J
ou

le
s)

×10−4 MatMul, 1 thread

Hardware measurement
ISA ECSA
LLVM-IR ECSA
Simulation

5 10 15 20 25 30
Matrix size (NxN)

0

1

2

3

4

5

E
ne

rg
y

(J
ou

le
s)

×10−4 MatMul, 4 threads

0 50 100 150 200 250 300 350
Input length

0.0

0.5

1.0

1.5

2.0

2.5

E
ne

rg
y

(J
ou

le
s)

×10−5 Base64

(b) Parametric benchmarks.

Fig. 4: Hardware measurements compared to ECSA and ISA trace estimation.

is used. Figure 4b compares energy estimates to hardware measurements for a
range of parameters in three parametric benchmarks.

For Levenshtein, MatMult 1,2,4, Mac, Cnt and Base64 parametric energy
consumption estimations can be determined, as discussed in Section 4.3. These
are expressed in terms of a function over the number of loop iterations.

The parametric benchmarks are also more data sensitive, due to the use
of matrices. The hardware energy measurements for all the benchmarks using
matrices were obtained by using random data to initialize them. In order to
investigate the effect of different random data, the measurements were repeated
500 times for each benchmark using a different seed each time for data gener-
ation. The maximum variation observed was in the range of the measurement
error, less than 0.5%, and therefore the average of these measurements was used
to compare against the predicted results. The effect of using non random data
will be investigated in Figure 5. For the more industry oriented benchmarks (all
the FIR, Biquad and Jpegdct versions) real sample data where used for the
hardware measurements.

For the software division and floating point benchmarks, ECSA provides a
constant energy consumption upper bound across all test cases, as they con-

Energy Consumption Static Analysis 19

Collection of sample runs (dividend, divisor)
0.5

1.0

1.5

2.0

2.5

3.0

E
ne

rg
y

(J
ou

le
s)

×10−7

Worst case

Radix4Div

Collection of sample runs (dividend, divisor)
0.5

1.0

1.5

2.0

2.5

3.0

E
ne

rg
y

(J
ou

le
s)

×10−7

Worst case

Balanced Radix4Div

HW meas.
ISA WCEC
LLVM-IR WCEC

Simulation
ISA BCEC

Fig. 5: Results for benchmarks with constant ECSA estimations across all test
cases.

tain no loops that are directly affected by the functions’ arguments. Figure 5
demonstrates this for Radix4Div and B.Radix4Div. Considering that IPET is
intended to provide bounds based on a given cost model, in our case it tries to
select the worst case execution paths in terms of the energy consumption. There-
fore, the ECSA estimations seen in Figure 5 represent a loose upper bound on
the benchmarks’ energy consumption. Similar figures were also retrieved for the
two SoftFloat benchmarks. These bounds, in most cases cannot be considered
safe, as they might be undermined by the use of a non data sensitive energy
model and analysis. However, they can still give the application programmer
valuable guidance towards energy aware software development, as discussed in
Section 4.3.

For the benchmarks in Figure 5, we sought test cases that exercise the aver-
age, best- and worst-case scenarios of each benchmark’s algorithm, to compare
the resultant range of energy consumption with our ECSA predictions. A good
understanding of the underlying algorithms and information collected from the
ISS traces was necessary to identify tests covering each scenario with certainty.
This poses a challenge in guaranteeing that the cases of interest, such as worst
case, have been exercised. For example, the Radix4Div benchmark takes two
16-bit parameters, forming a search-space of 232 test cases. This was suitably
small to perform an exhaustive search in order to capture the worst case empir-
ically. However, the time cost of an exhaustive search precludes doing the same
for many other benchmarks. For both Radix4Div variants, the upper bounds
inferred by the IPET analysis are not only very close to the worst case retrieved
by exhaustively searching the possible test cases, but are also safe.

Generally, for all results shown, a proportion of error is present in both forms
of static analysis as well as simulation based energy estimation. The error in the
ISS based estimation is a baseline for the best achievable error in static analysis,
as ISS produces more accurate execution information. For all the benchmarks,
the ISA ECSA results are over-approximating the trace based energy estima-
tions. This applies also to the LLVM IR ECSA results with exception of the
statistics benchmark. This over-approximation is a product of the bound
analysis used which is trying to select the most energy costly CFG path based

20 K. Georgiou et al.

on the provided cost model. A smaller difference between the ECSA results and
the trace based energy estimations indicates that the execution path selected by
the IPET fits better the actual execution path of a benchmark.

Measurement error analysis To assess the accuracy of ECSA predictions,
reliable hardware measurements are required. We use a shunt resistor current
sense circuit and data sampling hardware to obtain power dissipation with sub-
milliwatt accuracy. The data capture process is explained in more detail in [5].

Measurements are subject to errors introduced through environmental fac-
tors. In particular, temperature and electrical noise can result in variations of
the measured energy consumption for multiple runs of the same test. To measure
the effect of these factors on our platform, we executed the MatMult 4 thread
benchmark 100,000 times. This benchmark was selected because it is particularly
power intensive and likely to affect the device temperature the most. The varia-
tion observed on our hardware was less than 0.7% which we consider negligible
and close to the error margin of our measurement equipment. These factors could
have a more significant impact on other platforms. It is therefore important to
examine them when performing ECSA.

The test harness introduces a small error by repeatedly calling the benchmark
function within a loop. This is necessary to ensure an adequate number of power
samples are taken during the test. However, the loop surrounding the call to the
benchmark, together with the function call itself, introduce an overhead. This
overhead can be significant, especially when the amount of computation in the
loop body is low. To mitigate this overhead, we ensure that the loop is as efficient
as possible and each benchmark sufficiently large in size. Finally, measurements
were taken several times to ensure that results obtained were consistent, with
less than 0.5% variation.

LLVM IR analysis accuracy This form of analysis is solely dependent on
the accuracy of the mapping techniques presented in Section 3.2. As shown in
Figures 4a and 5, for all benchmarks the LLVM IR ECSA results are within one
percentage point error of ISA ECSA results, except for the Base64 benchmark
with a further 5.3 percentage points error. In this case the CFGs of the two levels
were significantly different due to BBs introduced from branches in the ISA level
CFG. This is one of the few cases where the mapper was unable to accurately
track the differences between the two CFGs.

Multi-threading accuracy Three benchmarks, MatMul, Biquad and JpegDCT,
were extended to multi-threaded versions, where each thread executes the same
program and processes its own data stream. The computation performed and
the energy consumption increases with the number of active threads, with a
negligible change in execution time. The underlying energy model is parametric
to the occupancy of the execution pipeline, which is determined by the number
of running threads. As such, the estimations from the model and their relative

Energy Consumption Static Analysis 21

errors can differ when the number of threads is changed. For any given number
of threads, the accuracy of the ECSA is influenced by the accuracy of the ISA
level energy model.

In the case of pipelined benchmarks, p.fir 7t and p.biquad 7t, the energy
model underestimates energy consumption by approximately 5%. This error is
inherited by the ECSA. Further calibration of the model is required to achieve
better accuracy for multi-threaded programs with communications.

Data effect Since a non data sensitive ECSA will provide a single energy
estimation regardless of input data values, comparing this to hardware mea-
surements may give a different error for each input data. To examine this, we
used one of our most data sensitive benchmarks, MatMul 4. The smallest over-
estimation when compared with the hardware measurements was 5.96% for both
the ISA ECSA and trace based energy estimations. This was obtained for matri-
ces that were initialized with randomly generated data. Since our energy model
was characterized using pseudo-randomly generated data, it provides a good
fit to the data used for measurement, thus this result meets our expectations.
The maximum over-estimation found was 25%, by initiating both matrices with
zero data, minimizing the processor’s switching activity. By using the same ran-
dom data in the two matrices, the over-estimation was between the two previous
cases, approximately 15%. This is because the processor switching activity is less
than in the case of different random data initialized matrices, and more than
the case with the zero initialized matrices. Thus, users must be cautious when
using ECSA with data sensitive benchmarks, as we will discuss in Section 4.3.

These findings lead to two new research questions. Firstly, for convenience,
many energy models are constructed from random input data. However, as we
demonstrated, the closer the data used to characterize the energy model fits
the data of the use case, the more accurate the ECSA estimation. For example,
MatMul and fdct are heavily used in video processing applications with highly
correlated data between frames in the video stream. Therefore, a random data
constructed energy model for these applications may not be suitable. How can
we construct energy models that are more fit for purpose? Secondly, if a data
sensitive energy model were to be constructed, how would this model be com-
posed to be useful for ECSA? These two research questions motivate future work
in this area.

Static analysis limitations ECSA suffers from all the static analysis limita-
tions that the timing analysis faces [64]. Many of the techniques used by the
timing analysis community to tackle these limitations can also be adopted in
ECSA. For example, infeasible paths can lead to unrealistic estimations in both
cases, energy and time. Techniques such as symbolic execution [46] used in tim-
ing analysis to exclude infeasible paths, can be also used for ECSA. For this
paper, source code annotations were translated to ILP constraints, in order to
exclude infeasible paths from ECSA.

22 K. Georgiou et al.

As already identified, ECSA can be more complicated than timing analysis.
In Figure 5, we discussed that energy consumption is sensitive to the data related
switching activity in the processor, which time is not affected from. In Section 3.5
we discussed, that for multi-threaded programs, timing analysis is considered
only with a single path across all the threads, but ECSA has to consider all
computations active during the case of interest.

In summary, the results show that static analysis, both at ISA and LLVM-
IR level, can deliver practical energy consumption estimates for a good range
of single and multi-threaded programs. The estimation error for both static and
simulation based techniques can be reduced if the accuracy of the underlying
energy model is improved.

4.3 ECSA applications

Precise energy measurements are often not easily accessible, requiring extra
equipment and hardware knowledge as well as modifications to the target hard-
ware. This makes it very difficult for most programmers to assess a program’s
energy consumption. ECSA overcomes these obstacles by providing energy trans-
parency to users and systems with a useful level of accuracy.

Trace based energy estimation allows for a very precise estimation of energy
consumption for a particular program run. The program is executed in simulation
with a given set of input parameters. The exact sequence of instructions can
be recorded during simulation and then used to estimate energy consumption.
However, a change to the input may produce a new execution path, requiring
a new simulation run to extract the correct instruction sequence. Simulation is
typically several orders of magnitude slower than hardware execution, making
repeated simulations undesirable as a means for tuning or optimizing a program.
ECSA does not depend on repeated simulation. It does not require trace data
in order to provide an energy estimation. This allows for much faster estimation
of a program’s energy consumption.

The main difference between energy measurements, trace simulation based
energy predictions and ECSA, is that the first two methods estimate the cost
of the actual executed path. ECSA, however, gives an upper bound based on
the cost model used. Both ECSA and trace estimations rely on the accuracy
of the energy model. Further, they cannot accurately account for energy due
to data-sensitive switching activity. In the rest of this section we will provide a
set of guidelines on how the ECSA results should be interpreted, and how they
can influence energy aware decisions that can be made by software developers,
compiler engineers, development tools and RTOS.

LLVM IR level ECSA The LLVM optimizer and code emitter are the nat-
ural place for compiler optimizations. Our LLVM IR analysis results demon-
strate a high accuracy with a deviation in the range of 1% from the ISA ECSA.
Some LLVM IR estimations may not always be as accurate as at ISA level,
but they are still of value to developers. Transparency of energy consumption

Energy Consumption Static Analysis 23

at this level enables programmers to investigate how optimizations affect their
program’s energy consumption [65], or even help introduce new low energy op-
timizations [66, 67]. This is more applicable at the LLVM IR than at the ISA
level, because more program information exists at that level, such as types and
loop structures. Our mapping techniques and analysis framework at the LLVM
IR level are applicable to any compiler that uses the LLVM common optimizer,
provided that an energy model for the target architecture is available.

For some programs, indirect jumps that are introduced at the ISA level can
make it impossible to extract a CFG. While this prevents ISA level ECSA,
the analysis can still be performed for these programs at LLVM IR, allowing
programmers to gain energy consumption insight even when ISA level analysis
is not feasible.

ECSA bound use cases Given that we are using bound analysis with an
energy model characterized with random input data, we must consider the ECSA
estimations as loose upper bounds of the WCEC. Although, these bounds are
not safe, in most cases they can provide useful information to the programmer,
e.g. to determine whether or not an application is likely to exceed an available
energy budget.

The modified B.Radix4Div benchmark avoids an early return when the divi-
dend is greater than 255. Omitting this optimization is less efficient, but balances
the CFG paths. The effect of this modification can be seen in Figure 5. The ISA
level energy consumption lower bounds (the best case retrieved by IPET) are
shown. In the optimized version, the energy consumption across different test
cases varies significantly, creating a large range between the upper and lower
energy consumption bounds. Conversely, the unoptimized version shows a lower
variation, thus narrowing the margin between the upper and lower bounds, but
has a higher average energy consumption.

Knowledge of such energy consumption behavior can be of value for appli-
cations like cryptography, where the power profile of systems can be monitored
to reveal sensitive information in side channel attacks [68]. In these situations,
ECSA analysis can help code developers to design code with low energy consump-
tion variation, so that any potential leak of information that could be obtained
from power monitoring can be obfuscated.

Parametric resource usage equations Regression analysis was applied to the
ISA level static analysis results of the benchmarks MatMult 1,2,4, Mac, Cnt and
Base64. The resultant upper bound equations are shown in Table 1. The second
column shows the retrieved equations which return the energy consumption pre-
dictions in nano-Joules (nJ) as a function over x, as defined in the third column.
Levenshtein is a multi-parametric energy consumption benchmark. However,
the regression analysis was unable to determine a good parametric equation for
it.

Parametric resource usage equations can be valuable for a programmer or
user to predict energy consumption with specific parameter values. Moreover,

24 K. Georgiou et al.

embedding such equations into an operating system can enable energy aware
decisions for either scheduling tasks, or checking if the remaining energy budget
is adequate to complete a task. If the application permits, the operating system
may also downgrade the quality of service to complete the task within a lower
energy budget.

Benchmark Regression Analysis (nJ) x

Base64 f(x) = 19x + 94.2 string length

Mac f(x) = 15x + 21.1 length of two vectors

Cnt f(x) = 19.9x2 + 5.7x + 34.6 matrix size

MatMul f(x) = 12.2x3 + 17.5x2 + 4.7x + 33 size of square matrices

MatMul 2T f(x) = 19.3x3 + 21.4x2 + 5.9x + 96.8 size of square matrices

MatMul 4T f(x) = 22.7x3 + 25x2 + 6.5x + 157.7 size of square matrices

Table 1: Benchmarks with parametric energy consumption.

Multi-threaded ECSA The first class of parallel programs to which ECSA
was applied is replicated non-communicating threads. The user can make energy
aware decisions on the number of threads to use, with respect to time and energy
estimations retrieved by our analysis. For example, take four independent matrix
multiplications on four pairs of equally sized matrices (28×28). Our analysis will
show that a single thread will have an execution time of 4x the time needed to
execute one matrix multiplication. However, two threads will half the execution
time and decrease the energy by 54%. Four threads which will half the execution
time again, and decrease the energy by 41% compared to the two-thread ver-
sion. Using more threads increases the power dissipation, but the reduction in
execution time saves energy on the platform under investigation. Although there
is a different estimation error between different numbers of active threads, the
error range of 6% is small enough to allow comparison between these different
versions. The comparison can be also done by RTOS using the cost functions
from Table 1 to make real time energy aware scheduling decisions.

The second class of parallel programs that our ECSA was applied to was
streaming pipelines of communicating threads. There is a choice in how to spread
the computation across threads to maximize throughput and therefore minimize
execution time or lower the necessary device operating frequency. Having a num-
ber of available threads, a number of cores and the ability to apply voltage and
frequency scaling, provides a wide range of configuration options in the design
phase, with multiple optimization targets. This can range from optimizing for
quality of service, time and energy, or a combination of all three. Our ECSA
can take advantage of the fact that the energy model used can be parametric to
voltage and frequency, to statically identify the most energy efficient configura-
tion of the same program, among a number of different options that deliver the
same required performance. The first step of analyzing the pipelined versions
of industrial filter applications has been made in this paper. We are currently

Energy Consumption Static Analysis 25

working on extending our ECSA to automatically exploit the possible different
configurations and provide the optimal solution, within the user’s constraints.

Finally, the user needs to be aware of the potential effect of input data.
When highly data sensitive applications are analyzed, the user can make some
assumptions, based on the possible input data range, about the accuracy of the
ECSA analysis. As explained in Figure 5, data that is close to random will lead
to a smaller estimation error, when random data was used to build the energy
model. From our findings, this variation can be up to 25%, but this has only been
shown in short, contrived cases and is unlikely to be large in realistic programs.

5 Conclusion and Future Work

This work has given critical review of ECSA existing works that have overlooked
the effect of using non data sensitive energy models and SRA bound techniques,
on the retrieved energy estimations. In the absence of average case SRA and data
sensitive energy models, we establish this effect in our experimental evaluation of
ECSA on a set of mainly industrial benchmarks. We also demonstrate that such
an analysis can still have a significant value for software developers, compiler
engineers, development tools and RTOS, by establishing a number of ECSA
applications in Section 4.3.

A technique was introduced to allow energy characterization of LLVM IR. It
enables ECSA at this level with a small loss of accuracy, typically 1%, compared
to ECSA at ISA level. ECSA is applied to a set of multi-threaded programs for
the first time to our knowledge. This is a significant step beyond existing work
that examines single-thread programs, because such an analysis can provide
significant guidance for time-energy design space exploration between different
numbers of threads and cores.

This work has generated new research questions. There is a clear need for
non bounding SRA techniques that focus on average cases. Data sensitive energy
models and SRA techniques are needed for ECSA to account for data sensitive
switching activity in the processor. The majority of existing energy models are
usually generated using random data. As we have discussed in Figure 5, alter-
native data energy models might be better for specific applications.

Future work aims to analyze more complex concurrent programs, such as
distinct non-communicating threads rather than replicated threads, pipelines of
threads with unbalanced workloads and other concurrency patterns. The ECSA
can be combined with some more dynamic techniques such as abstract simula-
tion to account for all the possible threads interleaving. Extending such analysis
beyond deeply embedded systems, with more architectural performance enhanc-
ing features, might be done by exploiting more techniques from the WCET
community, such as abstract interpretation and data cache analysis.

References

1. R. Jayaseelan, T. Mitra, and X. Li, “Estimating the worst-case energy consumption
of embedded software,” in Real-Time and Embedded Technology and Applications

26 K. Georgiou et al.

Symposium, 2006. Proceedings of the 12th IEEE, pp. 81–90, April 2006.

2. V. Tiwari, S. Malik, A. Wolfe, and M. Tien-Chien Lee, “Instruction level power
analysis and optimization of software,” Journal of VLSI Signal Processing Systems
for Signal, Image, and Video Technology, vol. 13, no. 2-3, pp. 223–238, 1996.

3. J. Pallister, S. Kerrison, J. Morse, and K. Eder, “Data dependent energy modelling:
A worst case perspective,” CoRR, vol. abs/1505.03374, 2015.

4. D. May, “XMOS XS1 Instruction Set Architecture,” 2009.

5. S. Kerrison and K. Eder, “Energy Modeling of Software for a Hardware Multi-
threaded Embedded Microprocessor,” ACM Transactions on Embedded Computing
Systems, vol. 14, pp. 56:1–56:25, Apr. 2015.

6. C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program
analysis and transformation,” in CGO, pp. 75–88, 2004.

7. LLVMorg, “The LLVM Compiler Infrastructure,” November 2014.

8. A. Bogliolo, L. Benini, G. Micheli, and B. Ricc, “Gate-Level Power and Current
Simulation of CMOS Integrated Circuits,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 5, no. 4, pp. 473–488, 1997.

9. K. Roy and M. Johnson, “Software design for low power,” in Low power design in
deep submicron electronics, ch. 6, pp. 433–460, Kluwer Academic Publishers, 1997.

10. D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations,” ACM SIGARCH Computer Architecture
News, vol. 28, pp. 83–94, May 2000.

11. Sim-Panalyser, Sim-Panalyser 2.0 Reference Manual. 2004.

12. T. Austin, “SimpleScalar: An Infrastructure for computer system modeling,” IEEE
Computer, no. February, pp. 59–67, 2002.

13. S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel, “An accurate and fine
grain instruction-level energy model supporting software optimizations,” in Proc.
of PATMOS, Citeseer, 2001.

14. D. Sarta, D. Trifone, and G. Ascia, “A data dependent approach to instruction
level power estimation,” in Low-Power Design, 1999. Proceedings. IEEE Alessan-
dro Volta Memorial Workshop on, pp. 182–190, Mar 1999.

15. H. Kojima, D. Gorny, K. Nitta, and K. Sasaki, “Power analysis of a programmable
dsp for architecture/program optimization,” in Low Power Electronics, 1995.,
IEEE Symposium on, pp. 26–27, Oct 1995.

16. M. Sami, D. Sciuto, C. Silvano, and V. Zaccaria, “An instruction-level energy
model for embedded VLIW architectures,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 21, pp. 998–1010, Sept. 2002.

17. M. a. Ibrahim, M. Rupp, and H. Fahmy, “Power estimation methodology for VLIW
Digital Signal Processors,” in 2008 42nd Asilomar Conference on Signals, Systems
and Computers, no. 1, pp. 1840–1844, IEEE, Oct. 2008.

18. G. Qu, N. Kawabe, K. Usami, and M. Potkonjak, “Function-level power estimation
methodology for microprocessors,” Proceedings of the 37th conference on Design
automation - DAC ’00, pp. 810–813, 2000.

19. S. Lee, A. Ermedahl, and S. Min, “An Accurate Instruction-Level Energy Con-
sumption Model for Embedded RISC Processors,” ACM SIGPLAN Notices,
vol. 36, pp. 1–10, Aug. 2001.

20. G. Contreras and M. Martonosi, “Power prediction for Intel XScale processors
using performance monitoring unit events,” in ISLPED ’05. Proceedings of the
2005 International Symposium on Low Power Electronics and Design, pp. 221–
226, IEEE, 2005.

Energy Consumption Static Analysis 27

21. Y. Shao and D. Brooks, “Energy characterization and instruction-level energy
model of Intel’s Xeon Phi processor,” in International Symposium on Low Power
Electronics and Design (ISLPED), no. November, pp. 389–394, IEEE, Sept. 2013.

22. R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström, “The worst-case execution-time
problem—overview of methods and survey of tools,” ACM Trans. Embed.
Comput. Syst., vol. 7, pp. 36:1–36:53, May 2008.

23. G. Brat, J. Navas, N. Shi, and A. Venet, “Ikos: A framework for static analysis
based on abstract interpretation,” in Software Engineering and Formal Methods,
pp. 271–277, Springer, 2014.

24. B. Wegbreit, “Mechanical program analysis,” Commun. ACM, vol. 18, no. 9,
pp. 528–539, 1975.

25. M. Rosendahl, “Automatic complexity analysis,” in Proceedings of the Fourth In-
ternational Conference on Functional Programming Languages and Computer Ar-
chitecture, FPCA ’89, (New York, NY, USA), pp. 144–156, ACM, 1989.

26. S. K. Debray, N.-W. Lin, and M. Hermenegildo, “Task Granularity Analysis in
Logic Programs,” in Proc. of the 1990 ACM Conf. on Programming Language
Design and Implementation, pp. 174–188, ACM Press, June 1990.

27. S. K. Debray, P. López-Garćıa, M. Hermenegildo, and N.-W. Lin, “Lower Bound
Cost Estimation for Logic Programs,” in 1997 International Logic Programming
Symposium, pp. 291–305, MIT Press, Cambridge, MA, October 1997.

28. P. Vasconcelos and K. Hammond, “Inferring Cost Equations for Recursive, Poly-
morphic and Higher-Order Functional Programs,” in Proceedings of the Workshop
on Implementation of Functional Languages, vol. 3145 of Lecture Notes in Com-
puter Science, pp. 86–101, Springer-Verlag, September 2003.

29. J. Navas, E. Mera, P. López-Garćıa, and M. Hermenegildo, “User-Definable Re-
source Bounds Analysis for Logic Programs,” in International Conference on Logic
Programming (ICLP’07), Lecture Notes in Computer Science, Springer, 2007.

30. E. Albert, P. Arenas, S. Genaim, and G. Puebla, “Closed-Form Upper Bounds
in Static Cost Analysis,” Journal of Automated Reasoning, vol. 46, pp. 161–203,
February 2011.

31. J. Hoffmann, K. Aehlig, and M. Hofmann, “Multivariate amortized resource anal-
ysis,” ACM Trans. Program. Lang. Syst., vol. 34, no. 3, p. 14, 2012.

32. D. Alonso-Blas and S. Genaim, “On the limits of the classical approach to cost
analysis,” vol. 7460, pp. 405–421, 2012.

33. F. Zuleger, S. Gulwani, M. Sinn, and H. Veith, “Bound analysis of imper-
ative programs with the size-change abstraction (extended version),” CoRR,
vol. abs/1203.5303, 2012.

34. J. Engblom, A. Ermedahl, and F. Stappert, “Comparing different worst-case exe-
cution time analysis methods,” in The Work-in-Progress session of the 21st IEEE
Real-Time Systems Symposium (RTSS 2000), November 2000.

35. Y.-T. Li and S. Malik, “Performance analysis of embedded software using implicit
path enumeration,” in Proceedings of the 32Nd Annual ACM/IEEE Design Au-
tomation Conference, DAC ’95, (New York, NY, USA), pp. 456–461, ACM, 1995.

36. H. Theiling and C. Ferdinand, “Combining abstract interpretation and ilp for mi-
croarchitecture modelling and program path analysis,” in Real-Time Systems Sym-
posium, 1998. Proceedings., The 19th IEEE, pp. 144–153, Dec 1998.

37. G. Ottosson and M. Sjodin, “Worst-case execution time analysis for modern hard-
ware architectures,” in In Proc. ACM SIGPLAN Workshop on Languages, Com-
pilers and Tools for Real-Time Systems (LCT-RTS’97, pp. 47–55, 1997.

28 K. Georgiou et al.

38. D. Potop-Butucaru and I. Puaut, “Integrated Worst-Case Execution Time Esti-
mation of Multicore Applications,” in 13th International Workshop on Worst-Case
Execution Time Analysis (C. Maiza, ed.), vol. 30 of OpenAccess Series in Informat-
ics (OASIcs), (Dagstuhl, Germany), pp. 21–31, Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2013.

39. P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints,” in Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, (Los Angeles, California), pp. 238–252, ACM Press,
New York, NY, 1977.

40. J. Navas, M. Méndez-Lojo, and M. Hermenegildo, “Safe Upper-bounds Inference of
Energy Consumption for Java Bytecode Applications,” in The Sixth NASA Langley
Formal Methods Workshop (LFM 08), April 2008. Extended Abstract.

41. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa, “Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor),” Science of Computer Programming, vol. 58, no. 1–2,
2005.

42. J. Navas, M. Méndez-Lojo, and M. Hermenegildo, “User-Definable Resource Usage
Bounds Analysis for Java Bytecode,” in Proceedings of BYTECODE, vol. 253 of
Electronic Notes in Theoretical Computer Science, pp. 65–82, Elsevier - North
Holland, March 2009.

43. U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech,
M. Hermenegildo, and K. Eder, “Energy Consumption Analysis of Programs based
on XMOS ISA-level Models,” in Proceedings of the 23rd International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR’13), 2014.

44. D. Watt, Programming XC on XMOS Devices. XMOS Limited, 2009.

45. N. Grech, K. Georgiou, J. Pallister, S. Kerrison, J. Morse, and K. Eder, “Static
analysis of energy consumption for llvm ir programs,” in Proceedings of the 18th In-
ternational Workshop on Software and Compilers for Embedded Systems, SCOPES
’15, (New York, NY, USA), ACM, 2015.

46. P. Wägemann, T. Distler, T. Hönig, H. Janker, R. Kapitza, and W. Schröder-
Preikschat, “Worst-case energy consumption analysis for energy-constrained em-
bedded systems,” July 2015.

47. K. Georgiou, “On the value and limits of multi-level energy consumption static
analysis for deeply embedded single and multi-threaded programs - benchmarks.”
https://www.cs.bris.ac.uk/home/kg8280/benchmarks.html, 2015.

48. J. M. Townley, “Practical programming for static average-case analysis: the moqa
investigation,” 2013.

49. M. Schellekens, “Moqa; unlocking the potential of compositional static average-
case analysis,” The Journal of Logic and Algebraic Programming, vol. 79, no. 1,
pp. 61 – 83, 2010. Speical Issue: Logic, Computability and Topology in Computer
Science: A New Perspective for Old Disciplines.

50. F. Najm, “A survey of power estimation techniques in vlsi circuits,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 2, pp. 446–455, Dec
1994.

51. D. May, The XMOS XS1 Architecture. 2009.

52. K. Georgiou, “On the value and limits of multi-level energy consumption static
analysis for deeply embedded single and multi-threaded programs - fnop modeling.”
https://www.cs.bris.ac.uk/home/kg8280/fnops.html, 2015.

Energy Consumption Static Analysis 29

53. C. Brandolese, S. Corbetta, and W. Fornaciari, “Software energy estimation based
on statistical characterization of intermediate compilation code,” in Low Power
Electronics and Design (ISLPED) 2011 International Symposium on, pp. 333–338,
Aug 2011.

54. “The dwarf debugging standard,” Oct. 2013. http://dwarfstd.org/.
55. C. Lattner and D. Patel, “Extensible metadata in llvm ir,” Apr 2014.
56. T. Wei, J. Mao, W. Zou, and Y. Chen, “A new algorithm for identifying loops in

decompilation,” in Static Analysis (H. Nielson and G. Fil, eds.), vol. 4634 of Lecture
Notes in Computer Science, pp. 170–183, Springer Berlin Heidelberg, 2007.

57. Y.-S. Li and S. Malik, “Performance analysis of embedded software using implicit
path enumeration,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 16, pp. 1477–1487, Dec 1997.

58. K. Eder, K. Georgiou, and N. Grech, eds., Common Assertion Language. ENTRA
Project: Whole-Systems Energy Transparency (FET project 318337), November
2013. Deliverable 2.1, http://entraproject.eu.

59. XMOS, “xTimecomposer,” November 2014.
60. M. Field, “Binary division,” November 2014.
61. J. Hauser, “SoftFloat,” November 2014.
62. XMOS, “Application Note: DSP performance on XS1-L device,” November 2014.
63. J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The mälardalen wcet bench-

marks - past, present and future,” in Proceedings of the 10th International Work-
shop on Worst-Case Execution Time Analysis, July 2010.

64. R. Wilhelm and D. Grund, “Computation takes time, but how much?,” Commun.
ACM, vol. 57, pp. 94–103, Feb. 2014.

65. C. Blackmore, O. Ray, and K. Eder, “A logic programming approach to predict
effective compiler settings for embedded software,” Theory and Practice of Logic
Programming, vol. 15, pp. 481–494, 7 2015.

66. J. Pallister, K. Eder, and S. Hollis, “Optimizing the flash-ram energy trade-off in
deeply embedded systems,” in Code Generation and Optimization (CGO), 2015
IEEE/ACM International Symposium on, pp. 115–124, Feb 2015.

67. J. Pallister, K. Eder, S. J. Hollis, and J. Bennett, “A high-level model of embedded
flash energy consumption,” in Proceedings of the 2014 International Conference on
Compilers, Architecture and Synthesis for Embedded Systems, CASES ’14, (New
York, NY, USA), pp. 20:1–20:9, ACM, 2014.

68. P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Proceedings of
the 19th Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’99, (London, UK, UK), pp. 388–397, Springer-Verlag, 1999.

Acknowledgments

The research leading to these results has received funding from the European
Union 7th Framework Programme (FP7/2007-2013) under grant agreement no
318337, ENTRA - Whole-Systems Energy Transparency. Special thanks to Intel
for providing us with the equipment used for our power monitoring setup.

Attachment D2.3.4

On the infeasibility of analysing

worst-case dynamic energy

Under review at the ACM journal Transactions
on Embedded Computing (TECS).

79

On the infeasibility of analysing worst-case
dynamic energy

Jeremy Morse, Steve Kerrison and Kerstin Eder
University of Bristol

March 7, 2016

Abstract

In this paper we study the sources of dynamic energy during the execution of software
on microprocessors suited for the Internet of Things (IoT) domain. Estimating the energy
consumed by executing software is typically achieved by determining the most costly path
through the program according to some energy model of the processor. Few models, however,
adequately tackle the matter of dynamic energy caused by operand data. We find that the
contribution of operand data to overall power can be significant, prove that finding the worst-
case input data is NP-hard, and further, that it cannot be estimated to any useful factor.
Our work shows that accurate worst-case analysis of data dependent energy is infeasible,
and that other techniques for energy estimation should be considered.

1 Introduction

A significant design constraint in the development of embedded systems is that of resource con-
sumption. Software executing on such systems typically has very limited memory and computing
power available, and yet must meet the requirements of the system. To aid the design process,
analysis tools such as profilers or maximum-stack-depth estimators provide the developer with
information allowing them to refine their designs and satisfy constraints.

A less well studied constraint is the limited energy budgets that deeply embedded systems
possess. A typical example would be a wireless sensor powered by battery, that must operate
for a minimum period without the battery being replaced. Other examples would be systems
dependent on energy harvesting, or systems with low thermal design points that thus have
a maximum power dissipation level. These constraints can also be approached with software
analysis tools, and several techniques have been developed that allow the estimation of software’s
energy consumption [17, 7, 18].

Within energy estimation, focus has been given to Worst Case Energy Consumption (WCEC):
determining the maximum amount of energy that can be consumed during the execution of the
software. In this paper, we shall study the calculation of worst case energy, considering only the
effects that different software and inputs can have on a system. The objective is to determine
whether it is possible to establish an upper bound on energy that is tighter than over-estimating
by, for example, using a maximum activity factor. Such a factor may be unachievable during
the execution of a real program, because data that triggers the highest energy consumption
in one instruction may, through data dependency and other constraints, preclude subsequent
instructions from consuming their maximal energy [11].

1

Energy is the integral of power over a given period. The power dissipation of a processor can
be apportioned in two parts: static and dynamic. Static power or leakage is the power dissipated
for as long as the component is turned on, irrespective of its internal state or any changing inputs
and outputs. Dynamic power or switching activity refers to power dissipation from the substance
of execution: the switching of gates and charging of data buses, which all consume energy. We
express these more formally in Section 3. Analysis of worst-case instantaneous dynamic power
has been well studied in the literature, but here we consider worst-case energy, i.e. the power
over a program execution.

Estimating worst case energy for a particular program naturally becomes the computation
of these two distinct sources of energy consumption. Static power is directly controlled by the
length of the program, measured in time. Numerous techniques have been developed by the
worst case execution time (WCET) community to address this matter [33]. Dynamic power,
however, has received much less attention. Several models of how systems consume energy have
characterised the dynamic power only for specific inputs, averaged over all inputs, assumed a
worst-case dynamic power for each instruction with few details, or assumed no dynamic power
at all [12, 7, 32].

This paper demonstrates that for data-dependent dynamic energy, the calculation of the worst
case input to a software execution is an NP-hard problem, and further, that its dynamic energy
cannot be approximated to a useful factor. Our proof applies to processors in general, but we
show on an example processor, the Xcore XS1-L [19], that the portion of energy that is infeasible
to analyse contributes at least half of the processor’s dynamic power.

The rest of the paper is structured as follows: in Section 2 we examine the current state of
energy estimation, and related work. In Section 3 we study the Xcore processor and its dynamic
energy consumption. Section 4 formalises the problem that we are dealing with, which is shown to
be NP-hard in Section 5, and in Section 6 we demonstrate that the problem cannot be effectively
approximated. We discuss the results in Section 7, and draw conclusions in Section 8 with an
outlook on future work.

2 Background

This section identifies existing techniques for determining the energy consumption of software
when executed, techniques for determining the maximum amount of energy a program can con-
sume, and the theoretical definition of the MAXSAT problem.

2.1 Energy estimation techniques

Given the high complexity of microprocessors, energy analysis based on hardware designs tends
to be resource intensive, and require access to proprietary design materials. Research has instead
focused on using empirical techniques to model how processors consume energy. These models
can then be used to estimate the consumption of a real-world system.

One of the most popular techniques is the instruction level energy model [30]. Various test
patterns of instructions are executed on a processor and their power empirically measured, leading
to a model of per instruction energy costs and the dynamic cost of switching between different
instructions. Simulating an instruction sequence, or interpreting a trace of an execution, can then
be combined with this energy model to produce a cost value for the execution. Steinke [27] extend
this model to include the costs of circuit switching in instruction operands. These costs include
the amount of switching occurring on data buses supplying input operands when executing
instructions, and the switching on the output datapath when an operand or memory address is
written to by an instruction.

2

Further modelling techniques for dynamic power go beyond the core part of the processor,
such as analysing flash memory [21], caches [4] and DRAMs [16]. High performance processors
feature hardware-provided counters that record metrics such as cache hit rates, which can be
used by appropriately parametrised energy models [24]. In this paper, where embedded devices
are the focus, we choose to only examine the dynamic power attributable to the core part of the
processor.

2.2 Worst case energy consumption (WCEC)

WCEC is a form of energy estimate, where the aim is to find the maximum amount of energy that
a piece of software will consume. The problem is thus made of two parts: modelling the energy
consumption of the software under test, and searching for the execution of it that will lead to the
greatest amount of energy consumed. This problem is similar to the worst case execution time
problem (WCET) [33] where the execution time of software is modelled, and then the longest
possible path found. For both problems, a specific worst case execution is sought. However,
much interest is also shown in providing an upper bound on the worst case. Such a bound may
be higher than the worst case, but may help demonstrate that a design constraint is met.

2.2.1 WCEC is not a simple reinterpretation of WCET

The worst case energy consumption problem goes beyond the worst case execution time problem,
because the execution time of a single instruction is largely independent of its input data. This is
because timing variability has mostly been eliminated “by design” through the use of synchronous
logic and the limited propagation time associated with executing individual instructions.

In real-time embedded systems, timing-predictable processors execute instructions within a
fixed number of clock cycles, irrespective of the data the operation works on. This is particu-
larly beneficial to WCET analysis, which can then focus on identifying the worst case execution
path which is determined by the control flow, rather than by the data flow of the computation.
More advanced micro-architectural features, such as early-out of operations, or cache hierarchies,
provide higher average performance at the cost of predictability. This makes WCET analysis
far more challenging, as tight bounds firmly rely on timing predictability of the target architec-
ture [28]. However, even operations that have a variable execution time can be quantized by the
processor’s clock period into a tractable number of discrete possibilities. The range may be in
the order of tens, hundreds, or thousands of cycles, depending on the type of operation.

Energy depends on both, the execution time and the power dissipation of the operation.
Power is not quantized in terms of the clock period, but instead by the number of transistor and
interconnect state changes (i.e. switches) that may take place during an operation, depending
on the data to be processed. The number of possible power dissipation levels is thus in the order
of the number of transistors in the device. This is several orders of magnitude larger than the
number of timing possibilities explored by WCET analysis.

For the techniques that are used in WCET to be directly transferable to WCEC, a set amount
of energy per operation would need to be specified and realised in hardware, similar to specifying
and ensuring, through timing analysis, that each operation fits into a fixed number of clock
cycles. Consider the converse: A processor that presents a similar WCET analysis difficulty to
determining WCEC, would be an asynchronous design, where the precise execution time is a
non-trivial function of an operation’s input data. Such devices may have an average delay, but
actual performance for a given use case or tight bounds may be harder to determine [14].

3

2.2.2 Existing work on WCEC

The first publication to provide a technique for computing the WCEC of software was [12], where
upper bounds on the energy consumption of several programs were inferred using energy models
of software basic blocks and an ILP solver to find a maximal path through the program. The
authors additionally debunk the suggestion that the execution path consuming the most time
is always the path that also consumes the most energy. With regards to dynamic power, the
authors assume that all circuits switch on every clock cycle rather than attempting to determine
actual switching activity, their justification being that the contribution of dynamic power to
overall energy is low, thus their approximation does not introduce significant imprecision. We
address this in Section 3.

Resource analysis techniques that extract cost relations from programs have been employed
to analyse energy consumption bounds [17, 7]. The costs used in these analyses represent en-
ergy consumption and are based on models that provide a single energy cost per instruction,
obtained by averaging the energy measured from processing random data, constrained to yield
valid operands for the respective instruction [15]. However, bounds obtained in this way cannot
be considered safe, as executions would exist where the energy from operand data exceeds the
average case.

More recently, [32] have presented techniques for estimating over and under approximations
of WCEC through implicit path enumeration and genetic algorithms, respectively. They do not,
however, comment on dynamic power at all: their absolute instruction energy model appears
to assume maximum switching for each instruction cost. Their relative energy model does not
consider real energy costs, instead estimating the difference in energy consumption between
instructions, again with no explicit consideration of dynamic power.

Both Jayaseelan and Wägemann identify inefficiency as being a reason why they cannot com-
pute accurate switching activities for circuits. As we will show in this paper, the problem is
infeasibly complex under the P 6= NP assumption.

2.3 Existing complexity results

Switching activity is a matter studied in detail by the VLSI community for circuit design, as
the maximum instantaneous switching in a circuit can affect the power supply requirements [20].
This problem has been shown to be NP-hard [5] and numerous techniques have been developed
to make an estimate of the worst case power consumption [8], allowing maximum power analysis.

Power estimation itself does not directly correspond with energy estimation. The objective
of WCEC is finding the maximal amount of circuit activity over a period of time, rather than
the instantaneous maximum, which itself may be incompatible with the circumstances that lead
to maximum energy. In particular, software requires that computations be consistent with past
inputs, creating additional constraints and dependencies.

Switching between instructions is a notable source of energy consumption, which can be con-
trolled through the order in which instructions are executed. Techniques have been developed
to reduce consumption through instruction scheduling [23], but this is known to be an NP-hard
problem. Instruction scheduling uses pre-computed costs of switching between instructions to
determine an optimal static schedule. It does not consider the data operands to instructions or
any cost that does not have a fixed value.

None of these complexity results are directly applicable to the estimation of energy in data-
dependent switching during software execution. To the best of our knowledge, we believe this is
the first work to consider data-dependent switching costs.

4

2.4 Maximum satisfiability

The Maximum satisfiability problem “MAXSAT” [2, pp.613–631] is defined as the satisfiability
problem where the number of clauses satisfied must be maximised by an assignment. Following
the presentation of [13], define L to be a set of literals, and C a set of disjunctive form clauses:

L =
⋃

i>0

{xi, xi}

c ∈ C,C = {l1 ∨ ... ∨ ln | li ∈ L},

where each xi is a Boolean variable. A truth assignment defines each xi or its negation to be
true. A clause is deemed to be satisfied if at least one literal in the clause is assigned true. A
MAXSAT problem is a set of literals and set of clauses 〈L,C〉, such that the solution is the truth
assignment that causes the maximal number of clauses to be satisfied.

3 Circuit switching on Xcore

Prior WCEC papers have relied on the suggestion that the variation in dynamic switching is
small in relation to other energy costs in a processor, at approximately 3 % [29]. Other work
has presented a mixed picture: [26] found that the switched capacitance (i.e. switching cost) of
a StrongARM processor had little variance across applications, suggesting that switching costs
contribute little to overall program energy; while [1] observe that data switching accounts for up
to 50% of processor core energy.

Here, we affirm that dynamic switching costs can be high by analysing the energy consump-
tion of the Xcore [19] XS1-L, and demonstrating a significant energy variation due to dynamic
switching.

3.1 Defining power dissipation in a micro-processor

The energy, E, of an electronic device is the integral of its power dissipation, P , over a given
time period, T :

E =

∫ T

t=0

P (t) dt. (1)

Power is an instantaneous measure of the rate of work. Typically, this is sampled repeatedly in
order to discretise the integral, or the power is averaged, simplifying the equation to E = P ×T .

In digital devices such as processors, the total power dissipation of the device, Ptot is typically
apportioned into two additive parts, termed static and dynamic, denoted here as Ps and Pd

respectively:

Ptot = Ps + Pd (2)

Elaborating on these, static power is determined by the operating voltage, Vdd of the device
and Ileak, the leakage current present, which is itself dependent upon physical characteristics
such as operating temperature, transistor feature size and the manufacturing process that is
used.

Ps = VddIleak, ∴ Ps ∝ Vdd (3)

Dynamic power is dependent upon the capacitance of the components that are being switched,
Csw, as well as the operating voltage and the frequency of switching, f . In a processor, f is

5

governed by the clock frequency. The proportion of the device that is switching is dependent
upon the instruction and data being executed and related changes in state. This is represented
by an activity factor, α, where each instruction or action performed by the processor may have
a different α.

Pd = αCswV
2
ddf, ∴ Pd ∝ V 2

dd (4)

There is a quadratic relationship between voltage and dynamic power. The necessary operating
voltage is approximately linearly proportional to the operating frequency.

3.2 Apportioning dynamic power

When considering power per instruction, it is important to calculate an appropriate α per in-
struction, or some equivalent by abstraction. However, the instruction is not the sole influence
upon the α value. The operands supplied to the processor’s functional units (for example, arith-
metic unit), will affect the amount of switching. This includes changes to the input and output
data buses, as well as internal switching within the functional unit as the new result is computed.
As such, one instruction may have a range of possible α values that are dependent on the input
data.

Prior work [12] has suggested that this variation in α is small and therefore not significant
enough to consider when constructing a worst-case energy model. However, we demonstrate that
variation in input data can be responsible for as much as 42 % of a core’s power dissipation and
thus becomes a relevant contributor to the model. This is pertinent to systems with minimal
additional components, such as those that are deeply embedded, where the processor is the major
consumer of energy. In larger, more complex systems, with many external devices and power
supplies, the variation in total system energy due to data values is proportionally smaller.

Internal processor data buses are one of the largest contributors of dynamic power. These
buses interconnect various internal units, and so changing values on these buses indicate the
charge or discharge of connections between a number of gate inputs and outputs, which may
have different loads depending on their fan-in or fan-out and connection length. The [27] energy
model explores this and discovers that approximately 20 % of overall processor power can be
attributed to the Hamming distance on buses.

To determine the dynamic power cost on our target device (the Xcore XS1-L), we performed
experiments in the manner of [27]. For a set of instructions, we tested every combination of
operand inputs from zero to 255 for each operand, creating a sequence of tests, P. We alter-
nate between instructions with this data set and all-zero operands, to ensure we measured the
Hamming distance on each cycle. The Xcore is a cache-less multi-threaded processor with time-
deterministic execution. Test sequences were constructed in such a way to ensure we exercised
the processor datapaths in every instruction cycle. Although the processor has a 32-bit datapath,
exhaustive testing over 8-bit data is sufficient to expose the behaviours of interest to this work.

The device is operated with a 1.0 V core power supply and 500 MHz clock frequency. Power is
sampled at the 3.3 V input to the DC-DC converter that supplies the cores and is done so using
a vendor-supplied sampling and debug device that uses a shunt resistor to determine current.
The tests are each run repeatedly for a 0.5 s duration in order to acquire several thousand power
samples, then taking the average.

The device under test is a dual-core component, tested with single-core code. As such, we must
remove the additional energy consumption that would not be present if a single-core version of
the component were to be used. This is established through the following steps. First, measure
the power of the dual-core device when idle, defining Ptdual to ascertain Ptsingle:

6

Ptsingle =
Ptdual

2
. (5)

Executing instruction power tests on one core, leaving the remaining core idle, produces a
sequence of test results, P = {P0, . . . , Pn}. Define the dynamic power contribution of the lowest
and highest power test cases as Pdmin and Pdmax respectively, and the dynamic power range,
Pdrng:

Pdmin = min(P)− Ptdual, (6)

Pdmax = max(P)− Ptdual, (7)

Pdrng = Pdmax − Pdmin. (8)

We observe for the device under test that Ptdual = 328 mW and therefore Ptsingle = 164 mW.
Any additional power observed during tests is used to determine how much dynamic power
variation is possible for the set of input values tested. This is not solely static power, because
even at idle, switching in components such as the clock tree is taking place, contributing to
dynamic power. Thus, the difference in power observed during instruction and data tests is not
the total dynamic power contribution, but does establish the degree of variation in dynamic
power that can take place, and what proportion of total core power this amounts to.

For the add instruction, Pdmin = 34 mW and Pdmax = 96 mW, giving Pdrng = 62 mW. This
demonstrates that for add, up to 27 % of the core’s power dissipation is governed by operand
values. In a system where processor power is significant, this is a substantial variation, inaccurate
predictions of which may be undesirable.

To aid analysis of the results of these experiments, we present a series of “heat-map” figures,
showing measured dynamic power in colour and datapath Hamming weights in greyscale. These
plots use measurements from tests of the add instruction.

Figure 1 shows total dynamic power for add with all combinations of two 8-bit operands. The
diagonal striping indicates a strong correlation with the number of bits set to 1 in the result of
the computation. This is observable due to alternating between test add operations and all-zero
operations. The Hamming weight of the output is shown in Figure 2. This is determined to
represent 4.4 mW per output bit set.

Subtracting the calculated switching power per output bit from the original dynamic power
measurements gives Figure 3. This reveals a second pattern that was previously obscured by the
dominant effects of the output Hamming weight. Intuitively, this corresponds to the Hamming
weight of both input operands, demonstrated in Figure 4. We determine this to be 1.3 mW per
input bit set. Repeating this process and subtracting the calculated power per input bit gives
Figure 5, which closely corresponds to the Hamming weight shown in Figure 2 as previously
stated.

Finally, by subtracting both of the input and output bit dynamic powers produces Figure 6,
which shows that the remaining variation in dynamic power is an order of magnitude lower than
the effect of these Hamming weights, ranging from 12 mW to 0 mW. Expressed as a series of
matrix operations, where P is the measured dynamic power and the input and output Hamming
weights are presented as Hi and Ho respectively, the remaining unaccounted for dynamic power,
D of Figure 6, is:

D = P − (Hi · 1.3)− (Ho · 4.4) mW. (9)

In a real-world program, switching between an operation and all zeroes would not take place.
However, with each new instruction, a Hamming distance would be present between the previous
and current input values, as well as the previous and current output value. As such, the properties
described here naturally translate from Hamming weights into Hamming distances.

7

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Operand 2

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

256
O

p
e
ra

n
d
 1

0

8

16

24

32

40

48

56

Figure 1: Dynamic power in milliwatts for
add instruction.

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Operand 2

0
16
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256

Op
er

an
d

1

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

8.0

Figure 2: Hamming weight of output datapath
of an add instruction, in number of
bits set.

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Operand 2

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

256

O
p
e
ra

n
d
 1

0

5

10

15

20

25

30

35

40

45

Figure 3: Dynamic power in milliwatts for add
instruction, with output datapath
cost subtracted (assuming 4.4mW
per bit).

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Operand 2

0
16
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256

Op
er

an
d

1

0

2

4

6

8

10

12

14

16

Figure 4: Hamming weight of both input
operands to an add instruction, in
number of bits set.

8

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Operand 2

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

256

O
p
e
ra

n
d
 1

0

5

10

15

20

25

30

35

40

45

Figure 5: Dynamic power in milliwatts for add
instruction, with input datapath
cost subtracted (assuming 1.3mW
per bit).

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Operand 2

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

256

O
p
e
ra

n
d
 1

0

5

10

15

20

25

30

35

40

45

Figure 6: Dynamic power in milliwatts for
add instruction, with output and
input datapath costs subtracted.

Across all of our experiments, the maximum dynamic power observed was 123 mW, caused
by the sub instruction. This is due to sub producing a negative two’s complement output that
results in all bits being set in the output operand, causing maximal Hamming distance in the
output datapath. However, compared to the base instruction cost this means that on the Xcore
the dynamic switching contributes as much as 42 % of the total processor power. Similar work
for 8 bit AVR [22] shows dynamic power making up 15 % of processor power.

This data demonstrates that, at least on the Xcore and the AVR, the contribution of dynamic
power to the full processor cost is non-trivial, and certainly a significant contributor to calculating
the worst case energy in a program. We also observe that the output datapath for our particular
processor is the most significant contributor to dynamic power. Accordingly, and for simplicity,
we focus only on this component in subsequent sections: specifically, the Hamming distance
between values on the output datapath between subsequent cycles.

3.3 Summary and Discussion

With regard to prior work that analyses the significance of dynamic power in software execution,
we have demonstrated that on the Xcore dynamic power can be a large proportion of overall
energy consumption by the processor, but cannot discount prior work that found little contribu-
tion on other platforms. This suggests that dynamic power contribution can be significant, but
that it varies from processor to processor.

The system context should also be considered, for two main reasons. Firstly, a system that
features a display and backlight component will have its total energy consumption dominated
by these over all other components [3]. Looking beyond embedded systems, large multi-core
processors such as the Xeon Phi [25] consume significantly more energy in caches and memories
than in computation. This will of course significantly reduce the impact of any variation in
processor energy. Secondly, the type of system and its performance requirements will influence
processor choice, and the amount of power variation of the chosen processor will determine
whether it is necessary to consider it. If this is the case, the computational workload placed

9

upon the system will then determine how much each part of the processor is exercised. It is
shown in [9] that both processor choice and workload change how processor subcomponents such
as the register file and functional units contribute to total energy consumption.

With this in mind, we observe that consideration of dynamic power caused by data operands is
most relevant for applications in the Internet of Things (IoT) domain. Such applications typically
have energy budgets as a primary concern, have some non-trivial processing task that requires a
microcontroller, but do not use a large processor featuring caches and other performance enhanc-
ing hardware. When attempting to meet design constraints such as battery lifetime, determining
the worst case energy consumption of software would be of interest, and thus determining the
impact of data operands on dynamic energy consumption.

4 Formalising the circuit switching problem

As illustrated in the previous section, the matter we consider is the amount of energy caused
by circuit switching, specifically the switching occurring on the output datapath in a processor.
Here, we formalise our problem, which we name the “Circuit SWitching Problem” (CSWP),
discussing its limitations and generality. Our objective is to take a program, determine the
maximum amount of output datapath switching activity that can occur in that program, and,
in the process, find the program input that triggers it.

Because we are concerned with the amount of circuit switching that can occur, we choose to
avoid any facility for varying the length of a program in this formalisation, i.e. the number of
instructions executed. A CSWP program thus cannot have any branch instructions or conditional
execution ability: it corresponds closely with a trace of a general program execution, or a general
program that has been unrolled and all conditional branches eliminated. Dealing with programs
of varying length would unnecessarily involve searching different paths through the program.

Formally, we consider a CSWP program, P , to be a finite sequence of n instructions, xi, such
that P = x1, x2, ..., xn. Each instruction is a 3-tuple 〈m, i, o〉, where m is a mnemonic m ∈M , i
is a set of inputs (discussed below), and o is an output operand. Both input and output operands
(discussed further below) are considered to be bit-vectors of width w.

A CSWP program executes on an abstract machine with a monotonically incrementing pro-
gram counter, an infinite number of registers, and a memory store of finite size. Memory is
considered to be an array of size 2w with each memory cell a bit-vector of width w. For each
instruction xi in the CSWP program the machine takes the input operands, computes an out-
put according to the function of the instruction mnemonic, and writes the result to the output
operand. The objective function of CSWP is then to compute:

n−1∑

i=1

h(oi, oi+1) , (10)

where h is a function computing Hamming distance between two values, i.e. the output values
of each subsequent instruction, corresponding to the output datapath of the abstract machine.

Each mnemonic m ∈ M represents a function over the input operands, resulting in a single
output. In line with the constraints detailed above, CSWP programs only perform arithmetic
computations, mapping input operands to an output. There are no branch mnemonics, neither
are there any instructions that induce side effects of any form (such as changing some state or
the program counter). We do not define a set of mnemonics that a CSWP program may use,
however for the purposes of this paper we write listings using standard RISC mnemonics such
as add, sub, ldr, mov [10].

Each input operand is permitted to be one of four classes of sources:

10

� Free inputs, which we denote with the text freebit.

� Constant values, which we write in hexadecimal.

� A memory access to a fixed address m[x], with x the address.

� The output operand of a prior instruction, written oi, where for the current instruction xj ,
i < j.

The value of every input is always a bit-vector of width w. Free inputs may take any value,
likewise constants may only have one value, defined in the instruction being executed. In our
examples below, we further assume that all free inputs only take the values zero or one. Mem-
ory accesses evaluate to the contents of a memory cell, but for simplicity we only permit the
addressing of fixed memory addresses. Prior output operands correspond to the output of each
instruction being written to one of the infinite registers, which may then be read as an input to
another instruction.

All instructions are considered to have an output of bit-width w, i.e., they all write some value
to the output datapath of the machine. A nop (no-operation) instruction would be any instruction
that repeats the output value of the previous instruction, causing no switching activity on the
output datapath. Outputs may optionally be written to a memory cell m[x], where x is a fixed
address for the output value to be written to. In this circumstance, the output value may still
be referred to as oi, as a store to memory still causes the bits in the machine’s output datapath
to flip.

This formalisation has a number of limitations, most notably that without an infinite data
store or ability to programmatically address it, it is not Turing complete. Given that our aim
is to find the maximum switching for a particular path through a general program, this is a
suitable restriction. The formalisation does not correspond to a particular machine, although
with additional restrictions it may correctly model the execution trace of existing processors.
The memory array may be considered to be superfluous given the lack of complex addressing,
however it provides a useful mechanism for illustrating our examples through the rest of this
paper.

We observe that CSWP is in class NP, as one may easily check the validity of a solution. Given
the CSWP program and an input valuation for each free input, we can simulate the program
with the given inputs, counting the number of bit flips at the same time process. The complexity
of this process scales linearly with the number of instructions, n.

5 Reducing MAXSAT2 to circuit switching problem

To demonstrate that the CSWP is NP-hard, we must reduce any NP-hard problem to CSWP in
polynomial time. For this, we turn to the MAXSAT problem, which is known to be NP-hard [2].
Specifically, we work with the MAXSAT2 variant, where each clause is limited to having at most
two literals. Despite 2SAT being solvable in polynomial time, MAXSAT2 is still known to be
NP-hard [31].

We reduce MAXSAT2 to CSWP by simulating MAXSAT2 in the switching activity of an
instruction sequence, where the input that causes the maximum amount of circuit switching
corresonds to an assignment to the Boolean variables that causes the maximum number of
clauses to be satisfied. The reduction is illustrated in Algorithm 1, which takes the number of
Boolean variables and the set of clauses as input, and outputs a CSWP program that simulates
MAXSAT2. Here, we assume that the function PrintInsn causes a CSWP instruction to be
emitted from the algorithm, with the instruction mnemonic, set of variables, and optional output

11

destination as its respective arguments. The return value identifies the output operand of the
instruction.

Algorithm 1: Algorithm for encoding of MAXSAT2 formula within a CSWP program,
printed via PrintInsn.

Input: Number of variables n and set of clauses C
Output: CSWP program encoding MAXSAT2 problem
var addr = 0;
for i = 0 ; i < n ; i++ do

out1 = PrintInsn(“mov”, [freebit]);
out2 = PrintInsn(“xor”, [out1, 0x1]);
PrintInsn(“store”, [out1], m[var addr++]);
PrintInsn(“store”, [out2], m[var addr++]);
PrintInsn(“mov”, [0]);

end
foreach c ∈ C do

< l1, l2 >= c;
laddr1 = LitToMemAddr(l1);
laddr2 = LitToMemAddr(l2);
lit1 = PrintInsn(“load”, [m[laddr1]]);
PrintInsn(“xor”, [lit1, 0x1]);
PrintInsn(“mov”, [0]);
lit2 = PrintInsn(“load”, [m[laddr2]]);
PrintInsn(“xor”, [lit2, 0x1);
PrintInsn(“mov”, [0]);
PrintInsn(“or”, [lit1, lit2]);
PrintInsn(“mov”, [0]);

end

First, we read a series of free input values that we assume lie in the range [0, 1], i.e. represent
true or false in the lowest bit of the bit-vector. We consider each of these bits to be an assignment
to a Boolean variable in the MAXSAT2 problem. Each bit, and its compliment, are stored to a
location in memory. This creates an array of values corresponding to the truth of each literal.
At the end of this process we insert a mov instruction that loads a zero value, for the purpose
of resetting the value on the output datapath to zero. The net effect is that for each Boolean
variable read, a constant amount of switching activity occurs. Consider each value the free
variable may have:

1. True: Reading the input switches the lowest output datapath bit to on, the subsequent
xor switches it to off, and the final mov causes no switching.

2. False: Reading the input causes no switching, the xor switches the lowest output datapath
bit to on, and the subsequent mov switches it back to off.

Thus, for each Boolean variable read, the CSWP program always causes two bit flips.
We then proceed to use the memory region prepared with literal valuations to simulate the

MAXSAT2 problem. We assume a mapping between each literal of the Boolean variables and
the address of its valuation in the memory array, and use the function LitToMemAddr to translate
from literal to memory address. Then, for each clause, we produce an instruction sequence that
loads each literal valuation using the constant-switching technique used to read free inputs. Once

12

the literals are loaded, they are or’d together, after which the output datapath is loaded with
zero again.

The CSWP program produced by Algorithm 1 has both a constant and data dependent portion
of switching activity. Two bit-flips occur for each Boolean variable in the input MAXSAT2
problem, and four for each clause. The switching activity from the or instruction, however,
directly corresponds to the satisfiability of the clauses: if a clause is satisfiable (i.e., one of the
literals is true) then the or and following mov will cause two additional bit-flips. If a clause is
not satisfiable, the same instructions will cause no switching. As a result, the maximum amount
of switching in the program is caused by the maximum number of clauses being satisfied. The
assignment to the free variables which causes this is also an assignment to the Boolean variables
of the MAXSAT2 problem that causes the maximum number of clauses to be satisfied. As a
result, CSWP must be at least as hard as MAXSAT2 (i.e. NP-hard). As we know CSWP is also
in class NP (Section 4), CWSP is NP-hard. �

We observe that the reduction is performed in polynomial time, as it scales linearly with the
number of Boolean variables n and the number of clauses, of which there can be at most n2.

Given this result, we can conclude that there cannot be an efficient algorithm that solves the
CSWP, unless P = NP. Thus, given that general programs can be unrolled and reduced to a
CSWP, it is infeasible to determine the worst case datapath switching in a program, defeating
energy estimation techniques that would rely on such a model. However, given such a limitation,
there could still be algorithms that approximate the worst case switching to a certain degree of
accuracy, allowing worst case switching to be narrowed down to a small range of values. We
address this in the next section.

6 Inapproximability

Algorithm 2: Algorithm encoding a SAT problem into CSWP, with an output gap
governed by satisfiability

Input: Number of variables n and set of clauses C
Output: CSWP program with switching gap
/* Decision phase */

base var addr = var addr = 0;
insn count = 0;
for i = 0 ; i < n ; i++ do

out1 = PrintInsn(“mov”, [freebit]);
PrintInsn(“store”, [out1], m[var addr++]]);

end
result = CheckSat(base var addr, C);
bit pattern = PrintInsn(“ite”, [result, 0xFFFFFFFF, 0]);
/* Switching phase */

decision insn count = insn count;
for i = 0 ; i < ((decision insn count)/2 + 1) ; i++ do

PrintInsn(“mov”, [bit pattern]);
PrintInsn(“mov”, [0]);

end

Having shown that CSWP is NP-hard, we will now show that it also cannot be approximated
to any useful factor. We demonstrate that there is no constant ε for which an approximation

13

factor of 1− ε can be achieved, and then that polynomial approximation factors also cannot be
achieved. Intuitively, this is because each bit flip caused by the program is the product of an
arbitrary computation, meaning there is no structure to the combinatorial problem that one can
generally rely upon when constructing an approximation.

Formally, we demonstrate CSWPs inapproximability using a gap introducing reduction [31]
from SAT to CSWP. Such a reduction transforms an NP-complete decision problem into an NP-
hard optimisation problem, with a quantity (the “gap”) of the feature being optimised governed
by the truth of the decision problem. By demonstrating such a gap, one shows that a portion
of the NP-hard problem cannot be approximated in polynomial time, as the approximation
algorithm would have to solve a NP-complete problem in the process.

In the context of CSWP, we demonstrate that for any instance of SAT, problem p, we can
reduce it to a CSWP program q where a portion of the switching activity is governed by the
truth of whether p is satisfiable. The transformation is illustrated in Algorithm 2, which we
divide into two discrete portions: the decision phase, and the switching phase. We use the same
functions as in Algorithm 1, with the modification that the PrintInsn function increments a
counter, insn count, for every instruction printed.

Throughout the decision phase, we are not concerned with the switching activity that may
occur, and do not seek to control it, in contrast with the previous algorithm. We begin by
reading n free variables, which we assume to be bit-vectors valued either zero or one, and store
them to fixed addresses in memory. We then pass the address of the variable valuations and
the SAT clauses to the CheckSat function, which emits a CSWP program that evaluates the
clauses over the Boolean variables stored at base var addr, and returns an output operand
identifying whether the assignment satisfied the clauses. Significantly, we do not seek to define
how CheckSat checks the satisfiability of the clauses, we only assume that it achieves it in a
number of instructions polynomial in n, the number of Boolean variables. We know that SAT is
in NP, so due to complexity theory we also know an assignment can be verified in a polynomial
number of instructions.1 We then produce an output, bit pattern, using an “if-then-else”
instruction that evaluates to zero if the Boolean variables do not satisfy the clauses, and has all
bits set if they do.

For the switching phase, the CSWP instruction counter, insn count, is read to learn how many
instructions there are in the decision phase of the CSWP program. We then emit a pattern that
repeatedly loads the variable bit pattern and then zero. The effect of this is to produce a phase
in the program that causes a large amount of switching if the SAT problem p was satisfied; and
to not if it was unsatisfiable. In this sequence, a satisfying assignment will cause the switching
phase to flip every bit in the output datapath, every instruction; while no switching will occur
otherwise.

We have thus introduced a gap in the switching activity of the CSWP program q, that is
governed by whether the SAT problem p is satisfiable or not. We use the length of the decision
phase of the program to ensure that the switching phase is at least the length of the decision
phase, plus one or two instructions. This ensures that, regardless of the amount of switching in
the decision phase, the switching phase dominates the switching activity of the program. When
solving CSWP, if the SAT problem p were satisfiable, then the maximum amount of switching
would include the switching phase, and the CSWP solver would be obliged to yield an input to
the program that satisfied the reduced SAT problem. If p is unsatisfiable, it would instead yield
whatever input maximised the switching in the decision phase.

We use the size of the gap to demonstrate that CSWP cannot be approximated. In the previous
example the switching phase constitutes at least 1/2 of the possible switching activity: if one
possessed an algorithm to approximate such a CSWP program to a factor of 1/2, then it would

1We note that, as the inputs to CheckSat are free variables, we are essentially modelling a SAT solver.

14

be obliged to activate the switching phase of any CSWP program reduced from a satisfiable SAT
formula, thus acting as an oracle for an NP-complete problem. Under the P 6= NP assumption,
such an algorithm does not exist. �

Furthermore, we are able to extend this result to any constant factor. For any value of ε
and SAT instance p, take the desired approximation factor f = 1 − ε and set the length of the
switching phase to be declen× (1/f), where declen is the number of instructions in the decision
phase of CSWP q. Such a program will have a gap of at least 1/f times the decision phase, that
depends entirely on the satisfiability of p, and thus cannot be approximated. One need not limit
this approach to a constant factor either: one may instead compute f to be some factor that is a
polynomial function of the size of SAT problem p, for example n2, and achieve the same result.
This shows that there can be no useful approximation factor for CSWP.

The safety of this result depends on the reduction to q being polynomial in the number of
variables n in p. Introducing the variables of p scales linearly with n, checking the satisfiability
of a particular assignment is known to be checkable in polynomial time, and the evaluation of
the result into bit pattern is constant-time. The decision phase is thus a polynomial reduction.
The switching phase is controlled by the length of the decision phase (which is polynomial), but
also the desired approximation factor. Provided the approximation factor is polynomial, the full
reduction is also polynomial.

7 Discussion

We consider here the scope of these results for the analysis of dynamic energy in general, their
implications with regard to the feasibility of such analysis, and potential alternative methods for
analysing energy in systems.

7.1 Scope

The immediate outcome of these proofs is that, with a program’s switching activity shown to
be NP-hard, calculating the worst-case dynamic energy for a program is infeasible. Our result
relies on the analysis that the cost of switching activity is dominated by switching in the output
datapath, meaning the majority of dynamic energy cannot be calculated. Clearly, the exact
cost of such switching will vary between processors, however our result may be used as a basis
for demonstrating that calculating the switching in other components of the processor is also
infeasible. For example, because all inputs to instructions are inevitably the output of some
other instruction, it is reasonable to assume that it is NP-hard to estimate the switching activity
of input operands too.

Branch prediction and data caches will contribute dynamic energy too. These also depend on
program inputs to an extent, but are not modelled by our CSWP formalisation. Other processor
components may contribute dynamic energy that is not affected by the inputs to a program —
the switching associated with instruction logic (decode, functional unit activation, instruction
cache) will contribute dynamic energy regardless of the program input.

Finally, features in some processors, such as out-of-order execution may defeat this analysis.
The circuit switching cost is still present, and its determination will still be NP-hard, however
it may occur in an unpredictable fashion that depends on a processor-internal unobservable
instruction execution schedule.

15

7.2 Implications

The infeasibility result for estimating dynamic energy over time prevents the construction of an
instruction level energy model that identifies a worst case switching cost for each instruction
in a given program. Existing techniques that apply WCEC analysis [12, 17, 7, 18, 6, 32] to
software can thus never have an energy model that accurately accounts for worst case achievable
dynamic energy of the given computation. One may instead, given an accurate model of the
switching costs within a processor, assume that every circuit switches in every clock cycle, which
will achieve a safe upper bound on the energy consumption [12, 32]. The over-approximation
inherent with this approach will not yield a tight bound. For example, on the XMOS XS1-L,
with dynamic energy contributing 42 % of energy consumption, one would have a similarly sized
amount of potential over-approximation regarding the energy consumption of any execution.

7.3 Alternatives

Viable techniques for estimating dynamic energy consumption can come from a variety of fields:
in particular, statistical methods [22] may be effective for determining the distribution of energy
consumption under normal operation. Such a model may be used by assuming that the most
energy the program can consume occurs only 1 % of the time, and taking the energy value
corresponding to that probability as the program’s energy consumption. This does not provide
a safe upper bound on the program’s energy consumption as it is based on normal operation.
However, on the balance of probability it is very likely to present an upper bound. Depending
on the use case such bound may be more useful in making energy consumption of software
transparent to developers than gross over-approximation.

Another alternative is to initially assume that the maximum dynamic energy is dissipated
by every instruction, and then use information gained by static analysis to lower this figure.
For example, if one can determine the integer interval of a variable, then one can potentially
determine the maximum switching of a specific instruction to be lower than its general maximum.
The closeness of the bound determined would depend heavily on the capabilities of the static
analyses applied, and the extent to which the program lends itself to static analysis. However,
our results show that this technique cannot generally provide an accurate bound.

In all circumstances, alternative estimation techniques will posses some level of unsafeness or
incompleteness, otherwise they will be NP-hard in the general case as proven in this work.

8 Conclusions

In this paper we have considered the energy consumption in a processor that can directly be
attributed to the data or inputs to the software being executed, and demonstrate that the
general analysis of circuit switching in processor datapaths — the “circuit switching problem”
— is NP-hard. Further, we demonstrate that there is no efficient algorithm for approximating the
circuit switching problem to any constant or polynomial factor. We conclude that the analysis
of worst-case energy as caused by software cannot be achieved in an efficient manner, leaving
a necessary uncertainty factor corresponding to the amount of dynamic energy controlled by
processor datapaths. In addition, we consider alternate questions that one could pose that do
not amount to worst-case analysis and how they can contribute to understanding software energy
consumption.

In the future we believe that work is best focused on statistical methods of modelling program
energy consumption, or otherwise characterising the way in which software operates. Critically,
we cannot continue to think in terms of “worst case” behaviour, but must instead turn to
empirical methods for analysing program behaviours rather than formally proving them.

16

Acknowledgements

We would like to thank David May, Benjamin Sach, Kyriakos Georgiou and James Pallister
for their insights into and motivation of this work. The research leading to these results has
received funding from the European Union 7th Framework Programme (FP7/2007-2013) under
grant agreement no 318337, ENTRA - Whole-Systems Energy Transparency.

References

[1] G. Ascia et al. “An instruction-level power analysis model with data dependency”. English. In:
VLSI DESIGN 12.2 (2001), 245–273. issn: 1065-514X. doi: {10.1155/2001/82129}.

[2] A. Biere et al. Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Ap-
plications. Amsterdam, The Netherlands, The Netherlands: IOS Press, 2009, pp. 611–632. isbn:
1586039296, 9781586039295.

[3] A. Carroll and G. Heiser. “An analysis of power consumption in a smartphone”. In: Proceedings of
the 2010 USENIX conference on USENIX annual technical conference. USENIXATC’10. Berkeley,
CA, USA: USENIX Association, 2010, p. 21. url: http://portal.acm.org/citation.cfm?id=
1855840.1855861.

[4] L. Chandra and S. Roy. “Estimation of energy consumed by software in processor caches”. In:
2008 IEEE International Symposium on VLSI Design, Automation and Test (VLSI-DAT). IEEE,
Apr. 2008, pp. 21–24. isbn: 978-1-4244-1616-5. doi: 10.1109/VDAT.2008.4542403. url: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4542403.

[5] A. T. Freitas, H. C. Neto, and A. L. Oliveira. “On the cmoplexity of Power Estimation Problems”.
2004.

[6] K. Georgiou, S. Kerrison, and K. Eder. On the Value and Limits of Multi-level Energy Consumption
Static Analysis for Deeply Embedded Single and Multi-threaded Programs. Tech. rep. University of
Bristol, 2015.

[7] N. Grech et al. “Static Analysis of Energy Consumption for LLVM IR Programs”. In: Proceedings
of the 18th International Workshop on Software and Compilers for Embedded Systems. SCOPES
’15. Sankt Goar, Germany: ACM, 2015, pp. 12–21. isbn: 978-1-4503-3593-5.

[8] H. Hajimiri, K. Rahmani, and P. Mishra. “Efficient Peak Power Estimation Using Probabilistic
Cost-Benefit Analysis”. In: VLSI Design (VLSID), 2015 28th International Conference on. 2015,
pp. 369–374. doi: 10.1109/VLSID.2015.68.

[9] R. Hameed et al. “Understanding sources of inefficiency in general-purpose chips”. In: Proceedings
of the 37th annual international symposium on Computer architecture - ISCA ’10 (2010), p. 37.
doi: 10.1145/1815961.1815968. url: http://portal.acm.org/citation.cfm?doid=1815961.
1815968.

[10] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fifth Edition: A Quantitative Ap-
proach. 5th. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011. isbn: 012383872X,
9780123838728.

[11] Hsiao et al. “K2: an estimator for peak sustainable power of VLSI circuits”. In: Low Power
Electronics and Design (1997).

[12] R. Jayaseelan, T. Mitra, and X. Li. “Estimating the Worst-Case Energy Consumption of Embedded
Software”. In: Proceedings of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium. RTAS ’06. Washington, DC, USA: IEEE Computer Society, 2006, pp. 81–90. isbn:
0-7695-2516-4. doi: 10.1109/RTAS.2006.17. url: http://dx.doi.org/10.1109/RTAS.2006.17.

[13] D. S. Johnson. “Approximation Algorithms for Combinatorial Problems”. In: Proceedings of the
Fifth Annual ACM Symposium on Theory of Computing. STOC ’73. Austin, Texas, USA: ACM,
1973, pp. 38–49. doi: 10.1145/800125.804034. url: http://doi.acm.org/10.1145/800125.
804034.

17

[14] D. Kearney and N. W. Bergmann. “Performance evaluation of asynchronous logic pipelines with
data dependent processing delays”. In: Asynchronous Design Methodologies, 1995. Proceedings.,
Second Working Conference on. 1995, pp. 4–13. doi: 10.1109/WCADM.1995.514637.

[15] S. Kerrison and K. Eder. “Energy Modeling of Software for a Hardware Multithreaded Embedded
Microprocessor”. In: ACM Trans. Embedded Comput. Syst. 14.3 (2015), p. 56. doi: 10.1145/

2700104. url: http://doi.acm.org/10.1145/2700104.

[16] Y. Lee and S. Kim. “DRAM energy reduction by prefetching-based memory traffic clustering”. In:
Proceedings of the 21st edition of the great lakes symposium on Great lakes symposium on VLSI
- GLSVLSI ’11 (2011), p. 103. doi: 10.1145/1973009.1973031. url: http://portal.acm.org/
citation.cfm?doid=1973009.1973031.

[17] U. Liqat et al. “Energy Consumption Analysis of Programs based on XMOS ISA-Level Models”.
In: Logic-Based Program Synthesis and Transformation, 23rd International Symposium, LOPSTR
2013, Revised Selected Papers. Vol. 8901. Lecture Notes in Computer Science. Springer, 2014,
pp. 72–90. isbn: 978-3-319-14124-4.

[18] U. Liqat et al. “Inferring Energy Consumption at Different Software Levels: ISA vs. LLVM IR”.
In: Proc. of FOPARA. LNCS. To Appear. Springer, 2015.

[19] D. May. The XMOS XS1 Architecture. Available online: http://www.xmos.com/published/xmos-
xs1-architecture. 2013.

[20] P. M. Morgado, P. F. Flores, and L. M. Silveira. “Generating Realistic Stimuli for Accurate Power
Grid Analysis”. In: ACM Trans. Des. Autom. Electron. Syst. 14.3 (June 2009), 40:1–40:26. issn:
1084-4309. doi: 10.1145/1529255.1529262. url: http://doi.acm.org/10.1145/1529255.

1529262.

[21] J. Pallister et al. “A high-level model of embedded flash energy consumption”. In: Proceedings of
the 2014 International Conference on Compilers, Architecture and Synthesis for Embedded Systems
- CASES ’14. New York, New York, USA: ACM Press, 2014, pp. 1–9. isbn: 9781450330503. doi:
10.1145/2656106.2656108. url: http://dl.acm.org/citation.cfm?doid=2656106.2656108.

[22] J. Pallister et al. “Data dependent energy modelling: A worst case perspective”. In: CoRR abs/1505.03374
(2015). url: http://arxiv.org/abs/1505.03374.

[23] A. Parikh et al. “Instruction Scheduling for Low Power”. In: Journal of VLSI signal processing
systems for signal, image and video technology 37.1 (2004), pp. 129–149. doi: 10.1023/B:VLSI.
0000017007.28247.f6.

[24] S. Rivoire, P. Ranganathan, and C. Kozyrakis. “A Comparison of High-level Full-system Power
Models”. In: Proceedings of the 2008 Conference on Power Aware Computing and Systems. Hot-
Power’08. San Diego, California: USENIX Association, 2008, pp. 3–3. url: http://dl.acm.org/
citation.cfm?id=1855610.1855613.

[25] Y. S. Shao and D. Brooks. “Energy characterization and instruction-level energy model of In-
tel’s Xeon Phi processor”. In: International Symposium on Low Power Electronics and Design
(ISLPED). November. IEEE, Sept. 2013, pp. 389–394. isbn: 978-1-4799-1235-3. doi: 10.1109/
ISLPED.2013.6629328. url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6629328.

[26] A. Sinha and A. P. Chandrakasan. “Energy Aware Software”. In: Proceedings of the 13th Interna-
tional Conference on VLSI Design. VLSID ’00. Washington, DC, USA: IEEE Computer Society,
2000, pp. 50–. isbn: 0-7695-0487-6. url: http://dl.acm.org/citation.cfm?id=580736.835252.

[27] S. Steinke et al. “An Accurate and Fine Grain Instruction-level Energy Model Supporting Software
Optimizations”. In: Proceedings of PATMOS. 2001.

[28] L. Thiele and R. Wilhelm. “Design for Timing Predictability”. In: Real-Time Syst. 28.2-3 (Nov.
2004), pp. 157–177. issn: 0922-6443. doi: 10.1023/B:TIME.0000045316.66276.6e. url: http:
//dx.doi.org/10.1023/B:TIME.0000045316.66276.6e.

18

[29] V. Tiwari, S. Malik, and A. Wolfe. “Power analysis of embedded software: a first step towards soft-
ware power minimization”. In: Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on 2.4 (1994), pp. 437–445. issn: 1063-8210. doi: 10.1109/92.335012.

[30] V. Tiwari et al. “Instruction Level Power Analysis and Optimization of Software”. In: J. VLSI
Signal Process. Syst. 13.2-3 (Aug. 1996), pp. 223–238. issn: 0922-5773. doi: 10.1007/BF01130407.
url: http://dx.doi.org/10.1007/BF01130407.

[31] V. V. Vazirani. Approximation Algorithms. New York, NY, USA: Springer-Verlag New York, Inc.,
2001, pp. 306–311. isbn: 3-540-65367-8.

[32] P. Wägemann et al. “Worst-Case Energy Consumption Analysis for Energy-Constrained Em-
bedded Systems”. In: Real-Time Systems (ECRTS), 2015 27th Euromicro Conference on. 2015,
pp. 105–114. doi: 10.1109/ECRTS.2015.17.

[33] R. Wilhelm et al. “The Worst-case Execution-time Problem—Overview of Methods and Survey of
Tools”. In: ACM Trans. Embed. Comput. Syst. 7.3 (May 2008), 36:1–36:53. issn: 1539-9087. doi:
10.1145/1347375.1347389.

19

	Introduction
	Energy modelling at the LLVM IR level
	Benchmarks and results
	LLVM IR analysis accuracy
	LLVM IR level ECSA applications
	Related publications and dissemination

	Multi-core modelling with communication costs
	Improved core energy model
	VFS energy consumption modelling
	Multi-core energy consumption and communication
	Dissemination

	Worst case energy and defining data-aware energy models
	Energy modelling of application source code
	Introduction and Motivation
	An experiment in source-code energy modelling

	Code to Energy
	Block Division
	Basic Energy Operations
	Data Collection
	Power Tracing & Model

	Experiment Setup
	Target & Power Measurement
	Source Code & Case Design

	Model Construction
	Preliminary Results (Inference Accuracy)
	Dissemination

	Attachments
	D2.3.1: Modelling software energy consumption in a multi-core network of embedded multi-threaded processors
	D2.3.2: Data dependent energy modelling: A worst case perspective
	D2.3.3: On the Value and Limits of Multi-level Energy Consumption Static Analysis for Deeply Embedded Single and Multi-threaded Programs
	D2.3.4: On the infeasibility of analysing worst-case dynamic energy

