
Whole-Systems
Energy Transparency

ENTRA
318337

Whole-Systems ENergy TRAnsparency

Analysis Based Verification and
Debugging of Energy, Performance

and Precision Properties

Deliverable number: D3.3
Work package: Analysis and Verification (WP3)
Delivery date: 1 October 2015 (36 months)
Actual date: 1 March 2016
Nature: Prototype
Dissemination level: PU
Lead beneficiary: IMDEA Software Institute
Partners contributed: Roskilde University, University of Bristol, IMDEA Software Insti-

tute, XMOS Limited

Project funded by the European Union under the Seventh Framework Programme,
FP7-ICT-2011-8 FET Proactive call.

Short description:

This deliverable presents techniques for the verification and debugging of energy, perfor-
mance and precision properties, based on the comparison of analysis information against speci-
fications. It also describes the final instantiations of the general resource analysis framework for
inferring energy consumption, performance, precision, and other parameters such as data sizes.
In addition, it reports on a prototype implementation of the analysis and verification techniques
as well as on a demonstration.

The deliverable includes the following attachments:

• D3.3.1 [LBLGH16]: Inferring Energy Bounds Statically by Evolutionary Analysis of Basic
Blocks. Workshop on High Performance Energy Efficient Embedded Systems (HIP3ES
2016), 2016. arXiv:1601.02800.

• D3.3.2 [LGHK+15]: Towards Energy Consumption Verification via Static Analysis. Work-
shop on High Performance Energy Efficient Embedded Systems (HIP3ES 2015),
arXiv:1512.09369, 2015.

• D3.3.3 [GK14]: Analysis and Transformation Tools for Constrained Horn Clause Verifi-
cation. Theory and Practice of Logic Programming, Vol. 14, Num. 4-5 (supplementary
materials), pages 90–101, Cambridge University Press, 2014.

• D3.3.4 [KG15b]: Tree automata-based refinement with application to Horn clause ver-
ification. Verification, Model Checking, and Abstract Interpretation - 16th International
Conference, VMCAI 2015, Mumbai, India, January 12-14, 2015. Proceedings, Lecture
Notes in Computer Science, Vol. 8931, pages 209–226, Springer, 2015.

• D3.3.5: Probabilistic Resource Analysis by Program Transformation. Proc. of the Foun-
dational and Practical Aspects of Resource Analysis, LNCS, Springer, 2015. To appear.

• D3.3.6 [GGP+15]: Static analysis of energy consumption for LLVM IR programs. Pro-
ceedings of the 18th International Workshop on Software and Compilers for Embedded
Systems, SCOPES 2015, pages 12–21, ACM, 2015.

• D3.3.7 [KG15a]: Constraint Specialisation in Horn Clause Verification. Proceedings of
the 2015 Workshop on Partial Evaluation and Program Manipulation, PEPM, Mumbai,
India, January 15-17, 2015, pages 85–90, Association for Computing Machinery, 2015.

• D3.3.8 [RK15]: Probabilistic Output Analysis by Program Manipulation. Quantitative
Aspects of Programming Languages, EPTCS, 2015.

• D3.3.9 [KGG15]: Decomposition by tree dimension in Horn clause verification. Pro-
ceedings of the Third International Workshop on Verification and Program Transformation
(VPT’2015), EPTCS, 2015. To appear.

• D3.3.10 [KG14]: Convex polyhedral abstractions, specialisation and property-based pred-
icate splitting in Horn clause verification. Proceedings of First Workshop on Horn Clauses
for Verification and Synthesis, HCVS 2014, Vienna, Austria, July 2014.

2

Contents

1 Introduction 3

2 Analysis based on HC IR Transformation and the CiaoPP Analyzer 6
2.1 Improvements to the resource usage analysis of CiaoPP 7

2.1.1 A modular solver architecture . 8
2.1.2 Using ranking functions for upper-bounding special recurrences 11
2.1.3 Implementation . 15

2.2 Relating accuracy and energy consumption properties 16

3 Direct Analysis of LLVM IR 17

4 WCET-inspired Energy Consumption Static Analysis 17

5 Energy Analysis of Source Code 18
5.1 Derivation of a source code energy model . 18
5.2 Analysis of source code . 21

6 Combining Static and Dynamic Analysis Techniques 24

7 Parametric Static Profiling of Energy Consumption 25

8 Probabilistic Resource Analysis 26

9 Analysis of Multi-threaded Programs 27

10 Energy Consumption Verification and Debugging 32
10.1 Verification based on cost function comparison and the CiaoPP system 33
10.2 Supporting techniques for program verification 33

11 Demonstration of the Verification Tool based on HC IR Transformation and the
CiaoPP System 34
11.1 Analyzing the energy consumed by an XC program 36
11.2 Verification of the energy budget for an XC program 39
11.3 Showing that the analysis/verification is parametric w.r.t. the energy models . . . 40

Attachments 50
D3.3.1: Inferring Energy Bounds Statically by Evolutionary Analysis of Basic Blocks . 52

1

D3.3.2: Towards Energy Consumption Verification via Static Analysis 62
D3.3.3: Analysis and Transformation Tools for Constrained Horn Clause Verification . 74
D3.3.4: Tree Automata-Based Refinement with Application to Horn Clause Verification 87
D3.3.5: Probabilistic Resource Analysis by Program Transformation 106
D3.3.6: Static analysis of energy consumption for LLVM IR programs 127
D3.3.7: Constraint Specialisation in Horn Clause Verification 138
D3.3.8: Probabilistic Output Analysis by Program Manipulation 145
D3.3.9: Decomposition by tree dimension in Horn clause verification 161
D3.3.10: Convex polyhedral abstractions, specialisation and property-based predicate

splitting in Horn clause verification . 176

2

1 Introduction

Static analysis, together with modeling, is the other key component of energy transparency, and,
hence, for energy-aware software development. It infers information about energy consumed
by programs without actually running them. As with energy models, analysis can be performed
on program representations at different levels in the software stack, ranging from source code
(in different programming languages) to intermediate compiler representations (such as LLVM
IR [LA04]) or Instruction Set Architecture (ISA).

Static analysis at a given level consists of reasoning about the execution traces of a program at
that level, in order to infer information (among other things) about how many times certain basic
elements of the program will be executed. The role of the energy model is to provide information
about the energy consumption of such basic elements; it is used by the analysis to infer infor-
mation about energy consumption of higher-level entities such as procedures, functions, loops,
blocks and the whole program.

Analysis can also be performed at a given software level using energy models for a lower
level. Such a model needs to be mapped upwards to the higher level, as described in Deliverable
D2.3 (attachment D2.3.3.). The information inferred by static analysis at one level can also be
reflected upwards to a higher level using suitable mapping information.

Deliverable D3.1 described the general resource analysis framework we developed, which
can be instantiated in many ways for energy consumption estimation, depending on the imple-
mentation of the main components of the framework (e.g., analysers and transformations to the
internal representation), and the levels at which the analysis is performed and the energy models
defined. D3.1 also reported on a preliminary instantiation that used energy models defined at the
ISA level and performed the analysis at the same level (in attachment D3.1.1, whose final version
was later published in [LKS+14]). Deliverable D3.2 described preliminary instantiations of the
framework that performed the analysis at the LLVM IR level, using energy models defined at the
ISA level.

In this deliverable, we report on the final versions of the different instantiations of the gen-
eral analysis framework that we have performed and how the information inferred by the re-
sulting analyzers is compared against energy-related specifications for verification and debug-
ging (Section 10). Both the prototype analyzers described in Sections 2 and 3 are based on a
well-developed approach in which recursive equations (cost relations) are extracted from a pro-
gram, representing the cost of running the program in terms of its input [Weg75, Ros89, DLH90,
DLGHL97, NMLH09, AAGP11, AAGP09].

These cost relations are converted to closed-form, i.e., without recurrences, by means of a
solver. The analysis automatically infers an approximate upper (and lower) bound of the energy

3

consumed by programs compiled to ISA or to LLVM IR. An energy model defined at the ISA
level is used; for LLVM IR analyses the model is propagated to the LLVM IR level via the
mapping techniques described in Deliverable D2.3 (attachment D2.3.3.).

An alternative approach, not based on cost relations but on the application of well known
techniques for Worst Case Execution Time (WCET), such as Implicit Path Enumeration Tech-
niques (IPET), has been explored (Section 4). This approach is able to deal with multi-threaded
embedded programs that use two common patterns: task farms and pipelines. Section 9 presents
a more general analysis of multi-threaded programs aimed at discovering properties relevant to
energy consumption and optimisation.

We have also explored a combination of static and dynamic (profiling-based) techniques for
the inference of energy consumption (Section 6). The dynamic technique uses an evolutionary
algorithm to determine bounds on the energy consumption of basic blocks. The static analysis
framework is then used to combine the energy values obtained for the basic blocks according to
the program control flow, and produce energy consumption bounds of the whole program.

Many applications allow certain levels of variability in the accuracy/precision of their compu-
tations (e.g., video and audio encoders, machine learning algorithms, Monte Carlo simulations,
etc.) caused by the application of some energy saving techniques. For this reason, we have
studied the relationship among energy, precision and performance properties in two different
application areas using different techniques (Section 2.2).

It is important to note that the techniques and tools we have developed are language- and
architecture-neutral. They have mainly been applied to the analysis of XC programs running
on xCORE architectures (the project’s proof of concept), by performing suitable instantiations
of the general resource analysis framework. However, they have also been applied to other
architectures and languages. For example, Deliverable D3.2 (Section 3.2) reported on a prototype
implementation for the analysis of C programs running on an ARM Cortex-M3, using an energy
model for LLVM IR for that platform.

Analysis/modelling trade-off. At the early stages of the project, our hypothesis was that the
choice of level affects the accuracy of the energy models and the precision of the analysis in
opposite ways: energy models at lower levels will be more precise than at higher levels while at
lower levels more program structure and data structure information is lost, which often implies
a corresponding loss of accuracy in the analysis. This hypothesis about the analysis/modelling
level trade-off (and potential choices) is illustrated in Figure 1.

In ENTRA we have explored different points in this space of combinations of analysis and
modelling. Our experimental results [LGK+16] (Attachment D1.2.1 of deliverable D1.1), that
compare the analysis at the LLVM IR and ISA levels, confirm that the expected trade-off exists,

4

Source	 code	

LLVM	 IR	

ISA	

LLVM	 Code	 Generator	

Compiler	

En
er
gy
	 M

od
el
lin
g	
Pr
ec
is
io
n	
Lo
ss
	

Op>miza>ons	

A
nalysis	 Inform

a>on	 loss	

Op>mized	 LLVM	 IR	

Hardware	

Layer	 1	

Layer	 2	

Layer	 3	

Energy	 	
Model	

Transforma>on	

Transforma>on	

Transforma>on	

Analyser	

Energy	 consump>on	
	 	 	 	 	 	 	 	 es>ma>ons	

Energy	 	
Model	

Energy	 	
Model	 HC	 IR	

Energy	 Model	 +	 	
Program	 (including	 asser>ons)	

Internal	 representa>on	
(including	 asser>ons)	 Transforma>on	 Analysis	

HC	 IR	

HC	 IR	

Figure 1: Analysis/modelling level trade-off and potential choices.

but also suggest that performing the static analysis at the LLVM IR level is a good compromise.
LLVM IR is close enough to the source code level to preserve most of the program information
needed by the static analysis, whilst close enough to the ISA level to allow the propagation of
the ISA energy model up to the LLVM IR level without significant loss of accuracy.

In this deliverable we also report on the exploration of another combination of this space: an
instantiation of the general resource analysis framework for the analysis at the (XC) source code
level using models at the same level (Section 5).

Information inferred by analysis. The information inferred by the analyzers is guided by its
final use: program optimisation, verification, helping energy-aware software developers to make
design decisions, and so on. For example, they can infer probabilistic information (Section 8),
which is useful for optimisation, or safe approximations, namely upper and lower bounds, on the
energy consumed by the program or parts of it, which are needed for verification (Section 10).
These approximations can be functions parametrised by the sizes of the input data and other
hardware features such as clock frequency and voltage. The analyzers can then infer concrete
values of the parameters that yield the worst-case energy consumption of the program or its parts.

Static energy profiling [HLGL+16] (Section 7) shows the distribution of energy usage over
the parts of the code. This can be very useful to the developer, showing which parts of the pro-

5

gram are the most energy-critical, and helping design decision making. Some functions or blocks
in the program are perhaps not particularly expensive in energy in themselves but are called many
times. Such parts are natural targets for optimisation, since there a small improvement can yield
important savings.

Note that the safety of bounds depends on energy models giving safe bounds for each in-
struction or basic block. This is a challenging problem, since the energy cost of executing an
instruction depends on the operands. To obtain the worst-case consumption for an instruction we
must therefore measure its execution with the operands that induce it. Addressing such a chal-
lenge, we have provided solutions in [PKME16, LBLGH16]. Safe bounds are vital for applying
energy analysis to verifying or certifying energy consumption.

Prototype tools. The prototype tools developed as part of work package 3, contributing to this
deliverable are available at http://entraproject.eu/software-and-tools. In addition, this document
provides demonstrations of the use of the following prototype tools:

• Prototype implementation based on HC IR transformation and the CiaoPP system in two
typical scenarios: analyzing the energy consumed by an XC program and verifying energy
related specifications (Section 11).

• Prototype tool for the analysis of (XC) source code (Section 5).

2 Analysis based on HC IR Transformation and the CiaoPP
Analyzer

In this Section we report on the final instantiation of the general resource usage framework of
deliverable D1.1 that allows the analysis of XC programs both at the ISA and LLVM IR levels,
using an energy model at the ISA level. A preliminary prototype implementation was reported
in deliverable D3.2.

The analysis of an XC program at the ISA (resp. LLVM IR) level consists of: 1) generating
the ISA (resp. LLVM IR) code for such program using the XMOS xcc compiler, 2) transforming
the ISA (resp. LLVM IR) into an intermediate block representation based on Horn Clauses (HC
IR), 3) using an existing, parametric resource usage analyzer (CiaoPP) to infer energy consump-
tion functions (which depend on input data sizes) for each block in the Horn Clause representa-
tion, and 4) mapping the analysis results back to the XC source code.

The instantiation that performs the analysis at the ISA level, using an energy model at the
same level, was reported in deliverable D3.1 (Attachment D3.1.1). A preliminary instantiation

6

that performs the analysis at the LLVM IR level, using the same energy model at the ISA level,
together with a mapping tool to propagate the energy model from the ISA level up to the LLVM
IR level, was described in Deliverable D3.2 (Attachment D3.2.4).

The final versions of such instantiations are described and published in [LGK+16, LKS+14].
In [LGK+16] (included in D1.2 as Attachment D1.2.1) we also report on an experimental study
of the accuracy and efficiency of the instantiation that performs the analysis at the LLVM IR level,
comparing it with the one performing the analysis at the ISA level. As mentioned before, from
the experimental evaluation we can conclude that performing the static analysis at the LLVM
IR level is a good compromise, since 1) LLVM IR is close enough to the source code level to
preserve most of the program information needed by the static analysis, and 2) LLVM IR is close
enough to the ISA level to allow the propagation of the ISA energy model up to the LLVM IR
level without significant loss of accuracy.

2.1 Improvements to the resource usage analysis of CiaoPP

In the process of instantiating the general resource usage analysis framework, we have also iden-
tified some limitations or lack of functionality in the state-of-the-art analysis tools. Addressing
this challenge, we have developed techniques to fill the identified gaps and implemented them
within the CiaoPP system. These include:

1. Development of a novel general resource analysis for HC IR programs based on sized
types [SLGH14] (also included as Attachment D3.2.3 in deliverable D3.2). Sized types
are representations that incorporate structural (shape) information and allow expressing
both lower and upper bounds on the size of a set of data structures and their subterms
at any position and depth [SLGBH13]. The new analysis is fully based on the abstract
interpretation technique, unlike the previous one present in CiaoPP, improving it in several
ways and comparing well in power to state-of-the-art systems.

2. A better design and integration of the first prototype implementation of the resource analy-
sis above into the CiaoPP system, in order to enhance its effectiveness, practicality, main-
tainability, extensibility and allow an easier combination with other supporting analysis
present in the CiaoPP system. This will also eventually allow an evolution of the tool to
the industrial application level.

3. Design and development of a component for solving recurrence relations, overcoming im-
portant limitations of existing resource analyses, and offering good quality features such as
robustness and extensibility. This is crucial for obtaining a practical resource analysis tool

7

that can be used in real industrial applications. More concretely, the component offers a
modular solver framework offering a well-defined interface to the analyzer, and providing
all the algebraic-related services, the most important one being the inference of closed-
form functions for recurrences. In turn, our solver communicates with a set of external
solvers using a common interface that we have also defined. Our architecture has two
main advantages. Firstly, it establishes a good and clear separation between the analysis
and the mathematical machinery. Secondly, results from different external solvers can be
combined in order to obtain better solutions. Finally, it makes it easier to add new exter-
nal solvers in order to handle more classes of recurrences and solving other mathematical
problems that can arise during analysis. The use of our new solver component has resulted
in a significant improvement of the whole resource analysis.

4. Design and implementation of a specialized solver for a common class of recurrence re-
lations that arise in the analysis of programs with accumulating parameters. This solver
has been integrated into the modular framework mentioned above (see Section 2.1.2 for
details).

2.1.1 A modular solver architecture

We have developed a new modular architecture for the resource analysis, defining a new com-
ponent in charge of the algebraic operations of the analysis. In particular, this component is in
charge of finding closed-form functions that over-approximate the recurrences set up during the
resource analysis. This architecture is shown in Figure 2. The main modules are:

• Solver Strategies: This module defines the common interface of the different strategies to
solve recurrence relations.

• Strati: These are the different strategies to solve or over-approximate recurrences, using
the services of the back-end solvers and the classifier in order to identify different charac-
teristics of the recurrences.

• Rec Classifier: It associates a label to each input recurrence relation that identifies the
class of recurrence.

• Solver Utils: Defines the common interface of the different back-end solvers.

• BSi: These are the modules that implement the interface defined by Solver Utils, connect-
ing directly with the particular back-end solvers, such as Mathematica R©, CiaoPP’s built-in
Solver, etc.

8

Figure 2: Architecture of the Modular Solver Framework.

The main advantage of this new solver component are the following:

• Being able to integrate easily new back-end solvers, such as existing Computer Algebra
Systems (CAS, such as, e.g., Mathematica), existing specialized solvers (e.g., PURRS or
PUBS), or even new specialized solvers for a limited set of special recurrences.

• Being able to combine easily the results from different back-end solvers.

Integrating new off-the-shelf systems to solve a larger set of recurrences is crucial for the
extensibility and applicability of the whole resource analysis. The ability of combining results
from different back-end solvers allows increasing their power, and analyzing (increasingly) more
complex programs.

9

Algebraic Expression Syntax. In order to use different back-end solvers from our architec-
ture, and, more importantly, combine the results coming from different back-end solvers, it is
necessary to define a common expression syntax for the inputs and outputs of our solver com-
ponent, delegating the responsibility of translating this syntax back and forth from the internal
syntax of the back-end solvers, to each particular back-end solver interface. In Figure 3 we show
this common syntax, both for arbitrary expressions and recurrence relations, which we call the
Algebraic Expression Syntax.

〈Exp〉 ::= −〈Exp〉 | 〈BuiltinCall〉 | 〈UserDefCall〉 | 〈Exp〉 〈BinOp〉 〈Exp〉 | 〈Num〉 | 〈Var〉

〈BuiltinCall〉 ::= fact (〈Exp〉) | lucasl (〈Exp〉) | fibo (〈Exp〉) | exp (〈Exp〉)
| max (〈Exp〉 , 〈Exp〉) | min (〈Exp〉 , 〈Exp〉)
| log (〈Exp〉 , 〈Exp〉)
| sum (〈Var〉 , 〈Exp〉 , 〈Exp〉 , 〈Exp〉)
| prod (〈Var〉 , 〈Exp〉 , 〈Exp〉 , 〈Exp〉)

〈UserDefCall〉 ::= fun (〈Name〉 , [〈Exprs〉])
〈BinOp〉 ::= + | - | * | **
〈Exprs〉 ::= ε | 〈Exprs’〉
〈Exprs’〉 ::= 〈Expr〉 | 〈Expr〉 , 〈Exprs’〉
〈RecRels〉 ::= 〈RecRel〉 | 〈RecRel〉 , 〈RecRels〉
〈RecRel〉 ::= equation (〈Name〉 , [〈Vars〉] , 〈Exp〉 , [〈Tests〉])
〈Vars〉 ::= ε | 〈Vars’〉
〈Vars’〉 ::= 〈Var〉 | 〈Var〉 , 〈Vars’〉
〈Tests〉 ::= ε | 〈Tests’〉
〈Tests’〉 ::= 〈Test〉 | 〈Test〉 , 〈Tests’〉
〈Test〉 ::= 〈Exp〉 〈BinComp〉 〈Exp〉
〈BinOp〉 ::= > | < | = | >= | =<

Figure 3: Algebraic Expression Syntax

Interface to Back-End Solvers. The common interface that the different back-end solvers
have to implement is the following (defined by Solver Utils):

• translate from common syntax(+Exp, -TExp): Translates any expression or
recurrence relation received as input, in the common algebraic expression syntax, to the
specific syntax of the corresponding back-end solver.

10

• translate to common syntax(+TExp, -Exp): Translates expressions or recur-
rences from the syntax of the back-end solver to the common algebraic expression syntax.

• simplify(+Exp, -Simp): Simplifies the expression or recurrence relation Exp. If
the input is a recurrence relation, it simplifies the right hand side of the equations.

• expand(+Exp, -Simp): Expands out products and positive integer powers in Exp.

• greater than(+A,+B),equal to(+A,+B), · · · : Implement the comparison op-
erators between algebraic expressions.

• solve rec rel(+RecRel,+Bound,-ClosedForm): Tries to find an exact closed-
form solution for RecRel, or a correct approximation with respect to Bound, whose value
could be upper, if we want an upper bound for the recurrence, or lower if we want a
lower bound.

The translations back and forth to the common expression syntax are performed from -
Solver Utils, by calling the corresponding predicates of the back-end solvers. Thus, from
the point of view of a user of the solver, the solver receives and returns elements in the common
syntax, abstracting away all the translation details.

2.1.2 Using ranking functions for upper-bounding special recurrences

In order to show the advantages of the new architecture proposed for dealing with recurrences,
we present in this section how we can implement and integrate a specialized back-end solver for
dealing with a special class of logic programs, that commonly appear when the logic program is
a translation, more or less direct, of an imperative program with simple loops.

To illustrate the problem we are going to address, we will use a very naive running example.
Let us consider an imperative function that calculates the addition of the first N natural numbers.

i n t sum (i n t N){
i n t add = 0 ;
f o r (i n t i =1 ; i =<N; i ++)

add += i ;
re turn add ;

}

In order to analyze this program with our resource analysis, an automatic translation into a
Horn clause representation is performed. Assume that after this step is completed, the loop for
this function is translated into the following logic program (Horn clauses):

11

sum (I , N, A, A):−
I > N.

sum (I , N, AI , AO):−
I =< N,
I1 i s I + 1 ,
AT i s AI + I ,
sum (I1 , N, AT, AO) .

Assume also that execution steps is the resource to measure. Our resource analysis based on
abstract interpretation will set up the following recurrence relation representing an upper bound
on the resource usage of a call to that program (predicate):

e q u a t i o n (g , [I ,N] , fun (g , [I + 1 ,N]) + 1 , [I =< N]) ,
e q u a t i o n (g , [I ,N] , 1 , [I > N]) ,

This recurrence relation is not in the proper form typically handled by a CAS. Mathematica, for
example, cannot deal with it properly because it does not support the constraints associated with
each equation, and, moreover, the second argument only appears in constraints. However, we
can transform this recurrence into a common, one variable recurrence equation by performing
some variable substitution and using the information present in the constraints. Let us define
Y = N − I + 1. If we rewrite the previous recurrence in terms of Y , we obtain:

e q u a t i o n (g , [Y] , fun (g , [Y − 1]) + 1 , [Y >= 1]) ,
e q u a t i o n (g , [Y] , 1 , [Y < 1]) ,

which can be easily solved now by almost any recurrence solver. Its solution, Y , needs to be
replaced by its definition, N − I + 1. This is a valid upper bound for the recurrence if I ≤ N . If
I > N the result should be C, because the base case condition applies. For that reason, as a last
step, we need to use the max operator in order to obtain a valid upper bound for all the possible
values of I and N . Therefore, we obtain the following closed-form upper-bound expression for
g:

max(C,N − I + 1) (1)

We have just shown how to solve, in a very intuitive way, a small but tricky kind of recurrence
relation. As programs with these characteristics are very common, it is important to automate

12

this technique. If we pay attention to the reasoning we just followed, we can notice that we
looked for a variable replacement that transforms the recurrence into a form amenable for tradi-
tional solvers. That means that we need the recurrence in a decremental way, expressing the n-th
term as a function of some i-th term, obtaining i < n. Therefore, what we need for the variable
replacement is an expression that we know decreases in each step of the recurrence. The auto-
matic termination community have studied in depth this particular kind of expressions for loops
(we can see a recurrence as a loop), because they are instrumental for proving termination. They
usually prove that there exists a function that maps the arguments of the loop to a well-founded
partial order, such that this function decreases in each step. These kinds of functions are called
ranking functions [Flo67]. In [PR04] a complete method for obtaining linear ranking functions
is presented.

The use of ranking functions for finding closed-form upper bounds for recursive resource
usage expressions (called cost relations) was presented in [AAGP11]. In such work, the authors
first define a set of evaluation trees for a system of cost equations and a given initial call. Then,
they try to find an upper bound on the number of nodes, both internal nodes and leaves. Each
node of this kind has a local cost that needs to be multiplied by the corresponding bound on the
number of nodes in order to obtain a closed-form expression. These local costs are also over-
approximated by using linear programming techniques, and the result is finally obtained. This
idea of over-approximating the number of nodes of any possible evaluation tree was previously
given in [DLGHL97], but for inferring both lower and upper bounds for divide-and-conquer
predicates.

In our case, we are going to limit this technique to simple cases, as the one that we showed
above. By simple, we mean recurrences with one single recursive call, possibly multiplied by a
constant coefficient, and no other equation call. Even more, we are going to support recurrences
(under this technique) with mutually exclusive equations, and only one base case. As we are
going to use the algorithm proposed in [PR04], we also need to limit ourselves to linear arithmetic
expressions as input.

We follow an approach similar to the ones in [AAGP11, DLGHL97].

Definition 1 (Simple recurrence relation) We call simple recurrence relation a recurrence of
the form:

f(u) = C, if ϕ(u)

f(u) = K ∗ f(u′) + g(u), if ϕ′(u)

where

• C,K ∈ Z+ are constants,

13

• g is an expression that does not contain any call to f or any other functions except built-ins,

• ϕ(u) ∧ ϕ′(u) is unsatisfiable (mutual exclusion),

• u is a sequence of arguments, and u′ is a sequence of linear arithmetic expressions over u,
such that |u| = |u′|.

Definition 2 (Ranking function for a simple recurrence relation) A ranking function for the
following simple recurrence relation:

f(u) = C, if ϕ(u)

f(u) = K ∗ f(u′) + g(u), if ϕ′(u)

is a function h : Z|u| → Z+ such that ϕ′(u) |= h(u) > h(u′).

Now that we have already defined the class of recurrences we are going to handle, and what
a ranking function is for those recurrences, we can show how to obtain a safe closed-form over-
approximation for them. Given an initial input u0, let us first observe what is the result of
applying the recursive case several times, before reaching the base case:

f(u0) =

Kf(u1) + g(u0) =

K(Kf(u2) + g(u1)) + g(u0) = K2f(u2) +Kg(u1) + g(u0) =

· · ·
Ki−1f(ui−1) +Ki−2g(ui−2) + · · ·+ g(u0) =

KiC +Ki−1g(ui−1) + · · ·+ g(u0)

As we can see, the last expression, where the base case is finally reached, is in closed form,
with i being the number of applications of the recursive case. We can replace i by a ranking
function h(u) for f , because it is also an upper bound of the number of times a recursive case is
applied (see for example [AAGP11]). We also need to find a general form for all the expressions
g(uj). In order to do that, and to ensure we are going to obtain a correct upper bound, we
can replace each subexpression by the result of maximizing g(u) under the constraints ϕ′(u).
Let M be the result of this operation. Finally, as we explained before, it is necessary to wrap
the resulting expression with the max operator and the base case constant C as argument. In
conclusion, we obtain the following closed-form expression:

14

f̂(u) = max(C, (

h(u)−1∑

i=0

KiM) +Kh(u)C) ≥ f(u) (2)

Coming back to our running example, we can see that the recurrence is a simple recurrence
relation with K = 1, C = 1 and ∀u : g(u) = 1. If we apply the algorithm in [PR04] (interpreting
the recurrence as a single loop), we obtain the ranking function h(I,N) = N − I + 1. Finally,
by applying the formula we have just derived, we obtain the following upper-bound closed-form
expression:

max(1, (N − I + 1) ∗ 1 + 1 = max(1, N − I + 2) (3)

which is a correct upper bound and is consistent with our first intuition (equation 1).

2.1.3 Implementation

We have implemented a prototype of the proposed architecture taking advantage of the module
system of Ciao. We have also performed some refactorizations on the abstract interpretation-
based resource analysis in order to integrate our prototype of the solver into it. In this prototype,
we have developed a strategy called chain, as a proof of concept. This strategy simply tries
to solve a recurrence relation by calling in sequence each available back-end solver. The first
solution found is the one that is returned, obtained from one of the back-end solvers. A simple
but significant improvement of this strategy would be to compare all of these results and get the
maximum or minimum of them, depending on which kind of approximation we are looking for.

The implementation of the method showed in this section mainly requires a procedure for
finding (linear) ranking functions. The Parma Polyhedra Library (PPL) provides numerical ab-
stractions especially targeted at applications in the field of analysis and verification of com-
plex systems, including implementations of methods for the synthesis of linear ranking func-
tions [BRZH02, BHZ08]. Thus, we have integrated PPL as a back-end solver in our proposed
architecture, implementing the operation solve rec rel in such a way that it: (a) identifies
the different parts of the recurrence relation; (b) obtains a ranking function for the given recur-
rence; and (c) sets up the closed-form expression of Equation (2), using the ranking function
obtained in (b) and the components of the recurrence obtained in (a). We also require an opera-
tion that performs the maximization of an expression under a set of constraints. Fortunately, we
can use any CAS (in our case Mathematica), or even PPL to perform such operation.

15

2.2 Relating accuracy and energy consumption properties

Many applications allow certain levels of variability in the accuracy of their computations (e.g.,
video and audio encoders, machine learning algorithms, Monte Carlo simulations, etc.). This
variability in accuracy depends on the nature of such applications in the sense that certain ap-
plications may allow, e.g., certain computations to be skipped, data representation to be varied,
or different program paths (strategies) to be chosen based on given flags. This makes the rela-
tionship between accuracy and energy quite application-specific. As long as the distortion in the
output due to variability in the accuracy is within user-defined acceptable levels, the variability
can be traded off with performance/energy.

For this reason, we have studied the relationship among energy, precision, and performance
in two different application areas using different techniques:

Firstly, in [BLLG15] we have studied the variability in accuracy stemming from the skip-
ping of certain computations using loop perforation [SMR11]. The loop perforation technique
transforms loops to execute only a subset of their iterations. This work addresses the problem
of energy-efficient scheduling and allocation of tasks in multicore environments, where the tasks
can permit certain loss in accuracy of either final or intermediate results, while still providing the
proper functionality. We used the CiaoPP analyzer to estimate the energy of the different tasks.
The proposed scheduler, enhanced with loop perforation, was shown to improve on the previous
one by achieving significant energy savings (31 % on average) for acceptable levels of accuracy
loss.

Secondly, we have applied a technique consisting of the variation of the number of bits used
for the representation of numeric (integer) operands on a signal filter application (a case study of
WP6). The results of our study are shown in Table 1, where we compare the 32-bit version of the
Biquad benchmark against another version using 16-bit data representation. These two versions
of the Biquad benchmark have been run for a number of different inputs and the actual energy
consumption (measured on the hardware) of the two versions has been compared.

N
HW (nJ)

32-bit/16-bit
32-bit 16-bit

5 872 741 1.17
7 1190 997 1.19

10 1670 1426 1.16
14 2293 2004 1.14

Table 1: Energy consumption (nJ) measurements of Biquad for 32- and 16-bit versions.

16

Column N represents the number of BANKS for which the Biquad filter is applied to a signal.
Columns 32-bit and 16-bit represent the two versions of the Biquad filter where the data (signal
and coefficients) are represented using 32 and 16 bits respectively. The last column shows the
energy gains (although paying the price in accuracy loss) by using only 16-bit data representation,
as the ratio of the 32-bit and 16-bit versions.

The CiaoPP analyzer can infer different energy functions for the two versions of the Biquad
filter, relating accuracy with energy.

3 Direct Analysis of LLVM IR

As already mentioned, LLVM IR offers a good trade-off between analyzability and accuracy. By
contrast to the instantiation of the general analysis framework based on HC IR transformation
used in the CiaoPP analyzer, we have also experimented with an approach operating directly on
the LLVM IR representation. This means that no transformation to a different representation is
necessary; instead, the analysis can be applied directly to the LLVM IR blocks. Such approach
is described in [GGP+15] (included this document as attachment D3.3.6). Though relying on
similar analysis techniques, the approach can be integrated more directly in the LLVM toolchain
and is in principle applicable to any language targeting this toolchain. The approach can use the
same LLVM IR energy model as the one applied in [LGK+16].

4 WCET-inspired Energy Consumption Static Analysis

Since the underlying challenges of analysing the timing and energy consumption behaviour of a
program are quite similar, in [GKE15], we have applied well known WCET techniques to retrieve
energy consumption estimations. One of the most popular WCET techniques is IPET [LM97],
which retrieves the worst case control flow path of programs based on a cost model that assigns a
timing cost to each CFG basic block. We have replaced the timing cost model by an ISA energy
model given in [KE15b]. In the absence of architectural performance enhancing features, such
as caches, this technique can provide safe upper bounds for timing. Through our experimental
evaluation we have demonstrated that this is not the case for energy, as energy consumption, in
contrast to time, is data sensitive, i.e., the energy cost of instructions varies depending on the
operands used.

In order to explore the value and limits of applying IPET for energy consumption estima-
tions, we have also extended the analysis to the LLVM IR level, using the LLVM IR energy
characterization given by the mapping technique mentioned above (and described in Deliverable

17

D2.3). Furthermore, we have extended the energy consumption analysis to multi-threaded em-
bedded programs from two commonly used concurrency patterns: task farms and pipelines. The
experimental evaluation, on a set of mainly industrial programs, demonstrates that, although the
energy bounds retrieved cannot be considered safe, they can still provide valuable information
for energy aware development, especially in the absence of widely accessible energy monitoring
of software.

5 Energy Analysis of Source Code

In Deliverable D3.1 [LG13] we presented a general framework in which energy analysis could
be performed at various levels: source code (XC program); intermediate code (such as LLVM
IR); machine instructions (ISA). In previous articles and deliverables we have described energy
analyses at LLVM IR and ISA levels along with the associated energy model [LKS+14, LGK+16,
GGP+15, GKE15]. In this section we complete the picture by describing how we can perform
energy analysis at the source level and describe a prototype source code analysis tool.

To achieve analyses at different levels, there are two associated mappings in opposite direc-
tions: firstly, the meaning of the program derives from the source code and is mapped downwards
(by compiler translations) into LLVM IR and ISA code respectively. Secondly, the energy model
is derived from the lowest level and is mapped upwards to the intermediate and source code.

For source code analysis there are two main requirements.

• There is an energy model for source code constructs. This is obtained by mapping a lower-
level energy model upwards to source code.

• The analysis is based directly on the semantics of the source code rather than on a transla-
tion to intermediate code.

The main advantage of source code analysis is that the analysis results are easier to interpret
by the developer. The potential disadvantage is that the energy model may be less precise, since
the actual energy consumed depends in many cases on exactly how the source code is translated
into machine instructions and how the processor handles them.

We now describe how we obtain the source code energy model, and then how we perform
analysis at the source level.

5.1 Derivation of a source code energy model

The energy model for source code is derived from the energy model for its LLVM IR repre-
sentation, which is turn is derived from the ISA energy model. Previously we have presented a

18

procedure for mapping the ISA model to LLVM IR [GKE15] and demonstrated its usefulness in
analysis of LLVM IR [GGP+15, LGK+16].

Obtaining the control flow graph for the source program. Given a source XC program, we
compute its control flow graph (CFG) (or rather, a set of CFGs, one CFG for each procedure
in the program). The CFG is obtained directly from the abstract syntax tree (AST) of the XC
program, which is output by a specially modified version of the XC compiler toolchain [xTI]. We
use an attribute grammar to “thread” the AST; each statement node in the AST has an inherited
next attribute whose value is some other statement node, while each boolean expression has two
attributes true and false whose values are the statement nodes for the true and false control flow.
Compound statements have an edge attribute whose value is the sub-statement or expression to
which control goes; for instance the edge attribute for an “if” statement is its boolean expression
test. For non-compound statements such as assignment statements, the edge attribute evaluates
to the next attribute’s value.

Figure 4 shows the attribute evaluation rules for the main statement types, for attributes next,
true, false and edge. This approach can also handle the break statement (which is not included in
Figure 4), which requires only an extra attribute whose value is the next attribute of the innermost
enclosing loop for each statement; this is the statement to which the break statement diverts.

The attributes edge, true and false in the threaded AST induce a directed graph (a set of
connected graphs), where the nodes are statement nodes and boolean expressions, and the edges
are pairs of the form (S, S.edge), (B,B.true) and (B,B.false), where S and B are statement
and boolean expression nodes respectively in the CFG. Each procedure entry point is a start node.
We do not at this stage represent function call-return edges in the graph.

Figure 5 shows a screenshot from the prototype tool, with the input XC program on the left,
and the CFG (one for each of the two procedures) on the right.

The basic blocks are then obtained straightforwardly from the CFG. A basic block is a maxi-
mal sequence of connected nodes where every node in the sequence apart from possibly the first
and the last has exactly one in-edge and one out-edge. (Note: a slight modification of this pro-
cedure was needed to ensure correspondence with LLVM IR basic blocks; namely, the boolean
guarding a loop is included both in the block leading to the loop and in the final block of the loop
itself.)

Energy mapping between basic blocks at different levels. The translation of an LLVM in-
struction to ISA is highly dependent on context. Therefore there is no general energy mapping
between ISA and LLVM IR instructions. The energy mapping is rather based on basic blocks;
thus the mapping is program-specific. Given an LLVM program and its corresponding ISA pro-

19

AST Grammar Rules Attribute Rules

If → if E then S1 else S2 E.true := Sl

 E.false := S2
 S1.next := If.next
 S2.next := If.next
 If.edge := E

While → while E do S1 E.true := S1
 E.false := While.next
 S1.next := While
 While.edge := E

StatementList → S1;...;Sn Sj.next = Sj+1 (j = 1 to n-1)
 Sn.next := StatementList.next

 StatementList .edge := S1
S → StatementList | If | While | Call | Assign

 StatementList.next := S.next
 If.next := S.next
 While.next := S.next
 Call.next := S.next
 Assign.next := S.next

Assign → Id = E Assign.edge := Assign.next
Call → Id (E1,...,En) Call.edge := Call.next

Figure 4: Attributes for AST threading

gram, there is a fairly stable mapping between the basic blocks in the two programs. That is, the
flow of control is the same in the two programs and this implies that the basic blocks are in cor-
respondence. Since the energy of a basic block at the ISA level can be computed from the energy
model of the instructions in that block, the same energy can be assigned to the corresponding
LLVM IR basic block.

Mapping the LLVM IR energy model. In [GKE15] a tool is described to propagate ISA-
level energy information up to the LLVM IR level and obtain energy values for LLVM IR blocks.
Blocks at both LLVM IR and ISA levels are identified mainly by their start and end source line
numbers, which are also preserved in the source-level CFG as shown in Figure 5. We therefore
can assign the energy values from an LLVM IR block to the corresponding block in the source
code, by the following simple procedure. Figure 6 shows an example of the output of the tool
[GKE15] for one block, highlighting the start and end numbers and the energy for the block
derived from the corresponding ISA statements.

• Identify the start and end line number of an LLVM IR basic block, say b.

• Find the source block having the same start and end line numbers as b, and assign to that

20

Figure 5: CFG derived from an XC program

block the energy of b.

This simple scheme does depend on the source code being split over lines in a reasonable way.
It is possible after all to write a program on one line! Apart from this, there can be tricky points.
For example line 12 in the program shown in Figure 5 is for (i=2; i<=n; i++) and this
contains statements from different blocks. However the combination of start and end line number
is usually sufficient to identify each block uniquely.

5.2 Analysis of source code

The analysis of source code follows the same approach adopted in the ENTRA project as for
analysis of LLVM IR and ISA. This involves the following steps:

• Translation of the flow graph to Horn clauses.

• Application of the general resource analysis framework.

• Translation and reporting of analysis results back to the source code level.

21

{"
"""lineEnds":"12,"
"""name":""fib_LoopBody","
"""mapping":"["
""""{"
"""""""LLVMIRIns":""%i.0"="phi"i32"["%posEnc","
"""""""ISAMap":"[]"
""""},"
""""..."rest"of"block"instruc0ons"omi2ed"
""""{"
"""""""LLVMIRIns":""%relopcmp9"="icmp"sgt"i32"%posEnc","
"""""""ISAMap":"["lss_3r"]"
""""},"
""""{"
"""""""LLVMIRIns":""br"i1"%relopcmp9","
"""""""ISAMap":"["brbf_ru6"]"
""""}"
""],"
"""lineStarts":"13,"
"""energy":"2.5907919155876703ET9"
}"

Figure 6: Example of an LLVM IR block energy information output by mapping tool [GKE15]

Translating the flow graph to Horn clauses. For each statement node in the AST we identify
the set of variables in scope at that point. We assume, in order to simplify the explanation, that
procedures do not have free variables (i.e. all variables in procedures are either locally declared
or parameters), though this restriction is not essential. An attribute grammar defining inherited
attribute vars and synthesised attribute newvars for each statement and boolean expression is
given in Figure 8.

For statement node n, let us denote the value of the vars attribute for n as Xn, a tuple of
variables (we assume that the variables are listed in some fixed order). We denote by X ′n the
renamed tuple where each variable x in Xn is renamed as x′ in X ′n.

For each edge in the CFG, say (n,m), we define a Horn clause of the form

pm(Xm)← φn,m(Xm, X
′
n), pn(X

′
n)

where the constraint φn,m(Xm, X
′
n) relates the state of the variables at n and m and expresses

the effect of executing n. The clause can be read as follows: if the point just before statement
n can be reached with variable values given by the tuple X ′n, and φn,m(Xm, X

′
n) holds, then

statement m can be reached with variable values Xm. There are three cases for the constraint
φn,m(Xm, X

′
n).

1. If n is a boolean expression E then φn,m(Xm, X
′
n) is E ′, Xm = X ′n.

22

Figure 7: Horn clauses derived from an XC program

2. If n is an assignment x = E then φn,m(Xm, X
′
n) is x = E ′, Xn \ {x} = X ′n \ {x′}.

3. Otherwise, φn,m(Xm, X
′
n) is Xm = X ′n.

The renaming of variables has an equivalent effect to SSA form, but “phi-functions” are not
needed, since they are implicitly realised by the Horn clause semantics. Figure 7 shows a section
of the Horn clauses derived from the running example program. Note that the line numbers are
encoded in the predicate name; a predicate whose name is line X Y is on line X.

Analysis of the Horn clause representation. The resource analysis tools based on Horn clauses
were previously applied to LLVM IR and ISA [LGK+16]. The tools derive an invariant on the
energy consumption at specified program points. These invariants relate the energy consumed at
a program point with the values of the variables in the state. For the fib function in the running
example, and the energy assignments derived from the LLVM IR blocks as explained above, the
energy consumed from the procedure entry to the return statement is derived to be the following.

energy = i ∗ 2.5907919155876703 ∗ 10−9 − 8.235050400802908 ∗ 10−10 Joule.

23

AST Grammar Rules Semantic Rules

If → if E then S1 else S2 E.vars := If.vars

 S1.vars := If.vars
 S2.vars := If.vars
 If.newvars = { }

While → while E do S1 E.vars := While.vars
 S1.vars := While.vars
 While.newvars = { }

StatementList → {S1,...,Sn} Sj.vars = Sj-1.vars �Sj.newvars (j = 2 to n)
 S1.vars := StatementList.vars
 StatementList.newvars = { }

S → Decl | StatementList | If | While | Call | Assign
 StatementList.vars := S.vars
 If.vars := S.vars
 While.vars := S.vars
 Call.vars := S.vars
 Assign.vars := S.vars
 S.newvars := Decl.newvars // { } for other cases

Decl → declare Type var Decl.newvars = {var}

Figure 8: Attributes for statement variables

The invariant relates energy to the variable i, which has the same value as n+1 at the return
point for all values n ≥ 2. For all n < 2, i = 2 and the energy consumption is constant, since
the loop is not entered. Note also that if n ≥ 2, then the loop is traversed only n− 1 times.

6 Combining Static and Dynamic Analysis Techniques

We have proposed an approach for inferring parametric upper and lower bounds on the energy
consumption of a program using a combination of static and dynamic (i.e., profiling-based) tech-
niques [LBLGH16]. The dynamic technique, based on an evolutionary algorithm, is used to
determine the maximal / minimal energy consumption of each basic block. Such blocks contain
multiple instructions, which allows this phase to take into account inter-instruction dependencies.
Since such basic blocks are branchless, the evolutionary algorithm approach is more practical and
efficient and the technique infers energy values that are accurate since no control flow-related
variations occur. An instantiation of the static analysis framework based on the CiaoPP system
(similar to the one described in Section 2) is then used to combine the energy values obtained for
the blocks according to the program control flow, and produce energy consumption bounds of the
whole program. We also carried out an experimental evaluation to validate the upper and lower
bounds on a set of benchmarks. The results support our hypothesis that the bounds inferred in
this way are indeed safe and quite accurate, and the technique practical.

24

7 Parametric Static Profiling of Energy Consumption

The goal of automatic program resource analysis is to discover the resources a program uses (in
our case energy) as a function of the size of the input data or other environmental parameters
of the program, without actually executing the program. Previous work on this topic, mainly
for inferring asymptotic time complexity bounds, goes back to the 1970s. Recent research has
adapted these techniques for inferring energy bounds and other resources and these form the
basis for ENTRA prototype tools for energy analysis of programs.

However, as part of the energy-aware software development process investigated in the EN-
TRA project, it is clear that analysis of the overall energy consumption of a program only par-
tially fulfills the requirements of energy analysis. A more typical requirement is to analyse a
program to discover the distribution of energy consumption over the parts of the program. In
short, we want to perform static profiling of its energy usage (by analogy with dynamic profiling,
which records resource usage during execution at a range of execution points such as function
calls). With static profiling the profile is not just a set of counts but rather a set of functions
associated with given program points, parameterised by the size of input to the entry point of the
program.

For example, suppose that procedure p(x) calls procedure q(y) (possibly more than once).
Rather than analysing the total energy consumed by a call to p(x), including the resulting call(s)
to q(y), we would like to discover the resources used by procedure q(y) when activated from
p(x).

Motivations for static profiling. There are several motivations for static profiling:

• Firstly, a profile of the resource usage of the program can show the developer which parts of
the program are the most resource-critical. For example, it can expose the cost of functions
that are perhaps not so resource-hungry in themselves but which are called many times.
Such parts can be natural targets for optimisation since a small optimisation might yield
important savings.

• Secondly, there are cases where the overall resource complexity of a program might not be
obtainable. For instance, some program parts may be too complex for analysis or perhaps
the code for some parts is not available and the cost cannot even be reasonably estimated.
In this case useful information can still be obtained by excluding such parts from the anal-
ysis, obtaining information about the resource usage for the rest of the program.

• Thirdly, resource usage models (for example Tiwari’s energy consumption model [TMW94])

25

are sometimes based on summing the individual resource usage of basic components of the
program. Static profiling fits naturally with such models.

• Fourthly, static profiling does not introduce the run-time overhead that is inevitable with
dynamic profiling due to code instrumentation. The static profiling approach obtains safe
upper and lower bounds on resource consumption, because it is based on the semantics of
the program rather than on particular executions of it.

Outline of the static profiling technique. Our starting point is the well-developed technique
of extracting cost equations or relations from the program, expressing resource usage functions
defined by recurrence relations [Weg75, Ros89, DLH90, DL93, DLGHL97, AAG+08]. These
are then solved to get a closed-form function expressing the (bounds on) parameterised resource
usage. In [HLGL+16] (included in Deliverable 1.2 as attachment D1.2.3) we define a program
transformation which allows a standard cost analyzer to infer statically parameterised functions
for each of a specified set of program components (called “cost centres” in the paper).

The method has been implemented for the HC IR but not yet integrated with the tools han-
dling XC source, LLVM IR or ISA.

8 Probabilistic Resource Analysis

Bounds on energy consumption are useful, but information about the distribution of consumption
within those bounds is even more so. For example, it may be that most execution cases of
a program result in consumption close to the lower bound, while the upper bound is reached
only in a few outlying cases, or vice versa. From the distribution, estimates of average energy
consumption can be derived. One approach to obtaining this kind of information is to perform
probabilistic static analysis of a program with respect to its energy consumption. This is a special
case of probabilistic output analysis, whose aim is to derive a probability distribution of possible
output values for a program from a probability distribution of its input. The output in this case is
energy consumption.

The first results published for this approach used fairly simple domains and distributions in
the examples [RK15]. The technique, however, is not inherently restricted in this way. In a
later paper [KR15] it is shown how to apply the analysis to more complex scenarios such as
dependent non-uniform distributions and parametrized domains. The paper also describes how
the technique has been integrated with a standard algebraic system, Mathematica. This gives it
strength to analyse complex scenarios of dependencies as exemplified with the classic Montyhall

26

case. A detailed description of our results on this topic can be found in [RK15] and [KR15] (also
included in this document as attachments D3.2.8 and D3.2.5, respectively).

9 Analysis of Multi-threaded Programs

In this section we present an analysis of multi-threaded programs aimed at discovering properties
relevant to energy consumption and optimisation. We consider the XC language, which permits
parallel threads and synchronous channel communication.

The XC Language. XC is “an imperative programming language with a computational frame-
work based on C” [Wat09]. The main relevant language features of XC in this section are those
for creating concurrent threads that can communicate and synchronise with each other using
channels.

The most distinctive semantic features of XC relate to concurrency. One property is that
parallel threads cannot make any updates to shared variables; another is that communication
channels have two ends owned by exactly one thread each, so there is no race on being the
first to send or get on a given channel. For the purpose of the analysis described here, these
features ensure that the only way that a thread can influence another thread is by sending channel
communications. Communication is synchronous; both sender and receiver wait until both have
performed their send or read actions.

Energy-relevant aspects of multi-threaded code. The energy-relevant properties of code that
we aim to analyse are mainly concerned with timing and synchronisation. This is because energy
can be wasted by threads that wait frequently, or that complete their tasks too early for some
external deadline. More specifically, we want to get answers to the following questions.

• How much work is done between thread communications?

• How active/inactive is each thread?

• What is the distribution over time of the number of running threads? What code blocks
can (possibly) run in parallel with each other?

Potential power optimisations. If we can answer the questions above, a number of potential
energy-wasting behaviours, and hence opportunities for optimisation, can be identified.

• Sometimes, threads can be slowed down (for example by reducing the frequency and volt-
age of a core) while still meeting deadlines from other threads.

27

• Threads that communicate frequently should be placed close to each other (taking into
account communication infrastructure).

• Bottlenecks can be removed by shifting tasks or introducing more threads.

• Very inactive threads can be merged with other threads.

In addition, information about how many threads can run in parallel is needed for making
accurate energy consumptions, according to the multi-threaded energy model for the xCORE
[KE15a].

Figure 9: Life cycle of a thread

Thread behaviour: communication actions and communication-free code. Each thread is
created by a par statement. After creation, it may communicate with other threads. Many of
the interesting questions about thread behaviour and synchronisation concern the question “what
does a thread do between communications?”. Figure 9 illustrates the life-cycle of a thread. After
creation, it alternates between executing code that does not communicate and communication
actions (either sending or receiving) indefinitely or until the thread is terminated.

The problem of identifying the communication-free code sections is related to the task of
generating the control flow graph in Section 5. We can identify all communication points in the
code. Then any (feasible) path in the control flow graph from one communication point to another
(without passing through any other communication point) can be enumerated. In Figure 10 we
illustrate the process. In the thread code on the left, P, Q, · · · U are pieces of code containing
no communications. The graph then shows the behaviour of the thread as a state machine that
alternates communication on channel b, c or d with code sections C1, · · · , C5, whose makeup
is given on the right. We call the communication-free sections C1, · · · , C5 tasks.

Timing of tasks. The analysis requires that the time of each section of communication-free
code is given. Such a section is possibly non-deterministic. We assume that a duration can be

28

!chan!b,c,d;!
!int!le.,!right;!
!P;!
!while(1)!{!
! !Q;!
! !get(le.,b);!
! !R;!
! !get(right,b);!
! !S;!
! !send(le.,c);!
! !T;!
! !send(right,d);!
! !U;!
!};!

C1!

C5!

start!

b!

b!

C2!

b!

C3!

C4!

c!

d!

C1!=!P;Q!
C2!=!R;!
C3!=!S;!
C4!=!T;!
C5!=!U;Q!

Figure 10: Identifying communication-free code sections

derived for each section, which could be an interval [x, y] where x is the best (lowest) execution
time and y is the worst execution time. More generally the time could be a constraint depending
on data values, for example derived by an automatic complexity analysis tool or a worst-case
execution time analysis. We number the tasks 1, 2, . . . and denote the duration of the kth task as
dk.

Figure 11: Basic synchronous synchronisation constraint

Constraints on task firing times. We now consider when a task can start or “fire”. Consider
two threads that communicate on some channel c. Figure 11 shows that the tasks immediately
following the communication in each thread, namely tasks 2 and 4, can start simultaneously as
soon as the communication on c has occurred, which in turn can happen as soon as both tasks 1

29

and 3 have completed.
The same task may fire many times, if the thread contains a loop. Let tmk denote the time of

the mth firing of the kth task. We now formalise the constraints on the firing time, based on the
general synchronisation rules described above. Consider again the threads in Figure 11, which
we number 1 and 2 respectively, with tasks 1, 2, 3 and 4. Suppose the first thread is on its nth

iteration and the second thread is on its mth iteration. We let δ(n) = n + 1 if Task 2 is a loop
header and thus the loop counter is incremented, otherwise δ(n) = n; similarly δ(m) is defined
relative to Task 4.

n ≥ 0 ∧m ≥ 0 (4)

t
δ(n)
2 = max(tn1 + d1, t

m
3 + d3) (5)

t
δ(m)
4 = max(tn1 + d1, t

m
3 + d3) (6)

The final group of constraints arise from the fact that the same number of communication
events happens at each of the two ends of a channel. In order to formalise this, we define the
following constants for each channel occurring in a thread. For simplicity we assume that the
thread has one loop and a prefix which is executed once before entering the loop.

• cpre: the number of occurrences of c in the prefix.

• c1, . . . , ck: the k occurrences of the channel c within the loop.

Using these constants, we can assert that cpre + n ∗ k + j is the number of communications
on c when cj in the loop is encountered, after n iterations of the loop have been completed.
Therefore, if channel c occurs in two threads, the constraint that there is the same number of
operations at each channel end, is captured by the following equation. Constants cprei , ji, ki
and ni are respectively the number of occurrences of c in the prefix of thread i, the index of the
occurrence of c in the loop thread i, the number of occurrences of channel c in loop i and the
number of completed iterations of the loop i, for i = 1, 2.

cpre1 + n1 ∗ k1 + j1 = cpre2 + n2 ∗ k2 + j2 (7)

Solving the task firing constraints. The constraints 4, 5, 6 and 7 are collected for all cases
where a channel c connected two threads at points j1 and j2. The four tasks 1, . . ., 4 can be
identified syntactically for each such case. The solution of the constraints, or more generally an
approximate solution, is a set of constraints defining tnk , the time of the nth firing of task k, in
terms of n only.

30

Figure 12: Example of a pipeline process

Illustrative example and prototype implementation. Figure 12 shows the pseudocode for
eight threads forming a pipeline process; the pipeline splits in the middle as shown in the fig-
ure. The threads are also represented as task flow-graphs as discussed above, with the channel
communications labelling the edges. We note that some of the inter-communication tasks are
assumed to be very light (those marked in red) while the blue ones are “work” tasks. Let us
assign timings to the tasks as follows.

• G = 300, Q = 334, R = 500, S = 250, all other tasks = 5.

Figure 13: Typical transient and periodic phases in thread timing

We encoded the constraints as Horn clauses, and computed an approximate solution using a
convex polyhedral solver, as described in [GK14, KG15a]. We obtained a solution that shows
that the program timings have an initial transient phase followed by a periodic phase [GGS+06],

31

as shown in Figure 13. This is because the threads start off as quickly as possible but delays from
the later stages of the pipeline take a few iterations to propagate back to the start of the pipeline.
When the threads reach a steady state, we find in the example that all thread loops have a period
of either 610 or 305 (some threads loop twice as fast as others because of the split in the pipeline).
These periods define the throughput of the pipeline, namely the rate at which elements enter the
pipeline (which is 305 time units). This is useful information that by no means immediately clear
from the code or even from task timings.

Furthermore the analysis allows us to compute the percentage activity for each thread, since
we know its period and the sum of the times of the tasks in the thread. Given the timings above,
this ranges from 1.6% (thread A) to 83% (thread E). Other information that can be derived easily
from the solution includes:

• when one task definitely waits for another;

• which tasks can run simultaneously;

• which tasks on different threads do not run at the same time;

• frequency of each channel communication.

Status of the prototype tool. The constraints are currently generated automatically from a
schematic representation of the threads in which tasks have already been identified. The solution
of the constraints is semi-automatic in that the transient and periodic phases have to be identi-
fied before the precise periodic solution can be found. Current and future work consists of (a)
generating the timing constraints directly from XC code, (b) trying successively longer transient
phases until a periodic phase is found and (c) integration with the timing analyser tools for XC
to determine task durations.

10 Energy Consumption Verification and Debugging

Verification compares actual system properties with required properties in order to prove them
or to detect inconsistencies. We have developed techniques that enable software engineers to
express and verify properties of the system throughout its life-cycle relevant to energy. For
example, our techniques address the important challenge of being able to certify that a given
energy budget is met, while maintaining a given level of quality of service.

32

10.1 Verification based on cost function comparison and the CiaoPP sys-
tem

We first have defined an energy usage semantics that represents energy as a function of different
system and data parameters. Then, we have defined advanced function comparison operations
in order to compare the approximated semantics inferred by static analysis with the intended
semantics expressed by specifications written in the common assertion language. In general, the
result of such comparison gives preconditions under which a given specification is met or not.

We have developed a prototype tool based on these ideas, using the CiaoPP system, for
the verification of XC programs running on the XS1-L architecture. The tool is described
in [LGHK+15] (included in this document as attachment D3.3.2). The input to the tool is the XC
source program together with specifications written in the XC source code as (front-end) asser-
tions. Such specifications can include both lower and upper bounds on energy usage, and they
can express intervals within which energy usage is to be certified to be within such bounds. The
bounds of the intervals can be given in general as functions on input data sizes. Our verification
tool can prove whether such energy usage specifications are met or not. It can also infer the
particular conditions under which the specifications hold. These conditions are also expressed as
intervals of functions of input data sizes, such that a given specification can be proved for some
intervals but disproved for others. The specifications themselves can also include preconditions
expressing intervals for input data sizes. Attachment D3.3.2 also illustrates with an example how
embedded software developers can use this tool, and in particular for determining values for pro-
gram parameters that ensure meeting a given energy budget while minimizing the loss in quality
of service.

If an energy consumption assertion is violated, the software developer is informed and a
debugging process is started in order to find the causes of the assertion violation, and help the
developer redesign the program.

10.2 Supporting techniques for program verification

Research on Horn clauses as a common semantic representation language. The use of
Horn clauses is established as a representational formalism for software verification. Horn
clauses have simple logical semantics, but are expressive enough to capture important aspects
of the meaning of most programming languages. Therefore it functions as a common semantic
representation; source programs in a variety of languages are translated into Horn clauses, in
such a way that properties of the Horn clauses can be mapped into properties of the source pro-
gram from which they are derived. Analysis and verification can then be performed on the Horn

33

clauses and the results interpreted in the source program. The advantage is that a set of tools
for handling Horn clauses can be applied to many different programming languages. It suffices
to write a suitable translator to Horn clauses. (This is not a trivial task, but beyond the scope
of the discussion here). Horn clauses were adopted as an internal semantic representation in the
ENTRA project, and applied to analysis and verification of XC programs, LLVM IR code and
ISA.

The analysis of Horn clauses was itself a research goal in order to ensure wider applicability
and scalability of the ENTRA approach; results and tools were transferred where possible into
the ENTRA tools. The goal was to establish that tools based on Horn clause representations were
capable of reaching the state-of-the-art in software verification and analysis.

Convex Polyhedral Analysis Tools. The domain of convex polyhedra is a fundamental ab-
stract domain for relations over numerical values, which are typical for Horn clauses derived
from imperative programs. We implemented and tested several tools that combined and extended
state-of-the-art techniques for convex polyhedral analysis [GK14, KG14, KG15a] (attachments
D3.3.10, D3.3.3 and D3.3.7 in this document respectively). In particular, a generic “constraint
strengthener” was developed [KG15a] which can be used to enhance any other Horn clause anal-
yser. This was successfully combined with existing ENTRA analysis prototype tools.

Tools for refinement and decomposition of Horn clause verification problems. Effective
scaling up of verification tools requires techniques to decompose complex problems into smaller
ones, and to refine analyses that are insufficiently precise to verify a given property. We inves-
tigated a novel decomposition technique based on “tree dimension” [KGG15] (see Attachment
D3.3.9). Regarding refinement, we developed a novel technique based on transforming Horn
clause programs to eliminate false alarms arising from imprecise analyses. An iterative proce-
dure based on this approach was developed [KG15b] (see Attachment D3.3.4), which compared
favourably with existing “abstraction-refinement” tools.

11 Demonstration of the Verification Tool based on HC IR
Transformation and the CiaoPP System

This section provides a demonstration of the use of the implemented prototype tool based on
HC IR transformation and the CiaoPP system in two typical scenarios: analyzing the energy
consumed by an XC program and verifying energy related specifications.

34

We use the ENTRA tools front end for this purpose. Although the ENTRA tools front end is
described in detail in deliverable D1.2, we include a short description here, to make the document
more self-contained.

Figure 14: Graphical User Interface.

Figure 14 shows a screenshot of the ENTRA tools front end, which has two main sections,
one on the left and the other on the right. The source file is loaded into the buffer on the left
section under the Source tab. The user can load one of the benchmarks from the xcprog drop
down. This drop down is populated with all the benchmarks under the directory xcprog which is
located inside the corresponding tool’s directory.

The Analysis and Verification tabs (within the section on the right) allow the user to perform
analysis and verification of the program loaded into the buffer (within the section on the left).
Under each of the two tabs, the user can select the Analysis Level to be either LLVM or ISA,
which specify the level (LLVM IR or ISA) to which the XC source is compiled and at which it
is then analyzed by the underlying tool (e.g., CiaoPP). Once the user presses the Run button, the
analysis/verification is run and its output is loaded into the buffer on the right. The underlying
command used to invoke the CiaoPP analysis/verification is also shown in the Command box.
The Show plots button allows the user to see the output plotted graphically. It is shown using the
gnuplot utility.

35

Figure 15: Analysis results (expressed as front end assertions).

Assuming that the CiaoPP system has been properly installed as well as the XMOS compiler,
the tool can perform the analysis and verification of XC programs that are loaded into the buffer
to the left hand side of the ENTRA tools front end.

11.1 Analyzing the energy consumed by an XC program

We first show how analysis of an XC program is performed using the ENTRA tools front end.
For example, we select the biquad.xc benchmark from the xcprog drop down menu, as shown in
Figure 14. Then we select LLVM from the Analysis Level drop down (which will tell the analysis
to take the LLVM IR option by compiling the source code into LLVM IR and transform this into
HC IR for analysis). After clicking on the Run button, the analysis is performed, producing the
results as depicted in Figure 15. Such results are expressed in the front end syntax of the common
assertion language, as explained in Deliverables D2.1 [EG13] and D3.1 [LG13]. We can see for
example that the upper bound on the energy consumption of the biquadCascade program is given
as a linear function on the size of the input argument to the program, C (number of BANKS),
namely 16652087 ∗ C + 5445103 nJ .

36

Figure 16: Program verification.

37

Figure 17: Verification results (expressed as front end assertions).

38

Figure 18: Verification results (graphically plotted).

11.2 Verification of the energy budget for an XC program

In order to verify that an energy budget can be met by a given XC program and to find the op-
timal values for the inputs for which such budget is respected, we first open it in a buffer using
the xcprog drop down menu, as shown in Figure 16 (we select the same biquad.xc benchmark).
Line 7 in the program specifies the energy budget (to be less than or equal to 13000000 nJ) with
a check assertion. We then select LLVM from the Analysis Level drop down, as before. After
clicking on the Run button, the analysis and verification is performed, producing the results de-
picted in Figure 17 (on lines 1, 3, and 5). Such results are expressed again in the front end syntax
of the common assertion language, as explained in Deliverables D2.1 [EG13] and D3.1 [LG13].

We can see that the upper bound on the energy consumption of the biquadCascade program is
given as before as a linear function on the size of the input argument to the program, C (number
of BANKS), namely 16652087 ∗ C + 5445103 nJ on line 7. On line 3 the assertion with status
checked indicates that the energy budget (specified with the check assertion on line 16) is met
for the interval 1 =< C =< 77 of values for argument C. On the other hand, the assertion with
status false, on line 1, indicates that for all values of the argument C such that C >= 79 the
energy budget is not met. Finally, on line 5 the assertion with status check indicates that for the
value of the argument C = 78, the verification cannot conclude if the budget will be met or not.

The tool also allows the user to plot the results. By clicking on the Show plots button in

39

Figure 19: Using different energy models (given by a front end assertion).

Figure 17, the tool will plot the results as shown in Figure 18. The x axis represents the input
data size (e.g., C) on which the cost function depends, and the y axis represents the energy
consumption. The green region is the specification whereas the pink region represents the cost
function. The user can visually notice that for interval 1 =< C =< 77 of the argument C (x
axis), the energy budget is met, while for the intervalC >= 79 the energy budget will not be met.
From the plot it is also clear that for the value C = 78 the energy budget cannot be guaranteed.

11.3 Showing that the analysis/verification is parametric w.r.t. the energy
models

This section illustrates that the analysis and verification components of the tool are parametric
with respect to the energy models used. The analysis and verification techniques produce safe
results provided that the energy models express safe information. We show how different energy
models can be used for the analysis of a given XC program and what are the results in each case.
Once again, we use the ENTRA tools front end for this purpose.

Figure 19 shows a screenshot of the ENTRA tools front end, with an XC program implement-

40

ing the factorial function, which is already loaded into the buffer. As we can see in the figure,
there is an assertion indicating which energy model should be used to analyze the program. In
this example, we choose a model named energy single, which is an ISA-level energy model
that assigns a single average energy consumption value to each ISA operation.

As we have shown before, in order to analyze this program using the graphical ENTRA tools
front end, we select ISA as the level of the analysis from the Analysis Level drop down. After
clicking on the Run button, the analysis is performed using the model indicated in the assertion,
in this case energy-single. Then, we can see the results of the analysis, and by clicking
the Show plots button we can see graphically the energy bounds obtained. Figure 20 shows this
result. We can observe that both lower and upper bounds are equal, due to the fact that the used
model assigns a single energy value to each ISA operation.

Figure 20: Analysis result using a single-valued, average Energy Model.

To illustrate the different results that can be obtained by using other energy model, we modify
the assertion in fact.xc, by choosing this time a model named energy interval (see
Figure 21). The difference between this model and the previous one is that it has been generated
by assigning an energy interval to each ISA operation. The end points of such interval have
been obtained by both subtracting and adding a percentage of error to each average value of the
energy single model (in this case the error we have chosen is 10%).

By following exactly the same procedure, we analyze the program again, and this time we ob-

41

Figure 21: Using different energy models (given by a front end assertion).

tain two different linear functions, corresponding to a lower and upper bound on the energy con-
sumed by the program fact.xc. We can see graphically in Figure 22 that these two functions
now determine an area within which the actual energy consumed by the program is estimated to
lie.

42

Figure 22: Analysis results using an interval-based energy model.

43

References

[AAG+08] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA: A Cost
and Termination Analyzer for Java Bytecode. In Proceedings of the Workshop on
Bytecode Semantics, Verification, Analysis and Transformation (BYTECODE’08),
Electronic Notes in Theoretical Computer Science, Budapest, Hungary, April
2008. Elsevier.

[AAGP09] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. Cost relation
systems: A language-independent target language for cost analysis. Electronic
Notes in Theoretical Computer Science (ENTCS), 248:31–46, August 2009.

[AAGP11] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning, 46(2):161–203, February
2011.

[BHZ08] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming, 72(1–2):3–21, 2008.

[BLLG15] Z. Banković, U. Liqat, and P. López-Garcı́a. Trading-off Accuracy vs. Energy in
Multicore Processors via Evolutionary Algorithms Combining Loop Perforation
and Static Analysis-based Scheduling. In Enrique Onieva, Igor Santos, Eneko
Osaba, Héctor Quintián, and Emilio Corchado, editors, Hybrid Artificial Intelligent
Systems (HAIS 2015), volume 9121 of Lecture Notes in Computer Science, pages
690–701. Springer International Publishing, 2015.

[BRZH02] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex
polyhedra and the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla,
editors, Static Analysis: Proceedings of the 9th International Symposium, volume
2477 of Lecture Notes in Computer Science, pages 213–229, Madrid, Spain, 2002.
Springer-Verlag, Berlin.

[DL93] S. K. Debray and N. W. Lin. Cost Analysis of Logic Programs. ACM Transactions
on Programming Languages and Systems, 15(5):826–875, November 1993.

[DLGHL97] S. K. Debray, P. López-Garcı́a, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In 1997 International Logic Programming
Symposium, pages 291–305. MIT Press, Cambridge, MA, October 1997.

44

[DLH90] S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in
Logic Programs. In Proc. of the 1990 ACM Conf. on Programming Language
Design and Implementation, pages 174–188. ACM Press, June 1990.

[EG13] K. Eder and N. Grech, editors. Common Assertion Language. ENTRA Project:
Whole-Systems Energy Transparency (FET project 318337), November 2013. De-
liverable 2.1, http://entraproject.eu.

[Flo67] R. W. Floyd. Assigning Meanings to Programs. In J.T Schwartz, editor, Proceed-
ings of Symposium in Applied Mathematics, volume 19, Mathematical Aspects of
Computer Science, pages 19–32. American Mathematical Society, Providence, RI,
1967.

[GGP+15] Neville Grech, Kyriakos Georgiou, James Pallister, Steve Kerrison, Jeremy Morse,
and Kerstin Eder. Static analysis of energy consumption for LLVM IR programs.
In Proceedings of the 18th International Workshop on Software and Compilers
for Embedded Systems, SCOPES 2015, pages 12–21, New York, NY, USA, 2015.
ACM.

[GGS+06] Amir Hossein Ghamarian, Marc Geilen, Sander Stuijk, Twan Basten, Bart D. Thee-
len, Mohammad Reza Mousavi, A. J. M. Moonen, and Marco Bekooij. Throughput
analysis of synchronous data flow graphs. In Sixth International Conference on Ap-
plication of Concurrency to System Design (ACSD 2006), 28-30 June 2006, Turku,
Finland, pages 25–36. IEEE Computer Society, 2006.

[GK14] John P. Gallagher and Bishoksan Kafle. Analysis and transformation tools for
constrained horn clause verification. Theory and Practice of Logic Programming,
14(4-5 (supplementary materials)):90–101, Jun. 2014. ICLP, Vienna.

[GKE15] K. Georgiou, S. Kerrison, and K. Eder. On the Value and Limits of Multi-level
Energy Consumption Static Analysis for Deeply Embedded Single and Multi-
threaded Programs. Technical report, oct 2015.

[HLGL+16] R. Haemmerlé, P. Lopez-Garcia, U. Liqat, M. Klemen, J. P. Gallagher, and M. V.
Hermenegildo. A Transformational Approach to Parametric Accumulated-cost
Static Profiling. In Thirteenth International Symposium on Functional and Logic
Programming (FLOPS 2016), LNCS. Springer, 2016. To appear.

45

[KE15a] S. Kerrison and K. Eder. Energy Modeling of Software for a Hardware Multi-
threaded Embedded Microprocessor. ACM Transactions on Embedded Computing
Systems, 14(3):1–25, April 2015.

[KE15b] Steve Kerrison and Kerstin Eder. Energy modeling of software for a hardware
multithreaded embedded microprocessor. ACM Trans. Embedded Comput. Syst.,
14(3):56, 2015.

[KG14] Bishoksan Kafle and John P. Gallagher. Convex polyhedral abstractions, speciali-
sation and property-based predicate splitting in horn clause verification. In Nikolaj
Bjørner, Fabio Fioravanti, Andrey Rybalchenko, and Valerio Senni, editors, Pro-
ceedings First Workshop on Horn Clauses for Verification and Synthesis, HCVS
2014, Vienna, Austria, 17 July 2014, volume 169, pages 53–67. EPTCS, Jan. 2014.
HCVS, Vienna.

[KG15a] Bishoksan Kafle and John P. Gallagher. Constraint specialisation in horn clause
verification. In Kenichi Asai and Kostis Sagonas, editors, Proceedings of the 2015
Workshop on Partial Evaluation and Program Manipulation, PEPM, Mumbai, In-
dia, January 15-17, 2015, pages 85–90. Association for Computing Machinery,
Jan. 2015. PEPM, Mumbai.

[KG15b] Bishoksan Kafle and John P. Gallagher. Tree automata-based refinement with ap-
plication to horn clause verification. In Deepak D’Souza, Akash Lal, and Kim
Guldstrand Larsen, editors, Verification, Model Checking, and Abstract Interpre-
tation - 16th International Conference, VMCAI 2015, Mumbai, India, January 12-
14, 2015. Proceedings, volume 8931 of Lecture Notes in Computer Science, pages
209–226. Springer, Jan. 2015. VMCAI, Mumbai.

[KGG15] Bishoksan Kafle, John P. Gallagher, and Pierre Ganty. Decomposition by tree
dimension in horn clause verification. In Alexei Lisitsa, Andrei P. Nemytykh, and
Alberto Pettorossi, editors, Proc. of the 3rd International Workshop on Verification
and Program Transformation (VPT’2015), volume 199 of EPTCS, pages 1–14,
2015. arXiv:1512.03862.

[KR15] M. Kirkeby and M. Rosendahl. Probabilistic Resource Analysis by Program Trans-
formation. In Proc. of the Foundational and Practical Aspects of Resource Analy-
sis, LNCS. Springer, 2015. To appear.

46

[LA04] C. Lattner and V.S. Adve. LLVM: A compilation framework for lifelong program
analysis and transformation. In Proc. of the 2004 International Symposium on
Code Generation and Optimization (CGO), pages 75–88. IEEE Computer Society,
March 2004.

[LBLGH16] U. Liqat, Z. Banković, P. Lopez-Garcia, and M. V. Hermenegildo. Inferring En-
ergy Bounds Statically by Evolutionary Analysis of Basic Blocks. In Workshop
on High Performance Energy Efficient Embedded Systems (HIP3ES 2016), 2016.
arXiv:1601.02800.

[LG13] P. López-Garcı́a, editor. A General Framework for Resource Consumption Analysis
and Verification. ENTRA Project: Whole-Systems Energy Transparency (FET
project 318337), November 2013. Deliverable 3.1, http://entraproject.eu.

[LGHK+15] P. Lopez-Garcia, R. Haemmerlé, M. Klemen, U. Liqat, and M. V. Hermenegildo.
Towards Energy Consumption Verification via Static Analysis. In Work-
shop on High Performance Energy Efficient Embedded Systems (HIP3ES),
arXiv:1501.03064, 2015. arXiv:1512.09369.

[LGK+16] U. Liqat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, M. V. Hermenegildo, J. P.
Gallagher, and K. Eder. Inferring Parametric Energy Consumption Functions at
Different Software Levels: ISA vs. LLVM IR. In M. Van Eekelen and U. Dal
Lago, editors, Foundational and Practical Aspects of Resource Analysis. Fourth
International Workshop FOPARA 2015, Revised Selected Papers, Lecture Notes in
Computer Science. Springer, 2016. To appear.

[LKS+14] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech, M.V.
Hermenegildo, and K. Eder. Energy Consumption Analysis of Programs based on
XMOS ISA-level Models. In Gopal Gupta and Ricardo Pea, editors, Logic-Based
Program Synthesis and Transformation, 23rd International Symposium, LOPSTR
2013, Revised Selected Papers, volume 8901 of Lecture Notes in Computer Sci-
ence, pages 72–90. Springer, 2014.

[LM97] Y.T.-S. Li and S. Malik. Performance analysis of embedded software using implicit
path enumeration. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 16(12):1477–1487, Dec 1997.

[NMLH09] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. User-Definable Resource Usage
Bounds Analysis for Java Bytecode. In Proceedings of BYTECODE, volume 253 of

47

Electronic Notes in Theoretical Computer Science, pages 65–82. Elsevier - North
Holland, March 2009.

[PKME16] James Pallister, Steve Kerrison, Jeremy Morse, and Kerstin Eder. Data Dependent
Energy Modeling for Worst Case Energy Consumption Analysis. In 53rd Design
Automation Conference (DAC) [under submission]. ACM, June 2016.

[PR04] A. Podelski and A. Rybalchenko. A Complete Method for the Synthesis of Linear
Ranking Functions. In 5th International Conference on Verification, Model Check-
ing and Abstract Interpretation (VMCAI’04), Lecture Notes in Computer Science,
pages 239–251. Springer, 2004.

[RK15] Mads Rosendahl and Maja H. Kirkeby. Probabilistic output analysis by program
manipulation. In Nathalie Bertrand and Mirco Tribastone, editors, Proceedings
Thirteenth Workshop on Quantitative Aspects of Programming Languages and Sys-
tems, QAPL 2015, London, UK, 11th-12th April 2015., volume 194 of EPTCS,
pages 110–124, 2015. QAPL, London.

[Ros89] M. Rosendahl. Automatic Complexity Analysis. In 4th ACM Conference on Func-
tional Programming Languages and Computer Architecture (FPCA’89), pages
144–156. ACM Press, 1989.

[SLGBH13] A. Serrano, P. Lopez-Garcia, F. Bueno, and M. Hermenegildo. Sized Type Analysis
for Logic Programs (technical communication). Theory and Practice of Logic
Programming, 29th Int’l. Conference on Logic Programming (ICLP’13) Special
Issue, On-line Supplement, 13(4-5):1–14, August 2013.

[SLGH14] A. Serrano, P. Lopez-Garcia, and M. Hermenegildo. Resource Usage Analysis
of Logic Programs via Abstract Interpretation Using Sized Types. Theory and
Practice of Logic Programming, 30th Int’l. Conference on Logic Programming
(ICLP’14) Special Issue, 14(4-5):739–754, 2014.

[SMR11] Henry Hoffmann Sasa Misailovic, Stelios Sidiroglou and Martin Rinard. Managing
performance vs. accuracy trade-offs with loop perforation. In Proc. of FSE’11.
ACM Press, 2011.

[TMW94] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software: a first
step towards software power minimization. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 2(4):437–445, 1994.

48

[Wat09] Douglas Watt. Programming XC on XMOS Devices. XMOS Ltd., 2009.

[Weg75] B. Wegbreit. Mechanical program analysis. Commun. ACM, 18(9):528–539, 1975.

[xTI] xtimecomposer. Accessed: 2014.

49

Attachments

50

Attachment D3.3.1

Inferring Energy Bounds Statically by

Evolutionary Analysis of Basic Blocks

Published at the Workshop on High
Performance Energy Efficient Embedded

Systems (HIP3ES 2016)

51

Inferring Energy Bounds Statically
by Evolutionary Analysis of Basic Blocks

U. Liqat †
umer.liqat@imdea.org

Z. Banković †
zorana.bankovic@imdea.org

P. Lopez-Garcia
∗ †

pedro.lopez@imdea.org

M.V. Hermenegildo † ‡

manuel.hermenegildo@imdea.org

ABSTRACT
We are currently witnessing an increasing number of energy-bound
devices, including in some cases mission critical systems, for which
there is a need to optimize their energy consumption and verify that
they will perform their function within the available energy budget.
In this work we propose a novel parametric approach to estimat-
ing tight energy bounds (both upper and lower) that are practical
for energy verification and optimization applications in embedded
systems. Our approach consists in dividing a program into basic
(“branchless”) blocks, establishing the maximal (resp. minimal)
energy consumption for each block using an evolutionary algo-
rithm, and combining the obtained values according to the program
control flow, using static analysis, to produce energy bound func-
tions. Such functions depend on input data sizes, and return upper
or lower bounds on the energy consumption of the program for any
given set of input values of those sizes, without running the pro-
gram. The approach has been tested on XMOS chips, but is gen-
eral enough to be applied to any microprocessor and programming
language. Our experimental results show that the bounds obtained
by our prototype tool can be tight while remaining on the safe side
of budgets in practice.

Keywords
Energy Consumption Analysis, Energy Modeling, Embedded Sys-
tems, Static Analysis, Evolutionary Algorithms.

1. INTRODUCTION
We are witnessing an ever-increasing performance and ubiquity

of battery- and/or harvested energy-powered devices. An important
trend in this context is the so called Internet of Things paradigm.
It is estimated that by the year 2020, about 50 billion small au-
tonomous devices, embedded in all kind of objects, in our clothes,
or stuck to our bodies will operate and intercommunicate continu-
ously for long periods of time, such as years. Such devices rely on
small batteries or energy harvested from the environment, which
implies that their energy consumption should be very low.

Although there have been improvements in battery and energy
harvesting technology, they alone are often not enough to achieve
the required level of energy consumption to fully support Internet
of Things and other energy-bound applications. Thus, better tech-
niques for optimizing the energy consumption of embedded sys-
tems are needed. While many energy-saving features have been de-
∗Spanish Council for Scientific Research (CSIC).
†IMDEA Software Institute, Madrid, Spain.
‡Universidad Politécnica de Madrid (UPM).

veloped for hardware, far more energy savings remain to be tapped
by improving the software that runs on these devices. In addition,
there are many critical embedded applications (e.g., sensor-based)
for which, beyond optimizing energy consumption, it is actually
crucial to guarantee that execution will complete within a specified
energy budget, e.g., before the available system energy runs out.

In this work we focus on the static estimation of the energy con-
sumed by program executions (i.e., at compile time, before actually
running them), as a basis for energy optimization and verification.
Such estimations are given as functions on input data sizes, since
data sizes typically influence the energy consumed by a program,
but are not known at compile time. This approach allows abstract-
ing away such sizes and inferring energy consumption in a way that
is parametric on them.

Different types of resource usage estimations are possible, such
as, e.g., probabilistic, average, or safe bounds. However, not all
types of estimations are valid or useful for a given application. For
example, in order to verify/certify energy budgets, safe upper- and
lower-bounds on energy consumption are required [16, 15]. Un-
fortunately, current approaches that guarantee that the bounds are
always safe tend to compromise their tightness seriously, inferring
overly conservative bounds, which are not useful in practice. With
this safety/tightness trade-off in mind, our goal is the development
of an analysis that infers tight bounds that are on the safe side in
most cases, in order to be practical for verification applications, as
well as for energy optimization.

Of the small number of static energy analyses proposed to date,
only a few [20, 13, 12] use resource analysis frameworks that are
aimed at inferring safe upper and lower bounds on the resources
used by program executions. A crucial component in order for such
frameworks to infer hardware-dependent resources, and, in partic-
ular, energy, is a low-level resource usage model, such as, e.g., a
model of the energy consumption of individual instructions. Ex-
amples of such models are [11], at the Java bytecode level, or [10],
at the assembly level.

Clearly, the accuracy of the bounds inferred by analysis depends
on the nature and accuracy of the low-level models. Unfortunately,
models such as [11, 10] provide average energy consumption val-
ues or functions, which are not really suitable for upper- or lower-
bounds analysis. Furthermore, trying to obtain instruction-level
models that provide strict safe energy bounds would result in very
conservative bounds. Although when fed with such models the
static analysis would infer high-level energy consumption functions
providing strictly safe bounds, these bounds would not be useful
in general because of their large inaccuracy. For this reason, the
analyses in [20, 13, 12] used instead the already mentioned instruc-
tion level average energy models [11, 10]. However, this meant

ar
X

iv
:1

60
1.

02
80

0v
1

 [
cs

.D
C

]
 1

2
Ja

n
20

16

that the energy functions inferred for the whole program were not
strict bounds, but rather approximations of the actual bounds, and
could possibly be below or above. This trade-off between safety
and accuracy is a major challenge in energy analysis. In this paper
we address this challenge by providing a technique for the genera-
tion of lower-level energy models which are useful and effective in
practice for verification-type applications.

The main source of inaccuracy in current instruction-level energy
models is inter-instruction dependence (including also data depen-
dence), which is not captured in most models. On the other hand,
the concrete sequences of instructions that appear in programs ex-
hibit worst cases that are not as pessimistic as considering the worst
case for each of the individual intervening instructions. Based on
this, we decided to use branchless blocks of assembly instructions
as the modeling unit instead of individual instructions. We divide
the (assembly) program into such basic blocks, each a straight-line
code sequence with exactly one entry to the block (the first instruc-
tion) and one exit from the block (the last instruction). We then
measure the energy consumption of these basic blocks, and de-
termine a maximal (resp. minimal) energy consumption for each
block. In this way the inter-instruction data dependence discussed
above and other factors are accounted for. The energy values ob-
tained for each block are fed to our static resource analysis, which
combines them according to the program control flow and produces
the energy bound functions.

In order to find the maximum and minimum energy consump-
tion of each basic block we use an evolutionary algorithm (EA).
We vary the input values and take energy measurements directly
from the hardware for each input combination. This way, we take
advantage of the fast search space exploration provided by EAs.
EAs have also been used for estimating the worst case energy con-
sumption of whole programs [22], due to their fast exploration of
the search space. However, if there are data-dependent branches
in the programs, which is often the case, applying this approach
to whole programs (or program segments that contain branches)
quickly loses accuracy, since different input combinations can trig-
ger different sets of instructions [22]. In contrast, our approach
combines EAs and static analysis techniques in order to get the
best of both worlds. We take out the treatment of data-dependent
branches from the EA, so that the same sequence of instructions is
always executed in each basic block. The worst (resp. best) case
energy of the basic blocks is estimated by the EA with higher accu-
racy since, not having any branches, the most important deficiency
of the EA is avoided. The program control flow dependencies are
taken care instead by the static analysis.

In our experiments we focus for concreteness on the energy anal-
ysis of programs written in XC [28], running on the XMOS XS1-L
architecture. However, our approach is general enough be applied
to the analysis of other programming languages (and associated
lower level program representations) and architectures as well. XC
is a high-level C-based programming language that includes ex-
tensions for concurrency, communication, input/output operations,
and real-time behavior. Our experimental setup infers energy con-
sumption information by processing the ISA (Instruction Set Ar-
chitecture) code compiled from XC [28], and reflects it up to the
source code level. Such information is provided in the form of
functions on input data sizes, and is expressed by means of asser-
tions [7].

In these experiments, the energy estimations produced by our ap-
proach were always safe, in the sense that they over-approximated
the actual bounds (i.e., the inferred upper bounds were above the
actual upper bounds and the inferred lower bounds below the ac-
tual lower bounds). This suggests that, even if we cannot assure

formally that such estimations are always safe, they are quite ac-
curate in the sense that the inferred energy bounds are close to the
actual bounds, and that in practice they will also be safe/strict in
most cases. We argue that our analysis provides a good practical
compromise for the verification/certification of energy budgets.

In summary, the main contributions of this paper are:

• A novel approach that combines dynamic and static analysis
techniques for inferring the energy consumption of program
executions. The dynamic part is based on EAs, and produces
low-level energy models.

• The proposal of a new abstraction level at which to perform
the energy modeling of program components using dynamic
techniques: basic (branchless) blocks of assembly instruc-
tions.

• A method based on EAs to dynamically (i.e., by profiling)
obtain practical upper and lower bounds on the energy of
such basic blocks, with a good safety/accuracy balance.

• The use of a static analysis that takes care of the program
control flow, in order to determine how many times blocks
are executed, which combined with the information provided
by the block models, infers functions that give the energy of
a program and its procedures as functions of input data sizes.

• An experimental study that supports our claims.

In the rest of the paper, Section 2 explains how the information
inferred by our approach can be used for the energy consumption
verification application. Section 3 explains our technique for en-
ergy modeling of program basic blocks. Section 4 shows how these
models are used by the static analysis to infer upper- and lower-
bounds on the energy consumed by programs as functions of their
input data sizes. Section 5 reports on an experimental evaluation of
our approach. Related work is discussed in Section 6, and finally
Section 7 summarises our conclusions.

2. ENERGY CONSUMPTION VERIFICA-
TION/CERTIFICATION

The lower (El) and the upper bound (Eu) inferred by our analysis
can be used for energy consumption verification and certification.
We refer the reader to [14, 15] for a detailed description on how
static analysis information can be used for general resource usage
verification within the CiaoPP system, and to [16] for how it can
be specialized for verifying energy consumption specifications of
embedded programs.

Here we only give some intuitive ideas. Assume that a program
specification expresses energy budget Eb, e.g., defined by the ca-
pacity of the battery, we can conclude the following:

1. Eu ≤ Eb =⇒ the given program can be safely executed
within the existing energy budget.

2. El ≤ Eb ≤ Eu =⇒ it might be possible to execute the pro-
gram, but we cannot claim it for certain.

3. Eb < El =⇒ it it not possible to execute the program (the
system will run out of batteries before program execution is
completed.

3. ENERGY MODELING OF BLOCKS
As mentioned before, the first step of our energy bounds analysis

is to determine upper and lower bounds on the energy consumption
of each basic (“branchless”) program block. We perform the mod-
eling at this level rather than at the instruction level in order to
cater for inter-instruction dependencies. In order to determine such
bounds first all the basic blocks of the program are identified, and
then the energy consumption of each of these blocks is profiled for
different input data using an EA. These steps are explained in the
following sections.

3.1 Generating the Basic Blocks to be Mod-
eled

A basic block over an inter-procedural control flow graph (CFG)
is a maximal sequence of distinct instructions, S1 through Sn, such
that all instructions Sk,1 < k < n have exactly one in-edge and one
out-edge (excluding call/return edges), S1 has one out-edge, and
Sn has one in-edge. A basic block therefore has exactly one entry
point at S1 and one exit point at Sn.

In order to divide a program into such basic blocks (for which an
upper bound on the energy consumption of the program will be de-
termined using the EA), the program is first compiled to the lower
representation, ISA in our case. A data flow analysis of the ISA rep-
resentation yields an inter-procedural control flow graph (CFG). A
final control flow analysis is carried out to infer basic blocks from
the CFG. These basic blocks are further modified so that they can
be run and measured independently by the EA. Modifications for
each basic block include:

1. A basic block with k function call instructions is divided into
k+1 basic blocks without the function call instructions.

2. A number of special ISA instructions (e.g., return, call) are
omitted from the block. The cost of such instructions is mea-
sured separately and added to the cost of the block.

3. Memory read/write instructions are abstracted to a fixed mem-
ory region available to each basic block in order to avoid
memory violations.

An example of the modification 1 above is shown in Figure 1,
Listing 1, which is an ISA representation of a recursive factorial
program where the instructions are grouped together into 3 basic
blocks B1, B2, and B3. Consider basic block B2. Since it has a
(recursive) function call to fact at address 12, it is divided further
into two blocks in Listing 2, such that the instructions before and
after the function call form two blocks B21 and B22, respectively.
The energy consumption of these two blocks is maximized (mini-
mized) by providing values to the input arguments to the block (see
below) using the EA. The energy consumption of B2 can then be
characterized as:

B2A
e = B2A

1e +B2A
2e +blA

e

where B2A
1e, B2A

2e, and blA
e denote the energy consumption of the

B21, B22 blocks and the bl ISA instruction, with approximation A
(where A=upper or A=lower).

For each modified basic block, a set of input arguments is in-
ferred. This set is used for an individual representation to drive the
EA algorithm to maximize the energy consumption of the block.
For the entry block, the input arguments are derived from the sig-
nature of the function. The set gen(B) characterizes the set of vari-
ables read without being previously defined in block B. It is defined

as:

gen(b) =
n⋃

k=1
{v | v ∈ ref (k)∧∀(j < k).v /∈ def (j)}

where ref (n) and def (n) denote the variables referred to and de-
fined/updated at a node n in block b respectively.

For the basic blocks in Figure 1 in Listing 1, the set of input argu-
ments are gen(B1)={r0}, gen(B21)={sp[0x1]}, gen(B22)={sp[0x1],r0}
and gen(B3) = /0.

3.2 EA for Estimating the Energy of a Basic
Block

In the following we detail the most important aspects of the EA
used for estimating the maximal (i.e., worst case) and minimal (i.e.,
best case) energy consumption of a basic block. The only differ-
ence between the two algorithms is the way we interpret the objec-
tive function: in the first case we want to maximize it, while in the
second we want to minimize it.
Individual. The search space dimensions are the different input
variables to the blocks. Our goal is to find the combination of input
values which maximizes (minimizes) the energy of each block. The
set of input variables to a block is inferred using a dataflow analysis
(explained in the next section). Thus, an individual is simply an
array of input values given in the order of their appearance in the
block. The input values in an individual are coded as integers, since
they represent 32-bit values stored in different hardware registers.

The majority of individuals are initialised with random 32-bit
numbers. However, we also include corner cases to the initial pop-
ulation that are known to cause high (low) energy consumption for
particular instructions. For example all 1s for high energy con-
sumption, or all 0s for low energy consumption as operands to a
multiply ISA instruction. This speeds up the EA algorithm in find-
ing inputs to some basic blocks that maximize/minimize their over-
all energy consumption.
Crossover. The crossover operation is implemented as an even-odd
crossover, since it provides more variability than a standard n-point
crossover. In this crossover the first child is created by taking the
first element and every other one after it from one of the parents,
e.g., the mother. The second element and every other one come
from the other parent, i.e., the father. The second child is created in
the opposite way: the first element and every other one after it are
taken from the father, while the second and every other one come
from the mother. The process is depicted in Figure 2, where P1 and
P2 are the parents, and C1 and C2 are their children created by the
crossover operation.
Mutation. For the purpose of this work we have created a custom
mutation operator. Since the energy consumption in digital circuits
is mainly the result of bit flipping, we believe that the most optimal
way to explore the search space is by performing some bit flipping
in the mutation operation. This is implemented in the following
way. For each gene (i.e., input value to the basic block):

1. We create a random 32-bit integer, i.e., a random mask.

2. Then we perform the XOR operation of that integer and the
corresponding gene. This way, we perform random flipping
of the bits of each gene, since we only flip the bits of the gene
at positions where the value of the random mask is 1.

The process is depicted in Figure 3, where the input values are
given as binary numbers.
Objective function. The objective function that we want to maxi-
mize (minimize) is the energy of a basic block, which is measured

Listing 1: Basic blocks of a factorial function.
<fact >:

01: entsp 0x2
02: stw r0, sp[0x1]
03: ldw r1, sp[0x1]
04: ldc r0, 0x0
05: lss r0, r0, r1
06: bf r0, <08>

07: bu <010>
10: ldw r0, sp[0x1]
11: sub r0, r0, 0x1
12: bl <fact >
13: ldw r1, sp[0x1]
14: mul r0, r1, r0
15: retsp 0x2

08: mkmsk r0, 0x1
09: retsp 0x2

Listing 2: Modified basic blocks.
<fact >:
01: entsp 0x2
02: stw r0, sp[0x1]
03: ldw r1, sp[0x1]
04: ldc r0, 0x0
05: lss r0, r0, r1
06: bf r0, <08_NEW >
08_NEW:

07: bu <010>
10: ldw r0, sp[0x1]
11: sub r0, r0, 0x1

12: bl <fact>

13: ldw r1, sp[0x1]
14: mul r0, r1, r0
15: retsp 0x2

08: mkmsk r0, 0x1
09: retsp 0x2

block before call

block after call

B1

B21

B22

B3

B1

B2

B3

Figure 1: Example: Basic block modifications.

Figure 2: Example of even-odd crossover.

directly from the chip. The concrete setting of the experiment will
be explained in the following section.

In general, pipeline effects such as stalls (to resolve pipeline haz-
ards), which depend on the state of the processor at the start of
the execution of a basic block, can affect the upper/lower bound
estimated on the energy consumption of such block. In our ap-
proach intra-block pipeline effects are accounted for, since, the
dependences among the instructions within a block are preserved.
However, the inter-block pipeline effects need to be accounted for.
These can be modeled in a conservative way by assuming a max-
imum stall penalty for the upper bound estimation of each block
(e.g., by adding a stall penalty, say three cycles, to the execution
time of the block). Similarly, for the lower bound estimation a zero
stall penalty can be used. To approximate this effect, in [3], the au-
thors characterize each block through pairwise executions with all
of its possible predecessors. Each basic block pair is characterized

Figure 3: Mutation.

by executing it on an Instruction Set Simulation (ISS) to collect
cycle counts.

The XMOS XS1 architecture used in our experiments does not
have these pipeline effects by design, since exactly one instruction
per thread is executed in a 4-stage pipeline (more details in Sec-
tion 5.1).

4. ENERGY CONSUMPTION OF THE PRO-
GRAM

Once the energy models of each basic block of the program are
known, the energy consumption of the whole program is bounded
by a static analyser that takes into account the control flow of the
program and infers safe upper/lower bounds on its energy con-
sumption. We have implemented such analyser by specialising the
generic resource analysis framework provided by CiaoPP [24] for
programs written in the XC programming language [28] and run-
ning on the XMOS XS1-L architecture. We have also written the
necessary code (i.e., assertions [7]) to feed such analyser with the
block-level upper/lower bound energy model obtained by using the
technique explained in Section 3.

The generic resource analyser ensures that the inferred bounds
are strict/safe if it is fed with energy models providing safe bounds.
As mentioned in the introduction, in [13] we performed a previous
instantiation of such generic analyser by using the instruction-level
energy model described in [10], which provided average energy

values. As a result, the analysis inferred an upper-bound energy
function for the whole program that was an approximation of the
actual upper bound, and could possibly be below it.

The analysis is general enough to be applied to other program-
ming languages and architectures (see [13, 12] for details) provided
that energy models for each architecture exist. It enables a pro-
grammer to symbolically bound the energy consumption of a pro-
gram P on input data x̄ without actually running P(x̄). It is based
on setting up a system of recursive cost equations over a program
P that capture its cost (energy consumption) as a function of the
sizes of its input arguments x̄. The transformation-based analysis
framework of [13, 12] transforms the assembly (or LLVM IR) rep-
resentation of the program into an intermediate semantic program
representation (HC IR), that the analysis operates on, which is a
series of connected code blocks, represented as Horn Clauses. The
analyser deals with this HC IR always in the same way, indepen-
dent of where it originates from, setting up cost equations for all
code blocks (predicates).

Consider the example in Listing 1. The recursive cost equations
are set up over the function fact that characterize the energy con-
sumption of the whole function using the approximation A of each
block inferred by the EA:

f actA
e (R0) = B1A

e + f act_auxA
e (0≤ R0,R0)

f act_auxA
e (B,R0) =

{
B2A

e + f actA
e (R0−1) if B is true

B3A
e if B is false

The cost of the f act function is captured by the equation f actA
e (R0)

under an approximation A (e.g., upper/lower) which in turn depends
on B1A

e (i.e., the energy consumption of block B1) and the equation
f act_auxA

e , which represents the branching originated from the last
instruction of block B1. It captures the cost of blocks B2 and B3
based on the condition on the input size R0.

If we assume (for simplicity of exposition) that each basic block
has unitary cost in terms of energy consumption, i.e., Bie = 1 for
all i, we obtain the energy consumed by fact as a function of its
input data size (R0): f acte(R0) = R0+1.

The functions inferred by the static analysis are arithmetic func-
tions (polynomial, exponential, logarithmic, etc.) that depend on
input data sizes (natural numbers).

5. EXPERIMENTAL EVALUATION
In this Section we report on an experimental evaluation of our

approach to inferring both upper and lower bounds on the energy
consumed by program executions, given as functions on input data
sizes. The experiments have been performed with programs writ-
ten in XC running on the XMOS XS1-L architecture. However, as
already said, our approach is general enough be applied to the anal-
ysis of other programming languages (and associated lower level
program representations) and architectures as well.

5.1 Evaluation Platform
We use a hardware and software platform created by XMOS that

enables us to measure the energy [19], time, and power used dur-
ing program executions on real hardware. The developed board is
a dual-tile board that contains an XS1-A16-128-FB217 processor.
The board is fed with a 3.3 V power supply, and supports voltage
scaling, although both tiles have to run at the same voltage sup-
ply. It also supports frequency scaling, where the tiles can have
different frequencies. The XMOS XS1 [17] is a cache-less, pre-
dictable architecture by design and manages threads on the hard-
ware. The threads are executed in a round-robin fashion, using a
4-stage pipeline which only permits a single instruction per thread

to be active within the pipeline at the same time. This restriction
avoids pipeline hazards.

In order to support the process of measuring power, the following
has been implemented:

• An extension to the XMOS toolchain that allows power mea-
surements to be recorded and/or displayed in real time. In
essence, a small shunt resistor has been added in series with
the voltage supply. By measuring the voltage drop on the
shunt, we can calculate the current I, which is also the cur-
rent of the voltage supply, since the shunt is connected in
series. In this way, we estimate the power consumption as
Vsup · I, where Vsup is the voltage of the power supply.

• A variant of the XTAG-2 debug adapter (called XTAG3) that
enables power to be measured [31]. Basically, it has an ex-
tra connector that carries analog signals necessary to esti-
mate the power consumption, as explained above. The mea-
surements regarding these signals are transported to the host
computer over USB using the xSCOPE interface [32]. In ad-
dition, a protocol that enables power measurements and ap-
plication probing to be performed simultaneously, and data
to be transported simultaneously over the USB connection to
the host computer, has been designed.

The tool that collects data from the XTAG is xgdb, the debugger
that is part of the XMOS toolchain. xgdb connects to the XTAG
over a USB interface (using libusb), and reads both ordinary xS-
COPE traffic and voltage/current measurements. The collected data
is normally stored in an XML file, or instead, xgdb can pipe the
data directly into an analysis program that can only record data that
is relevant (between start and end) and only compute the relevant
metrics (maximum current, total energy, etc.).

5.2 Results and Discussion
The aim of the experimental evaluation is to perform a first com-

parison of actual hardware energy measurements against the upper-
and lower-bounds on energy consumption obtained by evaluating
the functions inferred by our proposed approach (which depend on
input data sizes), for each program considered and for different in-
put data sizes. The actual energy consumption of the programs,
for each value of input data sizes, is measured with the evaluation
platform, i.e., the same used to build the upper- and lower-bound
models of the blocks of each program.

Program Upper/Lower Bounds (nJ)×103 vs. HW

f act(N)
ub = 5.1 N +4.2 7%
lb = 4.1 N +3.8 -11.7%

f ibonacci(N)
ub = 5.2 lucas(N)1+6 f ib(N)−6.6 8.71%
lb = 4.5 lucas(N)+5 f ib(N)−4.2 -4.69%

reverse(N)
ub = 3.7 N +13.3 8%
lb = 2.95 N +12 -8.8%

f indMax(N)
ub = 5 N +6.9 8.7%
lb = 3.3 N +5.6 -9.1%

f ir(N)
ub = 6 N +26.4 8.9%
lb = 4.8 N +22.9 -9.7%

biquad(N)
ub = 29.6 N +10 9.8%
lb = 23.5 N +9 -11.9%

Table 1: Upper and lower bounds accuracy.

1The mathematical function lucas(n) satisfies the recurrence rela-
tion lucas(n) = lucas(n−1)+ lucas(n−2) with lucas(1) = 1 and
lucas(2) = 3.

A number of selected benchmarks are shown in Table 1 that are
either iterative or recursive. The Upper/lower Bounds column de-
picts the energy estimation functions (on input data sizes) for upper
and lower bounds. The column vs. HW shows the average over-
and under-approximations of the estimation versus the actual mea-
surements on the hardware.

The first two benchmarks are small arithmetic benchmarks. The
third benchmark reverse(N) reverses elements of an input array of
size N. The list of benchmarks also includes two filter benchmarks,
namely biquad and f ir (Finite Impulse Response). Both programs
attenuate or amplify specific frequency ranges of a given input sig-
nal. The f ir(N) benchmark computes the inner-product of two vec-
tors: a vector of input samples, and a vector of coefficients. The
more coefficients, the higher the fidelity, and the lower the frequen-
cies that can be filtered. The biquad(N) benchmark is an equaliser,
i.e., it takes a signal and attenuates/amplifies different frequency
bands. It uses a cascade of Biquad filters where each filter atten-
uates or amplifies one specific frequency range. The energy con-
sumed depends on the number of banks N, typically between 3 and
30 for an audio equaliser. A higher number of banks enables a de-
signer to create more precise frequency response curves. A simple
f indMax benchmark (finding the maximum number in an array) is
also included in the list. This is a program where data-dependent
branching can bring significant variations of the worst (best) case
energy consumption. Note that unlike the first three benchmarks,
f ir, biquad, and f indMax all have data-dependent branches.

2 4 6 8 10 12

2

4

6

·104

N

E
ne

rg
y(

nJ
)

upper
actual
lower

Figure 4: f act upper/lower bounds vs. actual measurement.

Figure 4 depicts the upper/lower bound inferred by the analysis
vs. the actual measurement on the hardware for the factorial pro-
gram. The actual program consumption is measured for several
values of N, the input value, resulting in the middle curve. The
other two curves are the result of plotting the upper- and lower-
bound energy functions for different sizes (in the case of an integer,
its size is its value).

The upper bound values inferred by the static analysis and the
EA over-approximate the actual hardware measurements by 7%,
whereas the lower-bound values under-approximate the actual mea-
surements by 11.7% –see Table 1.

The f indMax benchmark, which, as mentioned before, has sig-
nificant data dependent branching, is shown in Figure 5. Unlike
f act, the upper and lower-bounds in f indMax are more distant due

5 10 15 20 25

0.2

0.4

0.6

0.8

1

1.2

1.4
·105

N

E
ne

rg
y(

nJ
)

upper
actual-upper
actual-lower

lower

Figure 5: f indMax example upper/lower bounds vs actual-
lower and upper energy consumption measurement based on
data.

to the data sensitive branching. A call to f indMax with a sorted
array in ascending order will discover a new max element in each
iteration and hence update the current max variable resulting in an
actual worst case of the algorithm. In contrast, if the array is sorted
in descending order then the algorithm will find the max element in
the first iteration and the rest of the iterations will never update the
current max variable, resulting in the actual best case.

Figure 5 depicts the upper and lower bounds inferred by the static
analysis as well as the actual worst and best case measurements of
f indMax (first with ascending order and then with descending or-
der array data). The upper and lower bounds inferred are compared
against the actual worst and best case measurements. The upper
bound over-approximates by 8.7% whereas the lower bound under-
approximates by 9.1%. Note that it is not always trivial to find data
that exhibit program worst and best case behaviors.

In Table 2, different executions of the f indMax benchmark are
shown for particular input sizes N but using a random data input
array in one case and actual worst/best case array input data in the
other case. Column N shows the size of the input array. Column
Cost App indicates the type of approximation of the automatically
inferred cost functions which estimate energy consumption (de-
pending on input data size N): upper bound (U) and lower bound
(L). Such energy functions for the f indMax benchmark are shown
in Table 1. In order to assess the accuracy of the cost functions we
have evaluated them for particular sets of input data corresponding
to different input (array) sizes (N), yielding different energy con-
sumption estimations. We have then compared such estimations
(column Est) with the observed energy consumptions of the hard-
ware measurements (column Obs). Column D shows the relative
harmonic difference between the estimated and the observed en-
ergy consumption, given by the formula:

rel_harmonic_di f f (Est,Obs) =
(Est−Obs)× (1

Est +
1

Obs)

2
The inaccuracies in the energy estimations of our technique come
mainly from two sources: the energy model, which assigns an en-
ergy value to each basic block as described in Section 3, and the
Static Resource Analysis (SRA), described in Section 4, which es-
timates the number of times that the basic blocks are executed de-

pending on the input data sizes.
In order to investigate the source(s) of inaccuracies, we have also

introduced Column Prof. It shows the result of estimating the en-
ergy consumption using the energy model and assuming that the
SRA was perfect and estimated the exact number of times that the
basic blocks were executed. This obviously represents the case in
which all loss of accuracy must be attributed to the energy model.
The values in Column Prof have been obtained by profiling ac-
tual executions of the program with particular input data, where the
profiler has been instrumented to record the number of times each
basic block is executed. The energy consumption of the program
is then obtained by multiplying such numbers by the energy values
provided by the energy model for each basic block, and adding all
of them. Column PrD shows the relative harmonic difference be-
tween Prof and the observed energy consumption Obs, which rep-
resents the inaccuracy due to the energy modeling of basic blocks
using the EA.

In the case of random data, both the SRA and the energy mod-
eling contribute to the inaccuracy of the energy estimation for the
whole program. In contrast, in the second case two sets of array
data are used: one that makes f indMax exhibit its worst case be-
havior and another that makes it exhibit the best. These are then
compared against the upper- and lower-bound estimations. Since
Columns Est and Prof show the same values in this case, it means
that there was no inaccuracy due to the SRA, and that the overall
inaccuracy is due to the over- and under-approximation in the EA
to model energy consumption of each basic block. In other words,
the analysis of the f indMax program provides accurate bounds for
each data size N.

N Cost Energy(nJ)×103
D % PrD %App Est Prof Obs

Random array data

5
L 22.3 24.9 27.3 -20.1 -9.2
U 31.9 30.2 15.6 10

15
L 55.9 61.8 69.1 -17 -11
U 82.1 75.1 21 8.3

25
L 89.4 99.6 110.9 -17.6 -10.7
U 132.2 120.8 21.7 8.5

Actual worst- and best-case array data

5
L 22.3 22.3 25.2 -12.2 -12.2
U 31.9 31.9 29.4 8.1 8.1

15
L 55.9 55.9 62.6 -11.3 -11.3
U 82.1 82.1 75.5 8.3 8.3

25
L 89.4 89.4 100.2 -11.4 -11.4
U 132.2 132.2 121.5 8.4 8.4

Table 2: f indMax: Source of inaccuracies in prediction: static
analysis vs. energy modeling.

Regarding the time taken by the EA, it can vary depending on
the parameters it is initialized with, as well as the initial population.
This population is different every time the EA is initiated, except
for a fixed number of individuals that represent corner cases. In the
experiments, the EA is run for up to a maximum of 20 generations,
and is stopped when the fitness value does not improve for four con-
secutive generations. In all the experiments the biquad benchmark
took the most time (a maximum time of 230 minutes) for maximiz-
ing the energy consumption. In contrast, the fact benchmark took
the least time (a maximum time of 121 minutes). The times re-
mained within the 150-200 minutes range on average. Time speed-
ups were also achieved by reusing the EA results for sequences of
instructions that were already processed in a previous benchmark

(e.g., return blocks, loop header blocks, etc.). This makes us be-
lieve that our approach could be used in practice in an iterative
development process, where the developer gets feedback from our
tool and modifies the program in order to reduce its energy con-
sumption. The first time the EA is run would take the highest time,
since it would have to determine the energy consumption of all the
program blocks. After a focused modification of the program that
only affects a small number of blocks, most of the results from the
previous run could be reused, so that the EA would run much faster
during this development process. In other words, the EA process-
ing can easily be made incremental.

The static analysis, on the other hand, is quite efficient, with
analysis times of about 4 to 5 seconds on average, despite the naive
implementation of the interface with external recurrence equation
solvers, which can be improved significantly.

6. RELATED WORK
Static dataflow analysis of the energy consumed by program ex-

ecutions has received relatively little attention until recently. An
analysis of Java bytecode programs for inferring upper-bounds on
energy consumption as functions on input data sizes was proposed
in [20], where the Jimple (a typed three-address code) represen-
tation of Java bytecode was transformed into Horn Clauses, and
a simple energy model at the Java bytecode level [11] was used.
However the energy model used average estimations of the Java
opcodes and an opcode cost verification found the estimation to be
between -5% and 10%. Furthermore, this work did not compare
the results with actual, measured energy consumption. A similar
approach was proposed in [13] for the analysis of a C-based pro-
gramming language. It performed a transformation of the assembly
code generated by the compilation of the source program into Horn
Clauses, which were then analyzed by using the accurate assembly
level energy models presented in [10]. The experiments, performed
for a number of small numerical programs, showed for the first
time that energy bound functions inferred statically from low-level
model could be inferred that provided energy consumption estima-
tions were reasonably accurate with respect to actual executions for
any input data size.

Similarly to the work presented here, the approaches mentioned
above used instantiations for energy consumption of general re-
source analyzers, namely [21] in [20] and [13], and [24] in [12]
and this paper. Such resource analyzers are based on setting up
and solving recurrence equations, an approach proposed by Weg-
breit [29] that has been developed significantly in subsequent work [23,
4, 5, 26, 21, 1, 24]. Other approaches to static analysis based
on the transformation of the analyzed code into another (interme-
diate) representation have been proposed for analyzing low-level
languages [6] and Java (by means of a transformation into Java
bytecode) [2]. In [2], cost relations are inferred directly for these
bytecode programs, whereas in [20] the bytecode is first trans-
formed into Horn Clauses. The general resource analyzer in [21]
was also instantiated in [18] for the estimation of execution times
of logic programs running on a bytecode-based abstract machine.
The approach used timing models at the bytecode instruction level,
for each particular platform, and program-specific mappings to lift
such models up to the Horn Clause level, at which the analysis was
performed.

Other work has taken as its starting point techniques referred to
generally as “WCET” (worst case execution time analyses), which
have been applied, usually for imperative languages, in different
application domains (see e.g., [30] and its references). These tech-
niques generally require the programmer to bound the number of
iterations of loops, and then apply an Implicit Path Enumeration

technique to identify the path of maximal consumption in the con-
trol flow graph of the resulting loop-less program. This approach
has inspired some worst case energy analyses, such as the one pre-
sented in [9]. It distinguishes instruction-specific (not proportional
to time, but to data) from pipeline-specific (roughly proportional to
time) energy consumption. The approach also takes into account
complex issues such as branch prediction and cache misses. How-
ever, they rely on the user to identify the input which will trigger the
maximal energy consumption. In [27] the same approach is applied
and further refined for estimating hard (i.e., over-approximated)
energy bounds. The main novelty of this work consists in intro-
ducing relative energy models (implemented at the LLVM level in
this case), where the energy of each instruction is given in rela-
tion to each other (e.g., if we assume that all the instructions have
relative energy 1, this means that they all have the same absolute
energy), which does not depend on the specific hardware, but can
be applied for all the platforms where a mapping between LLVM
and low-level assembly instructions exists. On the other hand, in
the situations when the energy bounds are not hard (i.e., the appli-
cation allows their violation) they use a genetic algorithm to ob-
tain an under-approximation of the energy bounds. However, this
approach loses accuracy when there are data dependent branches
present in the program, since different inputs can lead to the execu-
tion of different set of instructions.

A similar approach is used in [22] to find the worst-case energy
consumption of two benchmarks using a genetic algorithm. In con-
trast to our approach, the evolutionary algorithm is applied to whole
programs, and these do not have any data-dependent branching.
The authors further introduce probability distributions for the tran-
sition costs among pairs of independent instructions, which can be
then be convolved to give a probability distribution of the energy
for a sequence of instructions.

In contrast to the work presented here and in [18], all these
WCET-style methods (either for execution time or energy) do not
infer cost functions on input data sizes but rather absolute maxi-
mum values, and, as mentioned before, they generally require the
manual annotation of all loops to express an upper bound on the
number of iterations, which can be tedious (or impossible) and ef-
fectively reduces the case to that of programs with no loops.

Another alternative approach to WCET-style methods was pre-
sented in [8]. It is based on the idea of amortization, which al-
lows inferring more accurate yet safe upper bounds by averaging
the worst execution time of operations over time. It was applied to
a functional language, but the approach is in principle generally ap-
plicable. A timing analysis based on game-theoretic learning was
presented in [25]. The approach combines static analysis to find
a set of basic paths which are then tested. Its main advantage is
that it can infer distributions on time, not only average values. In
principle, both approaches could be adapted to infer energy usage.

7. CONCLUSIONS
We have proposed an approach for inferring parametric upper

and lower bounds on the energy consumption of a program using a
combination of static and dynamic techniques. The dynamic tech-
nique, based on an evolutionary algorithm, is used to determine
the maximal / minimal energy consumption of each basic block.
Such blocks contain multiple instructions, which allows this phase
to take into account inter-instruction dependencies. Since such ba-
sic blocks are branchless, the evolutionary algorithm approach is
more practical and efficient and the technique infers energy values
that are accurate since no control flow-related variations occur. A
static analysis is then used to combine the energy values obtained
for the blocks according to the program control flow, and produce

energy consumption bounds of the whole program. We also car-
ried out an experimental evaluation to validate the upper and lower
bounds on a set of benchmarks. The results support our hypothe-
sis that the bounds inferred in this way are indeed safe and quite
accurate, and the technique practical.

8. ACKNOWLEDGMENTS
This research has received funding from the European Union 7th
Framework Program agreement no 318337, ENTRA, Spanish
MINECO TIN’12-39391 StrongSoft project, and the Madrid
M141047003 N-GREENS program. We also thank Henk Muller,
Principal Technologist, XMOS, for his help with the measurement
boards, evaluation platform, benchmarks, and overall support.

9. REFERENCES
[1] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form

Upper Bounds in Static Cost Analysis. Journal of Automated
Reasoning, 46(2):161–203, February 2011.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and
D. Zanardini. Cost Analysis of Java Bytecode. In R. D.
Nicola, editor, 16th European Symposium on Programming,
ESOP’07, volume 4421 of Lecture Notes in Computer
Science, pages 157–172. Springer, March 2007.

[3] S. Chakravarty, Z. Zhao, and A. Gerstlauer. Automated,
Retargetable Back-annotation for Host Compiled
Performance and Power Modeling. In Proceedings of the
Ninth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis,
CODES+ISSS ’13, pages 36:1–36:10, USA, 2013. IEEE
Press.

[4] S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task
Granularity Analysis in Logic Programs. In Proc. of the 1990
ACM Conf. on Programming Language Design and
Implementation, pages 174–188. ACM Press, June 1990.

[5] S. K. Debray, P. López-García, M. Hermenegildo, and N.-W.
Lin. Lower Bound Cost Estimation for Logic Programs. In
1997 International Logic Programming Symposium, pages
291–305. MIT Press, Cambridge, MA, October 1997.

[6] K. S. Henriksen and J. P. Gallagher. Abstract interpretation
of PIC programs through logic programming. In Sixth IEEE
International Workshop on Source Code Analysis and
Manipulation (SCAM 2006), pages 184–196. IEEE
Computer Society, 2006.

[7] M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera,
J. Morales, and G. Puebla. An Overview of Ciao and its
Design Philosophy. Theory and Practice of Logic
Programming, 12(1–2):219–252, January 2012.

[8] C. Herrmann, A. Bonenfant, K. Hammond, S. Jost, H.-W.
Loidl, and R. Pointon. Automatic Amortised Worst-Case
Execution Time Analysis. In 7th International Workshop on
Worst-Case Execution Time Analysis (WCET’07), volume 6
of OASIcs. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2007.

[9] R. Jayaseelan, T. Mitra, and X. Li. Estimating the
Worst-Case Energy Consumption of Embedded Software. In
IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2006), pages 81–90. IEEE
Computer Society, 2006.

[10] S. Kerrison and K. Eder. Energy Modeling of Software for a
Hardware Multithreaded Embedded Microprocessor. ACM
Transactions on Embedded Computing Systems, 14(3):1–25,
April 2015.

[11] S. Lafond and J. Lilius. Energy consumption analysis for two
embedded Java virtual machines. J. Syst. Archit.,
53(5-6):328–337, 2007.

[12] U. Liqat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, M. V.
Hermenegildo, J. P. Gallagher, and K. Eder. Inferring Energy
Consumption at Different Software Levels: ISA vs. LLVM
IR. In Proc. of the Foundational and Practical Aspects of
Resource Analysis, LNCS. Springer, 2015. To appear.

[13] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou,
P. Lopez-Garcia, N. Grech, M. Hermenegildo, and K. Eder.
Energy Consumption Analysis of Programs based on XMOS
ISA-level Models. In Logic-Based Program Synthesis and
Transformation, 23rd International Symposium, LOPSTR
2013, Revised Selected Papers, volume 8901 of Lecture
Notes in Computer Science, pages 72–90. Springer, 2014.

[14] P. López-García, L. Darmawan, and F. Bueno. A Framework
for Verification and Debugging of Resource Usage
Properties. In M. Hermenegildo and T. Schaub, editors,
Technical Communications of the 26th Int’l. Conference on
Logic Programming (ICLP’10), volume 7 of Leibniz
International Proceedings in Informatics (LIPIcs), pages
104–113, Dagstuhl, Germany, July 2010. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[15] P. Lopez-Garcia, L. Darmawan, F. Bueno, and
M. Hermenegildo. Interval-Based Resource Usage
Verification: Formalization and Prototype. In R. P. na,
M. Eekelen, and O. Shkaravska, editors, Foundational and
Practical Aspects of Resource Analysis. Second Iternational
Workshop FOPARA 2011, Revised Selected Papers, volume
7177 of Lecture Notes in Computer Science, pages 54–71.
Springer-Verlag, 2012.

[16] P. Lopez-Garcia, R. Haemmerlé, M. Klemen, U. Liqat, and
M. V. Hermenegildo. Towards Energy Consumption
Verification via Static Analysis. In Workshop on High
Performance Energy Efficient Embedded Systems (HIP3ES
2015), arXiv: 1501.03064, 2015.

[17] D. May. The XMOS XS1 architecture. available online:
http://www.xmos.com/published/xmos-xs1-architecture,
2013.

[18] E. Mera, P. López-García, M. Carro, and M. Hermenegildo.
Towards Execution Time Estimation in Abstract
Machine-Based Languages. In 10th Int’l. ACM SIGPLAN
Symposium on Principles and Practice of Declarative
Programming (PPDP’08), pages 174–184. ACM Press, July
2008.

[19] H. Muller, editor. Metrics and Case Studies. ENTRA Project:
Whole-Systems Energy Transparency (FET project 318337),
November 2013. Deliverable 6.1, http://entraproject.eu.

[20] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Safe
Upper-bounds Inference of Energy Consumption for Java
Bytecode Applications. In The Sixth NASA Langley Formal
Methods Workshop (LFM 08), pages 29–32, April 2008.
Extended Abstract.

[21] J. Navas, E. Mera, P. López-García, and M. Hermenegildo.
User-Definable Resource Bounds Analysis for Logic
Programs. In International Conference on Logic
Programming (ICLP’07), Lecture Notes in Computer
Science, pages 348–363. Springer, 2007.

[22] J. Pallister, S. Kerrison, J. Morse, and K. Eder. Data
dependent energy modeling for worst case energy
consumption analysis. arXiv preprint arXiv:1505.03374,
2015.

[23] M. Rosendahl. Automatic Complexity Analysis. In 4th ACM
Conference on Functional Programming Languages and
Computer Architecture (FPCA’89), pages 144–156. ACM
Press, 1989.

[24] A. Serrano, P. Lopez-Garcia, and M. Hermenegildo.
Resource Usage Analysis of Logic Programs via Abstract
Interpretation Using Sized Types. Theory and Practice of
Logic Programming, 30th Int’l. Conference on Logic
Programming (ICLP’14) Special Issue, 14(4-5):739–754,
2014.

[25] S. A. Seshia and J. Kotker. Gametime: A toolkit for timing
analysis of software. In P. A. Abdulla and K. R. M. Leino,
editors, TACAS, volume 6605 of Lecture Notes in Computer
Science, pages 388–392. Springer, 2011.

[26] P. Vasconcelos and K. Hammond. Inferring Cost Equations
for Recursive, Polymorphic and Higher-Order Functional
Programs. In 15th International Workshop on
Implementation of Functional Languages (IFL’03), Revised
Papers, volume 3145 of Lecture Notes in Computer Science,
pages 86–101. Springer-Verlag, Sep 2005.

[27] P. Wagemann, T. Distler, T. Honig, H. Janker, R. Kapitza,
and W. Schroder-Preikschat. Worst-case energy consumption
analysis for energy-constrained embedded systems. In
Real-Time Systems (ECRTS), 2015 27th Euromicro
Conference on, pages 105–114, July 2015.

[28] D. Watt. Programming XC on XMOS Devices. XMOS
Limited, 2009.

[29] B. Wegbreit. Mechanical program analysis. Commun. ACM,
18(9):528–539, 1975.

[30] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann,
T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and
P. Stenström. The worst-case execution-time problem -
Overview of methods and survey of tools. ACM Trans.
Embedded Comput. Syst., 7(3), 2008.

[31] XMOS. The XTAG-2 Hardware Manual, September 2009.
Available online at:
https://www.xmos.com/download/private/XTAG-2-
Hardware-Manual

[32] XMOS. Use xTIMEcomposer and xSCOPE to trace data in
real-time, 2013. Available online at:
https://www.xmos.com/download/public/Trace-data-with-
XScope(X9923H).pdf.

Attachment D3.3.2

Towards Energy Consumption

Verification via Static Analysis

Published at the Workshop on High
Performance Energy Efficient Embedded

Systems (HIP3ES 2015)

61

Towards Energy Consumption Verification via Static
Analysis

P. Lopez-Garcia
∗ †

pedro.lopez@imdea.org

R. Haemmerlé
†

remy.haemmerle@imdea.org

M. Klemen †
maximiliano.klemen@imdea.org

U. Liqat †
umer.liqat@imdea.org

M. Hermenegildo †
‡

manuel.hermenegildo@imdea.org

ABSTRACT
In this paper we leverage an existing general framework
for resource usage verification and specialize it for verifying
energy consumption specifications of embedded programs.
Such specifications can include both lower and upper bounds
on energy usage, and they can express intervals within which
energy usage is to be certified to be within such bounds.
The bounds of the intervals can be given in general as func-
tions on input data sizes. Our verification system can prove
whether such energy usage specifications are met or not.
It can also infer the particular conditions under which the
specifications hold. To this end, these conditions are also
expressed as intervals of functions of input data sizes, such
that a given specification can be proved for some intervals
but disproved for others. The specifications themselves can
also include preconditions expressing intervals for input data
sizes. We report on a prototype implementation of our ap-
proach within the CiaoPP system for the XC language and
XS1-L architecture, and illustrate with an example how em-
bedded software developers can use this tool, and in par-
ticular for determining values for program parameters that
ensure meeting a given energy budget while minimizing the
loss in quality of service.

Keywords: Energy consumption analysis and verification,
resource usage analysis and verification, static analysis, ver-
ification.

1. INTRODUCTION
In an increasing number of applications, particularly those

running on devices with limited resources, it is very impor-
tant and sometimes essential to ensure conformance with re-
spect to specifications expressing non-functional global prop-
erties such as energy consumption, maximum execution time,
memory usage, or user-defined resources. For example, in a
real-time application, a program completing an action later
than required is as erroneous as a program not computing
the correct answer. The same applies to an embedded ap-
plication in a battery-operated device (e.g., a portable or
implantable medical device, an autonomous space vehicle,
or even a mobile phone) if the application makes the device

∗Spanish Council for Scientific Research (CSIC).
†IMDEA Software Institute, Madrid, Spain.
‡Universidad Politécnica de Madrid (UPM).

run out of batteries earlier than required, making the whole
system useless in practice.

In general, high performance embedded systems must con-
trol, react to, and survive in a given environment, and this
in turn establishes constraints about the system’s perfor-
mance parameters including energy consumption and reac-
tion times. Therefore, a mechanism is necessary in these
systems in order to prove correctness with respect to speci-
fications about such non-functional global properties.

To address this problem we leverage an existing general
framework for resource usage analysis and verification [22,
23], and specialize it for verifying energy consumption spec-
ifications of embedded programs. As a case study, we fo-
cus on the energy verification of embedded programs writ-
ten in the XC language [37] and running on the XMOS
XS1-L architecture (XC is a high-level C-based program-
ming language that includes extensions for communication,
input/output operations, real-time behavior, and concur-
rency). However, the approach presented here can also be
applied to the analysis of other programming languages and
architectures. We will illustrate with an example how em-
bedded software developers can use this tool, and in par-
ticular for determining values for program parameters that
ensure meeting a given energy budget while minimizing the
loss in quality of service.

2. OVERVIEW OF THE ENERGY VERIFI-
CATION TOOL

In this section we give an overview of the prototype tool
for energy consumption verification of XC programs run-
ning on the XMOS XS1-L architecture, which we have im-
plemented within the CiaoPP system [13]. As in previous
work [20, 25], we differentiate between the input language,
which can be XC source, LLVM IR [17], or Instruction Set
Architecture (ISA) code, and the intermediate semantic pro-
gram representation that the CiaoPP core components (e.g.,
the analyzer) take as input. The latter is a series of con-
nected code blocks, represented by Horn Clauses, that we
will refer to as “HC IR” from now on. We perform a trans-
formation from each input language into the HC IR and
pass it to the corresponding CiaoPP component. The main
reason for choosing Horn Clauses as the intermediate rep-
resentation is that it offers a good number of features that
make it very convenient for the analysis [25]. For instance,
it supports naturally Static Single Assignment (SSA) and
recursive forms, as will be explained later. In fact, there is
a current trend favoring the use of Horn Clause programs

ar
X

iv
:1

51
2.

09
36

9v
1

 [
cs

.P
L

]
 3

1
D

ec
 2

01
5

Assertions

pragma check
pragma trust
...

XC Code

int f(int arg){
...

Energy Model

HC IR
Translator

XC
Compiler

Static
Analysis

#pragma true

Static
Comparator

#pragma check

#pragma false

#pragma checked

Inferred

Disproved

Unproved

Proved

Energy Consumption Analysis & Verification Tool

Program

Figure 1: Energy consumption verification tool using CiaoPP.
.

as intermediate representations in analysis and verification
tools [2].

Figure 1 shows an overview diagram of the architecture of
the prototype tool we have developed. Hexagons represent
different tool components and arrows indicate the commu-
nication paths among them.

The tool takes as input an XC source program (left part of
Figure 1) that can optionally contain assertions in a C-style
syntax. As we will see later, such assertions are translated
into Ciao assertions, the internal representation used in the
Ciao/CiaoPP system.

The energy specifications that the tool will try to prove
or disprove are expressed by means of assertions with check

status. These specifications can include both lower and up-
per bounds on energy usage, and they can express intervals
within which energy usage is to be certified to be within such
bounds. The bounds of the intervals can be given in general
as functions on input data sizes. Our tool can prove whether
such energy usage specifications are met or not. It can also
infer the particular conditions under which the specifications
hold. To this end, these conditions are also expressed as in-
tervals of functions of input data sizes, such that a given
specification can be proved for some intervals but disproved
for others.

In addition, assertions can also express trusted informa-
tion such as the energy usage of procedures that are not de-
veloped yet, or useful hints and information to the tool. In
general, assertions with status trust can be used to provide
information about the program and its constituent parts
(e.g., individual instructions or whole procedures or func-
tions) to be trusted by the analysis system, i.e., they pro-
vide base information assumed to be true by the inference
mechanism of the analysis in order to propagate it through-
out the program and obtain information for the rest of its
constituent parts.

In our tool the user can choose between performing the
analysis at the ISA or LLVM IR levels (or both). We refer
the reader to [19] for an experimental study that sheds light
on the trade-offs implied by performing the analysis at each
of these two levels, which can help the user to choose the
level that fits the problem best.

The associated ISA and/or LLVM IR representations of
the XC program are generated using the xcc compiler. Such
representations include useful metadata. The HC IR trans-
lator component (described in Section 4) produces the inter-
nal representation used by the tool, HC IR, which includes
the program and possibly specifications and/or trusted in-
formation (expressed in the Ciao assertion language [32,
15]).

The tool performs several tasks:

1. Transforming the ISA and/or LLVM IR into HC IR.
Such transformation preserves the resource consump-
tion semantics, in the sense that the resource usage
information inferred by the tool is applicable to the
original XC program.

2. Transforming specifications (and trusted information)
written as C-like assertions into the Ciao assertion lan-
guage.

3. Transforming the energy model at the ISA level [16],
expressed in JSON format, into the Ciao assertion lan-
guage. Such assertions express the energy consumed
by individual ISA instruction representations, infor-
mation which is required by the analyzer in order to
propagate it during the static analysis of a program
through code segments, conditionals, loops, recursions,
etc., in order to infer analysis information (energy con-
sumption functions) for higher-level entities such as
procedures, functions, or loops in the program.

4. In the case that the analysis is performed at the LLVM
IR level, the HC IR translator component produces a
set of Ciao assertions expressing the energy consump-
tion corresponding to LLVM IR block representations
in HC IR. Such information is produced from a map-
ping of LLVM IR instructions with sequences of ISA
instructions and the ISA-level energy model. The map-
ping information is produced by the mapping tool that
was first outlined in [3] (Section 2 and Attachments
D3.2.4 and D3.2.5) and is described in detail in [11].

Then, following the approach described in [20], the CiaoPP
parametric static resource usage analyzer [30, 28, 34] takes

the HC IR, together with the assertions which express the
energy consumed by LLVM IR blocks and/or individual ISA
instructions, and possibly some additional (trusted) infor-
mation, and processes them, producing the analysis results,
which are expressed also using Ciao assertions. Such re-
sults include energy usage functions (which depend on input
data sizes) for each block in the HC IR (i.e., for the whole
program and for all the procedures and functions in it.).
The analysis can infer different types of energy functions
(e.g., polynomial, exponential, or logarithmic). The proce-
dural interpretation of the HC IR programs, coupled with
the resource-related information contained in the (Ciao) as-
sertions, together allow the resource analysis to infer static
bounds on the energy consumption of the HC IR programs
that are applicable to the original LLVM IR and, hence, to
their corresponding XC programs. Analysis results are given
using the assertion language, to ensure interoperability and
make them understandable by the programmer.

The verification of energy specifications is performed by
a specialized component which compares the energy speci-
fications with the (safe) approximated information inferred
by the static resource analysis. Such component is based on
our previous work on general resource usage verification pre-
sented in [22, 23], where we extended the criteria of correct-
ness as the conformance of a program to a specification ex-
pressing non-functional global properties, such as upper and
lower bounds on execution time, memory, energy, or user de-
fined resources, given as functions on input data sizes. We
also defined an abstract semantics for resource usage proper-
ties and operations to compare the (approximated) intended
semantics of a program (i.e., the specification) with approx-
imated semantics inferred by static analysis. These opera-
tions include the comparison of arithmetic functions (e.g.,
polynomial, exponential, or logarithmic functions) that may
come from the specifications or from the analysis results. As
a possible result of the comparison in the output of the tool,
either:

1. The original (specification) assertion (i.e., with status
check) is included with status checked (resp. false),
meaning that the assertion is correct (resp. incorrect)
for all input data meeting the precondition of the as-
sertion,

2. the assertion is “split” into two or three assertions with
different status (checked, false, or check) whose pre-
conditions include a conjunct expressing that the size
of the input data belongs to the interval(s) for which
the assertion is correct (status checked), incorrect (sta-
tus false), or the tool is not able to determine whether
the assertion is correct or incorrect (status check), or

3. in the worst case, the assertion is included with status
check, meaning that the tool is not able to prove nor
to disprove (any part of) it.

If all assertions are checked then the program is verified.
Otherwise, for assertions (or parts of them) that get false

status, a compile-time error is reported. Even if a program
contains no assertions, it can be checked against the asser-
tions contained in the libraries used by the program, po-
tentially catching bugs at compile time. Finally, and most
importantly, for assertion (or parts of them) left with status
check, the tool can optionally produce a verification warn-

ing (also referred to as an “alarm”). In addition, optional
run-time checks can also be generated.

3. THE ASSERTION LANGUAGE
Two aspects of the assertion language are described here:

the front-end language in which assertions are written and
included in the XC programs to be verified, and the internal
language in which such assertions are translated into and
passed, together with the HC IR program representation, to
the core analysis and verification tools, the Ciao assertion
language.

3.1 The Ciao Assertion Language
We describe here the subset of the Ciao assertion lan-

guage which allows expressing global “computational” prop-
erties and, in particular, resource usage. We refer the reader
to [32, 13, 15] and their references for a full description of
this assertion language.

For brevity, we only introduce here the class of pred as-
sertions, which describes a particular predicate and, in gen-
eral, follows the schema:

:- pred Pred [: Precond] [=> Postcond] [+ Comp-Props].

where Pred is a predicate symbol applied to distinct free
variables while Precond and Postcond are logic formulae
about execution states. An execution state is defined by
variable/value bindings in a given execution step. The as-
sertion indicates that in any call to Pred, if Precond holds in
the calling state and the computation of the call succeeds,
then Postcond also holds in the success state. Finally, the
Comp-Props field is used to describe properties of the whole
computation for calls to predicate Pred that meet Precond.
In our application Comp-Props are precisely the resource
usage properties.

For example, the following assertion for a typical append/3
predicate:

:- pred append(A,B,C)
: (list(A,num),list(B,num),var(C))

=> (list(C,num),
rsize(A,list(ALb ,AUb ,num(ANl ,ANu))),
rsize(B,list(BLb ,BUb ,num(BNl ,BNu))),
rsize(C,
list(ALb+BLb ,AUb+BUb ,

num(min(ANl ,BNl),max(ANu ,BNu)))))
+ resource(steps ,ALb+1, AUb+1).

states that for any call to predicate append/3 with the first
and second arguments bound to lists of numbers, and the
third one unbound, if the call succeeds, then the third argu-
ment will also be bound to a list of numbers. It also states
that an upper bound on the number of resolution steps re-
quired to execute any of such calls is AUb + 1, a function
on the length of list A. The rsize terms are the sized types
derived from the regular types, containing variables that rep-
resent explicitly lower and upper bounds on the size of terms
and subterms appearing in arguments. See Section 5 for an
overview of the general resource analysis framework and how
sized types are used.

The global non-functional property resource/3 (appear-
ing in the “+” field), is used for expressing resource usages
and follows the schema:
resource(Res Name, Low Arith Expr, Upp Arith Expr)

where Res Name is a user-provided identifier for the resource
the assertion refers to, Low Arith Expr and Upp Arith Expr
are arithmetic functions that map input data sizes to re-

source usage, representing respectively lower and upper bounds
on the resource consumption.

Each assertion can be in a particular status, marked with
the following prefixes, placed just before the pred keyword:
check (indicating the assertion needs to be checked), checked
(it has been checked and proved correct by the system),
false (it has been checked and proved incorrect by the sys-
tem; a compile-time error is reported in this case), trust

(it provides information coming from the programmer and
needs to be trusted), or true (it is the result of static analy-
sis and thus correct, i.e., safely approximated). The default
status (i.e., if no status appears before pred) is check.

3.2 The XC Assertion Language
The assertions within XC files use instead a different syn-

tax that is closer to standard C notation and friendlier for
C developers. These assertions are transparently translated
into Ciao assertions when XC files are loaded into the tool.
The Ciao assertions output by the analysis are also trans-
lated back into XC assertions and added inline to a copy of
the original XC file.

More concretely, the syntax of the XC assertions accepted
by our tool is given by the following grammar, where the
non-terminal 〈identifier〉 stands for a standard C identifier,
〈integer〉 stands for a standard C integer, and the non-
terminal 〈ground-expr〉 for a ground expression, i.e., an ex-
pression of type 〈expr〉 that does not contain any C iden-
tifiers that appear in the assertion scope (the non-terminal
〈scope〉).

〈assertion〉 ::= ‘#pragma’ 〈status〉 〈scope〉 ‘:’ 〈body〉

〈status〉 ::= ‘check’ | ‘trust’ | ‘true’ | ‘checked’ | ‘false’

〈scope〉 ::= 〈identifier〉 ‘(’ ‘)’
| 〈identifier〉 ‘(’ 〈arguments〉 ‘)’

〈arguments〉 ::= 〈identifier〉 | 〈arguments〉 ‘,’ 〈identifier〉

〈body〉 ::= 〈precond〉 ‘==>’ 〈cost-bounds〉 | 〈cost-bounds〉

〈precond〉 ::= 〈upper-cond〉 | 〈lower-cond〉
| 〈lower-cond〉 ‘&&’ 〈upper-cond〉

〈lower-cond〉 ::= 〈ground-expr〉 ‘<=’ 〈identifier〉

〈upper-cond〉 ::= 〈identifier〉 ‘<=’ 〈ground-expr〉

〈cost-bounds〉 ::= 〈lower-bound〉 | 〈upper-bound〉
| 〈lower-bound〉 ‘&&’ 〈upper-bound〉

〈lower-bound〉 := 〈expr〉 ‘<=’ ‘energy’

〈upper-bound〉 := ‘energy’ ‘<=’ 〈expr〉

〈expr〉 := 〈expr〉 ‘+’ 〈mult-expr〉
| 〈expr〉 ‘-’ 〈mult-expr〉

〈mult-expr〉 := 〈mult-expr〉 ‘*’ 〈unary-expr〉
| 〈mult-expr〉 ‘/’ 〈unary-expr〉

〈unary-expr〉 := 〈identifier〉
| 〈integer〉
| ‘sum’ ‘(’ 〈identifier〉 ‘,’ 〈expr〉 ‘,’ 〈expr〉 ‘,’ 〈expr〉 ‘)’
| ‘prod’ ‘(’ 〈identifier〉 ‘,’ 〈expr〉 ‘,’ 〈expr〉‘,’ 〈expr〉 ‘)’
| ‘power’ ‘(’ 〈expr〉 ‘,’ 〈expr〉 ‘)’
| ‘log’ ‘(’ 〈expr〉 ‘,’ 〈expr〉 ‘)’
| ‘(’ 〈expr〉 ‘)’
| ‘+’ 〈unary-expr〉
| ‘-’ 〈unary-expr〉
| ‘min’ ‘(’ 〈identifier〉 ‘)’
| ‘max’ ‘(’ 〈identifier〉 ‘)’

XC assertions are directives starting with the token #pragma

followed by the assertion status, the assertion scope, and the
assertion body. The assertion status can take several values,
including check, checked, false, trust or true, with the
same meaning as in the Ciao assertions. Again, the default
status is check.

The assertion scope identifies the function the assertion is
referring to, and provides the local names for the arguments
of the function to be used in the body of the assertion. For
instance, the scope biquadCascade(state, xn, N) refers to
the function biquadCascade and binds the arguments within
the body of the assertion to the respective identifiers state,
xn, N. While the arguments do not need to be named in a
consistent way w.r.t. the function definition, it is highly rec-
ommended for the sake of clarity. The body of the assertion
expresses bounds on the energy consumed by the function
and optionally contains preconditions (the left hand side of
the ==> arrow) that constrain the argument sizes.

Within the body, expressions of type 〈expr〉 are built from
standard integer arithmetic functions (i.e., +, -, *, /) plus
the following extra functions:

• power(base, exp) is the exponentiation of base by
exp;
• log(base, expr) is the logarithm of expr in base base;
• sum(id, lower, upper, expr) is the summation of

the sequence of the values of expr for id ranging from
lower to upper;
• prod(id, lower, upper, expr) is the product of the

sequence of the values of expr for id ranging from
lower to upper;
• min(arr) is the minimal value of the array arr;
• max(arr) is the maximal value of the array arr.

Note that the argument of min and max must be an identifier
appearing in the assertion scope that corresponds to an array
of integers (of arbitrary dimension).

4. ISA/LLVM IR TO HC IR TRANSFORMA-
TION

In this section we describe briefly the HC IR representa-
tion and the transformations into it that we developed in
order to achieve the verification tool presented in Section 2
and depicted in Figure 1. The transformation of ISA code
into HC IR was described in [21]. We provide herein an
overview of the LLVM IR to HC IR transformation.

The HC IR representation consists of a sequence of blocks
where each block is represented as a Horn clause:

< block id > (< params >) :− S1, . . . , Sn.
Each block has an entry point, that we call the head of
the block (to the left of the :− symbol), with a number

of parameters < params >, and a sequence of steps (the
body, to the right of the :− symbol). Each of these Si
steps (or literals) is either (the representation of) an LLVM
IR instruction, or a call to another (or the same) block.
The analyzer deals with the HC IR always in the same way,
independent of its origin.

LLVM IR programs are expressed using typed assembly-
like instructions. Each function is in SSA form, represented
as a sequence of basic blocks. Each basic block is a sequence
of LLVM IR instructions that are guaranteed to be executed
in the same order. Each block ends in either a branching or
a return instruction. In order to represent each of the basic
blocks of the LLVM IR in the HC IR, we follow a similar
approach as in the ISA-level transformation [21]. However,
the LLVM IR includes an additional type transformation as
well as better memory modelling. It is explained in detail
in Appendix 5 of [3]. The main aspects of this process, are
the following:

1. Infer input/output parameters to each block.

2. Transform LLVM IR types into HC IR types.

3. Represent each LLVM IR block as an HC IR block and
each instruction in the LLVM IR block as a literal (Si).

4. Resolve branching to multiple blocks by creating clauses
with the same signature (i.e., the same name and ar-
guments in the head), where each clause denotes one
of the blocks the branch may jump to.

The translator component is also in charge of translating
the XC assertions to Ciao assertions and back. Assuming
the Ciao type of the input and output of the function is
known, the translation of assertions from Ciao to XC (and
back) is relatively straightforward. The Pred field of the
Ciao assertion is obtained from the scope of the XC asser-
tion to which an extra argument is added representing the
output of the function. The Precond fields are produced di-
rectly from the type of the input arguments: to each input
variable, its regular type and its regular type size are added
to the precondition, while the added output argument is de-
clared as a free variable. Finally the Comp-Props field is set
to the usage of the resource energy, i.e., a literal of the form
resource(energy, Lower, Upper) where Lower and Upper

are the lower and upper bounds from the energy consump-
tion specification.

5. ENERGY CONSUMPTION ANALYSIS
As already mentioned in Section 2, we use an existing

static analysis to infer the energy consumption of XC pro-
grams [21]. It is a specialization of the generic resource anal-
ysis presented in [35] that uses the instruction-level models
described in [16]. Such generic resource analysis is fully
based on abstract interpretation [9], defining the resource
analysis itself as an abstract domain that is integrated into
the PLAI abstract interpretation framework [27, 33] of CiaoPP,
obtaining features such as multivariance, efficient fixpoints,
and assertion-based verification and user interaction.

In the rest of this section we give an overview of the gen-
eral resource analysis, using the following append/3 predi-
cate as a running example:

append ([], S, S).
append ([E|R], S, [E|T]) :- append(R,S,T).

The first step consists of obtaining the regular type of the
arguments for each predicate. To this end, we use one of
the type analyses present in the CiaoPP system [36]. In our
example, the system infers that for any call to the predicate
append(X, Y, Z) with X and Y bound to lists of numbers
and Z a free variable, if the call succeeds, then Z also gets
bound to a list of numbers. The regular type for representing
“list of numbers” is defined as follows:

listnum := [] | [num | listnum].

From this type definition, sized type schemas are derived,
which incorporate variables representing explicitly lower and
upper bounds on the size of terms and subterms. For exam-
ple, in the following sized type schema (named listnum-s):

listnum-s→ listnum(α,β)(num(γ,δ))

α and β represent lower and upper bounds on the length
of the list, respectively, while γ and δ represent lower and
upper bounds of the numbers in the list, respectively.

In a subsequent phase, these sized type schemas are put
into relation, producing a system of recurrence equations
where output argument sizes are expressed as functions of
input argument sizes.

The resource analysis is in fact an extension of the sized
type analysis that adds recurrence equations for each re-
source. As the HC IR representation is a logic program,
it is necessary to consider that a predicate can fail or have
more than one solution, so we need an auxiliary cardinality
analysis to get more precise results.

We develop the append example for the simple case of the
resource being the number of resolution steps performed by
a call to append/3 and we will only focus on upper bounds,
rU . For the first clause, we know that only one resolution
step is needed, so:

rU

(
ln(0,0)(n(γX ,δX)), ln(αY ,βY)(n(γY ,δY))

)
≤ 1

The second clause performs one resolution step plus all the
resolution steps performed by all possible backtrackings over
the call in the body of the clause. This number can be
bounded as a function of the number of solutions. After
setting up and solving these equations we infer that an upper
bound on the number of resolution steps is the (upper bound
on) the length of the input list X plus one. This is expressed
as:

rU

(
ln(αX ,βX)(n(γX ,δX)), ln(αY ,βY)(n(γY ,δY))

)
≤ βX + 1

We refer the reader to [35] for a full description of this
analysis and tool.

6. THE GENERAL RESOURCE USAGE VER-
IFICATION FRAMEWORK

In this section we describe the general framework for (static)
resource usage verification [22, 24] that we have specialized
in this paper for verifying energy consumption specifications
of XC programs.

The framework, that we introduced in [22], extends the
criteria of correctness as the conformance of a program to
a specification expressing non-functional global properties,
such as upper and lower bounds on execution time, memory,
energy, or user defined resources, given as functions on input
data sizes.

Both program verification and debugging compare the ac-
tual semantics [[P]] of a program P with an intended seman-
tics for the same program, which we will denote by I. This
intended semantics embodies the user’s requirements, i.e.,
it is an expression of the user’s expectations. In the frame-
work, both semantics are given in the form of (safe) approx-
imations. The abstract (safe) approximation [[P]]α of the
concrete semantics [[P]] of the program is actually computed
by (abstract interpretation-based) static analyses, and com-
pared directly to the (also approximate) specification, which
is safely assumed to be also given as an abstract value Iα.
Such approximated specification is expressed by assertions
in the program. Program verification is then performed by
comparing Iα and [[P]]α.

In this paper, we assume that the program P is in HC
IR form (i.e., a logic program), which is the result of the
transformation of the ISA or LLVM IR code corresponding
to an XC program. As already said, such transformation
preserves the resource consumption semantics, in the sense
that the resource usage information inferred by the static
analysis (and hence the result of the verification process) is
applicable to the original XC program.

Resource usage semantics.
Given a program p, let Cp be the set of all calls to p.

The concrete resource usage semantics of a program p, for a
particular resource of interest, [[P]], is a set of pairs (p(t̄), r)
such that t̄ is a tuple of data (either simple data such as
numbers, or compound data structures), p(t̄) ∈ Cp is a call
to procedure1 p with actual parameters t̄, and r is a number
expressing the amount of resource usage of the computation
of the call p(t̄). The concrete resource usage semantics can
be defined as a function [[P]] : Cp 7→ R where R is the set of
real numbers (note that depending on the type of resource
we can take other set of numbers, e.g., the set of natural
numbers).

The abstract resource usage semantics is a set of 4-tuples:

(p(v̄) : c(v̄),Φ, inputp, sizep)

where p(v̄) : c(v̄) is an abstraction of a set of calls. v̄ is a
tuple of variables and c(v̄) is an abstraction representing a
set of tuples of data which are instances of v̄. c(v̄) is an
element of some abstract domain expressing instantiation
states. Φ is an abstraction of the resource usage of the calls
represented by p(v̄) : c(v̄). We refer to it as a resource usage
interval function for p, defined as follows:

• A resource usage bound function for p is a monotonic
arithmetic function, Ψ : S 7→ R∞, for a given subset
S ⊆ Rk, where R is the set of real numbers, k is
the number of input arguments to procedure p and
R∞ is the set of real numbers augmented with the
special symbols ∞ and −∞. We use such functions to
express lower and upper bounds on the resource usage
of procedure p depending on input data sizes.

• A resource usage interval function for p is an arith-
metic function, Φ : S 7→ RI, where S is defined as
before and RI is the set of intervals of real numbers,
such that Φ(n̄) = [Φl(n̄),Φu(n̄)] for all n̄ ∈ S, where
Φl(n̄) and Φu(n̄) are resource usage bound functions

1Also called predicate in the HC IR.

that denote the lower and upper endpoints of the inter-
val Φ(n̄) respectively for the tuple of input data sizes
n̄. Although n̄ is typically a tuple of natural numbers,
we do not want to restrict our framework. We require
that Φ be well defined so that ∀n̄ (Φl(n̄) ≤ Φu(n̄)).

inputp is a function that takes a tuple of data t̄ and returns
a tuple with the input arguments to p. This function can be
inferred by using the existing mode analysis or be given by
the user by means of assertions. sizep(t̄) is a function that
takes a tuple of terms t̄ and returns a tuple with the sizes of
those data under the size metric described in Section 5.

In order to make the presentation simpler, we will omit
the inputp and sizep functions in abstract tuples, with the
understanding that they are present in all such tuples.

Intended meaning.
The intended approximated meaning Iα of a program is

an abstract semantic object with the same kind of tuples:
(p(v̄) : c(v̄),Φ, inputp, sizep), which is represented by using
Ciao assertions (which are part of the HC IR) of the form:

:- check Pred [: Precond] + ResUsage.

where p(v̄) : c(v̄) is defined by Pred and Precond, and Φ is de-
fined by ResUsage. The information about inputp and sizep
is implicit in Precond and ResUsage. The concretization of
Iα, γ(Iα), is the set of all pairs (p(t̄), r) such that t̄ is a tuple
of terms and p(t̄) is an instance of Pred that meets precon-
dition Precond, and r is a number that meets the condition
expressed by ResUsage (i.e., r lies in the interval defined by
ResUsage) for some assertion.

Example 6.1. Consider the following HC IR program that
computes the factorial of an integer.

fact(N,Fact) :- N=<0, Fact =1.
fact(N,Fact) :- N>0, N1 is N-1,

fact(N1,Fact1), Fact is N*Fact1.

One could use the assertion:

:- check pred fact(N,F)
: (num(N), var(F))

=> (num(N), num(F),
rs ize (N, num(Nmin , Nmax)),
rs ize (F, num(Fmin , Fmax)))

+ resource(steps , Nmin+1, Nmax +1).

to express that for any call to fact(N,F) with the first argu-
ment bound to a number and the second one a free variable,
the number of resolution (execution) steps performed by the
computation is always between Nmin+1 and Nmax+1, where
Nmin and Nmax respectively stand for a lower and an upper
bound of N. In this concrete example, the lower and upper
bounds are the same, i.e., the number of resolution steps is
exactly N + 1, but note that they could be different. 2

Example 6.2. The assertion in Example 6.1 captures the
following concrete semantic tuples:

(fact(0, Y), 1) (fact(8, Y), 9)

but it does not capture the following ones:

(fact(N, Y), 1) (fact(1, Y), 35)

the left one in the first line above because it is outside
the scope of the assertion (i.e., N being a variable, it does

not meet the precondition Precond), and the right one be-
cause it violates the assertion (i.e., it meets the precondi-
tion Precond, but does not meet the condition expressed by
ResUsage). 2

Partial correctness: comparing to the abstract se-
mantics.

Given a program p and an intended resource usage seman-
tics I, where I : Cp 7→ R, we say that p is partially correct
w.r.t. I if for all p(t̄) ∈ Cp we have that (p(t̄), r) ∈ I, where
r is precisely the amount of resource usage of the computa-
tion of the call p(t̄). We say that p is partially correct with
respect to a tuple of the form (p(v̄) : cI(v̄),ΦI) if for all
p(t̄) ∈ Cp such that r is the amount of resource usage of the
computation of the call p(t̄), it holds that: if p(t̄) ∈ γ(p(v̄) :
cI(v̄)) then r ∈ ΦI(s̄), where s̄ = sizep(inputp(t̄)). Finally,
we say that p is partially correct with respect to Iα if:

• For all p(t̄) ∈ Cp, there is a tuple (p(v̄) : cI(v̄),ΦI) in
Iα such that p(t̄) ∈ γ(p(v̄) : cI(v̄)), and

• p is partially correct with respect to every tuple in Iα.

Let (p(v̄) : c(v̄),Φ) and (p(v̄) : cI(v̄),ΦI) be tuples ex-
pressing an abstract semantics [[P]]α inferred by analysis
and an intended abstract semantics Iα, respectively, such
that cI(v̄) v c(v̄),2 and for all n̄ ∈ S (S ⊆ Rk), Φ(n̄) =
[Φl(n̄),Φu(n̄)] and ΦI(n̄) = [ΦlI(n̄),ΦuI (n̄)]. We have that:

(1) If for all n̄ ∈ S, ΦlI(n̄) ≤ Φl(n̄) and Φu(n̄) ≤ ΦuI (n̄),
then p is partially correct with respect to (p(v̄) : cI(v̄),ΦI).

(2) If for all n̄ ∈ S Φu(n̄) < ΦlI(n̄) or ΦuI (n̄) < Φl(n̄), then
p is incorrect with respect to (p(v̄) : cI(v̄),ΦI).

Checking the two conditions above requires the compari-
son of resource usage bound functions.

Resource Usage Bound Function Comparison.
Since the resource analysis we use is able to infer different

types of functions (e.g., polynomial, exponential, and log-
arithmic), it is also desirable to be able to compare all of
these functions.

For simplicity of exposition, consider first the case where
resource usage bound functions depend on one argument.
Given two resource usage bound functions (one of them
inferred by the static analysis and the other one given in
an assertion/specification present in the program), Ψ1(n)
and Ψ2(n), n ∈ R the objective of the comparison op-
eration is to determine intervals for n in which Ψ1(n) >
Ψ2(n), Ψ1(n) = Ψ2(n), or Ψ1(n) < Ψ2(n). For this, we
define f(n) = Ψ1(n)−Ψ2(n) and find the roots of the equa-
tion f(n) = 0. Assume that the equation has m roots,
n1, . . . , nm. These roots are intersection points of Ψ1(n) and
Ψ2(n). We consider the intervals S1 = [0, n1), S2 = (n1, n2),
Sm = . . . (nm−1, nm), Sm+1 = (nm,∞). For each interval
Si, 1 ≤ i ≤ m, we select a value vi in the interval. If
f(vi) > 0 (respectively f(vi) < 0), then Ψ1(n) > Ψ2(n)
(respectively Ψ1(n) < Ψ2(n)) for all n ∈ Si.

There exist powerful algorithms for obtaining roots of
polynomial functions. In our implementation we have used

2Note that the condition cI(v̄) v c(v̄) can be checked using
the CiaoPP capabilities for comparing program state prop-
erties such as types.

the GNU Scientific Library [10], which offers a specific poly-
nomial function library that uses analytical methods for
finding roots of polynomials up to order four, and uses nu-
merical methods for higher order polynomials.

We approximate exponential and logarithmic resource us-
age functions using Taylor series. In particular, for expo-
nential functions we use the following formulae:

ex ≈ Σ∞n=0
xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ . . . for all x

ax = ex ln a ≈ 1 + x ln a+
(x ln a)2

2!
+

(x ln a)3

3!
+ . . .

In our implementation these series are limited up to order 8.
This decision has been taken based on experiments we have
carried out that show that higher orders do not bring a sig-
nificant difference in practice. Also, in our implementation,
the computation of the factorials is done separately and the
results are kept in a table in order to reuse them.

Dealing with logarithmic functions is more complex, as
Taylor series for such functions can only be defined for the
interval (−1, 1).

For resource usage functions depending on more than one
variable, the comparison is performed using constraint solv-
ing techniques.

Safety of the Approximations.
When the roots obtained for function comparison are ap-

proximations of the actual roots, we must guarantee that
their values are safe, i.e., that they can be used for verifi-
cation purposes, in particular, for safely checking the condi-
tions presented above. In other words, we should guarantee
that the error falls on the safe side when comparing the cor-
responding resource usage bound functions. For this pur-
pose we developed an algorithm for detecting whether the
approximated root falls on the safe side or not, and in the
case it does not fall on the safe side, performing an iterative
process to increment (or decrement) it by a small value until
the approximated root falls on the safe side.

7. USING THE TOOL: EXAMPLE
As an illustrative example of a scenario where the em-

bedded software developer has to decide values for program
parameters that meet an energy budget, we consider the
development of an equaliser (XC) program using a biquad
filter. In Figure 2 we can see what the graphical user inter-
face of our prototype looks like, with the code of this biquad
example ready to be verified. The purpose of an equaliser
is to take a signal, and to attenuate / amplify different fre-
quency bands. For example, in the case of an audio signal,
this can be used to correct for a speaker or microphone fre-
quency response. The energy consumed by such a program
directly depends on several parameters, such as the sample
rate of the signal, and the number of banks (typically be-
tween 3 and 30 for an audio equaliser). A higher number of
banks enables the designer to create more precise frequency
response curves.

Assume that the developer has to decide how many banks
to use in order to meet an energy budget while maximizing
the precision of frequency response curves at the same time.
In this example, the developer writes an XC program where
the number of banks is a variable, say N. Assume also that
the energy constraint to be met is that an application of the

Figure 2: Graphical User Interface of the prototype with the XC biquad program.

biquad program should consume less than 125 millijoules
(i.e., 125000000 nanojoules). This constraint is expressed
by the following check assertion (specification):

#pragma check biquadCascade(state,xn,N) :

(1 <= N) ==> (energy <= 125000000)

where the precondition 1 <= N in the assertion (left hand
side of ==>) expresses that the number of banks should be
at least 1.

Then, the developer makes use of the tool, by selecting the
following menu options, as shown in the right hand side of
Figure 2: check_assertions, for Action Group, res_plai,
for Resource Analysis, mathematica, for Solver, llvm, for
Analysis Level (which will tell the analysis to take the
LLVM IR option by compiling the source code into LLVM IR
and transform into HC IR for analysis) and finally source,
for Output Language (the language in which the analysis /
verification results are shown). After clicking on the Apply

button below the menu options, the analysis is performed,
which infers a lower and an upper bound function for the
consumption of the program. Concretely those bounds are
represented by the following assertion, which is included in
the output of the tool:

#pragma true biquadCascade(state,xn,N) :

(16502087*N + 5445103 <= energy &&

energy <= 16502087*N + 5445103)

In this particular case, both bounds are identical. In other
words, the energy consumed by the program is exactly char-
acterized by the following function, depending on N only:

Ebiquad(N) = 16502087× N + 5445103 nJ

Then, the verification of the specification (check asser-
tion) is performed by comparing the energy bound functions

above with the upper bound expressed in the specification,
i.e., 125000000, a constant value in this case. As a result,
the two following assertions are produced (and included in
the output file of the tool):

#pragma checked biquadCascade(state,xn,N) :

(1 <= N && N <= 7)

==> (energy <= 125000000)

#pragma false biquadCascade(state,xn,N) :

(8 <= N)

==> (energy <= 125000000)

The first one expresses that the original assertion holds
subject to a precondition on the parameter N, i.e., in or-
der to meet the energy budget of 125 millijoules, the num-
ber of banks N should be a natural number in the interval
[1, 7] (precondition 1 <= N && N <= 7). The second one
expresses that the original specification is not met (status
false) if the number of banks is greater or equal to 8.

Since the goal is to maximize the precision of frequency
response curves and to meet the energy budget at the same
time, the number of banks should be set to 7. The developer
could also be interested in meeting an energy budget but this
time ensuring a lower bound on the precision of frequency
response curves. For example by ensuring that N ≥ 3, the
acceptable values for N would be in the range [3, 7].

In the more general case where the energy function in-
ferred by the tool depends on more than one parameter, the
determination of the values for such parameters is reduced
to a constraint solving problem. The advantage of this ap-
proach is that the parameters can be determined analytically
at the program development phase, without the need of de-
termining them experimentally by measuring the energy of
expensive program runs with different input parameters.

8. RELATED WORK
As mentioned before, this work adds verification capabili-

ties to our previous work on energy consumption analysis for
XC/XS1-L [21], which builds on of our general framework
for resource usage analysis [31, 28, 35, 14, 26] and its sup-
port for resource verification [22, 24], and the energy models
of [16].

Regarding the support for verification of properties ex-
pressed as functions, the closest related work we are aware
of presents a method for comparison of cost functions in-
ferred by the COSTA system for Java bytecode [1]. The
method proves whether a cost function is smaller than an-
other one for all the values of a given initial set of input
data sizes. The result of this comparison is a Boolean value.
However, as mentioned before, in our approach [22, 24] the
result is in general a set of subsets (intervals) in which the
initial set of input data sizes is partitioned, so that the re-
sult of the comparison is different for each subset. Also,
[1] differs in that comparison is syntactic, using a method
similar to what was already being done in the CiaoPP sys-
tem: performing a function normalization and then using
some syntactic comparison rules. Our technique goes be-
yond these syntactic comparison rules. Moreover, [1] only
covers (generic) cost function comparisons while we have ad-
dressed the whole process for the case of energy consumption
verification. Note also that, although we have presented our
work applied to XC programs, the CiaoPP system can also
deal with other high- and low-level languages, including, e.g.,
Java bytecode [29, 26].

In a more general context, using abstract interpretation in
debugging and/or verification tasks has now become well es-
tablished. To cite some early work, abstractions were used
in the context of algorithmic debugging in [18]. Abstract
interpretation has been applied by Bourdoncle [4] to debug-
ging of imperative programs and by Comini et al. to the
algorithmic debugging of logic programs [7] (making use of
partial specifications in [6]), and by P. Cousot [8] to veri-
fication, among others. The CiaoPP framework [5, 12, 14]
was pioneering in many aspects, offering an integrated ap-
proach combining abstraction-based verification, debugging,
and run-time checking with an assertion language.

9. CONCLUSIONS
We have specialized an existing general framework for re-

source usage verification for verifying energy consumption
specifications of embedded programs. These specifications
can include both lower and upper bounds on energy us-
age, expressed as intervals within which the energy usage
is supposed to be included, the bounds (end points of the
intervals) being expressed as functions on input data sizes.
Our tool can deal with different types of energy functions
(e.g., polynomial, exponential or logarithmic functions), in
the sense that the analysis can infer them, and the specifi-
cations can involve them. We have shown through an ex-
ample, and using the prototype implementation of our ap-
proach within the Ciao/CiaoPP system and for the XC lan-
guage and XS1-L architecture, how our verification system
can prove whether such energy usage specifications are met
or not, or infer particular conditions under which the speci-
fications hold. These conditions are expressed as intervals of
input data sizes such that a given specification can be proved
for some intervals but disproved for others. The specifica-

tions themselves can also include preconditions expressing
intervals for input data sizes. We have illustrated through
this example how embedded software developers can use this
tool, and in particular for determining values for program
parameters that ensure meeting a given energy budget while
minimizing the loss in quality of service.

10. ACKNOWLEDGEMENTS
The research leading to these results has received funding

from the European Union 7th Framework Programme under
grant agreement 318337, ENTRA - Whole-Systems Energy
Transparency, Spanish MINECO TIN’12-39391 StrongSoft
and TIN’08-05624 DOVES projects, and Madrid TIC-1465
PROMETIDOS-CM project. We also thank all the partic-
ipants of the ENTRA project team, and in particular John
P. Gallagher, Henk Muller, Kyriakos Georgiou, Steve Ker-
rison, and Kerstin Eder for useful and fruitful discussions.
Henk Muller (XMOS Ltd.) also provided benchmarks (e.g.,
the biquad program) that we used to test our tool.

11. ADDITIONAL AUTHORS
Additional authors: John Smith (The Thørväld Group,

email: jsmith@affiliation.org) and Julius P. Kumquat
(The Kumquat Consortium, email: jpkumquat@consortium.net).

12. REFERENCES
[1] E. Albert, P. Arenas, S. Genaim, I. Herraiz, and

G. Puebla. Comparing cost functions in resource
analysis. In 1st International Workshop on
Foundational and Practical Aspects of Resource
Analysis (FOPARA’09), volume 6234 of Lecture Notes
in Computer Science, pages 1–17. Springer, 2010.

[2] N. Bjørner, F. Fioravanti, A. Rybalchenko, and
V. Senni, editors. Workshop on Horn Clauses for
Verification and Synthesis, July 2014. To appear in
Electronic Proceedings in Theoretical Computer
Science.

[3] N. Bohr, K. Eder, J. P. Gallagher, K. Georgiou,
R. Haemmerlé, M. V. Hermenegildo, B. Kafle,
S. Kerrison, M. Kirkeby, X. Li, U. Liqat,
P. Lopez-Garcia, H. Muller, M. Rhiger, and
M. Rosendahl. Initial Energy Consumption Analysis.
Technical report, FET 318337 ENTRA Project, April
2014. Deliverable 3.2, http://entraproject.eu.

[4] F. Bourdoncle. Abstract debugging of higher-order
imperative languages. In Programming Languages
Design and Implementation’93, pages 46–55, 1993.

[5] F. Bueno, P. Deransart, W. Drabent, G. Ferrand,
M. Hermenegildo, J. Maluszynski, and G. Puebla. On
the Role of Semantic Approximations in Validation
and Diagnosis of Constraint Logic Programs. In Proc.
of the 3rd. Int’l Workshop on Automated
Debugging–AADEBUG’97, pages 155–170, Linköping,
Sweden, May 1997. U. of Linköping Press.

[6] M. Comini, G. Levi, M. C. Meo, and G. Vitiello.
Abstract diagnosis. Journal of Logic Programming,
39(1–3):43–93, 1999.

[7] M. Comini, G. Levi, and G. Vitiello. Declarative
diagnosis revisited. In 1995 International Logic
Programming Symposium, pages 275–287, Portland,
Oregon, December 1995. MIT Press, Cambridge, MA.

[8] P. Cousot. Automatic Verification by Abstract
Interpretation, Invited Tutorial. In Fourth
International Conference on Verification, Model
Checking and Abstract Interpretation (VMCAI),
number 2575 in LNCS, pages 20–24. Springer, January
2003.

[9] P. Cousot and R. Cousot. Abstract Interpretation: a
Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In
ACM Symposium on Principles of Programming
Languages (POPL’77). ACM Press, 1977.

[10] M. Galassi, J. Davies, J. Theiler, B. Gough,
G. Jungman, P. Alken, M. Booth, and F. Rossi. GNU
Scientific Library Reference Manual. Network Theory
Ltd, 2009. Available at
http://www.gnu.org/software/gsl/.

[11] K. Georgiou, S. Kerrison, and K. Eder. A Multi-level
Worst Case Energy Consumption Static Analysis for
Single and Multi-threaded Embedded Programs.
Technical Report CSTR-14-003, University of Bristol,
December 2014.

[12] M. Hermenegildo, G. Puebla, and F. Bueno. Using
Global Analysis, Partial Specifications, and an
Extensible Assertion Language for Program
Validation and Debugging. In K. R. Apt, V. Marek,
M. Truszczynski, and D. S. Warren, editors, The Logic
Programming Paradigm: a 25–Year Perspective, pages
161–192. Springer-Verlag, July 1999.

[13] M. Hermenegildo, G. Puebla, F. Bueno, and P. L.
Garćıa. Integrated Program Debugging, Verification,
and Optimization Using Abstract Interpretation (and
The Ciao System Preprocessor). Science of Computer
Programming, 58(1–2), 2005.

[14] M. Hermenegildo, G. Puebla, F. Bueno, and
P. Lopez-Garcia. Integrated Program Debugging,
Verification, and Optimization Using Abstract
Interpretation (and The Ciao System Preprocessor).
Science of Computer Programming, 58(1–2):115–140,
October 2005.

[15] M. V. Hermenegildo, F. Bueno, M. Carro, P. López,
E. Mera, J. Morales, and G. Puebla. An Overview of
Ciao and its Design Philosophy. TPLP,
12(1–2):219–252, 2012.
http://arxiv.org/abs/1102.5497.

[16] S. Kerrison and K. Eder. Energy modelling of software
for a hardware multi-threaded embedded
microprocessor. ACM Transactions on Embedded
Computing Systems (TECS), 2015. To appear.

[17] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis and
transformation. In Proc. of the 2004 International
Symposium on Code Generation and Optimization
(CGO), pages 75–88. IEEE Computer Society, March
2004.

[18] Y. Lichtenstein and E. Y. Shapiro. Abstract
algorithmic debugging. In R. A. Kowalski and K. A.
Bowen, editors, Fifth International Conference and
Symposium on Logic Programming, pages 512–531,
Seattle, Washington, August 1988. MIT.

[19] U. Liqat, K. Georgiou, S. Kerrison, P. Lopez-Garcia,
M. V. Hermenegildo, J. P. Gallagher, and K. Eder.
Inferring Energy Consumption at Different Software

Levels: ISA vs. LLVM IR. Technical report, ENTRA
Project, April 2014. Appendix D3.2.4 of Deliverable
D3.2. Available at http://entraproject.eu.

[20] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou,
P. Lopez-Garcia, N. Grech, M. Hermenegildo, and
K. Eder. Energy Consumption Analysis of Programs
based on XMOS ISA-level Models. In Proceedings of
LOPSTR’13, 2014.

[21] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou,
P. Lopez-Garcia, N. Grech, M. Hermenegildo, and
K. Eder. Energy Consumption Analysis of Programs
based on XMOS ISA-level Models. In Proceedings of
the 23rd International Symposium on Logic-Based
Program Synthesis and Transformation (LOPSTR’13),
2014.

[22] P. López-Garćıa, L. Darmawan, and F. Bueno. A
Framework for Verification and Debugging of
Resource Usage Properties. In Technical
Communications of ICLP, volume 7 of LIPIcs, pages
104–113. Schloss Dagstuhl, July 2010.

[23] P. Lopez-Garcia, L. Darmawan, F. Bueno, and
M. Hermenegildo. Interval-Based Resource Usage
Verification: Formalization and Prototype. In R. P.
na, M. Eekelen, and O. Shkaravska, editors,
Foundational and Practical Aspects of Resource
Analysis, volume 7177 of LNCS, pages 54–71.
Springer-Verlag, 2012.

[24] P. Lopez-Garcia, L. Darmawan, F. Bueno, and
M. Hermenegildo. Interval-Based Resource Usage
Verification: Formalization and Prototype. In R. P.
na, M. Eekelen, and O. Shkaravska, editors,
Foundational and Practical Aspects of Resource
Analysis. Second Iternational Workshop FOPARA
2011, Revised Selected Papers, volume 7177 of Lecture
Notes in Computer Science, pages 54–71.
Springer-Verlag, 2012.

[25] M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A
Flexible (C)LP-Based Approach to the Analysis of
Object-Oriented Programs. In LOPSTR 2007, number
4915 in LNCS, pages 154–168. Springer-Verlag,
August 2007.

[26] M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A
Flexible (C)LP-Based Approach to the Analysis of
Object-Oriented Programs. In 17th International
Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR 2007), number 4915 in
LNCS, pages 154–168. Springer-Verlag, August 2007.

[27] K. Muthukumar and M. Hermenegildo. Compile-time
Derivation of Variable Dependency Using Abstract
Interpretation. Journal of Logic Programming,
13(2/3):315–347, July 1992.

[28] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Safe
Upper-bounds Inference of Energy Consumption for
Java Bytecode Applications. In The Sixth NASA
Langley Formal Methods Workshop (LFM 08), April
2008. Extended Abstract.

[29] J. Navas, M. Méndez-Lojo, and M. Hermenegildo.
User-Definable Resource Usage Bounds Analysis for
Java Bytecode. In BYTECODE’09, volume 253 of
ENTCS, pages 6–86. Elsevier, March 2009.

[30] J. Navas, E. Mera, P. López-Garćıa, and
M. Hermenegildo. User-Definable Resource Bounds

Analysis for Logic Programs. In Proc. of ICLP’07,
volume 4670 of LNCS, pages 348–363. Springer, 2007.

[31] J. Navas, E. Mera, P. López-Garćıa, and
M. Hermenegildo. User-Definable Resource Bounds
Analysis for Logic Programs. In 23rd International
Conference on Logic Programming (ICLP’07), volume
4670 of Lecture Notes in Computer Science. Springer,
2007.

[32] G. Puebla, F. Bueno, and M. Hermenegildo. An
Assertion Language for Constraint Logic Programs. In
Analysis and Visualization Tools for Constraint
Programming, number 1870 in LNCS, pages 23–61.
Springer-Verlag, 2000.

[33] G. Puebla and M. Hermenegildo. Optimized
Algorithms for the Incremental Analysis of Logic
Programs. In International Static Analysis Symposium
(SAS 1996), number 1145 in LNCS, pages 270–284.
Springer-Verlag, September 1996.

[34] A. Serrano, P. Lopez-Garcia, and M. Hermenegildo.
Resource Usage Analysis of Logic Programs via
Abstract Interpretation Using Sized Types. TPLP,
ICLP’14 Special Issue, 14(4-5):739–754, 2014.

[35] A. Serrano, P. Lopez-Garcia, and M. Hermenegildo.
Resource Usage Analysis of Logic Programs via
Abstract Interpretation Using Sized Types. Theory
and Practice of Logic Programming, 30th Int’l.
Conference on Logic Programming (ICLP’14) Special
Issue, 14(4-5):739–754, 2014.

[36] C. Vaucheret and F. Bueno. More Precise yet Efficient
Type Inference for Logic Programs. In International
Static Analysis Symposium, volume 2477 of Lecture
Notes in Computer Science, pages 102–116.
Springer-Verlag, September 2002.

[37] D. Watt. Programming XC on XMOS Devices. XMOS
Limited, 2009.

Attachment D3.3.3

Analysis and Transformation Tools for

Constrained Horn Clause Verification

Published in Theory and Practice of Logic
Programming 2014

73

Under consideration for publication in Theory and Practice of Logic Programming 1

Analysis and Transformation Tools for Constrained
Horn Clause Verification∗

John P. Gallagher

Roskilde University, Denmark and IMDEA Software Institute, Madrid, Spain
(e-mail: jpg@ruc.dk)

Bishoksan Kafle

Roskilde University, Denmark
(e-mail: kafle@ruc.dk)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Several techniques and tools have been developed for verification of properties expressed as
Horn clauses with constraints over a background theory (CHC). Current CHC verification tools
implement intricate algorithms and are often limited to certain subclasses of CHC problems.
Our aim in this work is to investigate the use of a combination of off-the-shelf techniques from
the literature in analysis and transformation of Constraint Logic Programs (CLPs) to solve
challenging CHC verification problems. We find that many problems can be solved using a
combination of tools based on well-known techniques from abstract interpretation, semantics-
preserving transformations, program specialisation and query-answer transformations. This gives
insights into the design of automatic, more general CHC verification tools based on a library of
components.

KEYWORDS: Constraint Logic Program, Constrained Horn Clause, Abstract Interpretation,
Software Verification.

1 Introduction

CHCs provide a suitable intermediate form for expressing the semantics of a variety

of programming languages (imperative, functional, concurrent, etc.) and computational

models (state machines, transition systems, big- and small-step operational semantics,

Petri nets, etc.). As a result it has been used as a target language for software verification.

Recently there is a growing interest in CHC verification from both the logic programming

and software verification communities, and several verification techniques and tools have

been developed for CHC.

Pure CLPs are syntactically and semantically the same as CHC. The main differ-

ence is that sets of constrained Horn clauses are not necessarily intended for execution,

∗ The research leading to these results has received funding from the European Union 7th Framework
Programme under grant agreement no. 318337, ENTRA - Whole-Systems Energy Transparency and
the Danish Natural Science Research Council grant NUSA: Numerical and Symbolic Abstractions for
Software Model Checking.

2 John P. Gallagher and Bishoksan Kafle

but rather as specifications. From the point of view of verification, we do not distin-

guish between CHC and pure CLP. Much research has been carried out on the analysis

and transformation of CLP programs, typically for synthesising efficient programs or for

inferring run-time properties of programs for the purpose of debugging, compile-time

optimisations or program understanding. In this paper we investigate the application of

this research to the CHC verification problem.

In Section 2 we define the CHC verification problem. In Section 3 we define basic

transformation and analysis components drawn from or inspired by the CLP literature.

Section 4 discusses the role of these components in verification, illustrating them on an

example problem. In Section 5 we construct a tool-chain out of these components and test

it on a range of CHC verification benchmark problems. The results reported represent

one of the main contributions of this work. In Section 6 we propose possible extensions

of the basic tool-chain and compare them with related work on CHC verification tool

architectures. Finally in Section 7 we summarise the conclusions from this work.

2 Background: The CHC Verification Problem

A CHC is a first order predicate logic formula of the form ∀(φ∧B1(X1)∧ . . .∧Bk(Xk)→
H(X)) (k ≥ 0), where φ is a conjunction of constraints with respect to some background

theory, Xi, X are (possibly empty) vectors of distinct variables, B1, . . . , Bk, H are pred-

icate symbols, H(X) is the head of the clause and φ ∧ B1(X1) ∧ . . . ∧ Bk(Xk) is the

body. Sometimes the clause is written H(X)← φ∧B1(X1), . . . , Bk(Xk) and in concrete

examples it is written in the form H :- φ, B1(X1),. . .,Bk(Xk). In examples, predicate

symbols start with lowercase letters while we use uppercase letters for variables.

We assume here that the constraint theory is linear arithmetic with relation symbols

≤, ≥, >, < and = and that there is a distinguished predicate symbol false which is

interpreted as false. In practice the predicate false only occurs in the head of clauses;

we call clauses whose head is false integrity constraints, following the terminology of

deductive databases. Thus the formula φ1 ← φ2 ∧ B1(X1), . . . , Bk(Xk) is equivalent to

the formula false ← ¬φ1 ∧ φ2 ∧ B1(X1), . . . , Bk(Xk). The latter might not be a CHC

but can be converted to an equivalent set of CHCs by transforming the formula ¬φ1 and

distributing any disjunctions that arise over the rest of the body. For example, the formula

X=Y :- p(X,Y) is equivalent to the set of CHCs false :- X>Y, p(X,Y) and false :-

X<Y, p(X,Y). Integrity constraints can be viewed as safety properties. If a set of CHCs

encodes the behaviour of some system, the bodies of integrity constraints represent unsafe

states. Thus proving safety consists of showing that the bodies of integrity constraints

are false in all models of the CHC clauses.

The CHC verification problem. To state this more formally, given a set of CHCs P , the

CHC verification problem is to check whether there exists a model of P . We restate this

property in terms of the derivability of the predicate false.

Lemma 2.1

P has a model if and only if P 6|= false.

Tools for Constrained Horn Clause Verification 3

Proof
Let us write I(F) to mean that interpretation I satisfies F (I is a model of F).

P 6|= false ≡ ∃I.(I(P) and ¬I(false))

≡ ∃I.I(P) (since ¬I(false) is true by defn. of false)

≡ P has a model.

Obviously any model of P assigns false to the bodies of integrity constraints.

The verification problem can be formulated deductively rather than model-theoretically.

Let the relation P ` A denote that A is derivable from P using some proof procedure.

If the proof procedure is sound and complete then P 6|= A if and only if P 6` A. So the

verification problem is to show (using CLP terminology) that the computation of the

goal ← false in program P does not succeed using a complete proof procedure. Although

in this work we follow the model-based formulation of the problem, we exploit the equiv-

alence with the deductive formulation, which underlies, for example, the query-answer

transformation and specialisation techniques to be presented.

2.1 Representation of Interpretations

An interpretation of a set of CHCs is represented as a set of constrained facts of the

form A ← C where A is an atomic formula p(Z1, . . . , Zn) where Z1, . . . , Zn are distinct

variables and C is a constraint over Z1, . . . , Zn. If C is true we write A ← or just A.

The constrained fact A ← C is shorthand for the set of variable-free facts Aθ such that

Cθ holds in the constraint theory, and an interpretation M denotes the set of all facts

denoted by its elements; M assigns true to exactly those facts. M1 ⊆ M2 if the set of

denoted facts of M1 is contained in the set of denoted facts of M2.

Minimal models. A model of a set of CHCs is an interpretation that satisfies each clause.

There exists a minimal model with respect to the subset ordering, denoted M [[P]] where

P is the set of CHCs. M [[P]] can be computed as the least fixed point (lfp) of an immedi-

ate consequences operator, T CP , which is an extension of the standard TP operator from

logic programming, extended to handle constraints (Jaffar and Maher 1994). Further-

more lfp(T CP) can be computed as the limit of the ascending sequence of interpretations

∅, T CP (∅), T CP (T CP (∅)), For more details, see (Jaffar and Maher 1994). This sequence

provides a basis for abstract interpretation of CHC clauses.

Proof by over-approximation of the minimal model. It is a standard theorem of CLP that

the minimal model M [[P]] is equivalent to the set of atomic consequences of P . That is,

P |= p(v1, . . . , vn) if and only if p(v1, . . . , vn) ∈ M [[P]]. Therefore, the CHC verification

problem for P is equivalent to checking that false 6∈M [[P]]. It is sufficient to find a set of

constrained facts M ′ such that M [[P]] ⊆ M ′, where false 6∈ M ′. This technique is called

proof by over-approximation of the minimal model.

3 Relevant tools for CHC Verification

In this section, we give a brief description of some relevant tools borrowed from the

literature in analysis and transformation of CLP.

4 John P. Gallagher and Bishoksan Kafle

Unfolding. Let P be a set of CHCs and c0 ∈ P be H(X) ← B1, p(Y),B2 where B1,B2

are possibly empty conjunctions of atomic formulas and constraints. Let {c1, . . . , cm} be

the set of clauses of P that have predicate p in the head, that is, ci = p(Zi) ← Di,

where the variables of these clauses are standardised apart from the variables of c0 and

from each other. Then the result of unfolding c0 on p(Y) is the set of CHCs P ′ =

P \ {c0} ∪ {c′1, . . . , c′m} where c′i = H(X) ← B1, Y = Zi,Di,B2. The equality Y = Zi

stands for the conjunction of the equality of the respective elements of the vectors Y

and Zi. It is a standard result that unfolding a clause in P preserves P ’s minimal model

(Pettorossi and Proietti 1999). In particular, P |= false ≡ P ′ |= false.

Specialisation. A set of CHCs P can be specialised with respect to a query. Assume A is

an atomic formula; then we can derive a set PA such that P |= A ≡ PA |= A. PA could

be simpler than P , for instance, parts of P that are irrelevant to A could be omitted in

PA. In particular, the CHC verification problem for Pfalse and P are equivalent. There

are many techniques in the CLP literature for deriving a specialised program PA. Partial

evaluation is a well-developed method (Gallagher 1993; Leuschel 1999).

We make use a form of specialisation know as forward slicing, more specifically redun-

dant argument filtering (Leuschel and Sørensen 1996), in which predicate arguments can

be removed if they do not affect a computation. Given a set of CHCs P and a query A,

denote by P raf
A the program obtained by applying the RAF algorithm from (Leuschel and

Sørensen 1996) with respect to the goal A. We have the property that P |= A ≡ P raf
A |= A

and in particular that P |= false ≡ P raf
false |= false.

Query-answer transformation. Given a set of CHCs P and an atomic query A, the query-

answer transformation of P with respect to A is a set of CHCs which simulates the

computation of the goal ← A in P , using a left-to-right computation rule. Query-answer

transformation is a generalisation of the magic set transformations for Datalog. For each

predicate p, two new predicates pans and pquery are defined. For an atomic formula A,

Aans and Aquery denote the replacement of A’s predicate symbol p by pans and pquery
respectively. Given a program P and query A, the idea is to derive a program P qa

A with

the following property P |= A iff P qa
A |= Aans. The Aquery predicates represent calls in the

computation tree generated during the execution of the goal. For more details see (Debray

and Ramakrishnan 1994; Gallagher and de Waal 1993; Codish and Demoen 1993). In

particular, P qa
false |= falseans ≡ P |= false, so we can transform a CHC verification problem

to an equivalent CHC verification problem on the query-answer program generated with

respect to the goal ← false.

Predicate splitting. Let P be a set of CHCs and let {c1, . . . , cm} be the set of clauses in P

having some given predicate p in the head, where ci = p(X)← Di. Let C1, . . . , Ck be some

partition of {c1, . . . , cm}, where Cj = {cj1 , . . . , cjnj
}. Define k new predicates p1 . . . pk,

where pj is defined by the bodies of clauses in partition Cj , namely Qj = {pj(X) ←
Dj1 , . . . , pj(X) ← Djnj

}. Finally, define k clauses Cp = {p(X) ← p1(X), . . . , p(X) ←
pk(X)}. Then we define a splitting transformation as follows.

1. Let P ′ = P \ {c1, . . . , cm} ∪ Cp ∪Q1 ∪ . . . ∪Qk.
2. Let P split be the result of unfolding every clause in P ′ whose body contains p(Y)

with the clauses Cp.

Tools for Constrained Horn Clause Verification 5

In our applications, we use splitting to create separate predicates for clauses for a

given predicate whose constraints are mutually exclusive. For example, given the clauses

new3(A,B) :- A=<99, new4(A,B) and new3(A,B) :- A>=100, new5(A,B), we produce

two new predicates, since the constraints A=<99 and A>=100 are disjoint. The new pred-

icates are defined by clauses new31(A,B) :- A=<99, new4(A,B) and new32(A,B) :-

A>=100, new5(A,B), and all calls to new3 throughout the program are unfolded using

these new clauses. Splitting has been used in the CLP literature to improve the precision

of program analyses, for example in (Serebrenik and De Schreye 2001). In our case it

improves the precision of the convex polyhedron analysis discussed below, since separate

polyhedra will be maintained for each of the disjoint cases. The correctness of splitting can

be shown using standard transformations that preserve the minimal model of the program

(with respect to the predicates of the original program) (Pettorossi and Proietti 1999).

Assuming that the predicate false is not split, we have that P |= false ≡ P split |= false.

Convex polyhedron approximation. Convex polyhedron analysis (Cousot and Halbwachs

1978) is a program analysis technique based on abstract interpretation (Cousot and

Cousot 1977). When applied to a set of CHCs P it constructs an over-approximation M ′

of the minimal model of P , where M ′ contains at most one constrained fact p(X) ← C
for each predicate p. The constraint C is a conjunction of linear inequalities, representing

a convex polyhedron. The first application of convex polyhedron analysis to CLP was

by Benoy and King (1996). Since the domain of convex polyhedra contains infinite in-

creasing chains, the use of a widening operator is needed to ensure convergence of the

abstract interpretation. Furthermore much research has been done on improving the pre-

cision of widening operators. One technique is known as widening-upto, or widening with

thresholds (Halbwachs et al. 1994).

Recently, a technique for deriving more effective thresholds was developed (Lakhdar-

Chaouch et al. 2011), which we have adapted and found to be effective in experimental

studies. The thresholds are computed by the following method. Let T CP be the standard

immediate consequence operator for CHCs, that is, T CP (I) is the set of constrained facts

that can be derived in one step from a set of constrained facts I. Given a constrained

fact p(Z̄) ← C, define atomconstraints(p(Z̄) ← C) to be the set of constrained facts

{p(Z̄)← Ci | C = C1 ∧ . . .∧Ck, 1 ≤ i ≤ k)}. The function atomconstraints is extended to

interpretations by atomconstraints(I) =
⋃

p(Z̄)←C∈I{atomconstraints(p(Z̄)← C)}.
Let I> be the interpretation consisting of the set of constrained facts p(Z̄) ← true

for each predicate p. We perform three iterations of T CP starting with I> (the first three

elements of a “top-down” Kleene sequence) and then extract the atomic constraints.

That is, thresholds is defined as follows.

thresholds(P) = atomconstraints(T
C(3)
P (I>))

A difference from the method in (Lakhdar-Chaouch et al. 2011) is that we use the con-

crete semantic function T CP rather than the abstract semantic function when computing

thresholds. The set of threshold constraints represents an attempt to find useful predicate

properties and when widening they help to preserve invariants that might otherwise be

lost during widening. See (Lakhdar-Chaouch et al. 2011) for further details. Threshold

constraints that are not invariants are simply discarded during widening.

6 John P. Gallagher and Bishoksan Kafle

new6(A,B) :- B=<99. new4(A,B) :- C=1+A,D=1+B,A>=50,new3(C,D).

new5(A,B) :- B>=101. new3(A,B) :- A=<99, new4(A,B).

new5(A,B) :- B=<100, new6(A,B). new3(A,B) :- A>=100, new5(A,B).

new4(A,B) :- C=1+A, A=<49, new3(C,B). false :- A=0, B=50, new3(A,B).

Fig. 1. The example program MAP-disj.c.map.pl

4 The role of CLP tools in verification

The techniques discussed in the previous section play various roles. The convex polyhe-

dron analysis, together with the helper tool to derive threshold constraints, constructs

an approximation of the minimal model of a CHC theory. If false (or falseans) is not in

the approximate model, then the verification problem is solved. Otherwise the problem is

not solved; in effect a “don’t know” answer is returned. We have found that polyhedron

analysis alone is seldom precise enough to solve non-trivial CHC verification problems;

in combination with the other tools, it is very effective.

Unfolding can improve the structure of a program, removing some cases of mutual

recursion, or propagating constraints upwards towards the integrity constraints, and can

improve the precision and performance of convex polyhedron analysis.

Specialisation can remove parts of theories not relevant to the verification problem,

and can also propagate constraint downwards from the integrity constraints. Both of

these have a beneficial effect on performance and precision of polyhedron analysis.

Analysis of a query-answer program (with respect to false) is in effect the search for a

derivation tree for false. Its effectiveness in CHC verification problems is variable. It can

sometimes worsen performance since the query-answer transformed program is larger and

contains more recursive dependencies than the original. On the other hand, one seldom

loses precision and it is often more effective in allowing constraints to be propagated

upwards (through the ans predicates) and downwards (through the query predicates).

4.1 Application of the tools

We illustrate the tools on a running example (Figure 1), one of the benchmark suite of the

VeriMAP system De Angelis et al. (2014). The result of applying unfolding is shown in

Figure 2 (omitting the definitions of the unfolded predicates new4, new5 and new6, which

are no longer reachable from false). The unfolding strategy we adopt is the following:

the predicate dependency graph of a program consists of the set of edges (p, q) such that

there is clause where p is the predicate of the head and q is a predicate occurring in the

body. We perform a depth-first search of the predicate dependency graph, starting from

false, and identify the backward edges, namely those edges (p, q) where q is an ancestor

of p in the depth-first search. We then unfold every body call whose predicate is not at

the end of a backward edge. In Figure 1, we thus unfold calls to new4, new5 and new6.

The query-answer transformation is applied to the program in Figure 2, with respect

to the goal false resulting in the program shown in Figure 3. The model of the predicate

new3 query corresponds to those calls to new3 that are reachable from the call in the

integrity constraint. Explicit representation of the query predicates permits more effective

propagation of constraints from the integrity clauses during model approximation.

The splitting transformation is now applied to the program in Figure 3. We do not

Tools for Constrained Horn Clause Verification 7

false :- A=0, B=50, new3(A,B).

new3(A,B) :- A=<99, C = 1+A, A=<49, new3(C,B).

new3(A,B) :- A=<99, C = 1+A, D = 1+B, A>=50, new3(C,D).

new3(A,B) :- A>=100, B>=101.

new3(A,B) :- A>=100, B=<100, B=<99.

Fig. 2. Result of unfolding MAP-disj.c.map.pl

false ans :- false query, A=0, B=50, new3 ans(A,B).

new3 ans(A,B) :- new3 query(A,B), A=<99, C = 1+A, A=<49, new3 ans(C,B).

new3 ans(A,B) :- new3 query(A,B),A=<99,C is 1+A,D is 1+B, A>=50, new3 ans(C,D).

new3 ans(A,B) :- new3 query(A,B), A>=100, B>=101.

new3 ans(A,B) :- new3 query(A,B), A>=100, B=<100, B=<99.

new3 query(A,B) :- false query, A=0, B=50.

new3 query(A,B) :- new3 query(C,B), C=<99, A = 1+C, C=<49.

new3 query(A,B) :- new3 query(C,D), C=<99, A = 1+C, B = 1+D, C>=50.

false query.

Fig. 3. The query-answer transformed program for program of Figure 2

show the complete program, which contains 30 clauses. Figure 4 shows the split definition

of new3 query, which is split since the last two clauses for new3 query in Figure 3 have

mutually disjoint constraints, when projected onto the head variables.

A convex polyhedron approximation is then computed for the split program, after

computing threshold constraints for the predicates. The resulting approximate model is

shown in Figure 5 as a set of constrained facts. Since the model does not contain any

constrained fact for false ans we conclude that false ans is not a consequence of the

split program. Hence, applying the various correctness results for the unfolding, query-

answer and splitting transformations, false is not a consequence of the original program.

Discussion of the example. Application of the convex polyhedron tool to the original, or

the intermediate programs, does not solve the problem; all the transformations are needed

in this case, apart from redundant argument filtering, which only affects efficiency. The

ordering of the tool-chain can be varied somewhat, for instance switching query-answer

transformation with splitting or unfolding. In our experiments we found the ordering in

Figure 6 to be the most effective.

The model of the query-answer program is finite for this example. However, the problem

is essentially the same if the constants are scaled; for instance we could replace 50 by 5000,

49 by 4999, 100 by 10000 and 101 by 10001, and the problem is essentially unchanged.

We noted that some CHC verification tools applied to this example solve the problem,

but essentially by enumeration of the finite set of values encountered in the search. Such

new3 query 1(A,B) :- false query 1, A=0, B=50.

new3 query 1(A,B) :- new3 query 1(C,B), C=<99, A = 1+C, C=<49.

new3 query 1(A,B) :- new3 query 2(C,B), C=<99, A = 1+C, C=<49.

new3 query 2(A,B) :- new3 query 1(C,D), C=<99, A = 1+C, B = 1+D, C>=50.

new3 query 2(A,B) :- new3 query 2(C,D), C=<99, A = 1+C, B = 1+D, C>=50.

Fig. 4. Part of the split program for the program in Figure 3

8 John P. Gallagher and Bishoksan Kafle

false query 1 :- []

new3 query 1(A,B) :- [1*A>=0,-1*A>= -50,1*B=50]

new3 query 2(A,B) :- [1*A>=51,-1*A>= -100,1*A+ -1*B=0]

Fig. 5. The convex polyhedral approximate model for the split program

a solution does not scale well. On the other hand the polyhedral abstraction shown above

is not an enumeration; an essentially similar polyhedron abstraction is generated for the

scaled version of the example, in the same time. The VeriMAP tool (De Angelis et al.

2014) also handles the original and scaled versions of the example in the same time.

RAF – Redundant Argument Filtering

FU – Forward Unfolding

QA – Query Answer Transformation

PS – Predicate Splitting

TC – Threshold Constraint
CHA – Convex Hull Analyzer

CHC Program P

RAF FU QA PS TC
Safe

unknown

CHA

Fig. 6. The basic tool chain for CHC verification.

5 Combining off-the-shelf tools: Experiments

The motivation for our tool-chain, summarised in Figure 6, comes from our example pro-

gram, which is a simple yet challenging program. We applied the tool-chain to a number of

benchmarks from the literature, taken mainly from the repository of Horn clause bench-

marks in SMT-LIB2 (https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/)

and other sources including (Gange et al. 2013) and some of the VeriMap benchmarks

(De Angelis et al. 2014). We selected these examples because many of them are consid-

ered challenging because they cannot be solved by one or more of the state-of-the-art-

verification tools discussed below. Programs taken from the SMT-LIB2 repository are

first translated to CHC form. The results are summarised in Table 1.

In Table 1, columns Program and Result respectively represent the benchmark pro-

gram and the results of verification using our tool combination. Problems marked with

(*) could not be handled by our tool-chain since they contain numbers which do not

fit in 32 bits, the limit of our Ciao Prolog implementation. whereas problems marked

with (**) are solvable by simple ad hoc modification of the tool-chain, which we are

currently investigating (see Section 7). Problems such as systemc-token-ring.01-safeil.c

contain complicated loop structure with large strongly connected components in the pred-

icate dependency graph and our convex polyhedron analysis tool is unable to derive the

required invariant. However overall results show that our simple tool-chain begins to com-

pete with advanced tools like HSF (Grebenshchikov et al. 2012), VeriMAP (De Angelis

et al. 2014), TRACER (Jaffar et al. 2012), etc. We do not report timings, though all these

Tools for Constrained Horn Clause Verification 9

results are obtained in a matter of seconds, since our tool-chain is not at all optimised,

relying on file input-output and the individual components are often prototypes.

Table 1. Experiments results on CHC benchmark program

SN Program Result SN Program Result

1 MAP-disj.c.map.pl verified 17 MAP-forward.c.map.pl verified
2 MAP-disj.c.map-scaled.pl verified 18 tridag.smt2 verified
3 t1.pl verified 19 qrdcmp.smt2 verified
4 t1-a.pl verified 20 choldc.smt2 verified
5 t2.pl verified 21 lop.smt2 verified
6 t3.pl verified 22 pzextr.smt2 verified
7 t4.pl verified 23 qrsolv.smt2 verified
8 t5.pl verified 24 INVGEN-apache-escape-absolute verified
9 pldi12.pl verified 25 TRACER-testabs15 verified
10 INVGEN-id-build verified 26** amebsa.smt2 verified
11 INVGEN-nested5 verified 27** DAGGER-barbr.map.c verified
12 INVGEN-nested6 verified 28* sshsimpl-s3-srvr-1a-safeil.c NOT
13 INVGEN-nested8 verified 29 sshsimpl-s3-srvr-1b-safeil.c NOT
14 INVGEN-svd-some-loop verified 30* bandec.smt2 NOT
15 INVGEN-svd1 verified 31 systemc-token-ring.01-safeil.c NOT
16 INVGEN-svd4 verified 32* crank.smt2 NOT

PA – Predicate AbstractionCHC Program P

RAF

FU QA PS TC CHA
Safe

CEx.

props

unknown

PA

Fig. 7. Future extension of our tool-chain.

6 Discussion and Related Work

The most similar work to ours is by De Angelis et al. (2013) which is also based on CLP

program transformation and specialisation. They construct a sequence of transformations

of P , say, P, P1, P2, . . . , Pk; if Pk contains no clause with head false then the verification

problem is solved. A proof of unsafety is obtained if Pk contains a clause false ←. Both

our approach and theirs repeatedly apply specialisations preserving the property to be

proved. However the difference is that their specialisation techniques are based on unfold-

fold transformations, with a sophisticated control procedure controlling unfolding and

10 John P. Gallagher and Bishoksan Kafle

generalisation. Our specialisations are restricted to redundant argument filtering and the

query-answer transformation, which specialises predicate answers with respect to a goal.

Their test for success or failure is a simple syntactic check, whereas ours is based on an

abstract interpretation to derive an over-approximation. Informally one can say that the

hard work in their approach is performed by the specialisation procedure, whereas the

hard work in our approach is done by the abstract interpretation. We believe that our

tool-chain-based approach gives more insight into the role of each transformation.

Work by Gange et al. (2013) is a top-town evaluation of CLP programs which records

certain derivations and learns only from failed derivations. This helps to prune further

derivations and helps to achieve termination in the presence of infinite executions. Duality

(http://research.microsoft.com/en-us/projects/duality/) and HSF(C) (Grebenshchikov

et al. 2012) are examples of the CEGAR approach (Counter-Example-Guided Abstrac-

tion Refinement). This approach can be viewed as property-based abstract interpretation

based on a set of properties that is refined on each iteration. The refinement of the prop-

erties is the key problem in CEGAR; an abstract proof of unsafety is used to generate

properties (often using interpolation) that prevent that proof from arising again. Thus,

abstract counter-examples are successively eliminated. The relatively good performance

of our tool-chain, without any refinement step at all, suggests that finding the right in-

variants is aided by a tool such as the convex polyhedron solver and the pre-processing

steps we applied. In Figure 7 we sketch possible extensions of our basic tool-chain, in-

corporating a refinement loop and property-based abstraction.

It should be noted that the query-answer transformation, predicate splitting and un-

folding may all cause an blow-up in the program size. The convex polyhedron analysis

becomes more effective as a result, but for scalability we need more sophisticated heuris-

tics controlling these transformations, especially unfolding and splitting, as well as lazy or

implicit generation of transformed programs, using techniques such as a fixpoint engine

that simulates query-answer programs (Codish 1999).

7 Concluding remarks and future work

We have shown that a combination of off-the-shelf tools from CLP transformation and

analysis, combined in a sensible way, is surprisingly effective in CHC verification. The

component-based approach allowed us to experiment with the tool-chain until we found

an effective combination. This experimentation is continuing and we are confident of

making improvements by incorporating other standard techniques and by finding bet-

ter heuristics for applying the tools. Further we would like to investigate the choice of

chain suitable for each example since more complicated problems can be handled just

by altering the chain. We also suspect from initial experiments that an advanced partial

evaluator such as ECCE (Leuschel et al. 2006) will play a useful role. Our results give

insights for further development of automatic CHC verification tools. We would like to

combine our program transformation techniques with abstraction refinement techniques

and experiment with the combination.

Tools for Constrained Horn Clause Verification 11

References

Benoy, F. and King, A. 1996. Inferring argument size relationships with CLP(R). In Logic-
Based Program Synthesis and Transformation (LOPSTR’96), J. P. Gallagher, Ed. Lecture
Notes in Computer Science, vol. 1207. Springer, 204–223.

Codish, M. 1999. Efficient goal directed bottom-up evaluation of logic programs. J. Log.
Program. 38, 3, 355–370.

Codish, M. and Demoen, B. 1993. Analysing logic programs using “Prop”-ositional logic
programs and a magic wand. In Proceedings of the 1993 International Symposium on Logic
Programming, Vancouver, D. Miller, Ed. MIT Press.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, R. M. Graham,
M. A. Harrison, and R. Sethi, Eds. ACM, 238–252.

Cousot, P. and Halbwachs, N. 1978. Automatic discovery of linear restraints among vari-
ables of a program. In Proceedings of the 5th Annual ACM Symposium on Principles of
Programming Languages. ACM Press, 84–96.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2013. Verifying programs
via iterated specialization. In PEPM, E. Albert and S.-C. Mu, Eds. ACM, 43–52.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2014. Verimap: A tool
for verifying programs through transformations. In TACAS, E. Ábrahám and K. Havelund,
Eds. Lecture Notes in Computer Science, vol. 8413. Springer, 568–574.

Debray, S. and Ramakrishnan, R. 1994. Abstract Interpretation of Logic Programs Using
Magic Transformations. Journal of Logic Programming 18, 149–176.

Gallagher, J. P. 1993. Specialisation of logic programs: A tutorial. In Proceedings PEPM’93,
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipula-
tion. ACM Press, Copenhagen, 88–98.

Gallagher, J. P. and de Waal, D. 1993. Deletion of redundant unary type predicates from
logic programs. In Logic Program Synthesis and Transformation, K. Lau and T. Clement,
Eds. Workshops in Computing. Springer-Verlag, 151–167.

Gange, G., Navas, J. A., Schachte, P., Søndergaard, H., and Stuckey, P. J. 2013.
Failure tabled constraint logic programming by interpolation. TPLP 13, 4-5, 593–607.

Grebenshchikov, S., Gupta, A., Lopes, N. P., Popeea, C., and Rybalchenko, A. 2012.
HSF(C): A software verifier based on Horn clauses - (competition contribution). In TACAS,
C. Flanagan and B. König, Eds. LNCS, vol. 7214. Springer, 549–551.

Halbwachs, N., Proy, Y. E., and Raymound, P. 1994. Verification of linear hybrid systems
by means of convex approximations. In Proceedings of the First Symposium on Static Analysis.
Lecture Notes in Computer Science, vol. 864. Springer, 223–237.

Jaffar, J. and Maher, M. 1994. Constraint Logic Programming: A Survey. Journal of Logic
Programming 19/20, 503–581.

Jaffar, J., Murali, V., Navas, J. A., and Santosa, A. E. 2012. TRACER: A symbolic
execution tool for verification. In CAV, P. Madhusudan and S. A. Seshia, Eds. Lecture Notes
in Computer Science, vol. 7358. Springer, 758–766.

Lakhdar-Chaouch, L., Jeannet, B., and Girault, A. 2011. Widening with thresholds for
programs with complex control graphs. In ATVA 2011, T. Bultan and P.-A. Hsiung, Eds.
Lecture Notes in Computer Science, vol. 6996. Springer, 492–502.

Leuschel, M. 1999. Advanced logic program specialisation. In Partial Evaluation - Practice
and Theory, J. Hatcliff, T. Æ. Mogensen, and P. Thiemann, Eds. Lecture Notes in Computer
Science, vol. 1706. Springer, 271–292.

Leuschel, M., Elphick, D., Varea, M., Craig, S.-J., and Fontaine, M. 2006. The Ecce
and Logen partial evaluators and their web interfaces. In PEPM 2006, J. Hatcliff and F. Tip,
Eds. ACM, 88–94.

12 John P. Gallagher and Bishoksan Kafle

Leuschel, M. and Sørensen, M. H. 1996. Redundant argument filtering of logic programs. In
Logic Programming Synthesis and Transformation, 6th International Workshop, LOPSTR’96,
Stockholm, Sweden, August 28-30, 1996, Proceedings, J. P. Gallagher, Ed. Lecture Notes in
Computer Science, vol. 1207. Springer, 83–103.

Pettorossi, A. and Proietti, M. 1999. Synthesis and transformation of logic programs using
unfold/fold proofs. J. Log. Program. 41, 2-3, 197–230.

Serebrenik, A. and De Schreye, D. 2001. Inference of termination conditions for numerical
loops in Prolog. In LPAR 2001, R. Nieuwenhuis and A. Voronkov, Eds. Lecture Notes in
Computer Science, vol. 2250. Springer, 654–668.

Attachment D3.3.4

Tree automata-based refinement with

application to Horn clause verification

Published at the 16th International Conference
of Verification, Model Checking, and Abstract

Interpretation (VMCAI 2015)

86

Tree Automata-Based Refinement

with Application to Horn Clause Verification

Bishoksan Kafle1,� and John P. Gallagher1,2,��

1 Roskilde University, Denmark
2 IMDEA Software Institute, Madrid, Spain

Abstract. In this paper we apply tree-automata techniques to refine-
ment of abstract interpretation in Horn clause verification. We go beyond
previous work on refining trace abstractions; firstly we handle tree au-
tomata rather than string automata and thereby can capture traces in
any Horn clause derivations rather than just transition systems; secondly,
we show how algorithms manipulating tree automata interact with ab-
stract interpretations, establishing progress in refinement and generating
refined clauses that eliminate causes of imprecision. We show how to de-
rive a refined set of Horn clauses in which given infeasible traces have
been eliminated, using a recent optimised algorithm for tree automata
determinisation. We also show how we can introduce disjunctive abstrac-
tions selectively by splitting states in the tree automaton. The approach
is independent of the abstract domain and constraint theory underly-
ing the Horn clauses. Experiments using linear constraint problems and
the abstract domain of convex polyhedra show that the refinement tech-
nique is practical and that iteration of abstract interpretation with tree
automata-based refinement solves many challenging Horn clause verifi-
cation problems. We compare the results with other state of the art Horn
clause verification tools.

1 Introduction

In this paper we apply tree-automata techniques to refinement of abstract inter-
pretation in Horn clause verification. We go beyond previous work on refining
trace abstractions [23]; firstly, we handle tree automata rather than word au-
tomata and thereby can capture traces in any Horn clause derivations rather
than just transition systems; secondly, we show how algorithms manipulating
tree automata interact with abstract interpretations, establishing progress in
refinement and generating refined clauses that eliminate causes of imprecision.

More specifically, we show how to construct tree automata capturing both
the traces (derivations) of a given set of Horn clauses and also one or more
infeasible traces discovered after abstract interpretation of the clauses. From
these we construct a refined automaton in which the infeasible trace(s) have been
eliminated and a new set of clauses is constructed from the refined automaton.

� Supported by EU FP7 project ENTRA (Project 318337).
�� Supported by Danish Research Council grant FNU 10-084290.

D. D’Souza et al. (Eds.): VMCAI 2015, LNCS 8931, pp. 209–226, 2015.
c© Springer-Verlag Berlin Heidelberg 2015

210 B. Kafle and J.P. Gallagher

This guarantees progress in that the same infeasible trace cannot be generated
(in any abstract interpretation). In addition, the clauses are restructured during
the elimination of the trace, leading to more precise abstractions which can
lead to better invariant generation in subsequent iterations. The refinement is
manifested in the refined clauses, rather than in an accumulated set of properties
as in the counterexample-guided abstraction refinement (CEGAR) [8] approach.
We rely on the abstract interpretation of the clauses to generate useful properties,
rather than hoping to find them during the refinement itself.

We also show how we can introduce disjunctive abstractions selectively by
splitting states in the tree automaton. The approach is independent of the ab-
stract domain and constraint theory underlying the Horn clauses. Experiments
using linear constraint problems and the abstract domain of convex polyhedra
show that the refinement technique is practical and that iteration of abstract in-
terpretation with tree automata-based refinement solves many challenging Horn
clause verification problems. We compare the results with other state of the art
Horn clause verification tools.

The main contributions of this paper are the following; (1) We construct a cor-
respondence between computations using Horn clauses and finite tree automata
(FTA) (Section 3). (2) We construct a refined set of clauses directly from a
tree automaton representation of the clauses and an infeasible trace; the trace
is eliminated from the refined clauses (Section 3.5) (3) We propose a “splitting”
operator on FTAs (Section 2) and describe its role in Horn clause verification
(Section 4.1). (4) We demonstrate the feasibility of our approach in practice
applying it to Horn clause verification problems (Section 5).

2 Finite Tree Automata

Finite tree automata (FTAs) are mathematical machines that define so-called
recognisable tree languages, which are possibly infinite sets of terms that have
desirable properties such as closure under Boolean set operations and decidability
of membership and emptiness.

Definition 1 (Finite tree automaton). An FTA A is a tuple (Q, Qf , Σ, Δ),
where Q is a finite set of states, Q ⊆ Qf is a set of final states, Σ is a set of
function symbols, and Δ is a set of transitions. We assume that Q and Σ are
disjoint.

Each function symbol f ∈ Σ has an arity n ≥ 0, written as ar(f) = n. The
function symbols with arity 0 are called constants. Term(Σ) is the set of ground
terms or trees constructed from Σ where t ∈ Term(Σ) iff t ∈ Σ is a constant
or t = f(t1, t2, ..., tn) where ar(f) = n and t1, t2, ..., tn ∈ Term(Σ). Similarly
Term(Σ ∪ Q) is the set of terms/trees constructed from Σ and Q, treating the
elements of Q as constants.

Each transition in Δ is of the form f(q1, q2, ..., qn) → q where ar(f) = n. Given
δ ∈ Δ we refer to its left- and right-hand-sides as lhs(δ) and rhs(δ) respectively.
Let ⇒ be a one-step rewrite in which t1 ⇒ t2 iff t2 is the result of replacing one

Tree Automata-Based Refinement with Application 211

subterm of t1 equal to lhs(δ) by rhs(δ), from some δ ∈ Δ. The reflexive, transitive
closure of ⇒ is ⇒∗. We say there is a run (resp. successful run) for t ∈ Term(Σ)
if t ⇒∗ q where q ∈ Q (resp. q ∈ Qf), and we say that t is accepted if t has a
successful run. An FTA A defines a set of terms, that is, a tree language, denoted
by L(A), as the set of all terms accepted by A.

Definition 2 (Deterministic FTA (DFTA)). An FTA (Q, Qf , Σ, Δ) is called
bottom-up deterministic iff Δ has no two transitions with the same left hand side.

We omit the adjective “bottom-up” in this paper and just refer to deterministic
FTAs. Runs of a DFTA are deterministic in the sense that for every t ∈ Term(Σ)
there is at most one q ∈ Q such that t ⇒∗ q.

2.1 Operations on FTAs

FTAs are closed under Boolean set operations, but for our purposes we mention
only union and difference of automata, where in addition we assume that the
signature Σ is fixed and that the states of FTAs are disjoint from each other
when applying operations (the states can be renamed apart).

Definition 3 (Union of FTAs). Let A1, A2 be FTAs (Q1, Q1
f , Σ, Δ1) and

(Q2, Q2
f , Σ, Δ2) respectively. Then A1 ∪ A2 = (Q1 ∪ Q2, Q1

f ∪ Q2
f , Σ, Δ1 ∪ Δ2),

and we have L(A1 ∪ A2) = L(A1) ∪ L(A2).

Determinisation plays a key role in the theory of FTAs. As far as expressive-
ness is concerned, we can limit our attention to DFTAs since for every FTA A
there exists a DFTA Ad such that L(A) = L(Ad) [9]. The standard construction
builds a DFTA Ad whose states are elements of the powerset of the states of
A. The textbook procedure for constructing Ad from A [9] is not viewed as a
practical procedure for manipulating tree automata, even fairly small ones. In
a recent work Gallagher et al. [14] developed an optimised algorithm for deter-
minisation, whose worst-case complexity remains unchanged, but which performs
dramatically better than existing algorithms in practice. A critical aspect of the
algorithm is that the transitions of the determinised automaton are generated
in a potentially very compact form called product form, which can often be used
directly when manipulating the determinised automaton.

Definition 4 (Product Transition). A product transition is of the form
f(Q1, . . . , Qn) → q where Qi are sets of states and q is a state. The product
transition represents a set of transitions {f(q1, . . . , qn) → q | qi ∈ Qi, i = 1..n}.
Thus Πn

i=1|Qi| transitions are represented by a single product transition.

Alternatively, we can regard a product transition as introducing ε-transitions.
An ε-transition has the form q1 → q2 where q1, q2 are states. ε-transitions can be
eliminated, if desired. Given a product transition f(Q1, . . . , Qn) → q, introduce
n new non-final states s1, . . . , sn corresponding to Q1, . . . , Qn respectively and
replace the product transition by the set of transitions {f(s1, . . . , sn) → q} ∪

212 B. Kafle and J.P. Gallagher

{q′ → si | q′ ∈ Qi, 1 = 1..n}. It can be shown that this transformation preserves
the language of the FTA.

Given FTAs A1 and A2 there exists an FTA A1 \ A2 such that L(A1 \ A2) =
L(A1)\L(A2). To construct the difference FTA we use union and determinisation
and exploit the following property of determinised states [14].

Property 1. Let Ad be the DFTA constructed from A. Let Q be the states of
A. Then there is a run t ⇒∗ q in A if and only if there is a run t ⇒∗ Q′ in Ad

where Q′ ∈ 2Q, such that q ∈ Q′.

Furthermore recall that a term is accepted by at most one state in a DFTA. This
gives rise to the following construction of the difference FTA A1 \ A2. We first
form the DFTA for the union of the two FTAs and then remove those of its final
states containing the final states of A2. In this way we remove the terms, and
only the terms (by Property 1), accepted by A2. The availability of a practical
algorithm for determinisation is what makes this construction of the difference
FTA feasible.

Definition 5 (Construction of difference of FTAs). Let A1, A2 be FTAs
(Q1, Q1

f , Σ, Δ1) and (Q2, Q2
f , Σ, Δ2) respectively. Let (Q′, Q′

f , Σ, Δ′) be the de-

terminisation of A1 ∪ A2. Let Q2 = {Q′ ∈ Q′ | Q′ ∩ Q2
f 	= ∅}. Then A1 \ A2 =

(Q′, Q′
f \ Q2, Σ, Δ′).

Next we introduce a new operation over FTA called state splitting. which
consists of splitting a state q into a number of states, based on a partition of the
set of transitions whose rhs is q. We define this splitting as follows:

Definition 6 (Splitting a state in an FTA). Let A = (Q, Qf , Σ, Δ) be an
FTA. Let q ∈ Q and Δq = {t ∈ Δ | rhs(t) = q}. Let Φ = {Δ1

q, . . . , Δ
k
q} (k > 1) be

some partition of Δq. Introduce k new states q1, . . . , qk. Then the FTA splitΦ(A)
is (Qs, Qs

f , Σ, Δs) where:

– Qs = Q \ {q} ∪ {q1, . . . , qk};
– Qs

f = Qf \ {q} ∪ {q1, . . . , qk} if q ∈ Qf , otherwise Qs
f = Qf ;

– Δs = unfoldq(Δ \ Δq ∪ {lhs(t) → qi | t ∈ Δi
q, i = 1..k}), where unfoldq(Δ

′)
is the result of repeatedly replacing a transition f(. . . , q, . . .) → s ∈ Δ′ by
the set of k transitions {f(. . . , q1, . . .) → s, . . . , f(. . . , qk, . . .) → s} until no
more such replacements can be made.

We have L(A) = L(splitΦ(A)).

3 Horn Clauses and Their Trace Automata

A constrained Horn clause (CHC) is a first order predicate logic formula of the
form ∀(φ ∧ p1(X1) ∧ . . . ∧ pk(Xk) → p(X)) (k ≥ 0), where φ is a conjunction of
constraints with respect to some background theory, Xi, X are (possibly empty)

Tree Automata-Based Refinement with Application 213

vectors of distinct variables, p1, . . . , pk, p are predicate symbols, p(X) is the head
of the clause and φ ∧ p1(X1) ∧ . . . ∧ pk(Xk) is the body.

There is a distinguished predicate symbol false which is interpreted as false.
In practice the predicate false only occurs in the head of clauses; we call clauses
whose head is false integrity constraints, following the terminology of deductive
databases. They are also sometimes referred to as negative clauses. We follow
the syntactic conventions of constraint logic programs and write a clause as
p(X) ← φ, p1(X1), . . . , pk(Xk).

3.1 Interpretations and Models

An interpretation of a set of CHCs is represented as a set of constrained facts of
the form A ← φ where A is an atomic formula p(Z1, . . . , Zn) where Z1, . . . , Zn

are distinct variables and φ is a constraint over Z1, . . . , Zn. The constrained fact
A ← φ is shorthand for the set of variable-free facts Aθ such that φθ holds in the
constraint theory, and an interpretation M denotes the set of all facts denoted
by its elements; M assigns true to exactly those facts. M1 ⊆ M2 if the set of
denoted facts of M1 is contained in the set of denoted facts of M2.

Minimal models. A model of a set of CHCs is an interpretation that satisfies each
clause. There exists a minimal model with respect to the subset ordering, denoted
M [[P]] where P is the set of CHCs. M [[P]] can be computed as the least fixed point
(lfp) of an immediate consequences operator (called SD

P in [25, Section 4]), which
is an extension of the standard TP operator from logic programming, extended
to handle the constraint domain D. Furthermore lfp(SD

P) can be computed as
the limit of the ascending sequence of interpretations ∅, SD

P (∅), SD
P (SD

P (∅)),
This sequence provides a basis for abstract interpretation of CHC clauses. The
minimal model of P is equivalent to the set of atomic logic consequences of P .

3.2 The Constrained Horn Clause Verification Problem.

Given a set of CHCs P , the CHC verification problem is to check whether there
exists a model of P . Obviously any model of P assigns false to the bodies of
integrity constraints. We restate this property in terms of the derivability of the
predicate false. Let P |= F mean that F is a logical consequence of P , that is,
that every interpretation satisifying P also satisfies F .

Lemma 1. P has a model if and only if P 	|= false.

This lemma holds for arbitrary interpretations (only assuming that the predicate
false is interpreted as false), uses only the textbook definitions of “interpretation”
and “model” and does not depend on the constraint theory. Due to the equiva-
lence of the minimal model of P with the set of atomic logical consequences of
P , we have yet another equivalent formulation of the CHC verification problem.

Lemma 2. P has a model if and only if false 	∈ M [[P]].

214 B. Kafle and J.P. Gallagher

c1. mc91(A,B) :- A > 100, B = A-10.

c2. mc91(A,B) :- A =< 100, C = A+11, mc91(C,D), mc91(D,B).

c3. false :- A =< 100, B > 91, mc91(A,B).

c4. false :- A =< 100, B =< 90, mc91(A,B).

Fig. 1. Example CHCs. The McCarthy 91-function.

It is this formulation that is most relevant to our method, since we compute
over-approximations of M [[P]] by abstract interpretation. That is, if false 	∈ M ′

where M [[P]] ⊆ M ′ then we have shown that P has a model.

3.3 Trace Automata for CHCs

Before constructing the trace automaton we introduce identifiers for each clause.
An identifier is a function symbol whose arity is the same as the number of
atoms in the clause body. For instance a clause p(X) ← φ, p1(X1), . . . , pk(Xk) is
assigned a function symbol with arity k. More than one clause can be assigned
the same function symbol, but all the clauses with the same identifier have the
same structure, including their constraints; that is, they differ only in one or
more predicate names. Given a set of CHCs and a set Σ of ranked function
symbols, let idP : P → Σ be the assignment of function symbols to clauses.

Definition 7 (Trace FTA for a set of CHCs). Let P be a set of CHCs.
Define the trace FTA for P as AP = (Q, Qf , Σ, Δ) where

– Q is the set of predicate symbols of P ;
– Qf ⊆ Q is the set of predicate symbols occurring in the heads of clauses of

P ;
– Σ is a set of function symbols;
– Δ = {c(p1, . . . , pk) → p | where c ∈ Σ, c = idP (cl), where cl = p(X) ←

φ, p1(X1), . . . , pk(Xk)}.
The elements of L(AP) are called trace terms for P . In Section 4 we will see
that several clauses differing only in their predicate names are assigned the same
function symbol.

To motivate readers, we present an example set of CHCs P in Figure 1 which
will be used throughout this paper. This is an interesting problem in which the
computations are trees rather than linear sequences.

Example 1. Let P be the set of CHCs in Figure 1. Let idP map the clauses to
c1, . . . , c4 respectively. Then AP = (Q, Qf , Σ, Δ) where:

Q = {mc91, false} Δ = {c1 → mc91,
Qf = {mc91, false} c2(mc91, mc91) → mc91,
Σ = {c1, c2, c3, c4} c3(mc91) → false, c4(mc91) → false}

For each trace term there exists a corresponding derivation tree called an
AND-tree, which is unique up to variable renaming. The concept of an AND-
tree is derived from [33] and [16].

Tree Automata-Based Refinement with Application 215

Definition 8 (AND-tree for a trace term). Let P be a set of CHCs and
let t ∈ L(AP). Denote by AND(t) the following labelled tree, where each node of
AND(t) is labelled by a clause and an atomic formula.

1. For each subterm cj(t1, . . . , tk) of t there is a corresponding node in AND(t)
labelled by an atom p(X) and (a renamed variant of) some clause p(X) ←
φ, p1(X1), . . . , pk(Xk) such that cj = idP (p(X) ← φ, p1(X1), . . . , pk(Xk));
the node’s children (if k > 0) are the nodes corresponding to t1, . . . , tk and
are labelled by p1(X1), . . . , pk(Xk).

2. The variables in the labels are chosen such that if a node n is labelled by a
clause, the local variables in the clause body do not occur outside the subtree
rooted at n.

Definition 9 (Trace constraints). Let P be a set of CHCs. The set of con-
straints of a trace t ∈ L(AP), represented as constr(t) is the set of all constraints
in the clause labels of AND(t).

Definition 10 (Feasible trace). We say that a trace term t is feasible if
constr(t) is satisfiable.

Definition 11 (FTA for a trace term). Let P be a set of CHCs and t ∈
L(AP). The FTA At (whose construction is trivial) such that L(At) = {t} is
called the FTA for t. The states of At are chosen to be disjoint from those of
AP .

Example 2 (Trace FTA). Consider the FTA in Example 1. Let t = c3(c2(c1, c1)).
Each nodei represents a label in the trace. Then At = (Q, Qf , Σ, Δ) is defined
as:

Q = {node1, node2, node3, node4}
Qf = {node1}
Σ = {c1, c2, c3, c4}
Δ = {c1 → node3, c1 → node4, c2(node3, node4) → node2,

c3(node2) → node1}
and Σ is the same as in AP . The trace t is not feasible since constr(t) =
{A ≤ 100, B > 91, A ≤ 100, C = A + 11, C > 100, D = C − 10, D > 100, B = D − 10}
and this is not satisfiable.

Definition 12 (Constrained trace atom). Let P be a set of CHCs and t ∈
L(AP). Let p(X) be the atom labelling the root of AND(t). Then the constrained
trace atom of t is ∀X.(∃Z̄.constr(t) → p(X)), where Z̄ = vars(constr(t)) \ X.

We now restate a standard result from constraint logic programming [25] in
terms of the concepts defined above.

Proposition 1. Let P be a set of CHCs.

1. Then for all t ∈ L(AP) the constrained trace atom for t is a logical conse-
quence of P . (Note that if t is not feasible this is trivially true).

216 B. Kafle and J.P. Gallagher

2. If p(a) is in the minimal model of P , there exists a feasible trace t ∈ L(AP)
whose constrained trace atom is of the form ∀X.φ → p(X) where the con-
straint φ[X/a] is true.

Assuming that the constraint theory has a complete satisfiability procedure, part
1 of Proposition 1 corresponds to the standard soundness result for resolution-
based proof systems, and part 2 corresponds to completeness.

3.4 Model-Preserving Transformation of Trace Automata

Proposition 1 implies that the constrained trace atoms for the feasible traces
describe exactly the elements of the minimal model, which is equivalent to the
set of atomic logical consequences of P . As a consequence the set of feasible
traces in L(AP) can be regarded as a representation of the minimal model of P .

If we transform AP to another FTA while preserving the set of traces, we also
preserve the feasible traces. More generally, we can transform AP to another
FTA A′ so long as L(A′) ⊆ L(AP) and the elements of L(AP) \ L(A′) are all
infeasible. In this case the feasible traces of L(A′) are still a representation of
the minimal model of P . We will exploit this in our refinement procedure (see
Section 4).

3.5 Generation of CHCs from a Trace FTA

Now we describe a procedure (Algorithm 1) for generating a set of clauses P ′

from an FTA A = (Q, Qf , Σ, Δ) and a set of clauses P . We assume that Σ is the
same as that of AP ; so Σ is the range of the function idP mapping clauses of P to
function symbols. The transitions Δ are not in product form; a modification of
the algorithm and its correctness proposition is possible for product form but we
omit that here. We first introduce an injective function for renaming the states
of A since we need predicate names for the generated clauses.

ρ : Q → Predicates

The function ρ maps each FTA state to a distinct predicate name. The algorithm
simply generates a clause for each transition, applying the renaming function
from states to predicates, and introducing variables arguments according to the
pattern obtained from any clause with the corresponding identifier (all clauses
with the same identifier having the same variable pattern).

Apart from generating a set of clauses P ′, Algorithm 1 also generates the
clause identification mapping idP ′ , preserving the function symbols from the
FTA. In this way the set of traces is preserved from P to P ′. The correctness of
Algorithm 1 is expressed by the following proposition.

Proposition 2. Let P be a set of CHCs and let A be an FTA whose signature
is the same as that of AP . Let P ′ be the set of clauses generated from A and
P by Algorithm 1. Then L(AP ′) = L(A). Furthermore if L(AP ′) includes all
the feasible traces of L(AP) then the minimal model of P ′ is the same as the
minimal model of P , modulo predicate renaming.

Tree Automata-Based Refinement with Application 217

Input: An FTA A = (Q, Qf , Σ, Δ) and a set of Horn clauses P
Output: A set of Horn clauses P ′

P ′ ← ∅;
for each ci(q1, . . . , qn) → q (where n ≥ 0) ∈ Δ do

let c = p(X) ← φ, p1(X1), . . . , pn(Xn) be any clause in P where idP (c) = ci;
cnew = ρ(q)(X) ← φ, ρ(q1)(X1), . . . , ρ(qn)(Xn) ;
idP ′(cnew) = ci;
P ′ ← P ′ ∪ {cnew};

end
return P ′;

Algorithm 1. Algorithm for generating a set of clauses from an FTA

Example 3 (Generation of clauses from an FTA). Consider the following tran-
sitions, relating to the signature for the program in Figure 1. The set of states is
{[false],[mc91],[e,false],[mc91,e1]}. (These are elements of the powerset
of the set of states {false,mc91,e,e1}, which were generated by the determin-
isation algorithm).

c1 -> [mc91, e1].

c2([mc91, e1],[mc91, e1]) -> [mc91].

c2([mc91],[mc91]) -> [mc91].

c2([mc91, e1],[mc91]) -> [mc91].

c2([mc91],[mc91, e1]) -> [mc91].

c3([mc91]) -> [false].

c4([mc91, e1]) -> [false].

c4([mc91]) -> [false].

c3([mc91, e1]) -> [e, false].

The clauses generated by Algorithm 1 are the following, with the renaming func-
tion ρ = {[false] �→ false, [mc91] �→ mc91, [e, false] �→ false 1, [mc91, e1] �→
mc91 1}. Below we also show the clause identifiers (the id function for the gen-
erated clauses) showing that several clauses can have the same identifier, thus
preserving traces.

c1: mc91_1(A,B) :- A>100, B=A-10.

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91_1(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91_1(D,B).

c3: false :- A =< 100, B > 91, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91_1(A,B).

c3: false_1 :- A =< 100, B > 91, mc91_1(A,B).

218 B. Kafle and J.P. Gallagher

3.6 Abstract Interpretation of Constrained Horn Clauses

Abstract interpretation [10] is a static program analysis techniques which de-
rives sound over-approximations by computing abstract fixed points. Convex
polyhedron analysis (CPA) [11] is a program analysis technique based on ab-
stract interpretation [10]. When applied to a set of CHCs P it constructs an
over-approximation M ′ of the minimal model of P , where M ′ contains at most
one constrained fact p(X) ← φ for each predicate p. The constraint φ is a
conjunction of linear inequalities, representing a convex polyhedron. The first
application of convex polyhedron analysis to CHCs was by Benoy and King [4].

We summarise briefly the elements of convex polyhedron analysis for CHC;
further details (with application to CHC) can be found in [11,4]. The abstract
interpretation consists of the computation of an increasing sequence of elements
of the abstract domain of tuples of convex polyhedra (one for each predicate)
Dn. We construct a monotonic abstract semantic function FP : Dn → Dn for the
set of Horn clauses P , approximating the concrete semantic “immediate conse-
quences” operator. Since Dn contains infinite increasing chains, a widening op-
erator for convex polyhedra [11] is needed to ensure convergence of the sequence.
The sequence computed is Z0 = ⊥n, Zn+1 = Zn∇FP (Zn) where ∇ is a widening
operator for convex polyhedra and the empty polyhedron is denoted ⊥. The con-
ditions on ∇ ensure that the sequence stabilises; thus for some finite j, Zi = Zj

for all i > j and furthermore the value Zj represents an over-approximation of
the least model of P . Much research has been done on improving the precision of
widening operators. One technique is known as widening-upto, or widening with
thresholds [22]. A threshold is an assertion that is combined with a widening
operator to improve its precision.

Our tool for convex polyhedral abstract interpretation, called CPA in the rest
of this paper, uses the Parma Polyhedra Library [2] to implement the operations
on convex polyhedra, and incorporates a threshold generation phase based on
the method described by Lakhdar-Chaouch et al. [27], as well as a constraint
strengthening pre-processing which propagates constraints both forwards and
backwards in the clauses of P . Space does not permit a detailed explanation.

4 Refinement of Horn Clauses Using Trace Automata

If an over-approximation of the clauses derived by polyhedral abstraction does
not contain false, the clauses are safe. However if false is contained in the ap-
proximation, we do not know whether the clauses are unsafe or whether the
approximation was too imprecise. In such cases we can produce a trace term
using the clauses in P which justifies the abstract derivation of false. The feasi-
bility of this trace can be checked by a constraint satisfiability check. If the trace
is feasible, then it corresponds to a proof of unsafety. Otherwise, refinement is
considered based on this trace. In some approaches, a more precise abstract do-
main is derived from the trace. In our refinement approach, which is described
next, we aim to generate a modified set of clauses that could yield a better
approximation. This is achieved through the steps shown in Algorithm 2.

Tree Automata-Based Refinement with Application 219

Input: A set of Horn clauses P and an infeasible trace t
Output: A set of Horn clauses P ′

1. construct the trace FTA AP (Definition 7);
2. construct an FTA At such that L(At) = {t} (Definition 11);
3. compute the difference FTA AP \ At (Definition 5);
4. generate P ′ from AP \ At and P (Algorithm 1) ;
return P ′;

Algorithm 2. Algorithm for clause refinement

Both AP and At in Algorithm 2 are deterministic by construction, however
their union is not. Determinisation is used to generate the difference FTA (step
3) and its result is in product form. The program P ′ has the same model (modulo
predicate renaming) as P , since the steps result in the removal of an infeasible
trace but all other traces are preserved.

Removal of one trace from the clauses might not seem much of a refinement.
However, the restructuring of the clauses required to remove a trace can split the
predicates. This restructuring is the effect of determinisation, which isolates the
infeasible trace. This in turn can induce a more precise abstract interpretation,
with less precision loss due to convex hull operations and widening.

The correctness of this refinement follows from Proposition 2. In particular
false ∈ M [[P]] if and only if false ∈ M [[P ′]] (assuming that the predicate renaming
at least preserves the predicate name false).

Example 4. Consider again the FTA shown in Example 3. This is in fact the
determinisation of AP ∪ At where P is the set of clauses in Figure 1 and At

where t is the infeasible trace c3(c1). The only accepting state of At is e; thus
to construct the difference AP \ At we need only to remove from the automaton
the states containing e, namely [mc91,e]. We can also remove any transitions
containing this state in the right hand side. This leaves the following FTA and
refined program, using the same renaming function as in Example 3. In this
program, the infeasible trace corresponding to c3(c1) cannot be constructed.

c1 -> [mc91, e1].

c2([mc91, e1],[mc91, e1]) -> [mc91].

c2([mc91],[mc91]) -> [mc91].

c2([mc91, e1],[mc91]) -> [mc91].

c2([mc91],[mc91, e1]) -> [mc91].

c3([mc91]) -> [false].

c4([mc91]) -> [false].

c4([mc91, e1]) -> [false].

c1: mc91_1(A,B) :- A>100, B=A-10.

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91_1(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91_1(D,B).

220 B. Kafle and J.P. Gallagher

c3: false :- A =< 100, B > 91, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91_1(A,B).

It can be seen that although the infeasible trace was very simple, its removal led
to a considerably restructured set of clauses. We have not shown the product
form here, which is in fact somewhat more compact.

The refinement process guarantees progress; that is, the infeasible computa-
tion once eliminated never arises again. Due to the construction of the id mapping
for P ′ the traces in the languages of the FTAs of P and P ′ are preserved, apart
from the eliminated trace.

Proposition 3 (Progress). Let P be a set of CHCs, and t be a trace in P .
Let P ′ be a refined set of CHCs obtained from P after the removal of t. Then t
cannot be generated in any approximation of P ′.

After the removal of the trace t (step 3 of Algorithm 2) the language of AP \At

does not contain t. Then using Algorithm 1 to generate P ′, t will not be a possible
trace in P ′. It is physically impossible to construct t, in any abstract domain.

4.1 Further Refinement: Splitting a State in the Trace FTA

We also apply a tree-automata-based transformation to split states represent-
ing predicates where convex hull operations have lost precision. A typical case
is where a number of clauses with the same head predicate contain disjoint
constraints, such as a predicate representing an if-then-else statement in an im-
perative program. The clauses defining the statement will have a clause for the
then branch and a clause for the else branch. The respective constraints in these
clauses are disjoint since one is the negation of the other. The convex hull will
thus contain the whole space for the variables involved in these constraints.

As defined in Definition 6, the FTA state corresponding to such a predicate
can be split. We partition the transitions corresponding to the clauses according
to the disjoint groups of constraints and apply the procedure in Definition 6, pre-
serving the set of traces. Thus the feasible traces and the model of the resulting
clauses is preserved. This enhances precision of polyhedral analysis [15].

Splitting has to be carried out in a controlled manner to prevent blow up in
the size of FTA and hence on the size of the clauses generated. With this in
mind we split only those states appearing in a counterexample trace.

5 Experiments on CHC Benchmark Problems

Our tool consists of an implementation of a convex polyhedra analyser for CLP
written in Ciao Prolog1 interfaced to the Parma Polyhedra Library [2] as well as
an implementation of an FTA determiniser written in Java. It takes as input a

1 http://ciao-lang.org/

Tree Automata-Based Refinement with Application 221

FTAM – Finite tree automata manipulation

AI –Abstract interpretation

CG – Clauses generation

Abstraction Refinement

CHC P
AI

Approximation

set of traces

safe

no

unsafe

yes and feasible

set of traces

error traces

CHC P1

CHC P

error traces? FTAM

traces

CG

Fig. 2. Abstraction-refinement scheme in Horn clause verification

CLP program and returns “safe”, “unsafe” or “unknown” (after timeout). The
benchmark set contains 216 CHCs verification problems (179 safe and 37 unsafe
problems), taken mainly from the repositories of several state-of-the-art soft-
ware verification tools such as DAGGER [19] (21 problems), TRACER [26] (66
problems), InvGen [21] (68 problems), and also from the TACAS 2013 Software
Verification Competition [5] (52 problems). Most of these problems are avail-
able in C and they were first translated to CLP form2. The chosen problems are
representatives of different categories of the Software Verification Competition
(loops, control flow and integer, SystemC etc.) as well as specific problems used
to demonstrate the strength of different verification tools. The benchmarks are
available from http://akira.ruc.dk/~kafle/VMCAI15-Benchmarks.zip. The
experiments were carried out on an Intel(R) quad-core computer with a 2.66GHz
processor running Debian 5 in 6 GB memory.

5.1 Summary of Results

The results of our experiments are summarised in Table 3. Column CPA sum-
marises the results using our own convex polyhedra analyser (Section 3.6) with
no refinement step. Column CPA+R shows the results obtained by iterating the
CPA algorithm with the refinement step described in Section 4, Algorithm 2.
Column CPA+R+Split incorporates the FTA-based state splitting into the re-
finement step (Section 4.1). Column QARMC shows the results obtained on the
same problems using the QARMC tool [31].

5.2 Discussion of Results

The results show that CPA is reasonably effective on its own, solving 74%
(160/216) of the problems, though it times out for seven problems. When com-
bined with a refinement phase we can solve 22 further problems. Although only

2 Thanks to Emanuele De Angelis for the translation.

222 B. Kafle and J.P. Gallagher

CPA CPA+R CPA+R+Split QARMC

solved (safe/unsafe) 160 (142/18) 182 (160/22) 195 (164/31) 178 (141/37)

unknown/ timeout 49/7 -/34 -/22 -/38

average time (secs.) 5.98 51.66 50.08 59.1

% solved 74 84.25 90.27 82.4

Fig. 3. Experimental results on 216 (179 safe / 37 unsafe) CHC verification problems
with a timeout of five minutes

one infeasible trace is eliminated in each refinement step, the refined program
splits some of the predicates appearing in the trace, which we noted to be a
crucial point of precision for polyhedral analysis [15]. When adding the state
splitting refinement we solve an additional 13 problems. Further splitting would
solve more problems but we are unwilling to introduce uncontrolled splitting
due to the blow up in program size that could result. The maximum number
of iterations required to solve a problem was 8. Although the timeout limit was
five minutes, only 5% of the solved problems required more than one minute.
QARMC tends to perform more (but faster) iterations.

Our implementation uses the product form for DFTAs produced by the deter-
minisation algorithm, although the formalisation of refinement in Section 4 uses
only standard FTA transitions. Although the traces for clauses with predicates
produced from product states differ from the original clauses, they can be re-
garded as representing the original traces, by unfolding the clauses resulting from
ε-transitions. Product form adds to the scalability of the approach, especially for
Horn clauses with more than one body atom.

5.3 Comparison with Other Tools

Our results improve on QARMC both in average time and the number of in-
stances solved. Out of 216 problems QARMC solves 178 problems with an aver-
age time of 59 seconds whereas we can solve 195 problems with an average time
of 50 seconds. However, all unsafe programs in the benchmark set are solved
by QARMC in contrast to ours. Convex polyhedral analysis is good at finding
the required invariants to prove a program safe and due to this we solved more
safe problems than QARMC. QARMC seems to be more effective at finding
bugs. Most of the problems challenging to us come from particular categories
e.g. SystemC (modelled over fixed size integers) and Control Flow and Integer
Variables of [5] which requires some specific techniques to solve. Safe problems
challenging to us are also challenging to QARMC though this is not the case for
unsafe problems.

6 Related Work

The work by Heizmann et al. [23,24] uses word automata to construct a frame-
work for abstraction refinement. Our work could certainly be regarded as

Tree Automata-Based Refinement with Application 223

extending that framework to tree-structured computations, using tree automata
instead of (nested) word automata. However our aim is rather different. We
use automata techniques to perform the refinement whereas in [23] automata
notation is only used to re-express the verification problem, shifting the verifica-
tion problem to the construction of “interpolant automata”, without providing
any automata-based algorithms to do this. On the other hand we discuss the
practicality of the automata-based approach on a set of challenging problems.

While we eliminate only one trace at a time in the described procedure,
the FTA difference algorithm extends naturally to eliminating (infinite) sets
of traces. However in our setting that does not seem a useful goal – to find an
automaton describing an infinite set of infeasible traces often amounts to solving
the original problem.

Verification of CLP programs using abstract interpretation and specialisation
has been studied for some time. The use of an over-approximation of the se-
mantics of a program can be used to establish safety properties – if a state or
property does not appear in an over-approximation, it certainly does not ap-
pear in the actual program behaviour. A general framework for logic program
verification through abstraction was described by Levi [29]. Peralta et al. [30] in-
troduced the idea of using a Horn clause representation of imperative languages
and a convex polyhedral analyser to discover invariants of a program. Another
approach is taken in the work of De Angelis et al. [12,13] on applying program
specialisation to achieve verification. Unfolding and folding operations play a
vital role in that approach, and hence the program structure is changed much
more fundamentally than in our approach.

CEGAR [8] has been successfully used in verification to automatically refine
(predicate) abstractions [7,28] to reduce false alarms but not much has been ex-
plored in refining abstractions in the convex polyhedral domain. Some work on
this (with progress guarantee) has been done in [1] and [19]. [1] uses the powerset
domain, while [19] uses a Hint DAG to gain precision lost during the convex hull
operation. Both make use of interpolation. The use of interpolation in refinement
in verification of Horn clauses is explored in [6,20]. In our approach we guarantee
elimination of only one trace and elimination of others depends on properties of
the abstract interpretation techniques. By contrast in interpolation-based tech-
niques the refinement introduces new properties which guarantee progress and
the elimination of all counterexamples covered by those properties. However
the effectiveness of interpolation-based refinement depends on the generation of
“good” interpolants, which is a matter of continuing research, for example by
Rümmer et al. [32]. A number of tools implementing predicate abstraction and
refinement are available, such as HSF [18] and BLAST [3]. TRACER [17] is a
verification tool based on CLP that uses symbolic execution.

A point of contrast is that in our approach, the refinements are embedded
in the clauses whereas in CEGAR they are accumulated in the set of proper-
ties used for property-based abstraction. Also we rely on the abstraction us-
ing convex polyhedral analysis to discover invariants whereas CEGAR-based
approaches rely on interpolation in the refinement stage to discover relevant

224 B. Kafle and J.P. Gallagher

properties. Polyhedral analysis is more expensive, yet seems (along with the
threshold assertions, see Section 3.6) to be very effective at finding invariants
even on the first iteration. A weakness of invariant generation using interpola-
tion is that the interpolants must share variables with the unsatisfiable part of
the constraints, typically those in the integrity constraints, which can be insuffi-
cient for finding invariants of inner recursive predicates. Informally one can say
that approaches differ in where the “hard work” is performed. In the CEGAR
approaches and in [23] the refinement step is crucial, and interpolation plays a
central role. In our approach, by contrast, most of the hard work is done by the
abstract interpretation, which finds useful invariants. Finding the most effective
balance between abstraction and refinement techniques is a matter of ongoing
research.

7 Conclusion and Future work

In this paper we presented a procedure for abstraction refinement in Horn clause
verification based on tree automata. This was achieved through a combination
of abstraction (using abstraction interpretation) followed by a trace refinement
(using finite tree automata). The refinement is independent of the abstract do-
main used. The practicality of our approach was demonstrated on a set of Horn
clause verification problems.

In the future, we will investigate the elimination of a larger set of infeasible
traces in each refinement step, possibly by generalising a trace using interpolation
or by discovering a set of infeasible traces. The optimisation of our tool chain is
also an important topic for future work as it is clear that our prototype, built
by chaining together tools using shell scripts, contains much redundancy.

Acknowledgements. We thank the anonymous referees for useful comments.

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Craig interpretation. In: Miné, A.,
Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 300–316. Springer, Heidelberg
(2012)

2. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming 72(1–2), 3–21 (2008)

3. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with
SLAM. Commun. ACM 54(7), 68–76 (2011)

4. Benoy, F., King, A.: Inferring argument size relationships with CLP(R). In: Gal-
lagher, J. (ed.) LOPSTR 1996. LNCS, vol. 1207, pp. 204–223. Springer, Heidelberg
(1997)

5. Beyer, D.: Second competition on software verification - (summary of SV-COMP
2013). In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
594–609. Springer, Heidelberg (2013)

Tree Automata-Based Refinement with Application 225

6. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified Horn
clauses. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 105–
125. Springer, Heidelberg (2013)

7. Burke, M., Soffa, M.L. (eds.): Proceedings of the 2001 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), Snowbird, Utah,
USA, June 20-22. ACM (2001)

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

9. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez,
D., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007),
http://www.grappa.univ-lille3.fr/tata (release October 12, 2007)

10. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Graham,
R.M., Harrison, M.A., Sethi, R. (eds.) POPL, pp. 238–252. ACM (1977)

11. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of the 5th Annual ACM Symposium on Principles
of Programming Languages, pp. 84–96 (1978)

12. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Verifying programs via
iterated specialization. In: Albert, E., Mu, S.-C. (eds.) PEPM, pp. 43–52. ACM
(2013)

13. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: VeriMAP: A tool for
verifying programs through transformations. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 568–574. Springer, Heidelberg (2014)

14. Gallagher, J.P., Ajspur, M., Kafle, B.: An Optimised Algorithm for Determini-
sation and Completion of Finite Tree Automata. Technical Report 145, Roskilde
University, Denmark, (September 2014), http://akira.ruc.dk/~jpg/dfta.pdf

15. Gallagher, J.P., Kafle, B.: Analysis and transformation tools for constrained Horn
clause verification. TPLP, 14(4-5) (additional materials in online edition), 90–101
(2014)

16. Gallagher, J.P., Lafave, L.: Regular approximation of computation paths in logic
and functional languages. In: Danvy, O., Thiemann, P., Glück, R. (eds.) Dagstuhl
Seminar 1996. LNCS, vol. 1110, pp. 115–136. Springer, Heidelberg (1996)

17. Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Failure tabled
constraint logic programming by interpolation. TPLP 13(4-5), 593–607 (2013)

18. Grebenshchikov, S., Gupta, A., Lopes, N.P., Popeea, C., Rybalchenko, A.: HSF(C):
A software verifier based on Horn clauses - (competition contribution). In: Flana-
gan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 549–551. Springer,
Heidelberg (2012)

19. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically re-
fining abstract interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)

20. Gupta, A., Popeea, C., Rybalchenko, A.: Solving recursion-free horn clauses over
LI+UIF. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 188–203. Springer,
Heidelberg (2011)

21. Gupta, A., Rybalchenko, A.: InvGen: An efficient invariant generator. In: Boua-
jjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634–640. Springer,
Heidelberg (2009)

22. Halbwachs, N., Proy, Y.E., Raymound, P.: Verification of linear hybrid systems
by means of convex approximations. In: LeCharlier, B. (ed.) SAS 1994. LNCS,
vol. 864, pp. 223–237. Springer, Heidelberg (1994)

226 B. Kafle and J.P. Gallagher

23. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg
(2009)

24. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: Hermenegildo,
M.V., Palsberg, J. (eds.) Proceedings of POPL 2010, pp. 471–482. ACM (2010)

25. Jaffar, J., Maher, M.: Constraint Logic Programming: A Survey. Journal of Logic
Programming 19/20, 503–581 (1994)

26. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: TRACER: A symbolic execution
tool for verification. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS,
vol. 7358, pp. 758–766. Springer, Heidelberg (2012)

27. Lakhdar-Chaouch, L., Jeannet, B., Girault, A.: Widening with thresholds for pro-
grams with complex control graphs. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA
2011. LNCS, vol. 6996, pp. 492–502. Springer, Heidelberg (2011)

28. Launchbury, J., Mitchell, J.C. (eds.): Conference Record of POPL 2002: The 29th
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Port-
land, OR, USA, January 16-18. ACM (2002)

29. Levi, G.: Abstract interpretation based verification of logic programs. Electr. Notes
Theor. Comput. Sci. 40, 243 (2000)

30. Peralta, J.C., Gallagher, J.P., Saglam, H.: Analysis of imperative programs through
analysis of constraint logic programs. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503,
pp. 246–261. Springer, Heidelberg (1998)

31. Podelski, A., Rybalchenko, A.: ARMC: The logical choice for software model check-
ing with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,
pp. 245–259. Springer, Heidelberg (2007)

32. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verifi-
cation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–363.
Springer, Heidelberg (2013)

33. Stärk, R.F.: A direct proof for the completeness of SLD-resolution. In: Börger, E.,
Kleine Büning, H., Richter, M.M. (eds.) CSL 1989. LNCS, vol. 440, pp. 382–383.
Springer, Heidelberg (1990)

Attachment D3.3.5

Probabilistic Resource Analysis by

Program Transformation

Accepted for publication at the Foundational
and Practical Aspects of Resource Analysis

(FOPARA 2015)

105

Probabilistic Resource Analysis by Program
Transformation

Maja H. Kirkeby and Mads Rosendahl

Computer Science, Roskilde University
Roskilde, Denmark

majaht@ruc.dk, madsr@ruc.dk ??

Abstract. The aim of a probabilistic resource analysis is to derive a
probability distribution of possible resource usage for a program from
a probability distribution of its input. We present an automated multi-
phase rewriting based method to analyze programs written in a subset
of C. It generates a probability distribution of the resource usage as a
possibly uncomputable expression and then transforms it into a closed
form expression using over-approximations. We present the technique,
outline the implementation and show results from experiments with the
system.

1 Introduction

The main contribution in this paper is to present a technique for probabilistic re-
source analysis where the analysis is seen as a program-to-program translation.
This means that the transformation to closed form is a source code program
transformation problem and not specific to the analysis. Any necessary approx-
imations in the analysis are performed at the source code level. The technique
also makes it possible to balance the precision of the analysis against the brevity
of the result.

Many optimizations for increased energy efficiency require probabilistic and
average case analysis as part of the transformations. Wierman et al. states that
“global energy consumption is affected by the average case, rather than the worst
case“ [37]. Also in scheduling “an accurate measurement of a task’s average-
case execution time can assist in the calculation of more appropriate deadlines”
[17]. For a subset of programs a precise average case execution time can be
found using static analysis [12, 31, 14]. Applications of such analysis may be in
improving scheduling of operations or in temperature management. Because the
analysis returns a distribution it can be used to calculate the probability of
energy consumptions above a certain limit, and thereby indicating the risk of
over-heating.

?? The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 318337,
ENTRA - Whole-Systems Energy Transparency.

The central idea in this paper is to use probabilistic output analysis in com-
bination with a preprocessing phase that instruments programs with resource
usage. We translate programs into an intermediate language program that com-
putes the probability distribution of resource usage. This program is then an-
alyzed, transformed, and approximated with the aim of obtaing a closed form
expression. It is an alternative to deriving cost relations directly from the pro-
gram [7] or expressing costs as abstract values in a semantics for the language.

As with automatic complexity analysis the aim of probabilistic resource anal-
ysis is to express the result as a parameterized expression. The time complexity
of a program should be expressed as a closed form expression in the input size,
and for probabilistic resource analysis the aim is to express the probability of
resource usage of the program parameterized by input size or range. If input
values are not independent we can specify a joint distribution for the values.
Values do not have to be restricted to a finite range but for infinite ranges the
distribution would converge to zero towards the limit.

The current work extends our previous work on probabilistic analysis [29]
in three ways. We show how to use a preprocessing phase to instrument pro-
grams with resource usage such that the resource analysis can be expressed as
an analysis of possible output of a program. The resource analysis can handle
an extended class of programs with structured data as long as the program flow
does not depend on the probabilistic data in composite data structures. Finally,
we present an implementation of the analysis in the Ciao language [5] which uses
algebraic reductions in the Mathematica system [39].

The focus in this paper is on using fairly simple local resource measures
where we count core operations on data. Since the instrumentation is done at
the source code level we can use flow information so that the local costs can
depend on actual data to operations and which operations are executed before
and after. This is not normally relevant for time complexity but does play an
important role for energy consumption analysis [19, 32].

2 Probability distributions in static analysis

In our approach to probabilistic analysis the result of an analysis is an approx-
imation of a probability distribution. We will here present the concepts and
notation we will use in the rest of the paper. A probability distribution is also
often referred to as the probability mass function in the discrete case, and in the
continuous case it is a probability density functions. We will use an upper case
P letter to denote a probability distribution.

Definition 1 (input probability). For a countable set X an input probability
distribution is a mapping Px : X → {r ∈ IR | 0 ≤ r ≤ 1}, where

∑

x∈X
Px(x) = 1

2

We define the output probability distribution for a program p in a forward
manner. It is the weight or sum of all probabilities of input values where the
program returns the desired value z as output.

Definition 2 (output probability). Given a program, p : X → Z and a prob-
ability distribution for the input, PX , the output probability distribution, Pp(z),
is defined as:

Pp(z) =
∑

x∈X∧p(x)=z

PX(x)

Note that Kozen also uses a similar forward definition [20], whereas Monniaux
constructs the inverse mapping from output to input for each program statement
and express the relationship in a backwards style [23].

Lemma 1. The output probability distribution, Pp(z), satisfies

0 ≤
∑

z

Pp(z) ≤ 1

The program may not terminate for all input and this means that the sum
may be less than one. If we expand the domain Z with an element to denote
non-termination, Z⊥, the total sum of the output distribution Pp(z) would be 1.

In our static analysis we will use approximations to obtain safe and simpli-
fied results. Various approaches to approximations of probability distributions
have been proposed and can be interpreted as imprecise probabilities [1, 10, 9].
Dempster-Shafer structures [16, 2] and P-boxes [11] can be used to capture and
propagate uncertainties of probability distributions. There are several results on
extending arithmetic operations to probability distributions for both known de-
pendencies between random variables and when the dependency is unknown or
only partially known [3, 4, 18, 33, 38]. Algorithms for lifting basic operations on
numbers to basic operations on probability distributions can be used as abstrac-
tions in static analysis based on abstract interpretation. Our approach uses the
P-boxes as bounds of probability distributions. P-boxes are normally expressed
in terms of the cumulative probability distribution but we will here use the prob-
ability mass function. We do not, however, use the various basic operations on
P-boxes, but apply approximations to a probability program such that it forms
a P-box.

Definition 3 (over-approximation). For a distribution Pp an over-approxi-
mation (P p) of the distribution satisfies the condition:

P p : ∀z.Pp(z) ≤ P p(z) ≤ 1 .

The aim of the probabilistic resource analysis is to derive an approximation P p

as tight as possible.
The over-approximation of the probability distribution can be used to derive

lower and upper bounds of the expected value and will thus approximate the
expected value as an interval [29].

3

3 Architecture of the transformation system

The system contains five main phases. The input to the system is a program
in a small subset of C with annotations of which part we want to analyze. It
could be the whole program but can also be a specific subroutine which is called
repeatedly with varying arguments according to some input distribution.

The first phase will instrument the program with resource measuring op-
erations. The instrumented program will perform the same operations as the
original program in addition to recording and printing resource usage informa-
tion. This program can still be compiled and run, and it will also produce the
same results as the original program.

The second phase translates the program into an intermediate language for
further analysis. We use a small first order functional language for the analysis
process. The translation has two core elements. We slice [36] the program with
respect to the resource measuring operations and transform loops into primitive
recursion in the intermediate language. The transformed program can still be
executed and will produce the same resource usage information as the instru-
mented program. Since the instrumentation is done before the translation to
intermediate language any interpretation overhead or speed-up due to slicing
does not influence the result [28].

In the third phase we construct a probability output program that computes
the probability output function. In this case it is a probability distribution of
possible resource usages of the original program. This program can also run but
will often be extremely inefficient since it will merge information for all possible
input to the original program.

The fourth phase transforms the probability program into a large expression
without further function calls. Recursive calls are removed using summations and
the transformed program computes the same result as the program did before
this phase.

In the final phase the probability function is transformed into closed form
using symbolic summation and over-approximation. In this phase we exploit
the Mathematica system [39]. The final probability program computes the same
result or an over-approximation of the function produced in the fourth phase.

4 Instrumenting programs for resource analysis

The input to the analysis is a program in a subset of C. In the next section we
define the intermediate language for further analysis and it is the restrictions on
the intermediate language that limits the source programs we can analyze with
our system. The source program may contain integer variable and arrays, usual
loop constructs and non-recursive function calls. The program should be anno-
tated with specification on which part of the program to analyse. The following
is an example of such a program.

// ToAnalyse: multa(_,_,_,N)

4

void multa(int a1[MX],int a2[MX],int a3[MX],int n){

int i1,i2,i3,d;

for(i1 = 0; i1 < n; i1++) {

for(i2 = 0; i2 < n; i2++) {

d = 0;

for(i3 = 0; i3 < n; i3++) {

d = d + a1[i1*n+i3]*a2[i3*n+i2];

}

a3[i1*n+i2] = d;

}

}

}

This example program describes a matrix multiplication for which we would like
to analyze the probability distribution for the number of steps when parameter-
ized with the size (N) of the matrices.

Instrumentation. The program is then instrumented with resource usage in-
formation and translated into a intermediate language for further analysis. The
instrumented program is also a valid program in the source language and can
be executed with the same results as the original program. It will, however, also
collect resource usage information.

In our example we instrument the program with step counting information
where we count the number of assignment statement being executed. This is
done by inserting a variable into the program and incrementing it once for each
assignment statement.

int multa(int a1[MX],int a2[MX],int a3[MX],int n){

int i1,i2,i3,d;

int step; step=0;

for(i1 = 0; i1 < n; i1++) {

for(i2 = 0; i2 < n; i2++) {

d = 0; step++;

for(i3 = 0; i3 < n; i3++) {

d = d + a1[i1*n+i3]*a2[i3*n+i2]; step++;

}

a3[i1*n+i2] = d; step++;

}

}

return step;

}

The outer loop does not update the step counter, whereas the first inner loop
updates it twice per iteration and the innermost loop updates it once per loop
iteration.

Slicing. The second phase will slice the program with respect to resource usage
and translate the program into the intermediate language of first order functions
that we will use in the subsequent stages. Loops in the program are translated
into primitive recursion.

5

for3(i3, step, n) =

if(i3 = n) then step else for3(i3 + 1,step+1,n)

for2(i2, step, n) =

if(i2 = n) then step else for2(i2 + 1,for3(0,step+2,n),n)

for1(i1, step, n) =

if(i1 = n) then step else for1(i1 + 1,for2(0,step,n),n)

tmulta(n)= for1(0,step,n)

Each function in the recursive program corresponds to a for loop with their
related step-updates. The step counter is given as input argument to the next
function in a continuation-passing style.

Intermediate language. An intermediate program, Prg, consists of integer
functions, fi: Int

∗ → Int, as given by the abstract syntax given in Figure 1. In
the examples we relax the restrictions on function and parameter names.

fi(x1, . . . ,xn)
def
= 〈exp〉

〈aexp〉 |= xi | c | 〈aexp〉 +i 〈aexp〉 | 〈aexp〉 -i 〈aexp〉 |
〈aexp〉 ×i 〈aexp〉 | 〈aexp〉 divi 〈aexp〉

〈bexp〉 |= 〈aexp〉 =i 〈aexp〉 | 〈aexp〉 <i 〈aexp〉 | 〈aexp〉 ≤i 〈aexp〉 |
true | false | not(〈bexp〉)

〈exp〉 |= 〈aexp〉 | fi(〈exp1〉, ...,〈expn〉) |
if 〈bexp〉 then 〈exp〉 else 〈exp〉

Fig. 1. The abstract syntax describing the intermediate programs.

Definition 4. A program is well-formed if it follows the abstract syntax and
it contains a finite number of function definitions, that each is of one of the
following form and can internally be enumerated with a natural number such
that:

fi(x1, . . . , xn)
def
= if b then e0 else fi(e1, . . . , en)

where fi is simple, e0 only contains calls to functions fj where j < i.

fi(x1, . . . , xn)
def
= e

where e only contain calls to functions fj where j < i.

The enumeration prevents mutual recursion, and ensures that non-recursive calls
cannot create an infinite call-chain.

5 Probabilistic output analysis

The analysis is applied to the intermediate program and an input probability
program in the intermediate language. The output is a new program that can be

6

described by a subset of the intermediate language; this will be clarified later in
the definition of pure and closed form programs. The analysis consists of three
phases:

Create, where the probability program describing the output distribution is
created as a possibly uncomputable expression.

Separate, where we remove all calls from the probability program.
Simplify, where we transform the program into closed form using safe over-

approximations when necessary.

The analysis is constructed as three sets of transformation rules, one for each
of the three phases. All transformations are syntax directed, and a strategy is
to apply them in a depth-first manner. The program output analysis is imple-
mented in Ciao and integrates with Mathematica in the third phase to reduce
expressions.

In the following we use Var(e) to represent the set of variables occurring

in expression e, and f(x1, ..., xn)
def
= e to represent the function f is defined in

the input program. Some side conditions are explained in an informal way, as in

“f(x1, ..., xn)
def
= e, where e is non-recursive”.

name
precondition1 ... preconditionn

original term→ rewritten term

The preconditions are evaluated from left to right, and if all succeeds we can use
the transformation.When substituting a variable x to an expression e, we denote
it [x/e].

In the following we will begin by extending the intermediate language pre-
sented in Figure 1 such that it can express probabilities, and afterwards describe
the transformation rules for each phase.

The intermediate language. The intermediate language is, as previously
mentioned, a first order functional language. A probability program can be eval-
uated at any stage through the transformation process.

We extend the abstract syntax given in Figure 1 such that it can easily
describe probability distributions. We introduce probability functions, P: Int∗ →
Real, which follows the expanded syntax given in Figure 2. The dots indicate
the syntax described in Figure 1. Again, 〈aexp〉 and 〈exp〉 are of type integer,
〈bexp〉 is boolean, and the new 〈qexp〉 is a real. In 〈qexp〉 the method i2r type
casts an integer expression to a real. We introduce c, sum, prod and argDev

functions. c evaluates to either 1, if its boolean expression evaluates to true,
or 0 when it evaluates to false. Evaluating sum instantiates the variable with
all possible values and sum all the results of the evaluation the 〈qexp〉. prod
instantiates its variable with all values for which the first 〈qexp〉 evaluates to
1, and then it multiply all the results from evaluating the second 〈qexp〉. The
last expression introduced is argDev which describes the development of the
variable xi as a function of the number of updates, xj . The expression 〈exp〉
computes the development of xi for one incrementation of xj (e.g. the argument

7

xi in a function f(xi) with a recursive call f(xi−i2) has a argument development
argDev(xi,xi−2, xj)).

fi(x1, . . . ,xn)
def
= 〈exp〉

〈aexp〉 |= . . . | min(〈aexp〉,〈aexp〉) | max(〈aexp〉,〈aexp〉)
〈bexp〉 |= . . . | 〈aexp〉 =i 〈exp〉
〈exp〉 |= . . . | argDev(xi, 〈exp〉, xj)

Pi(x1, . . . ,xn)
def
= 〈qexp〉

〈qexp〉 |= i2r(〈aexp〉) | c(〈bexp〉) | 〈qexp〉 opq 〈qexp〉 |
sum(xi, 〈qexp〉) | prod(xi, 〈qexp〉, 〈qexp〉) |
Pi(〈aexp1〉, ...,〈aexpn〉)

opq = +q | -q | ×q | /q

Fig. 2. The expanded abstract syntax describing probability programs.

A program that computes a probability distribution is referred to as a prob-
ability program.

Definition 5. A probability program that has no if-expressions no function calls
is pure and a pure probability program without any sum and prod is in closed
form.

A program is pure after it is transformed in the separation phase and is pure
and in closed form after the simplification phase.

The create phase. This phase has only one rule which creates a program that
computes a probability distribution from the intermediate program and input
distributions.

create
f(u1, ..., un)

def
= e P(v1, ..., vn)

def
= ep

Pf(z)
def
= sum(x1 ; ...sum(xn ; c(z=i f(x1, ..., xn))×q P(x1, ..., xn)))

We use the create rule to make a new probability function describing the prob-
ability distribution for the integer function we are interested in.

The separate phase. In this phase function calls are removed by repeatedly
exposing calls and replacing them. Non-recursive function calls are unfolded
using their definitions. Function calls can occur inside if-expressions or as nested

8

calls; these are extracted and handled one at a time.

f-simple
f(y1, ..., yn)

def
= e , where e is non-recursive x1, ..., xn ∈ Var

c(z=i f(x1, ..., xn))→ c(z=i e[y1/x1, ..., yn/xn])

rem-P
P(x1, ..., xn)

def
= e

P(e1, ..., en)→ e[x1/e1, ..., xn/en]

rem-if
c(z=i if b then e0 else e1)→ (c(b)×qc(z=ie0) +q c(not(b))×qc(z=ie1))

no-nest(f)
{e1, ..., en} 6⊆ Var

c(z=i f(e1, ..., en))→
sum(u1 ; ...sum(un ; c(z=i f(u1, ..., un))×qc(u1 =i e1)×q...×qc(un =i en)))

We replace calls to recursive functions by a summation over the number of re-
cursions using argument development constructors to describe the value of each
argument as a function of the index of the summation. This way of defining
argument development has similarities with size change functions derived us-
ing recurrence equations. Argument development functions do not depend on
the base-case unlike size-change functions [40]. The summation also contains a
product which ensures that the condition evaluates to false for argument values
less than the current value of the index of summation. When the expression in
a product contains only c-constructors, then the product is evaluated to 1 if ei-
ther the range is empty or the expression is evaluated to true for the full range.
The following rewrite rules are all that is needed for transforming probability
programs into pure probability programs.

f-rec

f(y1, ..., yn)
def
= if b then e0 else f(e1, ..., en) x1, ...xn ∈ V ars

σy/i = [y1/i1, ..., yn/in]σy/x = [y1/x1, ..., yn/xn]σy/j = [y1/j1, ..., yn/jn]

c(z=i f(x1, ..., xn))→
sum(i ; c(0≤ii)×q

sum(i1 ; ...sum(in ; c(σy/i(b))×qc(i1 =i argDev(x1, σy/x(e1), i))×q

c(z=i σy/i(e0))×q...×qc(in =i argDev(xn, σy/x(en), i)))...)×q

prod(j ; c(0≤ij)×qc(j≤ii−i1) ;
sum(j1 ; ...sum(jn ; c(not(σy/j(b)))×q

c(j1 =i argDev(x1, σy/x(e1), j))×q...×qc(jn =i argDev(xn, σy/x(en), j))
)...)))

The argument development expression may contain function calls as well, and
these are extracted equivalently to nested functions.

no-nest(argDev)
c(z=i argDev(x, f(e1, ..., en) , i))→
sum(u ; c(z=i argDev(x, f(e1, ..., en) , i))×qc(u=i f(e1, ..., en)))

After applying these rules until they cannot be applied no more, the probability
program has been transformed to pure form.

The simplification phase. We have presented the rules for obtaining a pure
probability program, and in this section we outline the rules used to reach closed

9

form. A pure probability function consists of a series of nested summations
multiplied with an expression (e.g. input probability). The rules are applied
in no particular order and the phase ends when no more rules can be applied.
In this phase we integrate with Mathematica. A call to Mathematica is de-
noted mm:Function(Arg) = Answer, where Function denotes the actual func-
tion called in Mathematica (e.g. mm:Expand calls Mathematica’s Expand func-
tion). The translation between the intermediate language and Mathematica’s
representation will not be discussed further here. implicitly in the call.

The rules can be grouped by their functionality: preparing expressions, re-
moval of summations and removal of products. The latter are currently the only
rules containing over-approximations.

Preparing expressions for removal of either summations or products involve
moving expressions that do not depend on the index of summation outside the
summation, dividing summations of additions into simpler ones, reducing ex-
pressions, dividing summations in ranges, and remove argument development
constructors. Please notice that div-sum(x≤) has an equivalent rule for upper
bounds.

move-c
x /∈ Var(e1)

sum(x ; e1×qe2)→ e1×qsum(x ; e2)

div-sum(+)
x ∈ Var(e1) x ∈ Var(e2)

sum(x ; e1 +q e2)→ sum(x ; e1) +q sum(x ; e2)

div-sum(x≤)
x /∈ Var(e1, e2) x ∈ Var(e2)

sum(x ; c(x≤ie1)×qc(x≤ie2)×qe3)→
c(e1≤ie2)×qsum(x ; c(x≤ie1)×qe3) +q

c(e2≤ie1−i1)×qsum(x ; c(x≤ie2)×qe3)

rem(argDev)
c ∈ n

c(z=i argDev(x, x+i c, i))→ c(z=i x+i c×ii)

reduceAexp
mm:Reduce(e1) = e2

c(e1)→ c(e2)

reduce(=)
c(true)→ i2r(1)

Removal of summations can be done in two ways. Either the index of the
summation can only be one value or it can be a limited range of values, and de-
pending on which case different transformations are used. In the first case, there
exists an equation containing the variable index of the innermost summation.
The equation is solved for the variable and the rest of the variable occurrences
are replaced by the new value.

rem-sum(=)
mm:Solve(e1 =ie2, x) = c(x=ie3)

sum(x ; c(e1 =i e2)×qe)→ e[x/e3]

10

Removing a summation by its range involves using standard mathematical for-
mulas for rewriting series. The last part of the following rule uses

∑n
k=1 k

2 =
n(n+ 1)(2n+ 1)/6. We only present transformations up to quadratic series and
our pragmatic implementation contains rules for transforming series of power of
degree up to 10. A more general rewrite rule for series of power of degree up
p could be implemented, but is more complicated as it includes Bernoulli num-
bers and binomial coefficients. The precondition uses Mathematica’s Expand to
transform the expression into the right pattern.

rem-sum(≤)
x /∈Var(e1, ..., e6) mm:Expand(e3) = i2r(e4 +i e5×ix+i e6×ix×ix)

sum(x ; c(e1≤ix)×qc(x≤ie2)×qi2r(e3))→
i2r(e4)×qi2r(e2−ie1 +i 1) +q

i2r(e5)×qi2r(e2×i(e2+i1))/q 2−q

i2r(e5)×qi2r(e2×i(e2−i1))/q 2 +q

i2r(e6)×qi2r(e2×i(e2+i1)×i(2×ie2 +i 1))/q 6−q

i2r(e6)×qi2r(e2×i(e2−i1)×i(2×ie2−i1))/q 6

Removal of Product involves a safe over-approximation. The implementation
of POA contains two different over-approximations and in many cases the prob-
ability program can be transformed into closed form in a precise manner. In the
following paragraph we describe when the transformation preserves the accuracy
of the transformed term.

The probability function can always be over-approximated to 1. The rule
f-rec is an exact rule and introduces a product-expression which may not be
possible to rewrite into closed form. We only introduce the product-expression
with c-expressions in its body, and therefore it will always either evaluate to 1
or to 0. A safe over-approximation of such a product-expression is 1.

rem-prod-one
x /∈ Var(e1, e2) x ∈ Var(e3)

prod(x ; c(e1≤ix)×qc(x≤ie2) ; c(e3))→ 1

For the summation describing recursive calls, this transformation is exact when
the condition, b, evaluates to true for exactly one value (eg. it is an equation).

A broader class of recursive programs (than those having an equation in the
condition) is those where the c-expression is monotone in x; meaning that there
exists a k for which c(e3) = 1 for x ≤ k and c(e3) = 0 for x > k. This case covers
many for-loops. In this case we can accurately replace the prod-expression with
two c-expressions one checking the lower and one checking the upper range-limit.
The empty product (the lower limit is larger than the upper) is 1.

rem-prod-mon
x /∈ Var(e1, e2) x ∈ Var(e3) e3 is monotone in x

prod(x ; c(e1≤ix)×qc(x≤ie2) ; c(e3))→(
c(e3)[x/e1]×qc(e3)[x/e2]×qc(e1≤ie2) +q c(e2≤ie1−i1)

)

This rule does not preserve accuracy when the c-expression is not monotone in
x (e.g. c(2≤ix||4≤ix)).

11

6 Implementation and results

In the following we present three examples which show results of programs with
nested loops parameterized input distribution of multiple variables. The prob-
ability distribution computed by the output program varies in complexity; the
first program calculates a single parameterized output, the second program com-
putes a triangular shaped output distribution and third computes a distribution
converging towards a standard normal distribution. The results are presented in
a reduced and readable form extracted from our implementation.

Matrix multiplication. The original matrix multiplication program uses com-
posite types and contains nested loops. The intermediate program, defined in
Figure 3, contains nested recursive calls but has no dependency on data in com-
posite types.

for3(i3,step,n) = if(i3>=n) then step else for3(i3+1,step+1,n)

for2(i2,step,n) = if(i2>=n) then step else for2(i2+1,for3(0,step+2,n),n)

for1(i1,step,n) = if(i1>=n) then step else for1(i1+1,for2(0,step,n),n)

tmulta(step,n) = for1(0,step,n)

P(step,n1) = c(step=0)*c(n1=n)

Fig. 3. The intermediate program containing also the parameterized probability dis-
tribution. The parameter n can obtain only one value.

The nested calls create argument development functions that depend on func-
tion calls. These are transformed to a simple form and then removed. The intro-
duced products are over approximated, but due to the form of the condition the
result is precise. The output program computes a single value distribution (when
specialized with the size of the matrix). It is given in Figure 4 along with an
array describing a subset of specializations of the output program with respect
to a value of n.

Ptmulta(out) =

c(3=<out/(n*n))*

c(1=<n)*

c(out/n*n=2+n)*1

n program

1 Ptmulta(out) = c(out=3)

2 Ptmulta(out) = c(out=16)

3 Ptmulta(out) = c(out=45)

4 Ptmulta(out) = c(out=96)

.

Fig. 4. The general output probability program (left) and the program specialized
whith the value of n (right).

Adding parameterized distributions. This example is a recursive program
computing the addition of two numbers; the input program and the input proba-
bility distribution can be seen in Figure 5. The output depends on both increasing
and decreasing values. In this example we use a parameter n as the upper limit
of a range of input values. The input distribution describes two independent
variables, each having a uniform distribution from 1 to n.

12

add(x,y) = if x=<0 then y else add(x-1,y+1)

P(x) = c(1=<x)*c(x=<n)*1/n

Pxy(x,y) = P(x)*P(y)

Fig. 5. The intermediate program containing both the function add and the input
probability distribution. Here, the parameter n is used to describe a range.

The analysis gives a precise probability distribution and computes a tri-
angular distribution (or pyramid shaped distribution). The output probability
program is described in Figure 6 along with a graph depicturing the pyramid
shaped output probability distributions for different initializations of n. The
lower bound on out arises from the input probability distribution and not from
the condition. The upper bound 2*n of the analysis result shows that the output
depends on both input variables, despite that one is increasing and the other is
decreasing.

Padd(out) =

c(2<=out)*c(out<=n)*(1/n*1/n*(out-1))+

c(1+n<=out)*c(out<=2*n)*(1/n*1/n*(1+2*n-out))

Fig. 6. The general output program and the graphs for the output probability distri-
bution with n set to 3, 4, 5, and 6, respectively.

Adding 4 independent variables. The program sum4 adds four variables and
was presented by Monniaux [23]. Certain over-approximations were applied so
as to obtain a safe and simplified result.

The program is recursive and in this example we use independent input
variables each uniformly distributed input from 1 to 6, as described in Figure 7.

add(x,y) = if x=0 then y else add(x-1,y+1)

sum4(x,y,z,w) = add(x,add(y,add(z,w)))

tsum4(x,y,z,w) = sum4(x,y,z,w)

P(x) = c(1=<x)*c(x=<6)*1/6

Pxyzw(x,y,z,w) = P(x)*P(y)*P(z)*P(w)

Fig. 7. Intermediate program.

Despite the ranges and their associated value are not symmetric, the resulting
program computes a precise and perfectly symmetric probability distribution
as shown in Figure 8. The differences in the choice of ranges comes (among
other things) from the range dividing rules, as they do not divide the range
symmetrically. As expected from the central limit theorem of probability theory,

13

Psum4(out) =

c(4=<out)*c(out=<7)*(-6 + 11*out -

6*out^2 + out^3)/7776+

c(8=<out)*c(out=<12)*

(-1014+169*out+6*out^2-out^3)/7776+

c(9=<out)*c(out=<12)*

(1512-461*out+42*out^2-out^3)/3888+

c(out=13)*(265/648-5*out/216)+

c(14=<out)*c(out=<18)*

(-4790+923*out-54*out^2+out^3)/2592+

c(19=<out)*c(out=<24)*

(17550-2027*out+78*out^2-out^3)/7776

Fig. 8. The output program and graph for its computed probability distribution for
out from 3 to 25.

the resulting probability program describes a distribution that has similarities
with a normal distribution.

Monty Hall. The Monty Hall problem is often used to exemplify how gained
knowledge influences probabilities (conditional probability). In this problem there
are three closed doors; one hiding a price and two that are empty. The doors have
an equal chance of hiding the price. There is a contestant, who should choose
one of the doors, then the game host will open an empty door and the contestant
can either stick with the first choice or can change to the other unopened door.
The problem lies in showing whether the best winning-strategy is to stick with
the first choice or to switch to the other?

If the strategy is to stick with the first choice and that door has a price then
the contestant has won. If the contestant changes door he/she only loses if the
first choice was the door hiding the price; if the first choice was an empty door,
then the game host would open the other empty door leaving only the price door
for a second choice.

The program monty models the two strategies; if the strategy variable is 1
then the strategy is to change the door, and otherwise the strategy is to stick
with the first choice. The program takes as input the contestant’s first guess,
the door hiding the price, the empty door which is not opened by the game host
and the strategy the contestant uses.

Let us assume the contestant has an equal chance of choosing each of the
doors. The input variables guess, price, and empty models the first choice, the
price door and the empty door which is left after the game host has opened
an empty door. All three doors have a value between 1 and 3, and the empty
door cannot be the same as the price door. We have parametrized the strategy
with a weight p between the two, such that when p = 1 then the strategy is to
always change door, and when p=0 the strategy is to always keep the first choice
(e.g. letting p = 0.75 we change doors in 3/4 cases and 1/4 we keep the first
door). Such a parametrization allows us to execute the analysis once and use the
lighter closed form result for that calculation instead. In a problem where the
winning-probability of a strategy is dependent on the other input, such input

14

could be used for optimizing the choice of strategy. The program monty and the
parametrized input probability distribution can be seen in Figure 9.
monty(guess,price,empty,strategy)=

if strategy = 0

then finalGuess(guess,price)

else change(guess,price,empty)

finalGuess(guess,price)=

if price=guess then 1 else 0

change(guess,price,empty)=

if price=guess

then finalGuess(empty,price)

else finalGuess(price,price)

Pin(guess,price,empty,strategy) =

1/18*c(1=<guess)*c(guess=<3)

*c(1=<price)*c(price=<3)

*c(1=<empty)*c(empty=<3)

*c(not(price = empty))

*Pstrat(strategy)

Pstrat(strategy) =

p*c(1 = strategy)

+ (1-p)*c(0 = strategy)

Fig. 9. The program monty models the event flow depending on the chosen strategy;
if the strategy is 0 then the contestant keeps the first door and if it is 1 then the
contestant changes his mind. There are three doors and the input of monty describes the
contestants first guess, the door hiding the price, the empty door which is not opened by
the game host (and is different from the price door) and the strategy of the contestant.
If the final choice hides the price then the program returns 1 and otherwise 0. The
probability of the strategy is an expression parametrized with a weight, p between the
two strategies instead of executing the analysis twice with different strategy.

The analysis was capable of handling the program correctly and the result
can be seen in Figure 10.

pmonty(out) =

1/18 *

(c(out=0)*

(12*(1-p)+6*p)+

c(out=1)*

(6*(1-p)+12*p))

Fig. 10. The probability of winning the Monty Hall as a function of the weight given to
change-strategy. The probabilistic output analysis reveals that the best weight between
the keep strategy and the change strategy is to always use change strategy.

The probabilities 1/3 and 2/3 does not occur directly in the output proba-
bility program, but are found in the constants 6, 12 and 1/18.

Adding dependent non-uniform variables. A function call may have inter-
dependent and non-uniform arguments that can only be represented as a joint
probability distribution (ie. polygon), and in this example we demonstrate that
the analysis can handle such function calls. We focus on the dependencies, ana-
lyze a simple add program and discuss the limits of the interdependencies. The

15

program also shows that interdependencies quickly lead to the occurrence of
integer division in the output.

The input arguments are interdependent; the second argument is always less
than or equal to the value of the first argument and the joint distribution depends
only on the value of the first argument resulting in a triangular and skewed
probability distribution. The probability program is defined in Figure 11.

Pxy(x,y) = c(1=<y)*c(y=<3) *

c(1=<x)*c(x=<y) * x/10

add(x,y) = x+z

Padd(out) =

c(2 =< out)*c(out=< 3) * 1/20 * out%2 * (1 + out%2) +

c(4 =< out)*c(out=< 6) * -(1/20)*(-4+out-out%2)*(-3+out+out%2)

Fig. 11. An input program, add, its skewed joint distribution, Pxy, and the closed form
probability program, Padd, produced by the analysis. The integer division is noted by
a “%”.

The create rule generates nested summations, and removing such inner sum-
mations imply that their values must be expressed using the variables of the
outer summations or the input variable (ie. out). Comparing the result from
this experiment with the output probability distribution for addition of two ran-
dom variable in Figure 6 indicates that integer division is a special case arising
from dependent input. The following interesting expressions are extracted during
analysis execution, and they shows how the integer division arises from depen-
dency of input. The first expressions is the result from the create rule and the
last expression is the result after removal of the inner y-summation.

Padd(out) =
sum(x ; sum(y ; c(out=i x+i y)×q

c(1≤ix)×qc(x≤iy)×qc(1≤iy)×qc(y≤i3)×q(i2r(x) /
q i2r(10)))) =

sum(x ; c(2≤iout)×qc(out≤i3)×qc(1≤ix)×q

c(2×ix≤iout)×q(i2r(x) /
q i2r(10))) +q

sum(x ; c(4≤iout)×qc(out≤i3 +i x)×qc(2×ix≤iout)×q(i2r(x) /
q i2r(10)))

In the last expression there are two summations, each leading to its own part
in the resulting program. Looking closely at each summation, we see that they
share the upper limit for x, c(2×ix≤iout), which currently contains an integer
multiplication and when solved with respect to x contains the integer division.
In the final result the second part of the expression has an upper limit for out,
c(out≤i6) which is a constraint that the summation-removal-rule introduces to
ensure that the lower limit of the summation (i.e. out−i3) is less than or equal
to the upper limit (i.e. out%i 2).

The original probability (i2r(x) /q i2r(10)) occurs directly in the summa-
tions, and this indicates a limit of this implementation and approach. To be
able to handle a probability, the rewrite rules for summations must transform
summations over the probability expression. There are limits to which series

16

the system currently can transform, Sum of reciprocals (e.g.
∑n

k=1
1
k) known as

harmonic series or variations hereof such as generalized harmonic series are cur-
rently not implemented. The current analysis is limited to finite summations of
at least order of 1, but a closer integration with Mathematica that exploits more
of Mathematicas rewriting mechanisms should be able to handle such series.

7 Related works

Probabilistic analysis is related to the analysis of probabilistic programs. Proba-
bilistic analysis is analysis of programs with a normal semantics where the input
variables are interpreted over probability distributions. Analysis of probabilistic
programs analyse programs with probabilistic semantics where the values of the
input variables are unknown (e.g. flow analysis [25]).

In probabilistic analysis it is important to determine how variables depend on
each other, but already in 1976 Denning proposed a flow analysis for revealing
whether variables depend on each other [8]. This was presented in the field
of secure flow analysis. Denning introduced a lattice-based analysis where she,
given the name of a variable, that should be kept secret, deducted which other
variables those should be kept secret in order to avoid leaking information. In
1996, Denning’s method was refined by Volpano et al. into a type system and
for the first time, it was proven sound [34].

Reasoning about probabilistic semantics is a closely related area to probabilis-
tic analysis, as they both work with nested probabilistic influence. The proba-
bilistic analysis work on standard semantic and analyze it using input probability
distributions, where a probabilistic semantics allow for random assignments and
probabilistic choices [20] and is normally analyzed using an expanded classical
analysis or verification method [6].

Probabilistic model checking is an automated technique for formally verifying
quantitative properties for systems with probabilistic behaviors. It is mainly
focused on Markov decision processes, which can model both stochastic and
non-deterministic behavior [13, 21]. It differs from probabilistic analysis as it
assumes the Markov property.

In 2000, Monniaux applied abstract interpretation to programs with prob-
abilistic semantics and gained safe bounds for worst case analysis [23]. Pierro
et al. introduce a linear mapping structure, a Moore-Penrose pseudo-inverse,
instead of a Galois connection. They use the linear structures to compare ’close-
ness’ of approximations as an expression using the average approximation error.
Pierro et al. further explores using probabilistic abstract interpretation to calcu-
late the average case analysis [24]. In 2012, Cousot and Monerau gave a general
probabilistic abstraction framework [6] and stated, in section 5.3, that Pierro et
al.’s method and many other abstraction methods can be expressed in this new
framework.

When analysing probabilities the main challenge is to maintain the dependen-
cies throughout the program. Schellekens defines this as Randomness preserva-
tion [31] (or random bag preservation) which in his (and Gao’s [14]) case enables

17

tracking of certain data structures and their distributions. They use special data
structures as they find these suitable to derive the average number of basic op-
erations. In another approach [35, 26], tests in programs has been assumed to
be independent of previous history, also known as the Markov property (the
probability of true is fixed). As Wegbreit remarked, this is true only for some
programs (e.g. linear search for repeating lists) and others, this is not the case
(linear search for non-repeating lists). The Markov property is the foundation
in Markov decision processes which is used in probabilistic model-checking [13].
Cousot et al. presents a probabilistic abstraction framework where they divide
the program semantics into probabilistic behavior and (non-)deterministic be-
havior. They propose handling of tests when it is possible to assume the Markov
property, and handle loops by using a probability distribution describing the
probability of entering the loop in the ith iteration. Monniaux propose another
approach for abstracting probabilistic semantics [23]; he first lifts a normal se-
mantics to a probabilistic semantics where random generators are allowed and
then uses an abstraction to reach a closed form. Monniaux’s semantic approach
uses a backward probabilistic semantics operating on measurable functions. This
is closely related to the forward probabilistic semantics proposed earlier by Kozen
[20].

An alternative approach to probabilistic analysis is based on symbolic exe-
cution of programs with symbolic values [15]. Such techniques can also be used
on programs with infinitely many execution paths by limiting the analysis to a
finite set of paths at the expense of tightness of probability intervals [30].

8 Conclusion

Probabilistic analysis of program has a renewed interest for analysing programs
for energy consumptions. Numerous embedded systems and mobile applications
are limited by restricted battery life on the hardware. In this paper we describe
a rewrite system that derives a resource probability distribution for programs
given distributions of the input. It can analyze programs in subset of C where we
have known distribution of input variables. From the original program we create
a probability distribution program, where we remove calls to original functions
and transform it into closed form. We have presented the transformation rules
for each step and outlined the implementation of the system. We discuss over-
approximating rules and their influence on the accuracy of the output probability
and show that our analysis improves on related analysis in the literature.

References

1. A. Adje, O. Bouissou, J. Goubault-Larrecq, E. Goubault, and S. Putot. Static
analysis of programs with imprecise probabilistic inputs. In In Verified Software:
Theories, Tools, Experiments, pages 22–47. Springer Berlin Heidelberg., 2014.

2. M. Bauer. Approximations for decision making in the Dempster-Shafer theory
of evidence. In E. Horvitz and F. V. Jensen, editors, UAI, pages 73–80. Morgan
Kaufmann, 1996.

18

3. D. Berleant and H. Cheng. A software tool for automatically verified operations
on intervals and probability distributions. Reliable Computing, 4(1):71–82, 1998.

4. O. Bouissou, E. Goubault, J. Goubault-Larrecq, and S. Putot. A generalization of
p-boxes to affine arithmetic. Computing, 94(2-4):189–201, 2012.

5. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garcıa, and G. Puebla.
The ciao prolog system. Reference Manual. The Ciao System Documentation
Series–TR CLIP3/97.1, School of Computer Science, Technical University of
Madrid (UPM), 95:96, 1997.

6. P. Cousot and M. Monerau. Probabilistic abstract interpretation. In H. Seidl,
editor, ESOP, volume 7211 of LNCS, pages 169–193. Springer, 2012.

7. Saumya K Debray, P López Garćıa, Manuel Hermenegildo, and N-W Lin. Estimat-
ing the computational cost of logic programs. In Static Analysis, pages 255–265.
Springer, 1994.

8. D. E. Denning. A lattice model of secure information flow. Commun. ACM,
19(5):236–243, 1976.

9. S. Destercke and D. Dubois. The role of generalised p-boxes in imprecise probability
models. In 6th International Symposium on Imprecise Probability: Theories and
Applications, 2009.

10. S. Ferson. Model uncertainty in risk analysis. Tech. report, Centre de Recherches
de Royallieu, Universite de Technologie de Compiegne, 2014.

11. S. Ferson, V. Kreinovich, L. Ginzburg, D. S. Myers, and K. Sentz. Constructing
probability boxes and Dempster-Shafer structures. Sand2002-4015, Sandia Na-
tional Laboratories, 2002.

12. P. Flajolet, B. Salvy, and P. Zimmermann. Automatic average-case analysis of
algorithm. Theor. Comput. Sci., 79(1):37–109, 1991.

13. V. Forejt, M. Z. Kwiatkowska, G. Norman, and D. Parker. Automated verification
techniques for probabilistic systems. In M. Bernardo and V. Issarny, editors, SFM,
volume 6659 of LNCS, pages 53–113. Springer, 2011.

14. A. Gao. Modular average case analysis: Language implementation and extension.
Ph.d. thesis, University College Cork, 2013.

15. J. Geldenhuys, M. B Dwyer, and W. Visser. Probabilistic symbolic execution. In
Proceedings of the 2012 International Symposium on Software Testing and Analy-
sis, pages 166–176. ACM, 2012.

16. J. Gordon and E. H. Shortliffe. The Dempster-Shafer theory of evidence. In
Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic
Programming Project, page 21 pp, 1984.

17. X. Guo, M. Boubekeur, J. McEnery, and D. Hickey. ACET based scheduling of
soft real-time systems: An approach to optimise resource budgeting. International
Journal of Computers and Communications, 1(1):82–86, 2007.

18. R. U. Kay. Fundamentals of the Dempster-Shafer theory and its applications to
system safety and reliability modelling. In RTA, pages 173–185, 2007.

19. S. Kerrison and K. Eder. Energy modelling and optimisation of software for a
hardware multi-threaded embedded microprocessor. University of Bristol, Bristol,
Tech. Rep, 2013.

20. D. Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22(3):328–
350, 1981.

21. M. Kwiatkowska, G. Norman, and D. Parker. Advances and challenges of proba-
bilistic model checking. In 48th Annual Allerton Conference on Communication,
Control, and Computing, pages 1691–1698. IEEE, September 2010.

19

22. U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech, M. V.
Hermenegildo, and K. Eder. Energy consumption analysis of programs based on
xmos isa level models. In 23rd International Symposium on Logic-Based Program
Synthesis and Transformation, LOPSTR, volume 8901 of LNCS, pages 72–90, 2013.

23. D. Monniaux. Abstract interpretation of probabilistic semantics. In Jens Palsberg,
editor, SAS, volume 1824 of LNCS, pages 322–339. Springer, 2000.

24. A. Di Pierro, C. Hankin, and H. Wiklicky. Abstract interpretation for worst and
average case analysis. In T. W. Reps, M. Sagiv, and J. Bauer, editors, Program
Analysis and Compilation, volume 4444 of LNCS, pages 160–174. Springer, 2006.

25. A. Di Pierro, H. Wiklicky, G. Puppis, and T. Villa. Probabilistic data flow analysis:
a linear equational approach. In Proceedings Fourth International Symposium,
volume 119, pages 150–165. Open Publishing Association, 2013.

26. H. Soza Pollman, M. Carro, and P. Lopez Garcia. Probabilistic cost analysis of
logic programs: A first case study. INGENIARE - Revista Chilena de Ingeniera,
17(2):195–204, 2009.

27. M. Rosendahl. Automatic program analysis. Master’s thesis, University of Copen-
hagen, 1986.

28. M. Rosendahl. Automatic complexity analysis. In FPCA, pages 144–156, 1989.
29. M. Rosendahl and M. H. Kirkeby. Probabilistic output analysis by program ma-

nipulation. In Quantitative Aspects of Programming Languages, EPTCS, 2015.
30. S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis for proba-

bilistic programs: inferring whole program properties from finitely many paths. In
In Proceedings of the 34th ACM SIGPLAN conference on Programming language
design and implementation, pages 447–458. ACM., June 2013.

31. M. P. Schellekens. A modular calculus for the average cost of data structuring.
Springer, 2008.

32. V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software: a first
step towards software power minimization. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 2(4):437–445, 1994.

33. A. Uwimbabazi. Extended probabilistic symbolic execution. Master’s thesis, Uni-
versity of Stellenbosch, 2013.

34. D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for secure flow
analysis. Journal of Computer Security, 4(2/3):167–188, 1996.

35. B. Wegbreit. Mechanical program analysis. Commun. ACM, 18(9):528–539, 1975.
36. M. Weiser. Program slicing. In Proceedings of the 5th international conference on

Software engineering, pages 439–449. IEEE Press, 1981.
37. A. Wierman, L. L. H. Andrew, and A. Tang. Stochastic analysis of power-aware

scheduling. In Proceedings of Allerton Conference on Communication, Control and
Computing. Urbana-Champaign, IL, 2008.

38. N. Wilson. Algorithms for Dempster-Shafer theory. In Handbook of defeasible
reasoning and uncertainty management systems, pages 421–475. Springer Nether-
lands, 2000.

39. S. Wolfram. The Mathematica book. Cambridge University Press and Wolfram
Research, Inc., New York, NY, USA and, 100:61820–7237, 2000.

40. F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound analysis of imperative
programs with the size-change abstraction. In Static Analysis, pages 280–297.
Springer, 2011.

20

Attachment D3.3.6

Static analysis of energy consumption

for LLVM IR programs

Published at the 18th International Workshop
on Software and Compilers for Embedded

Systems (SCOPES 2015)

126

Static analysis of energy consumption for LLVM IR programs

Neville Grech, Kyriakos Georgiou, James Pallister, Steve Kerrison, Jeremy Morse and Kerstin Eder
University of Bristol, Merchant Venturers Building, Woodland Road

Bristol, BS8 1UB, United Kingdom
nevillegrech@gmail.com, {kyriakos.georgiou, james.pallister, steve.kerrison, jeremy.morse, kerstin.eder}@bristol.ac.uk

Abstract
Energy models can be constructed by characterizing the energy
consumed when executing each instruction in a processor’s instruc-
tion set. This can be used to determine how much energy is required
to execute a sequence of assembly instructions, without the need to
instrument or measure hardware.

However, statically analyzing low-level program structures is
hard, and the gap between the high-level program structure and
the low-level energy models needs to be bridged. We have devel-
oped techniques for performing a static analysis on the intermedi-
ate compiler representations of a program. Specifically, we target
LLVM IR, a representation used by modern compilers, including
Clang. Using these techniques we can automatically infer an esti-
mate of the energy consumed when running a function under dif-
ferent platforms and compilers.

One of the challenges in doing so is that of determining the en-
ergy cost of executing LLVM IR program segments, for which we
have developed two different approaches. When this information is
used in conjunction with our analysis, we are able to infer energy
formulae that characterize the energy consumption for a particular
program. This approach can be applied to any languages target-
ing the LLVM toolchain, including C and XC or architectures such
as ARM Cortex-M or XMOS xCORE, with a focus towards em-
bedded platforms. Our techniques are validated on these platforms
by comparing the static analysis results to the physical measure-
ments taken from the hardware. Static energy consumption esti-
mation enables energy-aware software development by providing
instant feedback to the developer, without requiring simulations or
hardware knowledge.

Categories and Subject Descriptors D.2.8 [Software Metrics]:
Performance measures

General Terms Energy estimation, Software Analysis

1. Introduction
In embedded systems, low energy consumption is a very important
requirement. The software running on these systems has a profound
effect on the energy consumed. The design of software and algo-
rithms, the programming language and the compiler together with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SCOPES’15, June 1–3, 2015, Sankt Goar, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3593-5/15/06. . . $15.00.
http://dx.doi.org/10.1145/2764967.2764974

its optimization level all contribute towards the energy consump-
tion of an application. Measuring such consumption, however, re-
quires hardware specific knowledge and instrumentation, making
such measurements challenging for software engineers.

Estimations of energy consumption of programs are very useful
to software engineers, so that they can understand the effect of their
code on the energy consumption of the final system, without the
need to instrument or even have the system. Accurate energy con-
sumption and timing analysis of programs involves analyzing low-
level machine code representations. However, programs are written
in high-level languages with rich abstraction mechanisms, and the
relation between the two is often blurred. For instance, optimiza-
tions such as dead code elimination, various kinds of code motion,
inlining and other clever loop optimization techniques obfuscate
the structure of the program and make the resultant code difficult
to analyze [27].

In this paper, we develop a static analyzer that works on the
intermediate compiler representation of the program (LLVM IR).
Our analysis is based on a well-developed approach in which re-
cursive equations (cost relations) are extracted from a program,
representing the cost of running the program in terms of its in-
put [2, 3, 25, 32]. These cost relations (CRs) are finally converted
to closed-form, i.e. without recurrences, by means of a solver. For
example, we can analyze the following program.

1 void proc(int v[], int l) {
2 for (int i = 0; i < l; i++)
3 if(v[i] & 1)
4 odd();
5 else
6 even();
7 }

The following CRs are extracted from the program,

(a) Cproc(l) = k1 + Cfor(l, 0) if l ≥ 0

(b) Cfor(l, i) = k2 if i ≥ l ∧ l ≥ 0

(c) Cfor(l, i) = k3 + Codd() + Cfor(l, i+ 1) if i ≤ l ∧ l ≥ 0

(d) Cfor(l, i) = k4 + Ceven() + Cfor(l, i+ 1) if i ≤ l ∧ l ≥ 0

where l denotes the length of the array v, i stands for the counter of
the loop and Cproc, Codd and Ceven approximate, respectively, the
costs of executing their corresponding methods. The constraints,
denoted on the right hand side of the relations, specify a condition
that must be true for the cost relation to be applicable. For instance,
relation (a) corresponds to the cost of executing proc with an array
of length greater than 0 (stated in the condition l > 0), where cost
k1 is accumulated to the cost of executing the loop, given by Cfor .
Note that the transition into (c) and (d) is non deterministic. The

SCOPES 2015

12

constants k1, . . . , k4 take different values depending on the cost
model that one adopts. In this paper, our cost model focuses on
energy. These constants are obtained from energy models created
at the Instruction Set Architecture (ISA) level [13]. Such models
have previously been applied to analysis at the same level [15, 18],
and in this paper we propagate this up to the LLVM level.

Many modern compilers such as Clang or XCC are built us-
ing the LLVM framework. These internally transform source pro-
grams into intermediate compiler representations, which are more
amenable to analysis than either source or machine level programs.
We show how resource consumption analysis techniques can be
adapted and applied to programming languages targeting LLVM
IR (such as C or XC [31]) by reusing some of the existing ma-
chinery available in the compiler framework (for instance LLVM
analysis passes). We show how cost relations can be extracted from
programs, such that these can be solved using an existing solver
[3]. Specifically, we focus on optimized LLVM IR, that has been
compiled with optimization levels used in production software (i.e.
O2 or higher).

Time is a significant component of energy consumption, in that
a program that computes its result quicker will typically consume
less energy by virtue of a shorter run-time. However, the corre-
lation between time and energy varies between architectures, and
is related to the complexity of the processor’s pipeline [23]. For
example, one of the target architectures for this paper exhibits an
approximately 2× difference in energy depending on the instruc-
tions that are executed, with a similar relationship for the number
of threads executed upon it [13]. Analysis of system energy and
not just of execution time will therefore garner better information
on the energy characteristics of a program.

Figure 1. Illustration of the analysis toolchain.

Energy models can be constructed for a processor’s instruction
set; however this information needs to be constructed, or propa-
gated to a higher level program representation in order to bene-
fit our analysis mechanism. We propose two different techniques
(Section 4), for assigning energy to a higher level program repre-
sentation (LLVM IR). We first propose a mechanism for mapping
program segments at ISA level to program segments at LLVM IR
level. Using this mapping, we can perform a multi level program

analysis where we consider the LLVM IR for the structure and se-
mantics of the program and the ISA instructions for the physical
effect on the hardware. We also propose an alternative technique,
of determining the instruction energy model directly at the LLVM
IR level. This is based on empirical data and domain knowledge of
the compiler backend and underlying processor.

This paper focuses on static analysis of code for processors
that are embedded or deeply embedded. Such processors do not
typically feature cache hierarchies. They have small amounts of
static-RAM and possibly flash memory available to them. This
constrains the application space, but the motivation for analysing
software that targets these processors is greater, because these types
of embedded systems often have the strictest energy consumption
requirements.

The analysis toolchain is illustrated in Figure 1. The static re-
source consumption analysis mechanism is described in Section 3.
Parts of this mechanism perform a symbolic execution of LLVM
IR, which is described in Section 2. The techniques described are
built into a tool, which can be integrated into the build process, and
which statically estimates the energy consumption of an embedded
program (and its constituent parts, such as functions) as a mathe-
matical function on several parameters of the input data. Our ap-
proach is validated in Section 5 on a number of embedded systems
benchmarks, on both xCORE and Cortex-M platforms. Finally, we
describe related work in Section 6 and conclude in Section 7.

2. Structure and interpretation of LLVM IR
In this section we describe the core language and an important tech-
nique we utilize in the resource consumption analysis mechanism
(Section 3), which infers energy formulae given an LLVM IR pro-
gram.

2.1 The LLVM IR language
LLVM IR is a Static Single Assignment (SSA) based representa-
tion. This is used in a number of compilers, and is designed to rep-
resent high-level languages. It consists of IR instructions arranged
in basic blocks. A basic block BB over a CFG has a unique name
and is a maximal sequence of instructions, inst1 through instn,
such that all instructions up to instn−1 are not branch or return in-
structions and instn is br or ret. Basic blocks have a single entry
point.

For presentation purposes, we first formalize a simple calculus
of LLVM IR, based on the following syntax:

inst = br p BB1 BB2 (conditional branch)
| x = op a1..an (generic op., no side-effects)
| x = φ 〈BB1, x1〉..〈BBn, xn〉 (phi functions)
| x = call f a1 .. an

| x = memload (dynamic memory load)
| memstore (dynamic memory store)
| ret a

We use metavariable names p, f, a, x to describe predicates, func-
tion names, generic arguments and variables respectively. The con-
crete semantics of the instructions are modeled on the actual LLVM
IR semantics [35]. Instruction op represents any side effect free
operation such as icmp or add in LLVM. LLVM IR has explicit
φ instructions, which are present since the code is in static single
assignment (SSA) form. The φ instruction merges the multiple in-
ward data flow paths associated with a variable at the entry of a
basic block. It takes a list of pairs as arguments, with one pair for
each predecessor basic block of the current block. Each pair con-
tains a reference to a predecessor block together with the variable
that is propagated to the current block. The only place where a φ

SCOPES 2015

13

can appear is at the beginning of a basic block. Two interesting
instructions are memload and memstore. These represent any dy-
namic memory load and store operation respectively. For instance,
getelementptr and load are some examples of instructions rep-
resented by memload. These instructions typically compute point-
ers dynamically and load data from memory. In our abstract seman-
tics of LLVM IR, we therefore treat variables assigned with values
dynamically loaded from memory as unknown (denoted ‘?’). All
call instructions are assumed to eventually return.

2.2 Symbolic evaluation of LLVM IR variables
At the core of our resource consumption analysis mechanism of
LLVM IR is a symbolic evaluation function seval . Given a block
of code BB , and a variable x, seval(BB , x) symbolically executes
this block, producing a slice [34] of the block with respect to x.
During this static analysis phase, we apply an abstract semantics of
LLVM IR, which abstracts away dynamic memory reads and writes
i.e., memload and memstore. This has the effect of producing sim-
ple expressions, which can be handled by the PUBS solver [3]. The
algorithm proceeds by starting at the last assignment of x in the
block, and evaluates the assigned expression using this semantics,
recursively evaluating all its dependencies until an expression or
variable outside the block is reached. For example, given the fol-
lowing snippet:

1 LoopIncrement:
2 %postinc = add i32 %i.0, 1
3 %exitcond = icmp eq i32 %postinc, %1
4 br i1 %exitcond, label %return, label %LoopBody

seval(. . . ,%exitcond) is (%i.0+1) ==%1, while in the following
snippet

1 iftrue2:
2 call void @odd()
3 br label %LoopIncrement

seval(. . .,%i.0) would evaluate to %i.0, because there are no as-
signments to %i.0.

3. Resource Consumption Analysis for LLVM IR
The techniques described here are used to infer cost relations [3].
Cost relations are recursively defined and closely follow the flow
of the program. We need to solve these relations because what we
actually want to infer is a closed form formula modeling the cost,
parametric to any relevant input arguments to the program. These
solvers typically work with simplified control flow graph structures,
and therefore we must first perform some simplifications on the
control flow graphs, as described in Section 3.3. The analysis then
infers block arguments by using symbolic evaluation as described
in Section 2.2.

3.1 Inferring block arguments
Block arguments characterize the input data that flows into the
block, and is either consumed (killed) or propagated to another
block or function. Unfortunately, solving multi-variate cost rela-
tions and recurrence relations automatically is still an open prob-
lem, and the fewer arguments each relation has, the easier it is to
solve these. For this reason, we designed an analysis algorithm to
minimize the block arguments before inferring the cost relations.

The algorithm for inferring block arguments is a data flow anal-
ysis algorithm. We use a standard means to describe this algorithm,
as in [21]. We define a data flow analysis function gen , which,
given a basic block, returns the variables of interest in that block:

gen(BB) = genblk(BB) ∪ genfn(BB)

The function genblk returns the input arguments that affect the
branching in a block BB , composed of instructions inst1 through
instn. genfn returns the variables that affect the input to any
external calls in the block. genblk is defined as follows:

genblk(BB) =

{
ref (seval(BB , p)) if instn = [br p ..]

∅ otherwise

The function ref returns all variables referred to in the symbolically
evaluated expression given as argument, for example ref (x >
(y + 3)) returns {x, y}. We also define function genfn. This
returns all the input arguments that affect the parameters given to
the function, and is defined as:

genfn(BB) =

n⋃

k=1

m⋃
i=1

ref (seval(BB , ai)) if instk is [x = call f a1 .. am]

∅ otherwise

The data flow analysis function kill is defined as:

kill(BB) =
n⋃

k=1

{x} if instk is x = call . . .

{x} if instk is x = op . . .

{x} if instk is x = memload . . .

∅ otherwise

Finally, we combine gen and kill by utilizing a transfer func-
tion, which is inlined into argsin and argsout. These compute
the relevant block arguments utilized by the resource consumption
analysis. argsin(BB) is defined as the function’s arguments if BB
is the function’s first block. In all other cases, argsin and argsout
are defined as:

argsout(BB) =
⋃

BB′∈next(BB)

phimap〈BB,BB′〉(argsin(BB
′))

argsin(BB) = (argsout(BB)− kill(BB)) ∪ gen(BB)

where phimap maps variables between adjacent blocks BB and
BB ′ based on the φ instructions in BB ′.

Functions argsin and argsout are recomputed until their least
fixpoint is found. Finally, the block arguments are found in argsin.
The analysis explained in this section is closely related to live
variable analysis. A crucial difference, however, is in the function
gen . In our case, this returns a smaller subset of variables than live
variable analysis i.e., only the ones that may affect control flow.

3.2 Generating and solving cost relations
In order to generate cost relations we need to characterize the en-
ergy exerted by executing the instructions in a single block. We also
need to model the continuations of each block. Continuations, ex-
pressed as calls to other cost relations, arise from either branching
at the end of a block, or from function calls in the middle of a block.
For instance, consider the following LLVM IR block:

1 LoopIncrement:
2 %postinc = add i32 %i.0, 1
3 %exitcond = icmp eq i32 %postinc, %1
4 br i1 %exitcond, label %return, label %LoopBody

This would translate to the following relation:

CLI(i) = C0 + Cret(i+ 1) if i+ 1 = a1

CLI(i) = C1 + CLB(i+ 1) if i+ 1 6= a1,

SCOPES 2015

14

where CLI, Cret and CLB characterize the energy exerted when
running the blocks LoopIncrement, return and LoopBody re-
spectively. We therefore refer to Cret and CLB as continuations of
CLI. Expressing these calls to other cost relations involves eval-
uating their arguments, which cannot be done without evaluating
the program. Instead, by symbolically executing the block, we can
express the arguments of the continuation in terms of the input ar-
guments to the block. In order to do so, we perform symbolic eval-
uation using the function seval .

The cost relations, extracted from recursive programs using the
techniques discussed in this section, can be automatically trans-
formed to closed form by the PUBS solver. PUBS infers closed
form solutions recursively, starting with the inner-most relations,
using various techniques such as computing ranking functions and
loop invariants. The results of the intermediate steps are then math-
ematically composed to solve the whole set of given cost relations.

There are cases where the optimized program structures pro-
duced by LLVM based compilers prevent the cost relation solvers
from finding unique cover points in the structure of the cost rela-
tions. In order to solve this problem, we need to perform transfor-
mations to the call graph upon which we construct our cost rela-
tions. This is described in the next section.

3.3 Transformations for control flow graphs
After compilation, nested loop program structures are mangled by
compiler optimizations. When the resulting Control Flow Graph
(CFG) is directly used to produce CRs, it is usually not possible
to infer closed form solutions. For instance PUBS cannot handle
complex CFGs, and therefore in order to analyze programs with
nested loops, the CFG needs to be simplified. The simplification is
done at an early using the following steps:

1. Identify a loop’s CFG, A, that has nested loops.

2. Identify the sub-CFG, B, of A corresponding to the inner loop.

3. Extract B out of A, so that B is a separate CFG. This can be
thought of as a new function with multiple return points. Hence
B’s exit edges are removed.

4. In A, in the place where B used to be, keep the continuation to
B. Append a continuation to B’s exit targets to B’s caller in A.

In order to perform the first two steps, we need to identify the
loops in the CFG. While LLVM has specific passes to do so, we
had better success when using the algorithm described in [33]. As
an example, we show how these steps can be used to transform the
CFG of a simple insertion sort, as shown in Listing 1. The original
CFG of this program, when compiled using clang with optimiza-
tion level O2 is shown in Figure 2 (left). In this CFG, the nested
loops are identified, which also involves identifying their corre-
sponding entries, re-entries, exit and loop headers. Here, blocks
bb1, bb2 and .backedge form the inner loop. These blocks are
hoisted and the exit edge from .backedge (dotted) is eliminated.
Instead, .loopexit is then called after bb1 “returns” (Figure 2).

The CFG simplifications described in this section preserve the
same order of operations when applied to an existing CFG com-
piled from typical while or for using clang or xcc. This means
that the program called in the left-side of Figure 2 will consume as
much energy as the program in the right-side of Figure 2. The only
limitation of this approach is when an induction variable of an outer
loop is modified in an inner loop. In this case the transformation
cannot occur, however we have not encountered real benchmarks
where this takes place.

In order to verify the transformation with respect to energy, let
us consider a typical while or for loop and show that the same
sequence of blocks is called after the transformation takes place.
We can assume that such a loop has a single header, but may

1 void sort(int numbers[], int size) {
2 int i=size, j, temp;
3 while(j = i--)
4 while(j--)
5 if(numbers[j] > numbers[i]) {
6 temp = numbers[i];
7 numbers[i] = numbers[j];
8 numbers[j] = temp;
9 }

10 }

Listing 1. This insertion sort demonstrates that certain classes of
programs require further analysis or transformation.

bb0:

 ...

T F

.preheader.lr.ph:

 ...

._crit_edge:

 ...

.lr.ph:

 ...

bb1:

 ...

T F

.loopexit:

 ...

T F

bb2:

 ...

.backedge:

 ...

T F

bb0:

 ...

T F

.preheader.lr.ph:

 ...

._crit_edge:

 ...

.lr.ph:

 ...

------>

.loopexit:

 ...

T F

<----

bb1:

 ...

T F

bb2:

 ...

.backedge:

 ...

T F

Figure 2. CFG of an insertion sort compiled using clang with
optimization level O2 before (left) and after simplification (right).

have multiple exits or reentries. However, the induction variables
of the outer loops are not modified in the inner loops. After the
transformation takes place on a nested loop structure (B inside A),
B is still called from A, however B’s exit edges are now removed.
The target of B’s exit edges will still be called after B completes.
This is because we have appended a continuation in A to this target,
in Step 4. Hence all blocks will be called in the same sequence. The
argument above can be inductively applied to loops with arbitrary
nesting levels.

4. Computing energy cost of LLVM IR blocks
The intermediate representation used by LLVM is architecture in-
dependent. Any given LLVM IR sequence can be passed to one
of many different backends, including ISAs [16]. The exact im-
plementation of the ISA determines the energy consumed by each
instruction that is executed. Thus, the conversion to machine code,

SCOPES 2015

15

together with the processor implementation, affects the energy con-
sumption of an instruction at the LLVM IR level.

For static analysis of LLVM IR to produce useful energy formu-
lae for programs, a method of assigning an energy cost to an LLVM
IR segment must be used. Two possible methods are demonstrated
in this paper, both having their advantages and disadvantages:

1. ISA energy model w/mapping. LLVM IR is mapped to its corre-
sponding ISA instructions and the energy cost is obtained from
the ISA level cost model. The advantage is that it is simpler to
characterize at ISA level. However, this requires an additional
step to correlate LLVM with ISA instructions.

2. LLVM energy model. Attributing costs directly to LLVM IR re-
moves the need for a mapping. However, it necessarily simpli-
fies the energy consumption characteristics, reducing accuracy.

In principle, both methods can be explored for both architec-
tures. This paper utilizes an ISA level model for the XMOS pro-
cessor whereas The Cortex-M is modeled at the LLVM IR level
directly.

4.1 XMOS XS1-L ISA level modeling
The aim of ISA level modeling is to associate machine instructions
with an energy cost. To achieve this, energy consumption samples
must be collected and an appropriate representation of the under-
lying hardware must be used as a basis for the model. A single-
threaded model, such as that defined by Tiwari [28] and expressed
in Equation 1, describes the energy of a sequence of instructions,
or program.

Eprog =
∑

i∈ISA

(BiNi) +
∑

i,j∈ISA

(Oi,jNi,j) +
∑

k∈ext

Ek (1)

The program’s energy, Eprog, is first formed from the base cost, Bi,
of all instructions, i, in the ISA, multiplied by the occurrences, Ni,
of each instruction. For each transition in a sequence of instruc-
tions, the overhead, Oi,j , of switching from instruction i to instruc-
tion j, multiplied by the number of times the combinations of i and
j, occurs Ni,j times. Finally, for a set of k external effects, the cost
of each of these effects, Ek is added. For example, these external
effects may represent the cache and memory costs, based on the
cache hit rate statistics of the program.

The XS1-L architecture implements multi-threading in a hard-
ware pipeline. Even for single-threaded programs, we need to con-
sider the behavior of this multi-threaded pipeline. The power of
individual instructions varies by up to 2×, with multi-threading
introducing up to a 1.6× increase with a 4× performance boost.
This means execution time and energy are related in a more com-
plex way than a simpler single-threaded architecture. The model
for the XS1-L is built upon existing work of [29] and the more de-
tailed [26], which obtain model data through the energy measure-
ment of specific instruction sequences, and create a representation
of some of the processor’s internal structure in the model equa-
tions. A full description of the XS1-L’s energy characteristics and
the model is given in [13].

To extend a Tiwari style approach to model the XS1-L proces-
sor, two new characteristics must be accounted for: idle time and
concurrency. The XS1 ISA has a number of event-driven instruc-
tions, which can result in the processor executing no instructions
for a period of time, until the event occurs. Furthermore, the multi-
threaded pipeline permits only one instruction from a given thread
to be present in the pipeline at any one time. These changes are ex-
pressed in Equation 2. Here, the energy exerted by running a pro-
gram depends on a base power, Pbase, which represents the energy
cost when no instructions are executed, multiplied by the number
of idle periods, Nidle. The clock period of the processor, Tclk is also
introduced, to allow different clock speeds to be considered. The

inter-instruction overhead, previously described in Equation 1 as
Oi,j , is generalized to a constant overhead, O, due to the unpre-
dictability of instruction interaction between threads. For each in-
struction, the base cost is added to the instruction cost, Pi, which
is scaled by the overhead and an additional scaling factor based on
the number of active threads, Mt. This is multiplied by the number
of occurrences of this instruction at t threads, Ni,t and the clock
period, Tclk. This is done for the varying number of threads, t that
may be active in the program over its lifetime.

Eprog = PbaseNidleTclk

+

Nt∑

t=1

∑

i∈ISA

((MtPiO + Pbase)× (Ni,tTclk)) (2)

The multi-threaded ISA level model for the XS1-L requires that for
each level of concurrency, t, the number of instructions executed
at that level should be known, or estimated. If a single threaded
program is run on its own on the XS1-L and there are no idle
periods, then Equation 2 simplifies to Equation 3, where the idle
accounting is removed, and only the first threading level, t = 1, is
considered.

Eprog =
∑

i∈ISA

((M1PiO + Pbase)× (NiTclk)) (3)

The current analysis effort focuses upon single threaded experi-
ments, thus Equation 3 can be used. Multi-threaded analysis is pro-
posed as future work in Section 7. Temperature variation in the
device is not captured in this model. However, prolonged testing
of the target hardware showed no significant temperature changes,
or associated affects, that would influence the single-threaded tests
performed in this work.

4.2 XMOS LLVM IR energy characterization by mapping
To enable the analysis at the LLVM IR level we need a mecha-
nism to propagate the existing energy model at the ISA level up
to the LLVM IR level. The mapping technique described in this
section creates a fine grained mapping between segments of ISA
instructions to LLVM IR instructions, in order to enable the energy
characterization of each LLVM IR instruction in a program. A full
description of the mapping techniques is given in [8].

Our mapping technique leverages the existing debug mecha-
nism in the XMOS compiler toolchain. This mechanism is origi-
nally meant to facilitate the debugging process of an application,
particularly when stepping through a program line by line. During
the lowering phase of the compilation process, the LLVM IR code
is transformed to the specific ISA code by the backend. The de-
bug information (DI) is also stored alongside with the ISA code
using the DWARF standard [1], a standardized debugging data for-
mat used by many compilers and debuggers to support source level
debugging. By tracking this information we can extract an n : m
relationship between the two levels, because one source code in-
struction can be related to many different sequences LLVM IR in-
structions and therefore many different sequences of ISA instruc-
tions. Because this n : m relation complicates static analysis, there
is a need for a more fine grained mapping.

To address this issue, we created an LLVM pass that traverses
the LLVM IR and replaces the Source Location Information with
LLVM IR location information. This occurs after the optimization
passes, but before the lowering phases. The lowering phases and
platform-specific optimizations inside LLVM based compilers do
not alter the structure of the program, and therefore the structure
of optimized LLVM IR closely resembles the structure of the ISA
program. In this way, we can extract a 1 : m relationship between
the mapping of LLVM IR instructions and ISA instructions. After a
mapping is extracted for a particular program, the associated energy

SCOPES 2015

16

values for the ISA instructions corresponding to a specific LLVM
IR instruction are aggregated and then associated with the LLVM
IR instruction, and finally to every LLVM IR block.

Although we use the XMOS tool-chain for the mapper tool, the
approach is generic and transferable, due to the use of the common
LLVM optimizer and code generator, and the use of the DWARF
standardized debugging data format, used by many compilers and
debuggers to support source layer debugging.

4.3 LLVM IR energy model for ARM
An energy model for ARM Cortex-M series is applied directly at
the LLVM IR level, based upon empirical energy measurement
data, and knowledge of both the processor architecture and the
compiler backend. The Cortex-M3 model is for the most part a
simplification of the Tiwari model [28], applied at the LLVM IR
level. The processor does not feature a cache, so it is not neces-
sary to model cache misses as external effects. The effect of the
switching cost between instructions is approximated into the actual
instruction cost, rather than assigning a unique overhead for each
instruction pairing.

Through analysis of energy measurements for a large set of
the target ISA instructions, it was found that LLVM IR instruc-
tions, when compiled on this platform, can be segmented into four
groups: memory, M , program flow, B, division, D, and all other
instructions, G. The LLVM IR syntax described in Section 2 can
be related to these groupings. In particular, br, call and ret can be
combined into group B; memload and memstore are members of
M ; the subset of op relating to division make up group D; and
finally, φ and all remembering members of op form group G.

This yields an equation, which accumulates the energy, Eprog,
consumed by a program based on the number of instructions ex-
ecuted from each group. This is denoted in Equation 4, where Ei

is the energy cost of a single instruction in group i, and Ni is the
number of instructions executed in that group.

Eprog =
∑

i∈{M,B,D,G}
EiNi (4)

In addition, there are a number of other factors that affect energy,
due to the relation between the LLVM IR and the ISA:

1. Variadic arguments. LLVM has instructions with variadic ar-
guments. Typically, the number of arguments in the instruction
affects the energy consumed in a linear manner.

2. Data types. LLVM operations op can be performed on values
of different data types. If the data type is larger than 32 bits, or
is floating point, this will translate into a larger number of ISA
instructions on a Cortex-M with no floating point unit.

3. Predicated instructions. The Cortex-M processor is capable
of executing predicated instruction sequences. In some cases,
short LLVM IR blocks originating from ternary expressions in
the original source code are directly translated to a number of
predicated instructions in the ARM ISA. Therefore, the number
of ISA instructions generated could be less than the instructions
in LLVM IR, and the static analysis over-approximates the
energy consumption of these blocks.

Factors (1) and (2) can be accounted for by parameterizing the
LLVM IR energy model. For instance, consider the following call
instruction:

%6 = call i32 @min(i32 %boptmp88, i32 %boptmp96)

Benchmark L NL A B C

base64 × × ×
mac × ×
levenshtein × × × ×
insertion sort × × ×
matrix multiply × × ×
jpegdct × × × × ×

Table 1. Benchmark Characteristics.

This translates to a single branch instruction in the ARM ISA,
with surrounding register moves to ensure the correct calling con-
vention:

1 mov r0, r4 # move arg1 into r0
2 mov r1, r5 # move arg2 into r1
3 bl min # call min
4 mov r4, r0 # move the result into r4

As we can see, the energy consumed by an LLVM call instruc-
tion is parametric in the number and types of the arguments and
return value.

5. Experimental Evaluation
We have selected a series of benchmarks of core algorithmic func-
tions, particularly from the BEEBS [22] and MDH WCET bench-
mark [9] suites. These are collections of open source benchmarks
for deeply embedded systems, where the activities performed in
these benchmarks are typical of such systems. Analysing bench-
marks of this size and with their particular characteristics is there-
fore a good means of evaluating our analysis technique in order to
demonstrate its usefulness within the embedded systems software
space. The benchmarks are single threaded, reflecting the scope of
the analysis performed in this paper. Minimal modifications were
made to allow integration into our test harness. Table 1 summarizes
the characteristics of the benchmarks, and the meaning of the last
5 columns is as follows: (L) contains loops, (NL) contains nested
loops, (A) uses arrays and/or matrices, (B) contains bitwise opera-
tions, (C) contains loops with complex control flow predicates.

In order to show that our techniques are applicable to multiple
languages and platforms, we have ported some of the benchmarks
from C to XC. Porting C code to XC typically does not involve
rewriting, since the syntax is very similar and they both use the
same preprocessors. However, since XC does not provide pointers,
some changes need to be made to the benchmarks during the port-
ing process. For the benchmarks that run on the xCORE, we have
used the XC compiler, version 13. For Cortex-M benchmarks we
have used Clang version 3.5. We proceed by describing the bench-
marks. In both cases, the benchmarks are compiled under optimiza-
tion level O2.

Insertion sort. The code of the main function is shown in Fig-
ure 1. The energy exerted by the insertion sort partly depends on
how many swaps need to take place, and this is dependent on the
actual data present inside the array. Since PUBS infers a formula
representing an upper bound of the closed form solution, we will
be measuring the energy consumed while sorting a reverse-ordered
list, and comparing this to the statically inferred formula. Note that
the number of iterations in the inner loop depends on an induction
variable in the outer loop. This benchmark is parameterized by the
length of the list to be sorted, P .

Matrix multiply (BEEBS/MDH WCET). We modified this so
that it could work with matrices of various sizes. The matrices are
all square, of size P .

SCOPES 2015

17

0 100 200 300 400 500

Parameter, P

0

5

10

15

20

25

30

E
n
er
gy

 p
er
 i
te
ra
ti
on

 (
m
J
) insertion sort

Actual

Analysis

Error

-5.6

-5.4

-5.2

-5.0

-4.8

-4.6

-4.4

-4.2

R
el
at
iv
e
er
ro
r
(%

)

0 10 20 30 40 50

Parameter, P

0
2
4
6
8
10
12
14
16
18

E
n
er
gy

 p
er
 i
te
ra
ti
on

 (
m
J
) matrix multiplication

Actual

Analysis

Error

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

R
el
at
iv
e
er
ro
r
(%

)

0 200 400 600 800 1000 1200 1400

Parameter, P

0

50

100

150

200

250

E
n
er
gy

 p
er
 i
te
ra
ti
on

 (
µ
J
)

mac

Actual

Analysis

Error 2

4

6

8

10

R
el
at
iv
e
er
ro
r
(%

)

Figure 3. The measurement results and static analysis for the
XMOS processor.

Base64 encode. Computes the base64 encoding1 as a string,
given an input string of length P .

MAC (MDH WCET). Dot product of two vectors together with
sum of squares. Parameterized by the length of the vectors, P .

Jpegdct (MDH WCET). Performs a JPEG discrete cosine trans-
form. Taken from the MDH WCET benchmark suite. This bench-
mark is not parameterized.

Levenshtein distance (BEEBS). Computes the minimum num-
ber of edits to change one string into another. The lengths of the
two strings are parameterized with the variables A and B.

5.1 Experimental Setup
For both ARM and XMOS platforms, power measurement data is
collected by using instrumented power supplies, a power sense IC
and an embedded system running control and data collection soft-
ware. The implementations differ, but are structurally very similar.
Both of these periodically calculate the power (using Equation 5)
during a test run, by sampling the voltage on either side of a shunt
resistor (Vbus and Vshunt) to determine the supplied current.

P = I × Vbus where I =
Vbus − Vshunt

Rshunt
(5)

For the Cortex-M processor, the measurements are taken on an
ST Microelectronics STM32VLDISCOVERY board while for the
xCORE, a custom XMOS board with an XS1-L based XS1-U16A
chip is used.

5.2 Results
The results for the XMOS xCORE and ARM Cortex-M proces-
sors are shown in Figures 3 and 4, respectively. These graphs show

1 Posted by user2859193 on stackoverflow.com/questions/342409

100 200 300 400 500 600 700 800 900 1000

Parameter, P

0

5

10

15

20

25

E
n
er

gy
 p

er
 i
te

ra
ti
on

 (
m

J
) insertion sort

Actual

Analysis

Error

10.0

10.5

11.0

11.5

12.0

12.5

13.0

R
el
at

iv
e

er
ro

r
(%

)

0 5 10 15 20 25

Parameter, P

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
n
er

gy
 p

er
 i
te

ra
ti
on

 (
m

J
) matrix multiplication

Actual

Analysis

Error

-45
-40
-35
-30
-25
-20
-15
-10
-5
0

R
el
at

iv
e

er
ro

r
(%

)

0 200 400 600 800 1000 1200

Parameter, P

0

5

10

15

20

25

30

E
n
er

gy
 p

er
 i
te

ra
ti
on

 (
µ
J
)

mac

Actual

Analysis

Error

-2

-1

0

1

2

3

4

5

R
el
at

iv
e

er
ro

r
(%

)

Figure 4. The measurement results and static analysis for the
Cortex-M processor.

1 void function(int A, int B) {
2 int i;
3

4 if(A < B)
5 for(i = 2*A; i >= 0; i--)
6 ...
7 else
8 for(i = B; i >= 0; i--)
9 ...

10 }

Figure 5. Example program of where the analysis infers a max
formula, together with its CFG

the insertion sort, matrix multiplication and mac benchmarks, with
data series for the static analysis results and actual energy measure-
ments. The static analysis closely fits the empirical results, validat-
ing our approach. Table 2 shows the formulae and final errors for all
benchmarks. Overall, the final error is typically less than 10% and
20% on the XMOS and ARM platforms respectively, showing that
the general trend of the static analysis results can be relied upon to
give an estimate of the energy consumption. We explain the sources
of error in our results below:

Simple LLVM IR energy model (ARM). For the case of Cortex-
M, the errors in the analysis mostly stem from the greatly simplified
model of energy consumption in the Cortex-M. The LLVM IR en-
ergy model used for the Cortex-M assigns an energy cost to each
IR instruction. Therefore, when an IR instruction expands to un-
expected, or many ISA level instructions, the energy consumption
can be inaccurate. In particular, for base64, ternary operators are
heavily used inside its main loop. In LLVM IR, this introduces a

SCOPES 2015

18

Benchmarks [22] Formulae Final error (%)
ARM (nJ) XMOS (nJ) ARM XMOS

base64 158 + 94 ·
⌊
P−1
3

⌋
1270 + 734 ·

⌊
P−1
3

⌋
28.0 1.1

mac 23P + 14 133P + 192 -1.7 10.1
levenshtein 47AB + 14A+ 31B + 44 559AB + 78A+ 571 +max(225B, 180B + 213) 7.0 0.4
insertion sort 25P 2 + 11P + 7.1 105P 2 + 30P + 75 11.1 3.0
matrix multiply 20P 3 + 13P 2 + 97P + 84 144P 3 + 200P 2 + 77P + 332 -3.3 -3.4
jpegdct 54 mJ‡ 463 mJ‡ 8.5 2.6
‡ This benchmark was not parameteric, thus is not parameterised.

Table 2. Formulae and error values for each benchmark.

number of short conditional blocks inside this loop. These multi-
ple basic blocks in LLVM IR are translated to a smaller number
of predicated instructions in the ARM ISA by the compiler, so the
static analysis will over approximate the energy consumed.

Measurement error. Measurement errors are introduced from en-
vironmental factors such as temperature and power supply fluctua-
tions. The tolerance of the components is also another factor. The
test harness contributes error too, as it must call a function repeat-
edly in order to get its energy measurements. The loop surrounding
this function, together with the act of calling can be a significant
overhead when the amount of computation inside the function is
low. In fact, we can see that in all cases, the relative error converges
to a single error result. This is expected because in all of the bench-
marks, the parameter controls the number of iterations performed
in one or more loops. As the parameter increases, the difference
in the constant energy overhead is minimized, with respect to the
energy consumption of the function under test. Measurement runs
were run numerous times to ensure consistency of results within
the expected error margins described above.

Data flow through the processor’s execution units. The energy
models for the xCORE and ARM assume a random distribution of
operand data. In practice, however, operations such as logical tests,
bit-manipulation and instructions performed on shorter data types
such as char will not use the full bit-range of the data path. In
cases such as these, energy consumption will be lower, therefore
introducing some estimation inaccuracy.

LLVM IR to ISA mapping (xCORE). In the case of the xCORE,
the overall results are better than that of the Cortex-M. This is due
to a more accurate assignment of energy values to LLVM-IR in-
structions, which the mapper can produce for each individual pro-
gram, as described in Section 4.2. Nevertheless, the mapper intro-
duces analysis error. For instance, the mapper does not consider
instruction scheduling on the processor, where an instruction fetch
stall can happen in some limited scenarios. This can be addressed
by performing a further local analysis on the ISA code to deter-
mine the possible locations where this happens, and adjusting the
energy accordingly. Another problem arises when mapping LLVM
IR phi instructions to the “corresponding” ISA code. Copy instruc-
tions at ISA level, attributed to LLVM IR phi instructions inside
a loop may be hoisted out of loops. The hoisted ISA cost is thus
counted for each loop iteration, leading to an overestimate. This
phenomenon was partially addressed by automatically adjusting the
energy of phi instructions during the mapping.

Static analysis and data dependence. Programs where the be-
havior and state depends on complex properties of the actual input
data are problematic for static resource consumption analysis. An
extreme example of such a program would be an interpreter. The
execution time of an interpreter not only depends on the size of the
program file it is supplied, but also on the program represented in
this file. A more typical example would be the euclidean algorithm

1 int distances[MAX];
2

3 void sortbysimilarity(char *word, int word_len,
4 char *dictionary[], int dictword_len,
5 int n_strings)
6 {
7 int i = n_strings;
8

9 while(i--) {
10 distances[i] = levenshtein(word,
11 dictionary[i], word_len,
12 dictword_len);
13 }
14 sort(distances, dictionary, n_strings);
15 }

Listing 2. Sort by similarity function, demonstrating that the
analysis can be composed across multiple functions.

(gcd(a, b)), where the number of steps taken to execute depends on
a relationship between its parameters a and b. Our static analysis
technique, however, still manages to compute an approximation –
a logarithmic function with base 2, which is dependent on only one
of the arguments. Part of the reason why we can analyze programs
of this type is that symbolic evaluation of modulus between two
variables x mod y is defined as an upper bound of y − 1, a lower
bound of 0 and an approximation of (y − 1)/2.

The levenshtein cost function for the xCORE processor in-
cludes a max function, making it a different type of formula from
the Cortex-M’s cost function. This occurs when a data dependent
branch is on the upper bound of the function and the analysis is un-
able to resolve the branch statically, possibly because the branching
is data dependent. An example of this is shown in Figure 5. The
analysis cannot statically ascertain the outcome of the A < B ex-
pression, so it simply returns the cost function as the maximum of
the two possible branches:

function = k1 + max(k2 + 2 · k3 ·A, k4 + k5 ·B) + k6,

where k1, ..., k6 are the costs of executing the respective basic
blocks, as seen in Figure 5.2. The same effect causes max to ap-
pear in the xCORE’s formula since there is a data dependent if
statement in an inner loop of levenshtein.

5.3 Composability
All of the benchmarks so far have consisted of relatively simple
code, for which a single function is analyzed. However, the analysis
can handle nesting and recursion, in the same way that it can handle
functions with multiple basic blocks. In the code in Listing 2,
the levenshtein and modified insertion sort functions are
composed into a simple spell checker — for a given string, sort the
list of strings by the sortbysimilarity to the target string.

In this listing, dictword len is the maximum size of the strings
in dictionary. Inferring a cost formula for this program does not
present any issues as long as it is possible to infer formulas for its

SCOPES 2015

19

constituent parts. Our techniques construct Cost Relations (CRs)
from the program that is being analyzed. An important feature of
CRs is their compositionality. Compositionality allows to compute
closed form solutions of CRs, composed of multiple relations,
by concentrating on one relation at a time. The process starts by
solving cost relations that do not depend on any other relations
and proceeds by replacing the these cost relations in the equations
which call such relations. For instance, for the above program
levenshtein distance has an associated energy cost of

(A(53B + 16) + 35B + 31) nJ, (6)

where A and B are the third and fourth arguments to the function.
Our modified string sorting routine has a cost of:

(
37A2 + 14A+ 14

)
nJ. (7)

These functions are systematically combined together so that a cost
for sortbysimilary is computed. In this case it is
(
530ABC + 157AC + 346BC + 366C2 + 629C + 210

)
nJ,
(8)

where A is word len, B is dictword len and C is n strings.

6. Related Work
Related work exists in four different areas: energy modeling of
processors, mapping low-level program segments to higher level
structures, static resource consumption usage analysis and worst-
case execution time analysis (WCET).

Energy models of processors for program analysis require en-
ergy consumption data in relation to the program’s instructions.
This data can be collected by simulating the hardware at various
levels, including semiconductor [17] and CMOS [5]. Alternatively,
higher level representations may be used, such as functional block
level [26] that reflects the micro-architecture, direct measurement
on a per-instruction basis [28], or profiling the energy consumption
of commonly used software blocks [24]. Higher level data collec-
tion and modeling efforts are typically quicker to use once the data
has been acquired, as there is less computational burden than a low-
level simulation. However, the accuracy may be lower, so a suitable
trade-off must be met.

Although substantial effort has been devoted to ISA energy
modeling, there is not a lot of work done for higher level program
representations. This is mostly because precision decreases when
moving further away from the hardware. One of the most recently
pertinent works for LLVM IR energy modeling is [6]. The au-
thors performed statistical analysis and characterization of LLVM
IR code, together with instrumentation and execution on the host
machine, to estimate the performance and energy requirements in
embedded software. In their case, retrieving the LLVM IR energy
model to a new platform requires performing the statistical anal-
ysis again. Our LLVM IR energy model takes into consideration
types and other aspects of the instructions. Furthermore, our map-
ping technique requires only the adjustment of the LLVM mapping
pass for the new architecture.

Static cost analysis techniques based on setting up and solving
recurrence equations date back to Wegbreit’s [32] seminal paper,
and have been developed significantly in subsequent work [3, 7,
20, 25, 30]. In [18] this approach is applied to the static inference
of Java programs’ resource consumption as functions of input data
sizes, by specializing a generic resource analyzer [10, 20] to Java
bytecode analysis [19]. However, this work did not compare the
results with measured energy consumptions. In [15] the approach
is applied to the energy analysis of XC programs using ISA-level
models [13], and the results are compared to actual hardware mea-
surements. Our analysis continues in this line of work but with a
number of important differences. First, analysis is performed at

the LLVM-IR level and we propose novel techniques for reflect-
ing the ISA-level energy models at the LLVM-IR level. Instead of
using a generic resource analyzer (requiring translating blocks to
its Horn Clause-based input syntax) and delegating the generation
of cost equations to it, we generate the equations directly from the
LLVM-IR compiler representation, performing control flow sim-
plifications, and reducing the number of variables modelled by the
analysis mechanism. Finally, we study a larger set of benchmarks.
Other approaches to cost analysis exist, such as those using depen-
dent types [11], SMT solvers [4], or size change abstraction [36].

As discussed in Section 1, energy and time are often correlated
to some degree. Techniques such as implicit path enumeration [14]
are often used in worst-case execution time analysis of programs. In
most cases, programs are assumed to be preprocessed such that no
loops are present (e.g. using loop unrolling). Some approaches such
as [12] focus on statically predicting cache behavior. WCET analy-
sis is concerned with getting an absolute worst-case timing for hard
real-time systems. In practice, for energy consumption analysis we
typically are more interested in average cases. Also, most WCET
analysis approaches produce absolute timing figures. In our case,
we infer energy formulae parameterized by the program’s input.

7. Conclusion and Future Work
In this paper we have introduced an approach for estimating the
energy consumption of programs based on the LLVM compiler
framework. We have shown that this approach can be applied to
multiple embedded languages (such as C or XC), compiled using
optimization level O2 with different compilers (such as Clang or
XCC). We have also validated this approach for multiple backends,
via two target architectures: ARM Cortex M3 and XMOS XS1-
L. Our approach is validated by comparing the static analysis to
physical measurement taken from the hardware. The results on our
benchmarks show that energy estimations using our technique are
within 10% and 20% or better in the case of the xCORE and the
Cortex-M processors, respectively.

Although the techniques discussed here were initially designed
for single threaded programs, these can be adapted to multi-
threaded programs. To do so, we need to take the synchronization
time into consideration. For example, the XC language has explicit
constructs for thread communication using channels, and therefore
the blocking communication between threads needs to be modeled.
In order to do so, we can analyze the communication throughput of
individual threads using techniques discussed in this paper. Using
this information we can estimate the time between events happen-
ing on channels and hence the utilization of the processor. This,
coupled with multi-threaded energy models as discussed in Sec-
tion 4.1, can be used to analyze multi-threaded programs.

An interesting direction is to further develop the assignment of
energy to LLVM IR program segments. In particular, an LLVM IR
energy model for the xCORE can be implemented by using the in-
formation gathered from the mapping technique together with sta-
tistical analysis. The mapping technique used for the xCORE can
also be adapted for the ARM case. We aim to further develop our
techniques so they can be applied against other embedded proces-
sor architectures, such as MIPS, or other ARM variants. In partic-
ular, it would be interesting to see how far this technique can be
effective with architectures that feature multiple pipelines, regis-
ter renaming and similar optimizations. Further work could involve
energy models applied to short strings of instructions, augmented
with appropriate heuristics.

Finally, the static analysis techniques can be improved further.
Currently the biggest limitation is solving the cost relations. Cost
relations could also be solved numerically, enabling us to analyze
more complex programs. An implementation of this can be used
when actual formulae are not required.

SCOPES 2015

20

Acknowledgments
The research leading to these results has received funding from the
European Union 7th Framework Programme (FP7/2007-2013) un-
der grant agreement no 318337, ENTRA - Whole-Systems Energy
Transparency, and grant agreement 611004, project ICT-Energy.
The energy measurement hardware (MAGEEC WAND) used for
measuring the energy of the ARM benchmarks was funded by
Innovate UK, award 131198. Special thanks are due to Pedro
Lopez-Garcia and his team at the IMDEA Software Institute for
many fruitful and inspiring discussions. We would like to thank our
project partners at Roskilde University and at XMOS. Thanks also
go to Samir Genaim for his help on how to best make use of the
PUBS solver.

References
[1] The dwarf debugging standard, Oct. 2013. http://dwarfstd.org/.

[2] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Cost relation systems:
A language-independent target language for cost analysis. Electronic
Notes in Theoretical Computer Science (ENTCS), 248:31–46, Aug.
2009.

[3] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper
Bounds in Static Cost Analysis. Journal of Automated Reasoning,
46(2):161–203, February 2011.

[4] D. Alonso-Blas and S. Genaim. On the limits of the classical approach
to cost analysis. 7460:405–421, 2012.

[5] A. Bogliolo, L. Benini, G. D. Micheli, and B. Ricc. Gate-Level Power
and Current Simulation of CMOS Integrated Circuits. IEEE Trans. on
Very Large Scale Integration (VLSI) Systems, 5(4):473–488, 1997.

[6] C. Brandolese, S. Corbetta, and W. Fornaciari. Software energy es-
timation based on statistical characterization of intermediate compi-
lation code. In Low Power Electronics and Design (ISLPED) 2011
International Symposium on, pages 333–338, Aug 2011.

[7] S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity
Analysis in Logic Programs. In Proc. of the 1990 ACM Conf. on
Programming Language Design and Implementation, pages 174–188.
ACM Press, June 1990.

[8] K. Georgiou, S. Kerrison, and K. Eder. A multi-level worst case energy
consumption static analysis for single and multi-threaded embedded
programs. Technical Report CSTR-14-003, University of Bristol,
December 2014.

[9] J. Gustafsson. The Mälardalen WCET benchmarkspast, present and
future. Proceedings of the 10th International Workshop on Worst-Case
Execution Time Analysis, 2010.

[10] M. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia. Inte-
grated Program Debugging, Verification, and Optimization Using Ab-
stract Interpretation (and The Ciao System Preprocessor). Science of
Computer Programming, 58(1–2):115–140, October 2005.

[11] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate amortized
resource analysis. ACM Trans. Program. Lang. Syst., 34(3):14, 2012.

[12] N. D. Jones and M. Müller-Olm, editors. Verification, Model Check-
ing, and Abstract Interpretation, 10th International Conference, VM-
CAI 2009, Savannah, GA, USA, January 18-20, 2009. Proceedings,
Lecture Notes in Computer Science. Springer, 2009.

[13] S. Kerrison and K. Eder. Energy Modeling of Software for a Hardware
Multithreaded Embedded Microprocessor. ACM Transactions on Em-
bedded Computing Systems, 14(3):56:1–56:25, Apr. 2015.

[14] Y.-T. S. Li and S. Malik. Performance analysis of embedded software
using implicit path enumeration. In Workshop on Languages, Compil-
ers, & Tools for Real-Time Systems, pages 88–98, 1995.

[15] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia,
N. Grech, M. Hermenegildo, and K. Eder. Energy Consumption
Analysis of Programs based on XMOS ISA-level Models. In Pre-
proceedings of the 23rd International Symposium on Logic-Based Pro-
gram Synthesis and Transformation (LOPSTR’13), September 2013.

[16] LLVM Project. Writing an LLVM backend. http://llvm.org/
docs/WritingAnLLVMBackend.html, 2014. Accessed: 2014-03-
11.

[17] L. W. Nagel. SPICE2: A Computer Program to Simulate Semiconduc-
tor Circuits. PhD thesis, EECS Department, University of California,
Berkeley, 1975.

[18] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Safe Upper-bounds
Inference of Energy Consumption for Java Bytecode Applications. In
The Sixth NASA Langley Formal Methods Workshop (LFM 08), April
2008. Extended Abstract.

[19] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. User-Definable
Resource Usage Bounds Analysis for Java Bytecode. In Proceedings
of BYTECODE, volume 253 of Electronic Notes in Theoretical Com-
puter Science, pages 65–82. Elsevier - North Holland, March 2009.

[20] J. Navas, E. Mera, P. López-Garcı́a, and M. Hermenegildo. User-
Definable Resource Bounds Analysis for Logic Programs. In Interna-
tional Conference on Logic Programming (ICLP’07), Lecture Notes
in Computer Science. Springer, 2007.

[21] F. Nielson, H. Nielson, and C. Hankin. Principles of Program Analy-
sis. Springer-Verlag, 1999.

[22] J. Pallister, S. J. Hollis, and J. Bennett. BEEBS: open benchmarks for
energy measurements on embedded platforms. CoRR, abs/1308.5174,
2013.

[23] J. Pallister, S. J. Hollis, and J. Bennett. Identifying Compiler Options
to Minimise Energy Consumption for Embedded Platforms. Computer
Journal, 2013.

[24] G. Qu, N. Kawabe, K. Usami, and M. Potkonjak. Function-level power
estimation methodology for microprocessors, 2000. 337786 810-813.

[25] M. Rosendahl. Automatic Complexity Analysis. In 4th ACM Confer-
ence on Functional Programming Languages and Computer Architec-
ture (FPCA’89). ACM Press, 1989.

[26] S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An Accurate
and Fine Grain Instruction-level Energy Model Supporting Software
Optimizations. In Proceedings of PATMOS, 2001.

[27] C. Tice and S. L. Graham. Optview: A new approach for examining
optimized code. In Proceedings of the 1998 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering,
PASTE ’98, pages 19–26, New York, NY, USA, 1998. ACM.

[28] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded
software: a first step towards software power minimization, pages
222–230. Kluwer Academic Publishers, 1994. 567021.

[29] V. Tiwari, S. Malik, A. Wolfe, and M. T. C. Lee. Instruction level
power analysis and optimization of software. In Proceedings of VLSI
Design, pages 326–328, 1996.

[30] P. Vasconcelos and K. Hammond. Inferring Cost Equations for Re-
cursive, Polymorphic and Higher-Order Functional Programs. In 15th
International Workshop on Implementation of Functional Languages
(IFL’03), Revised Papers, volume 3145 of Lecture Notes in Computer
Science, pages 86–101. Springer-Verlag, September 2005.

[31] D. Watt. Programming XC on XMOS Devices. XMOS Ltd., 2009.
[32] B. Wegbreit. Mechanical program analysis. Commun. ACM,

18(9):528–539, 1975.
[33] T. Wei, J. Mao, W. Zou, and Y. Chen. A new algorithm for identifying

loops in decompilation. In Proceedings of SAS, pages 170–183, 2007.
[34] M. Weiser. Program slicing. In Proceedings of the 5th International

Conference on Software Engineering, ICSE ’81, pages 439–449, Pis-
cataway, NJ, USA, 1981. IEEE Press.

[35] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic. Formalizing
the llvm intermediate representation for verified program transforma-
tions. In Proceedings of POPL, POPL ’12, pages 427–440, 2012.

[36] F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound analysis
of imperative programs with the size-change abstraction (extended
version). CoRR, abs/1203.5303, 2012.

SCOPES 2015

21

Attachment D3.3.7

Constraint Specialisation in Horn

Clause Verification

Published at the Workshop on Partial
Evaluation and Program Manipulation (PEPM

2015)

137

Constraint Specialisation in Horn Clause Verification

Bishoksan Kafle
Roskilde University, Denmark

kafle@ruc.dk

John P. Gallagher
Roskilde University, Denmark and IMDEA Software

Institute, Spain
jpg@ruc.dk

Abstract
We present a method for specialising the constraints in constrained
Horn clauses with respect to a goal. We use abstract interpretation
to compute a model of a query-answer transformation of a given
set of clauses and a goal. The effect is to propagate the constraints
from the goal top-down and propagate answer constraints bottom-
up. Our approach does not unfold the clauses at all; we use the
constraints from the model to compute a specialised version of
each clause in the program. The approach is independent of the
abstract domain and the constraints theory underlying the clauses.
Experimental results on verification problems show that this is an
effective transformation, both in our own verification tools (convex
polyhedra analyser) and as a pre-processor to other Horn clause
verification tools.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

Keywords constraint specialisation; query-answer transforma-
tion; Horn clauses; abstract interpretation; convex polyhedral anal-
ysis

1. Introduction
In this paper, we present a method for specialising the constraints
in constrained Horn clauses with respect to a goal. To this end,
we first compute a query-answer transformation of a given set of
clauses (also called a constraint logic program) with respect to a
goal; the aim of the transformation is to simulate the top-down
evaluation of the clauses in a bottom-up framework. Then we use
abstract interpretation to compute a model of the query-answer
transformed program. The idea is to propagate the constraints from
the goal top-down and propagate answer constraints bottom-up.
Finally we compute a specialised version of each clause in the
original program using the constraints from the model without
unfolding the clauses at all.

As a result, each clause is further strengthened or removed alto-
gether, preserving the derivability of the goal. Static analysis of the
specialised program becomes easier since the implicit constraints in
the original clauses are made explicit in the specialised version. In
addition to this, since the specialised clauses are more constrained

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PEPM ’15, January 13–14, 2015, Mumbai, India.
Copyright c� 2015 ACM 978-1-4503-3297-2/15/01. . . $15.00.
http://dx.doi.org/10.1145/2678015.2682544

or more specific than the original ones, more specific information
will be available for proving the given goal or a failure to prove the
goal may be detected at an early stage.

The approach is independent of the abstract domain and the
constraints theory. Query-answer transformations, closely related
to so-called “magic set” transformations, have been used for Dat-
alog query processing and logic program analysis since the 1980s
[3, 16], but have not, to our knowledge, been applied to verification
problems. Experimental results on verification problems show that
this is an effective transformation, propagating information both
backwards from the statement to be proved, and forwards from
the Horn clause theory. We show its effectiveness both in our own
verification tools and as a pre-processor to other Horn Clause ver-
ification tools. In particular, we run our specialisation procedure
as a pre-processor both to our convex polyhedra analyser and to
QARMC [24, 43], a state of the art verification tool. We make the
following contributions in this paper:

• we present a method for specialising the constraints in the
clauses using query-answer transformation and abstract inter-
pretation (see Section 4); and

• we demonstrate the effectiveness of transformation by applying
it to Horn clause verification problems (see Section 6).

2. Preliminaries
A constrained Horn clause (CHC) is a first order predicate logic
formula of the form 8(� ^ p1(X1) ^ . . . ^ pk(Xk) ! p(X))
(k � 0), where � is a conjunction of constraints with respect to
some background theory, Xi, X are (possibly empty) vectors of
distinct variables, p1, . . . , pk, p are predicate symbols, p(X) is the
head of the clause and � ^ p1(X1) ^ . . . ^ pk(Xk) is the body.

Pure constraint logic programs (CLP) are syntactically and se-
mantically the same as CHC. Unlike CLP, CHCs are not always
regarded as executable programs, but rather as specifications or se-
mantic representations of other formalisms. However these are only
pragmatic distinctions and the semantic equivalence of CHC and
CLP means that techniques developed in one framework are appli-
cable to the other. We follow the syntactic conventions of CLP and
write a Horn clause as p(X) �, p1(X1), . . . , pk(Xk). In this
paper we take the constraint theory to be linear arithmetic with the
relation symbols ,�, <, > and =, but the contributions of the
paper are independent of the constraint theory.

2.1 Interpretations and models
An interpretation of a set of CHCs is a truth assignment to
each atomic formula p(a1, . . . , an) where p is a predicate and
a1, . . . , an are constants from the constraint theory. An interpreta-
tion is represented as a set of constrained facts of the form A �
where A is an atomic formula p(Z1, . . . , Zn) where Z1, . . . , Zn

are distinct variables and � is a constraint over Z1, . . . , Zn. If �
is true we write A or just A. The constrained fact A � is

shorthand for the set of variable-free facts A✓ such that �✓ holds
in the constraint theory, and an interpretation M denotes the set of
all facts denoted by its elements; M assigns true to exactly those
facts. M1 ✓ M2 if the set of denoted facts of M1 is contained in
the set of denoted facts of M2.

Minimal models. A model of a set of CHCs is an interpretation
that satisfies each clause. There exists a minimal model with respect
to the subset ordering, denoted M [[P]] where P is the set of CHCs.
M [[P]] can be computed as the least fixed point (lfp) of an immedi-
ate consequences operator (called SD

P in [28, Section 4]), which is
an extension of the standard TP operator from logic programming,
extended to handle the constraint domain D. Furthermore lfp(SD

P)
can be computed as the limit of the ascending sequence of interpre-
tations ;, SD

P (;), SD
P (SD

P (;)), This sequence provides a basis
for abstract interpretation of CHC clauses.

3. Abstract Interpretation
Abstract interpretation [11] is a static program analysis technique
which derives sound overapproximations of programs by comput-
ing abstract fixed points. Convex polyhedra analysis (CPA) [13]
is a program analysis technique based on abstract interpretation
[11]. When applied to a set of CHCs P it constructs an over-
approximation M 0 of the minimal model of P , where M 0 contains
at most one constrained fact p(X) � for each predicate p. The
constraint � is a conjunction of linear inequalities, representing a
convex polyhedron.

The first application of convex polyhedra analysis to CHCs was
by Benoy and King [4]. We summarise briefly the elements of con-
vex polyhedra analysis for CHC; further details (with application to
CHC) can be found in [4, 13]. Let A be the set of convex polyhedra
(for some fixed dimension). Let P be a set of CHCs. Suppose there
are n predicates in P , say p1, . . . , pn, and assume to simplify the
discussion that all predicates have the same arity (the dimension
of A). The abstract domain for P is the set of n-tuples of convex
polyhedra An. Let the empty polyhedron be denoted ?. Inclusion
of polyhedra is a partial order on A and the partial order v on An

is its pointwise extension. Given an element hd1, . . . , dni 2 An,
define the concretisation function � such that �(hd1, . . . , dni) =
{hp1(a1), . . . , pn(an)i | ai is a point in di, 1 i n}. Con-
struct an abstract semantic function F : An ! An satisfying
the safety condition SD

P � � ✓ � � F which is monotonic with
respect to v, where SD

P is the immediate consequences operator
mentioned above. Let the increasing sequence Y0, Y1, . . . be de-
fined as follows. Y0 = ?n, Yn+1 = F (Yn). These conditions are
sufficient to establish that if the limit of the sequence exists, say Y ,
that M [[P]] = lfp(SD

P) ✓ �(Y) [12].
Since An contains infinite increasing chains, the sequence can

be infinite. The use of a widening operator for convex polyhedra
[11, 13] is needed to ensure convergence of the abstract interpreta-
tion. Define the sequence Z0 = Y0, Zn+1 = ZnrF (Zn) where
r is a widening operator for convex polyhedra [13]. The condi-
tions on r ensure that the sequence stabilises; thus for some finite
j, Zi = Zj for all i > j and furthermore that Zj is an upper
bound for the sequence {Yi}. The value Zj thus represents, via
the concretisation function �, an over-approximation of the least
model of P . Furthermore much research has been done on improv-
ing the precision of widening operators. One technique is known as
widening-upto, or widening with thresholds [27]. A threshold is an
assertion that is combined with a widening operator to improve its
precision. Recently, a technique for deriving more effective thresh-
olds was developed [34], which we have adapted and found to be
very effective in experimental studies. In brief, the method collects
constraints by iterating the concrete immediate consequence func-

tion SD
P three times starting from the “top” interpretation, that is,

the interpretation in which all atomic facts are true.

4. Specialisation by constraint propagation
We next present a procedure for specialising CHCs. In contrast to
classical specialisation techniques based on partial evaluation with
respect to a goal, the specialisation does not unfold the clauses
at all; rather, it computes a specialised version of each clause, in
which the constraints from the goal are propagated top-down and
answers are propagated bottom-up.

We first make precise what is meant by “specialisation” for
CHCs. Let P be a set of CHCs and let A be an atomic formula. The
specialisation of P with respect to A is a set of clauses PA such that
for every constraint � over the variables of A, P |= 8(� ! A) if
and only if PA |= 8(� ! A). This is a very general definition
that allows for many transformations. In practice we are interested
in specialisations that eliminate consequences of P that have no
relevance to A.

For each clause H B in P , PA contains a new clause
H �, B where � is a constraint. If the addition of � makes
the clause body unsatisfiable, it is the same as removing the clause.
Clearly PA may have fewer consequences than P but our proce-
dure guarantees that it preserves the inferability of (constrained in-
stances of) A. The procedure is summarised as follows: the inputs
are a set of CHCs P and an atomic formula A.

1. Compute a query-answer transformation of P with respect
to A, denoted P qa, containing predicates pq and pa for each
predicate p in P .

2. Compute an over-approximation M of the model of P qa.

3. Strengthen the constraints in the clauses in P , by adding con-
straints from the answer predicates in M .

Next we will explain each step in detail.

4.1 The query-answer transformation
The query-answer transformation in CLP was inspired by the
magic-set transformation from deductive databases and the lan-
guage Datalog [3]. Its purpose, both in deductive databases and
in subsequent applications in logic program analysis [16] was to
simulate goal-directed (top-down) computation or deduction in a
goal-independent (bottom-up) framework.

In the following, for each atom A = p(t), Aa and Aq represent
the atoms pa(t) and pq(t) respectively. Given a set of CHCs P and
an atom A, the (left-) query-answer clauses for P with respect to
A, denoted P qa

A or just P qa, are as follows.

• (Answer clauses). For each clause H �, B1, . . . , Bn (n �
0) in P , P qa contains the clause Ha �, Hq, Ba

1, . . . , B
a
n.

• (Query clauses). For each clause H �, B1, . . . , Bi, . . . , Bn

(n � 0) in P , P qa contains the following clauses:

Bq
1 �, Hq.

· · ·
Bq

i �, Hq, Ba
1, . . . , B

a
i�1.

· · ·
Bq

n �, Hq, Ba
1, . . . , B

a
n�1.

• (Goal clause). Aq true.

The clauses P qa encodes a left-to-right, depth-first computation of
the query A for CHC clauses P (that is, the standard CLP com-
putation rule, SLD extended with constraints). This is a complete
proof procedure, assuming that all clauses matching a given call are
explored in parallel. (Note: the incompleteness of standard Prolog

CLP proof procedures arises due to the fact that clauses are tried in
a fixed order). It is important to generate the queries and answers in
a single set of clauses, since in general the predicates pq and pa are
mutually recursive. Independent analyses propagating constraints
from head to body of the clauses and propagating constraints from
body to head would not in general achieve the same specialisation.

The relationship of the model of the clauses P qa to the computa-
tion of the goal A in P is expressed by the following property1.
An SLD-derivation in CLP is a sequence G0, G1, . . . , Gk where
each Gi is a goal �, B1, . . . , Bm, where � is a constraint and
B1, . . . , Bm are atoms. In a left-to-right computation, Gi+1 is ob-
tained by resolving B1 with a program clause. The model of P qa

captures the set of atoms that are “called” or “queried” during the
derivation, together with the answers (if any) for those calls. This
is expressed precisely by Property 1.

PROPERTY 1 (Correctness of query-answer transformation). Let
P be a set of CHCs and A be an atom. Let P qa be the query-
answer program for P wrt. A. Then

(i) if there is an SLD-derivation G0, . . . , Gi where G0 = A and
Gi = �, B1, . . . , Bm, then P qa |= 8(�|vars(B1) ! Bq

1);
(ii) if there is an SLD-derivation G0, . . . , Gi where G0 = A,

containing a sub-derivation Gj1 , . . . , Gjk , where Gji
�0, B1, B0 and Gjk = �, B0, then P qa |= 8(�|vars(B1) !
Ba

1). (This means that the atom B1 in Gji was successfully
answered, with answer constraint �|vars(B1)).

(iii) As a special case of (ii), if there is a successful derivation of the
goal A with answer constraint � then P qa |= 8(�! Aa).

Variations such as the following have been used.

• (Refined call predicates). Call predicates of the form pq
i,j could

be generated representing calls to the ith atom in the body of
clause j [20], giving more fine-grained information on calls.

• (Relaxed answer predicates). In this version the answer clauses
are the same as the original clauses of p, and every answer
predicate pa is just replaced by p. This can be used where the
only interest is in the model of the query predicates, and the
motivation is to increase efficiency of analysis of P qa, while
possibly losing precision [9].

• (Other computation rules). Left-to-right computation could be
replaced by right-to-left or any other order. The success or fail-
ure of a goal is independent of the computation rule; hence
we could generate answers using other computation rules, or
combining computation rules [21]. While different computation
rules do not affect the model of the answer predicates, more ef-
fective propagation of constraints during program analysis, and
thus greater precision, can sometimes be achieved by varying
the computation rule.

For each such variation a correctness property can be stated relating
the model of the query-answer program to the SLD computation of
the given program P and goal A.

4.2 Over-approximation of the model of P qa

The query-answer transformation of P with respect to A is com-
puted. It follows from Property 1(iii) that if A is derivable from
P then P qa |= Aa. Abstract interpretation of P qa yields an over-
approximation of M [[P qa]], say M 0, containing constrained facts

1 Note that the model of P qa might not correspond exactly to the calls
and answers in the SLD-computation, since the CLP computation treats
constraints as syntactic entities through decision procedures and the actual
constraints could differ.

for the query and answer predicates. These represent the calls and
answers generated during all derivations starting from the goal A.
In our experiments we use a convex polyhedra approximation of
M [[P qa]], as described in Section 3.

4.3 Strengthening the constraints in P

We use the information in M 0 to specialise the original clauses
in P . Suppose M 0 contains constrained facts pq(X) �q and
pa(X) �a. (If there is no constrained fact p⇤(X) �⇤ for
some p⇤ then we consider M 0 to contain p⇤(X) false).

For each clause

p(X) �, p1(X1), . . . , pk(Xk)

in P , construct a clause

p(X) �,�0,�1, . . . ,�n, p1(X1), . . . , pk(Xk)

in PA, where pa(X) �0, pa
1(X) �1, . . . , p

a
n(X) �n are

in M 0. Here we assume that there is exactly one constrained fact
in M 0 for each predicate pa, pa

1 , . . . , pa
n. Disjunctive constraints

can be eliminated from the specialised clauses by further transfor-
mation and clauses containing the constraint false in the body are
eliminated.

Note that wherever M 0 contains constrained facts pa(X) �a

and pq(X) �q, we have �a ! �q since the answers for p are
always stronger than the calls to p. Thus it suffices to add only
the answer constraints to the clauses in P and we can ignore the
model of the query predicates. A special case of this is where M 0

contains a constrained fact pq(X) �q but there is no constrained
fact for pa(X), or in other words M 0 contains the constrained fact
pa(X) false . This means that all derivations for p(X) fail or
loop in P and so adding the answer constraint false for p eliminates
looping and failed derivations for p.

Specialisation by strengthening the constraints preserves the an-
swers of the goal with respect to which the query-answer transfor-
mation was performed. In particular, we have the following prop-
erty.

PROPERTY 2. If P is a set of CHCs and PA is the set obtained by
strengthening the clause constraints as just described, then P |= A
if and only if PA |= A.

The proof of Property 2 is by induction on the length of derivations
of A. For each derivation of A using the clauses of P we can
construct a derivation of A in PA and conversely.

The specialisation and analysis are separate in our approach.
More complex algorithms intertwining them can be envisaged,
though the benefits are not clear. Iteration of our procedure could
potentially yield further specialisation.

5. Application to the CHC verification problem
In this section, we discuss the application of our constraint spe-
cialisation in Horn clause verification. We assume that there is a
distinguished predicate symbol false in P which is always inter-
preted as false. In practice the predicate false only occurs in the
head of clauses; we call clauses whose head is false integrity con-
straints, following the terminology of deductive databases. Thus
the formula �1 �2 ^B1(X1), . . . , Bk(Xk) is equivalent to the
formula false ¬�1 ^ �2 ^ B1(X1), . . . , Bk(Xk). The latter
might not be a CHC (e.g. if �1 contains =) but can be converted
to an equivalent set of CHCs by transforming the formula ¬�1 and
distributing any disjunctions that arise over the rest of the body. For
example, the formula X = Y p(X, Y) is equivalent to the set
of CHCs {false X > Y, p(X, Y), false X < Y, p(X, Y)}.

Integrity constraints can be seen as safety properties. For ex-
ample if a set of CHCs encodes the behaviour of a transition sys-
tem, the bodies of integrity constraints represent unsafe states. Thus

proving safety consists of showing that the bodies of integrity con-
straints are false in all models of the CHC clauses. Figure 1 shows
an example set of CHCs taken from [23].

c1. false :- A>0,B=0,C=0,D=0,l(B,C,D,A).
c2. l(A,B,C,D) :- -A+D>0,A-G= -1, l_body(B,C,E,F),

l(G,E,F,D).
c3. l(A,B,C,D) :- A-D>=0,B+C-3*D>0.
c4. l(A,B,C,D) :- A-D>=0,-B-C+3*D>0.
c5. l_body(A,B,C,D) :- A-C= -1,B-D= -2.
c6. l_body(A,B,C,D) :- A-C= -2,B-D= -1.

Figure 1. Example program t4.pl [23]

5.1 The CHC verification problem.
To state this more formally, given a set of CHCs P , the CHC
verification problem is to check whether there exists a model of
P . If so we say that P is safe. Obviously any model of P assigns
false to the bodies of integrity constraints. We restate this property
in terms of the logic consequence relation. Let P |= F mean that
F is a logical consequence of P , that is, that every interpretation
satisfying P also satisfies F .

LEMMA 1. P has a model if and only if P 6|= false.

This lemma holds for arbitrary interpretations (only assuming
that the predicate false is interpreted as false), uses only the text-
book definitions of “interpretation” and “model” and does not de-
pend on the constraint theory.

The verification problem can be formulated deductively rather
than model-theoretically. We can exploit proof procedures for con-
straint logic programming [28] to reason about the satisfiability of a
set of CHCs. Let the relation P ` A denote that A is derivable from
P using some proof procedure. If the proof procedure is sound then
P ` A implies P |= A, which means that P ` false is a sufficient
condition for P to have no model, by Lemma 1. This corresponds
to using a sound proof procedure to find or check a counterexample.
On the other hand to show that P does have a model, soundness is
not enough since we need to establish P 6|= false. As we will see in
Section 5.2 we approach this problem by using approximations to
reason about the non-provability of false, applying the theory of ab-
stract interpretation [10] to a complete proof procedure for atomic
formulas (the “fixed-point semantics” for constraint logic programs
[28, Section 4]). In effect, we construct by abstract interpretation a
proof procedure that is complete (but possibly not sound) for proofs
of atomic formulas. With such a procedure, P 6` false implies
P 6|= false and thus establishes that P has a model.

5.2 Proof Techniques
Proof by over-approximation of the minimal model. It is a stan-
dard theorem of CLP that the minimal model M [[P]] is equivalent
to the set of atomic consequences of P . That is, P |= p(v1, . . . , vn)
if and only if p(v1, . . . , vn) 2 M [[P]]. Therefore, the CHC verifi-
cation problem for P is equivalent to checking that false 62M [[P]].
It is sufficient to find a set of constrained facts M 0 such that
M [[P]] ✓M 0, where false 62M 0. This technique is called proof by
over-approximation of the minimal model.

Proof by specialisation. A specialisation of a set of CHCs P
with respect to an atom A is the transformation of P to another
set of CHCs P 0 such that P |= A if and only if P 0 |= A. In
our context we use specialisation to focus the verification problem
on the formula to be proved. More specifically, we specialise a
set of CHCs with respect to a “query” to the atom false; thus the
specialised CHCs entail false if and only if the original clauses

entailed false. The constraint strengthening procedure described in
Section 4 is our method of specialisation.

Consider the application of the procedure in Section 4 to the
clauses in Figure 1, where the query-answer transformation is
performed with respect to the atom false. The result is shown in
Figure 2. Note that the constraint in clause c4 is strengthened to
false, showing that c4 is definitely not used in any derivation of
false (and hence can be removed).

c1. false :- A>0,B=0,C=0,D=0,l(B,C,D,A).
c2. l(A,B,C,D) :- 2*A-B>=0,-A+D>0,-A+B>=0,3*A-B-C=0,

A-G= -1,l_body(B,C,E,F),l(G,E,F,D).
c3. l(A,B,C,D):- A-D>0,D>0,2*A-B>=0,-A+D> -1,

-A+B>=0,3*A-B-C=0.
c4. l(A,B,C,D):- false.
c5. l_body(A,B,C,D) :- -A+2*B>=0, 2*A-B>=0,

A-C= -1,B-D= -2.
c6. l_body(A,B,C,D) :- -A+2*B>=0,2*A-B>=0,A-C= -2,

B-D= -1.

Figure 2. Example program t4.pl [23] with strengthened con-
straints

5.3 Analysis of the specialised clauses
Having specialised the clauses with respect to false, it may be that
the clauses Pfalse do not contain a clause with head false. In this
case safety is proven, since clearly this is a sufficient condition for
Pfalse 6|= false.

If this check fails we still do not know whether P has a model.
In this case we can perform the convex polyhedral analysis on
the clauses Pfalse. As the experiments later show, safety is often
provable by checking the resulting model; if no constrained fact for
false is present, then Pfalse 6|= false. If safety is not proven, there are
two possibilities: the approximate model is not precise enough, but
P has a model, or there is a proof of false. Refinement techniques
could be used to distinguish these, but this is not the topic of this
paper.

In summary, our experimental procedure for evaluating the ef-
fectiveness of constraint specialisation contains two steps. Given a
set of CHCs P with integrity constraints: (1) Compute a special-
isation of P with respect to false yielding Pfalse. If Pfalse contains
no integrity constraints, then P is safe. (2) If Pfalse does contain in-
tegrity constraints, perform a convex polyhedra analysis of Pfalse. If
the resulting approximation of the minimal model contains no con-
strained fact for the predicate false, then Pfalse is safe and hence P
is safe. If we find a concrete derivation for false then we conclude
that P is unsafe. Otherwise, P is possibly unsafe.

6. Experimental evaluation
Table 1 presents experimental results of applying our constraint
specialisation to a number of Horn clause verification bench-
marks taken from the repository of Horn clause verification2 and
other sources including [5, 15, 23, 25, 29]. The columns CPA and
QARMC present the results of verification using convex polyhedra
and QARMC respectively, whereas columns CS + CPA and CS +
QARMC show the result of running constraint specialisation fol-
lowed by CPA or QARMC. The symbol “-” in the table denotes
irrelevant. The experiments were carried out on an Intel(R) X5355
quad-core (@ 2.66GHz) computer with 6 GB memory running
Debian 5. We set 5 minutes of timeout for each experiment. The
specialisation procedure is implemented in 32-bit Ciao Prolog [7]
and uses the Parma Polyhedra Library [1].

2 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/

The results show that constraint specialisation is effective in
practice. We report that 109 out of 218, that is 50%, of the prob-
lems are solved by constraint specialisation alone. When used as
a pre-processor for other verification tools, the results show im-
provements on both the number of instances solved and the solu-
tion time. Using our tool, we report approximately 47% increase in
the number of instances solved and twice as much faster in average.
Similarly using QARMC, we report 13% increase in the number of
instances solved and 5 times faster in average.

CPA CS + CPA QARMC CS + QARMC
solved (safe/unsafe) 61 (48/13) 162 (144/18) 178 (141/37) 205 (171/34)
unknown / timeout 144/12 49/7 -/40 -/13
total time (secs) 2317 1303 13367 2613
average time (secs) 10.62 5.97 61.31 11.98
%solved 27.98 74.31 81.65 94.04

Table 1. Experiments on a set of 218 (181 safe and 37 unsafe)
CHC verification problems

The (perhaps surprising) effectiveness of this relatively simple
combination of specialisation and convex polyhedral analysis is
underlined by noting that it can solve problems for which more
complex methods have been proposed. For example, apart from the
many examples from the Horn clause verification benchmarks that
require refinement using CEGAR-based approaches, the technique
solves the “rate-limiter” and “Boustrophedon” examples presented
by Monniaux and Gonnord [40] (Section 5) (directly encoded as
Horn clauses); their approach, also based on convex polyhedra,
uses bounded model checking to achieve a partitioning of the ap-
proximation, while other approaches to such problems use trace-
partitioning and look-ahead widening.

7. Related Work
Techniques for strengthening the constraints of logic programs go
back at least to the work of Marriott et al. on most specific logic
programs [39]. In that work the constraints were just equalities
between terms and the strengthening was goal-independent. In [19]
the idea was similar but it was extended to strengthen constraints
while preserving the answers with respect to a goal.

The partial evaluation of (constraint) logic programs also has
a long history [17, 18, 30, 32]. The aim is to specialise a program
with respect to a goal, but usually unfolding is the key technique for
propagating constraints. Global analysis using abstract interpreta-
tion was combined with partial evaluation algorithms to propagate
constraints bottom-up as well as top-down [22, 31, 33, 35, 36].

Abstract interpretation over the domain of convex polyhedra
was introduced by Cousot and Halbwachs [13] and applied to con-
straint logic programs by Benoy and King [4]. Abstract interpreta-
tion over convex polyhedra was incorporated in a program special-
isation algorithm by Peralta and Gallagher [41].

The method of widening with thresholds for increasing the
precision of widening convex polyhedra was first presented by
Halwachs et al. [27]. We applied a technique for generating thresh-
old constraints presented by Lakhdar-Chaouch et al. [34].

In summary, the basic specialisation techniques that we apply
are well known, though we are not aware of previous work com-
bining them in the same way. Our method is a specialisation with
respect to a goal but does not perform partial evaluation by unfold-
ing. The aim of our specialisation is to make constraints explicit and
propagate constraints as much as possible, thereby making other
tools more effective, rather than to produce a more efficient com-
putation of a goal.

Verification of CLP programs using abstract interpretation and
specialisation has been studied for some time. Our aim in this
paper is not to demonstrate a verification tool but to identify a
transformation that benefits CLP verification tools generally.

The idea of improving analysis by applying it to a specialised
program was first expressed by Turchin [44] and it was more re-
cently demonstrated using supercompilation [38]. The use of pro-
gram transformation to verify properties of logic programs was pi-
oneered by Pettorossi and Proietti [42] and Leuschel [37] and con-
tinues in recent work by De Angelis et al. [14, 15]. Transformations
that preserve the minimal model (or other suitable models) of logic
programs are applied systematically to make properties explicit.

Much other work on CLP verification exists, much of it based
on property abstraction and refinement using interpolation, for ex-
ample [2, 6, 8, 24, 26, 43]. Our specialisation technique is not di-
rectly comparable to these methods, but as we have shown in ex-
periments with QARMC, constraint specialisation can be used as a
pre-processor to such tools, increasing their effectiveness.

8. Conclusion and future Work
We introduced a method for specialising the constraints in con-
strained Horn clauses with respect to a goal using abstract inter-
pretation and query-answer transformation. The approach propa-
gates constraints globally, both forwards and backwards, and makes
explicit constraints from the original program. This allows better
analysis of the transformed program. Furthermore, our approach is
independent of the abstract domain and the constraints theory un-
derlying the clauses. Finally, we showed effectiveness of this trans-
formation in Horn clause verification problems.

In the future, we will continue to evaluate its effectiveness in a
larger set of benchmarks and as a pre-processor for other existing
tools. We also would like to use the specialised version for other
purposes, for instance in program debugging since more specific
information may make errors in the original program apparent.

Acknowledgments
The research leading to these results has received funding from
the EU 7th Framework 318337, ENTRA-Whole-Systems Energy
Transparency and the Danish Natural Science Research Council
grant NUSA: Numerical and Symbolic Abstractions for Software
Model Checking.

References
[1] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Li-

brary: Toward a complete set of numerical abstractions for the analysis
and verification of hardware and software systems. Science of Com-
puter Programming, 72(1–2):3–21, 2008.

[2] T. Ball, V. Levin, and S. K. Rajamani. A decade of software model
checking with slam. Commun. ACM, 54(7):68–76, 2011.

[3] F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic sets and other
strange ways to implement logic programs. In Proceedings of the
5th ACM SIGMOD-SIGACT Symposium on Principles of Database
Systems, 1986.

[4] F. Benoy and A. King. Inferring argument size relationships with
CLP(R). In J. P. Gallagher, editor, Logic-Based Program Synthesis
and Transformation (LOPSTR’96), volume 1207 of Springer-Verlag
LNCS, pages 204–223, August 1996.

[5] D. Beyer. Second competition on software verification - (summary of
sv-comp 2013). In N. Piterman and S. A. Smolka, editors, TACAS,
volume 7795 of LNCS, pages 594–609. Springer, 2013.

[6] N. Bjørner, K. L. McMillan, and A. Rybalchenko. On solving univer-
sally quantified horn clauses. In F. Logozzo and M. Fähndrich, editors,
SAS, volume 7935 of LNCS, pages 105–125. Springer, 2013.

[7] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garcı́a,
and G. Puebla. The Ciao Prolog system. reference manual. Tech-
nical Report CLIP3/97.1, School of Computer Science, Techni-
cal University of Madrid (UPM), August 1997. Available from
http://www.clip.dia.fi.upm.es/.

[8] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement for symbolic model
checking. J. ACM, 50(5):752–794, 2003.

[9] M. Codish and B. Demoen. Analyzing logic programs using ”PROP”-
ositional logic programs and a magic wand. J. Log. Program., 25(3):
249–274, 1995. .

[10] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In Proceedings of the 4th ACM Symposium on Princi-
ples of Programming Languages, Los Angeles, pages 238–252, 1977.

[11] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In R. M. Graham, M. A. Harrison, and R. Sethi,
editors, POPL, pages 238–252. ACM, 1977.

[12] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal
of Logic and Computation, 2(4):511–547, 1992.

[13] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proceedings of the 5th Annual ACM
Symposium on Principles of Programming Languages, pages 84–96,
1978.

[14] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying
programs via iterated specialization. In E. Albert and S.-C. Mu,
editors, PEPM, pages 43–52. ACM, 2013.

[15] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verimap:
A tool for verifying programs through transformations. In E. Ábrahám
and K. Havelund, editors, TACAS, volume 8413 of LNCS, pages 568–
574. Springer, 2014. ISBN 978-3-642-54861-1.

[16] S. Debray and R. Ramakrishnan. Abstract Interpretation of Logic Pro-
grams Using Magic Transformations. Journal of Logic Programming,
18:149–176, 1994.

[17] H. Fujita. An algorithm for partial evaluation with constraints. Tech-
nical Report TR-258, ICOT, 1987.

[18] J. P. Gallagher. Specialisation of logic programs: A tutorial. In Pro-
ceedings PEPM’93, ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-Based Program Manipulation, pages 88–98, Copen-
hagen, June 1993. ACM Press.

[19] J. P. Gallagher and M. Bruynooghe. Some low-level source trans-
formations for logic programs. In Proceedings of Meta90 Workshop
on Meta Programming in Logic. Katholieke Universiteit Leuven, Bel-
gium, 1990.

[20] J. P. Gallagher and D. de Waal. Deletion of redundant unary type
predicates from logic programs. In K. Lau and T. Clement, editors,
Logic Program Synthesis and Transformation, Workshops in Comput-
ing, pages 151–167. Springer-Verlag, 1993.

[21] J. P. Gallagher and D. de Waal. Fast and precise regular approximation
of logic programs. In P. Van Hentenryck, editor, Proceedings of the
International Conference on Logic Programming (ICLP’94), Santa
Margherita Ligure, Italy. MIT Press, 1994.

[22] J. P. Gallagher, M. Codish, and E. Shapiro. Specialisation of Prolog
and FCP programs using abstract interpretation. New Generation
Computing, 6:159–186, 1988.

[23] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey.
Failure tabled constraint logic programming by interpolation. TPLP,
13(4-5):593–607, 2013.

[24] S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Ry-
balchenko. Hsf(c): A software verifier based on Horn clauses - (com-
petition contribution). In C. Flanagan and B. König, editors, TACAS,
volume 7214 of LNCS, pages 549–551. Springer, 2012.

[25] A. Gupta and A. Rybalchenko. Invgen: An efficient invariant gen-
erator. In A. Bouajjani and O. Maler, editors, CAV, volume 5643 of
LNCS, pages 634–640. Springer, 2009. ISBN 978-3-642-02657-7.

[26] A. Gupta, C. Popeea, and A. Rybalchenko. Solving recursion-free
horn clauses over li+uif. In H. Yang, editor, APLAS, volume 7078 of
LNCS, pages 188–203. Springer, 2011. ISBN 978-3-642-25317-1.

[27] N. Halbwachs, Y. E. Proy, and P. Raymound. Verification of linear
hybrid systems by means of convex approximations. In Proceedings

of the First Symposium on Static Analysis, volume 864 of LNCS, pages
223–237, September 1994.

[28] J. Jaffar and M. Maher. Constraint Logic Programming: A Survey.
Journal of Logic Programming, 19/20:503–581, 1994.

[29] J. Jaffar, J. A. Navas, and A. E. Santosa. Unbounded symbolic execu-
tion for program verification. In S. Khurshid and K. Sen, editors, RV,
volume 7186 of LNCS, pages 396–411. Springer, 2011.

[30] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Software Generation. Prentice Hall, 1993.

[31] N. D. Jones. Combining abstract interpretation and partial evaluation.
In P. Van Hentenryck, editor, Symposium on Static Analysis (SAS’97),
volume 1302 of Springer-Verlag LNCS, pages 396–405, 1997.

[32] H. J. Komorowski. An introduction to partial deduction. In A. Pet-
torossi, editor, META, volume 649 of LNCS, pages 49–69. Springer,
1992. ISBN 3-540-56282-6.

[33] L. Lafave and J. P. Gallagher. Partial evaluation of functional logic
programs in rewriting-based languages. In N. Fuchs, editor, Logic Pro-
gram Synthesis and Transformation (LOPSTR’97), Springer-Verlag
LNCS, 1998.

[34] L. Lakhdar-Chaouch, B. Jeannet, and A. Girault. Widening with
thresholds for programs with complex control graphs. In T. Bultan
and P.-A. Hsiung, editors, ATVA 2011, volume 6996 of LNCS, pages
492–502. Springer, 2011.

[35] M. Leuschel. Advanced logic program specialisation. In J. Hatcliff,
T. Æ. Mogensen, and P. Thiemann, editors, Partial Evaluation - Prac-
tice and Theory, volume 1706 of LNCS, pages 271–292. Springer,
1999.

[36] M. Leuschel. A framework for the integration of partial eval-
uation and abstract interpretation of logic programs. ACM
Trans. Program. Lang. Syst., 26(3):413–463, 2004. . URL
http://doi.acm.org/10.1145/982158.982159.

[37] M. Leuschel and T. Massart. Infinite state model checking by abstract
interpretation and program specialisation. In A. Bossi, editor, LOP-
STR’99, volume 1817 of LNCS, pages 62–81. Springer, 1999.

[38] A. Lisitsa and A. P. Nemytykh. Reachability anal-
ysis in verification via supercompilation. Int. J.
Found. Comput. Sci., 19(4):953–969, 2008. . URL
http://dx.doi.org/10.1142/S0129054108006066.

[39] K. Marriott, L. Naish, and J.-L. Lassez. Most specific logic programs.
In Proc. Fifth International Conference on Logic programming, Seat-
tle, WA. MIT Press, 1988.

[40] D. Monniaux and L. Gonnord. Using bounded model checking to
focus fixpoint iterations. In E. Yahav, editor, Static Analysis - 18th
International Symposium, SAS 2011, Venice, Italy, September 14-16,
2011. Proceedings, volume 6887 of LNCS, pages 369–385. Springer,
2011. ISBN 978-3-642-23701-0.

[41] J. C. Peralta and J. P. Gallagher. Convex hull abstractions in special-
ization of CLP programs. In M. Leuschel, editor, LOPSTR, volume
2664 of LNCS, pages 90–108. Springer, 2002. ISBN 3-540-40438-4.

[42] A. Pettorossi and M. Proietti. Perfect model checking via unfold/fold
transformations. In J. W. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-
K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J. Stuckey,
editors, Computational Logic, volume 1861 of LNCS, pages 613–628.
Springer, 2000.

[43] A. Podelski and A. Rybalchenko. ARMC: the logical choice for soft-
ware model checking with abstraction refinement. In M. Hanus, editor,
Practical Aspects of Declarative Languages, 9th International Sympo-
sium, PADL 2007, Nice, France, January 14-15, 2007., volume 4354
of LNCS, pages 245–259. Springer, 2007. ISBN 978-3-540-69608-7.
. URL http://dx.doi.org/10.1007/978-3-540-69611-7 16.

[44] V. F. Turchin. The use of metasystem transition in theorem proving and
program optimization. In J. W. de Bakker and J. van Leeuwen, editors,
Automata, Languages and Programming, 7th Colloquium, Noordwei-
jkerhout, The Netherland, July 14-18, 1980, Proceedings, volume 85
of LNCS, pages 645–657. Springer, 1980. ISBN 3-540-10003-2. .
URL http://dx.doi.org/10.1007/3-540-10003-2 105.

Attachment D3.3.8

Probabilistic Output Analysis by

Program Manipulation

Published in the 13th Workshop on
Quantitative Aspects of Programming
Languages and Systems, QAPL 2015

144

N. Bertrand and M. Tribastone (Eds.): QAPL 2015
EPTCS 194, 2015, pp. 110–124, doi:10.4204/EPTCS.194.8

Probabilistic Output Analysis by Program Manipulation

Mads Rosendahl Maja H. Kirkeby∗

Computer Science, Roskilde University, Denmark

{madsr,majaht}@ruc.dk

The aim of a probabilistic output analysis is to derive a probability distribution of possible output
values for a program from a probability distribution of its input. We present a method for perform-
ing static output analysis, based on program transformation techniques. It generates a probability
function as a possibly uncomputable expression in an intermediate language. This program is then
analyzed, transformed, and approximated. The result is a closed form expression that computes an
over approximation of the output probability distribution for the program. We focus on programs
where the possible input follows a known probability distribution. Tests in programs are not assumed
to satisfy the Markov property of having fixed branching probabilities independently of previous
history.

1 Introduction

The aim of a probabilistic output analysis (POA) is to derive a probability distribution for output values
from a probability distribution for input to a program. Internal properties of a program can also be ana-
lyzed in this way by instrumenting programs with step-counters for complexity analysis [30] or energy
consumption measures [23].

When analyzing energy consumption, probability distributions may provide more useful information
than boundaries. Wierman et al. states that “global energy consumption is affected by the average case,
rather than the worst case“ [38]. Also in scheduling “an accurate measurement of a tasks average-
case execution time (ACET) can assist in the calculation of more appropriate deadlines” [18]. For a
subset of programs a precise average case execution time can be found using static analysis [13, 15, 33].
In some cases the POA delivers not only an accurate output average but the more descriptive accurate
output distribution. In other cases the POA must over approximate the probability distribution and the
expected value (average case result) will be approximated safely as a range. Another application area for
POA is in temperature management, where worst-case bounds are important [34]. Because POA return
distributions it can be used to calculate the probability of energy consumptions above a certain limit, and
thereby indicating the risk of over-heating.

The main contribution in this paper is to present a technique for probabilistic analysis where the
analysis is seen as a program-to-program translation. This means that the transformation to closed form
is a source code program transformation problem and not specific to the analysis. Any necessary approx-
imation in the analysis is also performed at the source code level. The technique also makes it possible
to balance the precision of the analysis against the brevity of the result.

The method in this paper is inspired by the techniques used in automatic complexity analysis. Weg-
breit’s Metric system [37] laid the ground work for many later systems with an aim of deriving least,
worst and average case complexity measures. Later works in this area have focused on worst case com-
plexity [2, 24, 30] with advanced systems that can analyze realistic programs. The approach in this paper
∗The research leading to these results has received funding from the European Union Seventh Framework Programme

(FP7/2007-2013) under grant agreement no 318337, ENTRA - Whole-Systems Energy Transparency.

Mads Rosendahl & Maja H. Kirkeby 111

uses an approach similar to automatic complexity analysis [30] in that we derive the probability distri-
bution without approximations but only in the last phase introduce approximations. We use a simple
first-order functional language with restricted recursion for the analysis, but it can be seen as an inter-
mediate language for analysis of programs in other languages. We transform the original program into a
program that computes the probability distribution and this program can then be analyzed, transformed,
and approximated. It is thus an alternative to deriving cost relations directly from the program [2, 24] or
expressing costs as abstract values in a semantics for the language.

As with automatic complexity analysis the aim of probabilistic output analysis is to extract the result
as a parameterized expression. The time complexity of a program should be stated as a closed form
expression in the input size and for probabilistic output analysis the aim is to find the probability of
output values of the program as a function in output values and input size or range. As a small example
let us consider the addition add of two independent integer values x and y evenly distributed from 1 to
n. It is a tail-recursive program where the output distribution is well-known to be a triangular shaped
distribution. The program and the input probability distributions should both be expressed in the same
language as they are part of the transformational approach to obtain the output probability distribution.

add(x,y) = if (x=0) then y else add(x-1,y+1)

px(x,n) = if (x >= 1 and x <= n) then 1/n else 0

py(y,n) = if (y >= 1 and y <= n) then 1/n else 0

Our probabilistic output analysis returns a function describing the probability distribution of the output:

padd(z,n) =

1/(n*n)*max(min(n,z-1) - max(1,z-n) + 1,0)

The probability distribution is here a closed form expression parameterized in the output value (z) and
range of input values (n). The analysis can also be used for more complex input distributions and pro-
grams but it will not always be able to reduce it to a precise result in closed form. If this is not possible we
will approximate the distribution and thus get an over approximation of the extreme cases and a range for
the expected value. If input values are not independent we can specify a joint distribution for the values.

2 Probability distributions

The analysis presented here assumes a discrete set of values for input and output. The set will be finite
or countable and we will use discrete probability distributions. We consider the input to a program as a
discrete random variable and the input probability distribution is then a probability measure that to an
event of input having a given value assigns a value between 0 and 1. This is also often referred to as the
probability mass function in the discrete case, and in the continuous case the equivalent is the probability
density functions. We will use the phrase probability distribution to denote mappings from single values
(input or output) to a probability or number between 0 and 1. Distribution will be denoted with an upper
case P letter.

Definition 1 (input probability) For a countable set X an input probability distribution is a mapping
Px : X →{r ∈ IR | 0≤ r ≤ 1}, where

∑
x∈X

Px(x) = 1 .

We define the output probability distribution for a program p in a forward manner. It is the weight or sum
of all probabilities of input values where the program returns the desired value z as output.

112 Probabilistic Output Analysis by Program Manipulation

Definition 2 (output probability) Given a program, p : X → Z and a probability distribution for the
input, PX , the output probability distribution, Pp(z), is defined as:

Pp(z) = ∑
x∈X∧p(x)=z

PX(x) .

Note that Kozen also uses a similar forward definition [21], whereas Monniaux constructs the inverse
and expresses the relationship in a backwards style [25].
Lemma 1 The output probability distribution, Pp(z), satisfies

0≤∑
z

Pp(z)≤ 1 .

The program may not terminate for all input and therefore the sum may be less than one. If we expand
the domain Z with an element to denote non-termination, Z⊥, the total sum of the output distribution
Pp(z) would be 1.

Approximations of probability distributions. The output analysis cannot necessarily derive the pre-
cise probability distribution. Various approaches to approximations of probability distributions have
been proposed and can be interpreted as imprecise probabilities [1, 9, 11]. Dempster-Shafer structures
[17, 3] and P-boxes [9, 12] can be used to capture and propagate uncertainties of probability distributions.
There are several results on extending arithmetic operations to probability distributions for both known
dependencies between random variables and when the dependency is unknown or only partially known
[4, 6, 19, 35, 39]. Algorithms for lifting basic operations on numbers to basic operations on probability
distributions can be used as abstractions in static analysis based on abstract interpretation [25]. Our ap-
proach uses the P-boxes as bounds of probability distributions. P-boxes are normally expressed in terms
of the cumulative probability function but we will here use the probability mass function. We do not,
however, use the various basic operations on P-boxes but apply approximations to a probability program
such that it forms a P-box.

Definition 3 (over and under approximation) For a distribution Pp an over and under approximation
(Pp and Pp) of the distribution satisfies the conditions:

Pp : ∀z.Pp(z)≤ Pp(z)≤ 1

Pp : ∀z.0≤ Pp(z)≤ Pp(z) .

The aim of the output analysis is to derive as tight approximations Pp and Pp as possible.

Lemma 2 Given the definition for over and under approximation they will have boundaries for their
total weights as

0≤∑
z

Pp(z)≤ ∞ 0≤∑
z

Pp(z)≤ 1 .

When Pp = Pp the total weight for each function will be equal to the total weight of Pp, according to
definition 3. For terminating programs the total weight is 1.

Expected value. Provided that the output from the program is numerical, one may be interested in the
average output value of the program or the expected value of the output distribution. If the program does
not terminate for all input it is not clear how to define the expected value so as part of the further analysis
we need a guarantee that the program terminates. If the sum of the Pp is 1 then we know that the program
terminates for all possible input (i.e. input with probability greater than zero).

Mads Rosendahl & Maja H. Kirkeby 113

Lemma 3 The under approximation of a probability distribution satisfies

∑
z

Pp(z) = 1⇒∑
z

Pp(z) = 1 .

A similar implication does not apply to the over approximation. The expected value of the output distri-
bution is defined as the weighted average of the distribution.

Definition 4 (expected value) The expected value of the output distribution is defined as

Ep = ∑
z

z ·Pp(z) .

If we cannot analyze the program precisely, we can use the over approximation to compute an interval
for the expected value. We cannot use the approximation Pp directly as its weight is not necessarily 1. It
can, however, be used to define over and under approximations to the cumulative probability distribution.
These two can then be used to calculate a lower and an upper bound for the expected values.

Definition 5 (expected value interval) For an over approximation of a probability distribution Pp we
define an over and under accumulation (F↑ and F↓) and over and under expected value (E↑ and E↓).

F↑(z) = min(∑
v≤z

Pp(v),1)

F↓(z) = max(1−∑
v≥z

Pp(v),0)

E↓ = ∑
z

z · (F↑(z)−F↑(dec(z)))

E↑ = ∑
z

z · (F↓(z)−F↓(dec(z)))

dec(z) = max{v ∈ Z | v < z} .

Notice that an expected value based on an over approximation of the accumulated probability gives an
under approximation of the expected value. If the output space Z is integers then the dec function will
just subtract one from its argument.

Lemma 4 (expected value interval) For a terminating program the expected value can be approxi-
mated by an interval from the over approximation of the probability distribution.

E↓ ≤ Ep ≤ E↑ .

Externalize resource usage. The output analysis can be used to analyze internal properties of the
program provided these properties are externalized. As in automatic worst case complexity analysis
[30], this may be done by instrumenting the program with step counting information. Similarly we
might instrument programs with energy consumption based on low level energy models for operations
[23] to be able to analyze programs for average energy consumption.

Usually an operational or denotational semantics of a simple first order functional programming
language describes programs as mappings from input values to output values. The time, space or energy
required to perform the computation would normally not be part of the semantics. A simple form of
resource analysis is to count the number of basic operations that a computation would require. An
automatic complexity analysis [30] is then based on a semantics that has been extended (or instrumented)

114 Probabilistic Output Analysis by Program Manipulation

with step-counting information so that the meaning of a program is a mapping from input values to a tuple
of the number of steps and the output value. If we write this semantics as an interpreter in the source
language we can convert a program to a step-counting version of the program by partial evaluation. In
this way the complexity analysis has been transformed into an output analysis of the program. The aim
of the complexity analysis is then to generate an over approximation of the (first component of the)
possible output as a function of the size of the possible input. If the semantics is instrumented with other
types of resource information we can analyze programs with respect to these properties. Some automatic
complexity analysis systems are based on translating programs into cost relations [2] or cost equations
[24]. These approaches are then used as approximations of an instrumented semantics that captures the
cost of computations.

The functional language we use here may be seen as a meta language for the analysis since we
should extend source programs with resource information before they are analyzed. One can also use it
as a meta language for analyzing programs in other languages. This can be achieved by having a step-
counting interpreter for the other language written in the first order functional language. When analyzing
software for embedded systems the programs are often written in simple c-like languages which should
then be translated into this meta language.

The challenge of approximation. Analysis of probabilistic behavior introduces some new challenges
compared to worst case analysis. It is well known that a function of expected values is not necessarily
the same as the expected value of the function. There are a number of other potential pitfalls when
making approximations in a probabilistic setting. One might assume that conditions in a program can
be assigned a fixed probability of being true independently of previous execution paths in the program.
One might also assume that variables have independent probability distributions. An unfortunate effect
of using independence as an approximation is that it tends to under approximate the extreme cases. In
a throw of two dice the sum of 12 has probability 1/36 if we can assume independence. If (by some
magic) they always showed the same the probability increases to 1/6. The situation is well-known in
the insurance industry and for financial risk management (valuation of derivatives) where one may want
to over approximate the risk of extreme event when events are not guaranteed to be independent. One
approach to handle such situations is the use of copulas [5] and comonotonicity of probability measures
[10].

3 Transformation Based Analysis

Our analysis is based on a small first order functional language with primitive recursion. The first step of
the analysis is to translate programs into a new language of probability distribution programs. We then
use analysis and transformation techniques to transform the probability distributions into closed form.
Failing that, we may over approximate the distribution as discussed in section 5.

Programs (p) are defined as a collection of functions

f1(x1, . . . ,xn) = e1

...

fn(x1, . . . ,xn) = en .

The first function in the program is called externally and for that function we have an input probability
distribution Px specified as a symbolic expression ex. The language uses a base set D of values for simple
expressions, and functions in a program denote mappings from tuples of values to values D∗→ D. The

Mads Rosendahl & Maja H. Kirkeby 115

base set of values will not be further restricted here, nor do we specify the exact set of basic operations
in the language. Functions are either non-recursive or primitive recursive. The latter will have the form:

f (x1, . . . ,xn) = if (b(x1, . . . ,xn)) then g(x1, . . . ,xn) else f (e1 . . . ,en)

Non-recursive functions have right hand sides that are built from simple operations conditional expres-
sions and function calls to non-recursive and primitive recursive functions.

3.1 Probability distribution program

The output distribution program is expressed in a language similar to the original program but extended
with an extra class of functions. It contains the original functions of type D∗ → D and probability
functions of type D∗ → [0,1]. One of these functions will be the output distribution function of type
D→ [0,1]. The language for probability distribution program uses two new language constructs: Sums
over the (possibly) infinite set of all input values in D and a constraint function C. The constraint function
eases the handling of boundaries and is defined as

C(condition) =
{

1 if condition = true
0 otherwise

This definition is related to the indicator function [26] or characteristic function for membership of sets.
We also extend the language with a finite product construction which will be used for unfolding primitive
recursion.

The first phase constructs the probability distribution program from the original program and a joint
input distribution function. The input distribution is defined as a function

Px(x1, . . . ,xn) = ex

that computes the probability of each possible input value. If the arguments are independent the function
can be written as a product of the probability distribution of each parameter

Px(x1, . . . ,xn) = Px1(x1) · · ·Pxn(xn)

The raw form of the probability distribution program is defined as follows. Given an output value, the
distribution program sums the probabilities for all input value tuples that the original program maps to
the output value. The probability distribution program (Pp) is defined as follows.

Pp(z) = ∑
x1

· · ·∑
xn

Px(x1, . . . ,xn) ·C(z = f1(x1, . . . ,xn))

Px(x1, . . . ,xn) = ex

f1(x1, . . . ,xn) = e1

...

fn(x1, . . . ,xn) = en

We view a probability distribution program as a program that can be transformed and analyzed. In the
next phase function calls are unfolded and in the following phase the result is simplified using rewrite
rules.

116 Probabilistic Output Analysis by Program Manipulation

3.2 Unfolding

In this phase we unfold function calls in the program. We will introduce the central transformation rules
for unfolding calls to functions in the original program based on the syntactical structure.

Function calls. Simple calls to functions can be unfolded directly. Calls to primitive recursive function
can be composed but each call can be analyzed separately by constructing a joint input distribution
function to the call. For such function calls we rewrite the program as follows

∑
x1

· · ·∑
xn

Px(x1, . . . ,xn) ·C(z = g(e1, . . . ,en))

= ∑
u1

· · ·∑
un

Pu(u1, . . . ,un) ·C(z = g(u1, . . . ,un))·

Pu(u1, . . . ,un) = ∑
x1

· · ·∑
xn

Px(x1, . . . ,xn) ·C(u1 = e1) · · ·C(un = en) .

This rule extends the program with an extra probability function Pu. We assume that the programs do not
have unrestricted recursion and therefore we will only generate a bounded number of extra probability
functions.

Conditional expressions. For conditional expressions we use the following rule

∑
x1

· · ·∑
xn

Px(x1, . . . ,xn) ·C(z = if (b(x1, . . . ,xn)) then g(x1, . . . ,xn) else h(x1, . . . ,xn))

= ∑
x1

· · ·∑
xn

Px(x1, . . . ,xn)·

(C(b(x1, . . . ,xn)) · c(z = g(x1, . . . ,xn))+C(¬b(x1, . . . ,xn)) · c(z = h(x1, . . . ,xn))) .

Unfolding primitive recursion. For primitive recursion we collect the probability of a given result
being returned for any number of recursive calls. The condition may never evaluate to true for a certain
input (non-termination), and in that situation the sum of output probabilities will be less than 1.

The recursive functions have the form

f (x1, . . . ,xn) = if (b(x1, . . . ,xn)) then g(x1, . . . ,xn) else f (e1 . . . ,en)

and they should be analyzed for all input probability distributions we detect at calls to these functions.
The transformation for the primitive recursive form is

∑
x1

· · ·∑
xn

Px(x1, . . . ,xn) ·C (z = if (b(x1, . . . ,xn)) then g(x1, . . . ,xn) else f (e1 . . . ,en))

= ∑
x1

· · ·∑
xn

Px(x1, . . . ,xn)
∞

∑
i=0

i−1

∏
j=0

C(¬b(h(j,x1, . . . ,xn))) ·C(b(h(i,x1, . . . ,xn)))

·C(z = g(h(i,x1, . . . ,xn)))

where

h(i,x1, . . . ,xn) = if (i = 0) then 〈x1, . . . ,xn〉 else h(i−1,e1, . . . ,en) .

In the transformed expression we introduce two variables: i that represents the number of recursive
calls, and j that represents all previous recursions for the i under investigation (when i is 0 the term
∏i−1

j=0C(¬b(h(j,x1, . . . ,xn))) evaluates to 1). The new function h(i,x1, . . . ,xn) describes the evaluation of
the expressions 〈e1, . . . ,en〉, i times. Only when the ith condition is true and all previous conditions are
false can the expression evaluate to a probability above 0.

Mads Rosendahl & Maja H. Kirkeby 117

3.3 Symbolic summation

In the previous phase we unfolded calls to functions in the original program. The aim of this phase is to
use algebraic transformation techniques to remove summations. The methods we use are similar to the
transformations used in worst case execution time system for solving recurrence equations [31, 24] or
symbolic summation techniques in loop bound computations [20]. Some of the central transformation
rules we apply in this phase are listed below. In the following transformations the expressions e1 and e2
are assumed not to contain the summation variable x.

∑
x

C(x = e1) · f (x) = f (e1)

∑
x

C(e1 ≤ x≤ e2) = (e2− e1 +1) ·C(e1 ≤ e2)

∑
x

x ·C(e1 ≤ x≤ e2) =

(
e2 · (e2 +1)

2
− e1 · (e1−1)

2

)
·C(e1 ≤ e2) .

One could also use computer algebra systems in the reduction process but some of the rules are quite
specific to the way we handle the boundaries of summations with the special constraint function. There
are a number of rules to combine products of constraint functions and to split intervals into separate
expressions.

C(e1 ≤ x≤ e2) ·C(e3 ≤ x≤ e4) =C(max(e1,e3)≤ x≤min(e2,e4))

C(max(e1,e2)≤ e3) =C(e1 > e2)·C(e1 ≤ e3)+C(e1 ≤ e2)·C(e2 ≤ e3) .

There are similar rules for removing the minimum function and for isolating variables in constraints.
There are also rules for symbolic summation of certain infinite summations. If a is an expression

where 0 < a < 1 then we can simplify the expression as follows:

∑
x

C(x≥ 0) ·ax =
1

(1−a)

∑
x

C(x≥ 0) · x ·ax =
1

(1−a)2 −
1

(1−a)
.

This rule is useful when some of the input to the program follows a geometric distribution.

Px(x,n) =C(x≥ 0) · 1
n
·
(

1− 1
n

)x

.

Finally, there are rules for removing finite products and performing standard algebraic simplification
transformations.

Max example. As a small example, let us look at the simple non-recursive program max, which given
two values return the largest. It is chosen because of its simplicity while still producing a non-uniform
output distribution. The program is defined as

max(x,y) = if (x>y) then x else y

The input values are independent and they follow a uniform distribution from 1 to n:

Px(x) =
1
n
·C(1≤ x≤ n) and Py(y) =

1
n
·C(1≤ y≤ n) .

118 Probabilistic Output Analysis by Program Manipulation

The output probability program is constructed and simplified using transformation rules for conditional
expressions and symbolic summation.

Pmax(z) = ∑
x

∑
y

Px(x) ·Py(y) ·C(z = if (x > y) then x else y)

=
1
n2 ·

(
∑
y

(
C(1≤ z≤ n) ·C(1≤ y≤ n) ·C(y≤ (z−1))

)

+∑
x

(
C(1≤ x≤ n) ·C(1≤ z≤ n) ·C(x≤ z)

))

=
1
n2 · (2z−1) ·C(1≤ z≤ n) .

The output probability program takes the output value (z) as input and uses the range of input variables
(n) as an implicit parameter.

Add example. The recursive addition function was used as an example in the introduction. We shall
see how the original program is inserted into the probability formula, expanded and reduced to a closed
form function expressing the probability distribution for the output. Recall the program:

add(x,y) = if (x=0) then y else add(x-1,y+1)

and that we assume independence between the input variables and that both input variables x and y have
a uniform distribution from 1 to a number n. The output probability program is constructed using the
rule for primitive recursion.

Padd(z) = ∑
x

∑
y

Px(x) ·Py(y) ·∑
i=0

i−1

∏
j=0

C(¬b(h(j,x,y))) ·C(b(h(i,x,y))) ·C(z = g(h(i,x,y))

where
b(x,y) = x = 0

g(x,y) = y

h(i,x,y) = if (i = 0) then 〈x,y〉 else h(i−1,x−1,y+1)

= 〈x− i,y+ i〉
The simplification process proceeds as follows.

Padd(z) =

∑
x

∑
y

Px(x) ·Py(y) ·∑
i=0

i−1

∏
j=0

C(¬(x− j = 0)) ·C(x− i = 0) ·C(z = y+ i)

= ∑
x

∑
y

Px(x) ·Py(y) ·∑
i=0

C(x = i) ·C(z = y+ i)

= ∑
x

∑
y

Px(x) ·Py(y) ·C(z = y+ x)

= ∑
y

1
n
·C(z−n≤ y≤ z−1) · 1

n
·C(1≤ y≤ n)

)

=
1
n2 ·max(min(n,z−1)−max(1,z−n)+1,0)

=
1
n2 ·

(
C(n < z≤ 2n) · (2n− z+1) + C(1≤ z≤ n) · (z−1)

)
.

The probability program computes a triangular shaped probability distribution with a maximum at n+1.

Mads Rosendahl & Maja H. Kirkeby 119

3.4 Expected value

When programs produce numeric output values we can use the probability output distribution to compute
the expected value or an expected value interval for the output values. The expected value is defined as

Ep = ∑
x

x ·Pp(x) .

For the add program this gives

Eadd =
n

∑
z=1

z · 1
n2 · (z−1)+

2n

∑
z=n+1

z · 1
n2 · (2n− z+1)

which, of course, can be reduced further.

4 Composite Types

In the approach we have presented the base domain is a countable set and not necessarily just numbers.
We only need to be able to define a probability distribution for values in the domain.

For lists of length k > 0 where elements are uniformly distributed over the interval 1 to n we can use
the probability function

PL(L) =
1
nk ·C(length(L) = k∧∀ j : 0≤ j ≤ k−1∧1≤ hd(tl j(L))≤ n) .

We assign the probability 1/nk to any list of length k where all elements are in the interval from 1 to n.
If we consider the member function for non-empty lists, it can be written as

member(X,L) = if (tl(L)=[] || hd(L)=X) then hd(L)=X

else member(X,tl(L))

The function will follow the pattern of primitive recursion as described earlier and the output probability
distribution for the member function is then

Pmember(z) = ∑
X

∑
L

PX(X) ·PL(L) ·C(z = member(X ,L)) .

We can then use the unfolding rules to simplify the expression further.
The lists were here assumed to contain possibly repeating elements in the list. We could also use

a different probability measure to restrict lists to non-repeating lists of values. The example is also
analyzed by Wegbreit [37] where he derives the probability as 1− (1− (1/n)k). It is analyzed under the
assumption of non-repeating lists but is actually the correct result for repeating lists.

His technique is valid for programs where one can safely assume the Markov property (that probabil-
ities of conditions are fixed). Wegbreit observes that this is not always true even in very simple cases, e.g.
in nested conditionals where the outcome of the first condition influences the probability of the outcome
for the subsequent condition.

It should be noted that conditions existing inside a recursive structure often invokes dependencies
between variables. This occur when there is a gain of knowledge: For instance in the union function for
two repeating lists; if the head of the list is not in the second list, the likelihood of the next element not
being in the second list increases slightly.

120 Probabilistic Output Analysis by Program Manipulation

5 Approximation Techniques

The probability distribution program expresses the probability distribution for output values. Our aim is
to transform it into a closed form but this may not always be possible. Failing that, we can instead use
approximation techniques to obtain an upper bound for the probability distribution. We have referred to
this as the over approximation of the probability distribution, Pp.

Cumulative distribution functions. Cumulative probabilities will in some cases be more useful and
expressive than probability distributions: Cumulative probabilities can be used in both the discrete and
the continuous case, and in some cases approximations can be described more precisely using accumu-
lated probabilities than with ordinary distributions. It tends, however, to be more complex to reduce
to closed form and thus may require coarser approximations. The bounding of a cumulative distribution
was introduced by Ferson [12] as a P-box and can be used to describe imprecise probability distributions.

Definition 6 (cumulative distribution) Given a program output probability distribution, Pp(z), the cu-
mulative program output probability distribution, Fp(z), is defined as

Fp(z) = ∑
w≤z

Pp(w) .

Definition 7 (over and under approximation) Given a cumulative output probability of a program p,
Fp, the over approximation, Fp, and the under approximation, Fp, are defined as

Fp : ∀z.Fp(z)≤ Fp(z) Fp : ∀z.Fp(z)≤ Fp(z)

where for each approximation it must always hold that

∀z.0≤ Fp(z)≤ 1 ∀z.0≤ Fp(z)≤ 1 .

When we can deduce that a program may return one of two values, but not which one, then the
cumulative probability can be used for a more precise description. Such a program could be if x = 1

then 1 else (if x = 4 then 4 else (if (unanalyzable) then 2 else 3)) and 1≤ x≤ 4
with the probability distribution Px(x) = 1/4 ·C(1≤ x≤ 4).

0 1 2 3 4 5

3/4

1/2

1/4

1

0 1 2 3 4 5

3/4

1/2

1/4

1

Here, the over approximating distribution function will assign 1/2 for both 2 and 3. In contrast, the over
approximating cumulative distribution can express that if the program-output is not 2 it must be 3.

The distributions Pp and Pp can be used to derive Fp and Fp. However, these may not be as precise
as cumulative distributions derived directly.

Mads Rosendahl & Maja H. Kirkeby 121

When approximating cumulative probability distributions the techniques are different from proba-
bility mass functions. Instead one may use copulas [5] to over and under approximate dependencies
between subexpressions. Copulas are based on the theory of comonotonicity [10] for distributions that
may depend on a common (possibly unknown) random variable.

6 Related Work

Probabilistic analysis is related to the analysis of probabilistic programs. Probabilistic analysis is anal-
ysis of programs with a normal semantics where the input variables are interpreted over probability
distributions. Analysis of probabilistic programs analyzes programs with probabilistic semantics where
the values of the input variables are unknown (e.g. flow analysis [28]).

In probabilistic analysis it is important to determine how variables depend on each other, but already
in 1976 Denning proposed a flow analysis for revealing whether variables depend on each other [8]. This
was presented in the field of secure flow analysis. Denning introduced a lattice-based analysis where she,
given the name of a variable, that should be kept secret, deducted which other variables those should be
kept secret in order to avoid leaking information. In 1996, Denning’s method was refined by Volpano et
al. into a type system and for the first time, it was proven sound [36].

Reasoning about probabilistic semantics is a closely related area to probabilistic analysis, as they
both work with nested probabilistic influence. The probabilistic analysis work on standard semantic
and analyze it using input probability distributions, where a probabilistic semantics allow for random
assignments and probabilistic choices [21] and is normally analyzed using an expanded classical analysis
or verification method [7].

Probabilistic model checking is an automated technique for formally verifying quantitative properties
for systems with probabilistic behaviors. It is mainly focused on Markov decision processes, which can
model both stochastic and non-deterministic behavior [14, 22]. It differs from probabilistic analysis as it
assumes the Markov property.

In 2000, Monniaux applied abstract interpretation to programs with probabilistic semantics and
gained safe bounds for worst case analysis [25]. Pierro et al. introduce a linear mapping structure, a
Moore-Penrose pseudo-inverse, instead of a Galois connection. They use the linear structures to com-
pare ’closeness’ of approximations as an expression using the average approximation error. Pierro et al.
further explores using probabilistic abstract interpretation to calculate the average case analysis [27]. In
2012, Cousot and Monerau gave a general probabilistic abstraction framework [7] and stated that Pierro
et al.’s method and many other abstraction methods can be expressed in this new framework.

When analyzing probabilities the main challenge is to maintain the dependencies throughout the pro-
gram. Schellekens defines this as Randomness preservation [33] (or random bag preservation) which in
his (and Gao’s [15]) case enables tracking of certain data structures and their distributions. They use
special data structures as they find these suitable to derive the average number of basic operations. In an-
other approach [37, 29], tests in programs has been assumed to be independent of previous history, also
known as the Markov property (the probability of true is fixed). As Wegbreit remarked, this is true only
for some programs (e.g. linear search for repeating lists) and others, this is not the case (linear search
for non-repeating lists). The Markov property is the foundation in Markov decision processes which is
used in probabilistic model-checking [14]. Cousot et al. presents a probabilistic abstraction framework
where they divide the program semantics into probabilistic behavior and (non-)deterministic behavior.
They handle loops by using a probability function describing the probability of entering the loop in the
ith iteration. Monniaux propose another approach for abstracting probabilistic semantics [25]; he first

122 Probabilistic Output Analysis by Program Manipulation

lifts a normal semantics to a probabilistic semantics where random generators are allowed and then uses
an abstraction to reach a closed form. Monniaux’s semantic approach uses a backward probabilistic se-
mantics operating on measurable functions. This is closely related to the forward probabilistic semantics
proposed earlier by Kozen [21].

An alterntive approach to probabilistic analysis is based on symbolic execution of programs with
symbolic values [16]. Such techniques can also be used on programs with infinitely many execution
paths by limiting the analysis to a finite set of paths at the expense of tightness of probability intervals
[32].

7 Conclusion

Probabilistic analysis of programs has a renewed interest for analyzing programs for energy consump-
tions. Numerous embedded systems and mobile applications are limited by restricted battery life on the
hardware. In this paper we present a technique for extracting a probability distribution for programs from
symbolic distributions of the input. It is a static transformation based method which can analyze a first
order language with primitive recursion. From the original program and an input probability distribution
we generate an output probability distribution program, and transform this program into closed form.
We present the essential transformation rules for unfolding calls to the original program and removing
infinite sums. The transformed program is then analyzed and approximated using program transforma-
tion techniques. The core elements of the analysis have been implemented in a prototype system with
the aim of using it to improve energy efficiency of systems. The central challenges of approximating in
a probabilistic setting are discussed and we describe some advantages of using cumulative distributions
along with copulas to achieve a tighter approximation.

Acknowledgements. This work has benefitted from numerous discussions with Pedro López-Garcı́a,
Alejandro Serrano Mena and other colleagues in Madrid, Bristol and Roskilde.

References

[1] A. Adje, O. Bouissou, J. Goubault-Larrecq, E. Goubault & S. Putot (2014): Static analysis of programs
with imprecise probabilistic inputs. In: In Verified Software: Theories, Tools, Experiments, pp. 22–47,
doi:10.1007/978-3-642-54108-7 2.

[2] Elvira Albert, Puri Arenas, Samir Genaim & Germán Puebla (2009): Cost Relation Systems: A Language-
Independent Target Language for Cost Analysis. Electr. Notes Theor. Comput. Sci. 248, pp. 31–46,
doi:10.1016/j.entcs.2009.07.057.

[3] Mathias Bauer (1996): Approximations for Decision Making in the Dempster-Shafer Theory of Evidence. In:
UAI, Morgan Kaufmann, pp. 73–80. Available at http://arxiv.org/abs/1302.3557.

[4] Daniel Berleant & Hang Cheng (1998): A Software Tool for Automatically Verified Operations on Intervals
and Probability Distributions. Reliable Computing 4(1), pp. 71–82, doi:10.1023/A:1009954817673.

[5] Guillem Bernat, Alan Burns & Martin Newby (2005): Probabilistic timing analysis: An approach using
copulas. J. Embedded Computing 1(2), pp. 179–194.

[6] Olivier Bouissou, Eric Goubault, Jean Goubault-Larrecq & Sylvie Putot (2012): A generalization of p-boxes
to affine arithmetic. Computing 94(2-4), pp. 189–201, doi:10.1007/s00607-011-0182-8.

[7] Patrick Cousot & Michael Monerau (2012): Probabilistic Abstract Interpretation. In: ESOP, LNCS 7211,
pp. 169–193, doi:10.1007/978-3-642-28869-2 9.

Mads Rosendahl & Maja H. Kirkeby 123

[8] Dorothy E. Denning (1976): A Lattice Model of Secure Information Flow. Commun. ACM 19(5), pp. 236–
243, doi:10.1145/360051.360056.

[9] S. Destercke & D. Dubois (2009): The role of generalised p-boxes in imprecise probability models. In: 6th
International Symposium on Imprecise Probability: Theories and Applications, pp. 179–188.

[10] Jan Dhaene, Michel Denuit, Marc J Goovaerts, R Kaas & David Vyncke (2002): The Concept of Comono-
tonicity in Actuarial Science and Finance: Theory. Insurance, mathematics & economics 31(2), pp. 133–161,
doi:10.1016/S0167-6687(02)00135-X.

[11] Scott Ferson (2014): Model uncertainty in risk analysis. Tech. report, Centre de Recherches de Royallieu,
Universite de Technologie de Compiegne.

[12] Scott Ferson, Vladik Kreinovich, Lev Ginzburg, Davis S. Myers, & Kari Sentz (2002): Constructing Prob-
ability Boxes and Dempster-Shafer Structures. SAND2002-4015, Sandia National Laboratories.

[13] Philippe Flajolet, Bruno Salvy & Paul Zimmermann (1991): Automatic Average-Case Analysis of Algorithm.
Theor. Comput. Sci. 79(1), pp. 37–109, doi:10.1016/0304-3975(91)90145-R.

[14] Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman & David Parker (2011): Automated Verification
Techniques for Probabilistic Systems. In: SFM, LNCS 6659, pp. 53–113, doi:10.1007/978-3-642-21455-4 3.

[15] Ang Gao (2013): Modular average case analysis: Language implementation and extension. Ph.d. thesis,
University College Cork.

[16] Jaco Geldenhuys, Matthew B Dwyer & Willem Visser (2012): Probabilistic symbolic execution. In:
Proceedings of the 2012 International Symposium on Software Testing and Analysis, pp. 166–176,
doi:10.1145/2338965.2336773.

[17] Jean Gordon & Edward H. Shortliffe (1984): The Dempster-Shafer Theory of Evidence. In: Rule-Based
Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project, p. 21 pp.

[18] Xi Guo, Menouer Boubekeur, J. McEnery & David Hickey (2007): ACET based scheduling of soft real-time
systems: An approach to optimise resource budgeting. International Journal of Computers and Communica-
tions 1(1), pp. 82–86.

[19] Rakowsky Uwe Kay (2007): Fundamentals of the Dempster-Shafer theory and its applications to system
safety and reliability modelling. International Journal of Reliability, Quality and Safety Engineering 14(06),
pp. 579–601, doi:10.1142/S0218539307002817.

[20] Jens Knoop, Laura Kovács & Jakob Zwirchmayr (2011): Symbolic Loop Bound Computation for WCET
Analysis. In: Ershov Memorial Conference, LNCS 7162, pp. 227–242, doi:10.1007/978-3-642-29709-0 20.

[21] Dexter Kozen (1981): Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22(3), pp. 328–350,
doi:10.1016/0022-0000(81)90036-2.

[22] M. Kwiatkowska, G. Norman & D. Parker (September 2010): Advances and challenges of probabilistic
model checking. In: 48th Annual Allerton Conference on Communication, Control, and Computing, pp.
1691–1698, doi:10.1109/ALLERTON.2010.5707120.

[23] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech, M. V. Hermenegildo & K. Eder
(2013): Energy Consumption Analysis of Programs based on XMOS ISA Level Models. In: 23rd InternatioF-
nal Symposium on Logic-Based Program Synthesis and Transformation, LOPSTR, LNCS 8901, pp. 72–90,
doi:10.1007/978-3-319-14125-1 5.

[24] Pedro López-Garcı́a, Luthfi Darmawan & Francisco Bueno (2010): A Framework for Verification and De-
bugging of Resource Usage Properties: Resource Usage Verification. In: ICLP (Technical Communications),
LIPIcs 7, pp. 104–113.

[25] David Monniaux (2000): Abstract Interpretation of Probabilistic Semantics. In: SAS, LNCS 1824, pp.
322–339, doi:10.1007/978-3-540-45099-3 17.

[26] Carroll Morgan, Annabelle McIver & Karen Seidel (1996): Probabilistic Predicate Transformers. ACM
Trans. Program. Lang. Syst. 18(3), pp. 325–353, doi:10.1145/229542.229547.

124 Probabilistic Output Analysis by Program Manipulation

[27] Alessandra Di Pierro, Chris Hankin & Herbert Wiklicky (2006): Abstract Interpretation for Worst and Aver-
age Case Analysis. In: Program Analysis and Compilation, LNCS 4444, pp. 160–174, doi:10.1007/978-3-
540-71322-7 8.

[28] Alessandra Di Pierro, Herbert Wiklicky, Gabriele Puppis & Tiziano Villa (2013): Probabilistic data flow
analysis: a linear equational approach. In: Proc. Fourth Int. Symp. on Games, Automata, Logics and
Formal Verification, GandALF, 119, pp. 150–165, doi:10.4204/EPTCS.119.14.

[29] Hector Soza Pollman, Manuel Carro & Pedro Lopez Garcia (2009): Probabilistic Cost Analysis of Logic
Programs: A First Case Study. INGENIARE - Revista Chilena de Ingeniera 17(2), pp. 195–204.

[30] Mads Rosendahl (1989): Automatic Complexity Analysis. In: FPCA, pp. 144–156, doi:10.1145/99370.99381.
[31] Mads Rosendahl (2002): Simple Driving Techniques. In: The Essence of Computation, LNCS 2566, pp.

404–419, doi:10.1007/3-540-36377-7 18.
[32] S. Sankaranarayanan, A. Chakarov & S. Gulwani (June 2013): Static analysis for probabilistic pro-

grams: inferring whole program properties from finitely many paths. In: PLDI, ACM., pp. 447–458,
doi:10.1145/2462156.2462179.

[33] Michel P. Schellekens (2008): A modular calculus for the average cost of data structuring. Springer,
doi:10.1007/978-0-387-73384-5.

[34] Lars Schor, Iuliana Bacivarov, Hoeseok Yang & Lothar Thiele (2012): Worst-Case Temperature Guarantees
for Real-Time Applications on Multi-core Systems. In: IEEE Real-Time and Embedded Technology and
Applications Symposium, pp. 87–96, doi:10.1007/s10836-013-5397-5.

[35] A. Uwimbabazi (2013): Extended probabilistic symbolic execution. Master’s thesis, University of Stellen-
bosch.

[36] Dennis M. Volpano, Cynthia E. Irvine & Geoffrey Smith (1996): A Sound Type System for Secure Flow
Analysis. Journal of Computer Security 4(2/3), pp. 167–188, doi:10.3233/JCS-1996-42-304.

[37] Ben Wegbreit (1975): Mechanical Program Analysis. Commun. ACM 18(9), pp. 528–539,
doi:10.1145/361002.361016.

[38] Adam Wierman, Lachlan L. H. Andrew & Ao Tang (2008): Stochastic Analysis of Power-Aware Scheduling.
In: Proceedings of Allerton Conference on Communication, Control and Computing, Urbana-Champaign,
IL, pp. 1278–1283, doi:10.1109/ALLERTON.2008.4797707.

[39] Nic Wilson (2000): Algorithms for Dempster-Shafer Theory. In: Handbook of defeasible reasoning and
uncertainty management systems, Springer Netherlands, pp. 421–475, doi:10.1007/978-94-017-1737-3 10.

Attachment D3.3.9

Decomposition by tree dimension in

Horn clause verification

Published at the 3rd International Workshop on
Verification and Program Transformation

(VPT’2015)

160

A. Lisitsa, A.P. Nemytykh, A. Pettorossi (Eds.): 3rd International Workshop
on Verification and Program Transformation (VPT 2015)
EPTCS 199, 2015, pp. 1–14, doi:10.4204/EPTCS.199.1

Decomposition by tree dimension in Horn clause verification ∗

Bishoksan Kafle
Roskilde University, Denmark

kafle@ruc.dk

John P. Gallagher
Roskilde University, Denmark

IMDEA Software Institute, Spain

jpg@ruc.dk

Pierre Ganty
IMDEA Software Institute, Spain

pierre.ganty@imdea.org

In this paper we investigate the use of the concept of tree dimension in Horn clause analysis and
verification. The dimension of a tree is a measure of its non-linearity – for example a list of any
length has dimension zero while a complete binary tree has dimension equal to its height. We apply
this concept to trees corresponding to Horn clause derivations. A given set of Horn clauses P can
be transformed into a new set of clauses P≤k, whose derivation trees are the subset of P’s deriva-
tion trees with dimension at most k. Similarly, a set of clauses P>k can be obtained from P whose
derivation trees have dimension at least k+1. In order to prove some property of all derivations of P,
we systematically apply these transformations, for various values of k, to decompose the proof into
separate proofs for P≤k and P>k (which could be executed in parallel). We show some preliminary
results indicating that decomposition by tree dimension is a potentially useful proof technique. We
also investigate the use of existing automatic proof tools to prove some interesting properties about
dimension(s) of feasible derivation trees of a given program.

Keywords: Tree dimension, proof decomposition, program transformation, Horn clauses.

1 Introduction

In this paper, we study the role of tree dimension in Horn clause analysis and verification. The dimension
of a tree is a measure of its non-linearity – for example a list of any length has dimension zero while
a complete binary tree has dimension equal to its height. We apply this concept to trees corresponding
to Horn clause derivations. A given set of Horn clauses P can be transformed into a new set of clauses
P≤k (whose derivation trees are the subset of P’s derivation trees with dimension at most k) and P>k

(whose derivation trees have dimension at least k + 1). Each such set of clauses represents an under-
approximation of the original set of clauses and the proof for the original clauses can be constructed
from their individual proofs. In order to prove some property of all derivations of P, we systematically
apply these transformations, for various values of k, to decompose the proof into separate proofs for P≤k

and P>k (which could be executed in parallel).
We prove each such set of clauses using abstract interpretation [4] over the domain of convex poly-

hedra [5] as described in [18]. Finally, the preliminary results in a set of Horn clause verification bench-
marks show that this is a useful program transformation. This decomposition can also be viewed as
refinement where one eliminates possibly infinite sets of program traces. As a result of this, the proof for
the remaining part becomes simpler. To motivate readers, we present an example set of constrained Horn
clauses (CHCs) P in Figure 1 which defines the Fibonacci function. This is an interesting problem whose
dimension depends on the input number and its computations are trees rather than linear sequences. The
main contributions of this paper are the following.
∗The research leading to these results has been supported by the EU FP7 project 318337, ENTRA - Whole-Systems Energy

Transparency, the EU FP7 project 611004, coordination and support action ICT-Energy and Danish Research Council grant
FNU-10-084290.

2 Decomposition by tree dimension in Horn clause verification

c1. fib(A, A):- A>=0, A=<1.

c2. fib(A, B) :- A > 1, A2 = A - 2, fib(A2, B2),

A1 = A - 1, fib(A1, B1), B = B1 + B2.

c3. false:- A>5, fib(A,B), B<A.

Figure 1: Example CHCs Fib: it defines a Fibonacci function.

1. We describe how to generate at-most k-dimension program and at-least k-dimension program from
a given program using the notion of tree dimension (Section 2);

2. We give a verification algorithm for Horn clauses program based on its proof decomposition (Sec-
tion 3);

3. We give an alternative way of generating the at-least k-dimension program using the theory of
finite tree automata (Section 4);

4. We demonstrate the feasibility of our approach in practice applying it to non-linear Horn clause
verification problems (Section 7);

5. We instrument a program with its dimension and use existing automatic verification tools to prove
some interesting properties about its dimension (Section 5).

2 Preliminaries

A constrained Horn clause is a first order formula of the form p(X)← C , p1(X1), . . . , pk(Xk) (k ≥ 0)
(using Constraint Logic Programming (CLP) syntax), where C is a conjunction of constraints with re-
spect to some background theory, Xi,X are (possibly empty) vectors of distinct variables, p1, . . . , pk, p
are predicate symbols, p(X) is the head of the clause and C , p1(X1), . . . , pk(Xk) is the body. A clause is
called non-linear if it contains more than one atom in the body (k > 1), otherwise it is called linear. A set
of Horn clauses is sometimes called a program.

A labeled tree c(t1, . . . , tk) is a tree with its nodes labeled, where c is a node label and t1, . . . , tk are
labeled trees rooted at the children of the node and leaf nodes are denoted by c.

Definition 1 (Tree dimension (adapted from [7])) Given a labeled tree t = c(t1, . . . , tk), the tree dimen-
sion of t represented as dim(t) is defined as follows:

dim(t) =

0 if k = 0
maxi∈[1..k] dim(ti) if there is a unique maximum
maxi∈[1..k] dim(ti)+1 otherwise

Figure 2 (a) shows a derivation tree t for Fibonacci number 3 and Figure 2 (b) shows its tree dimension.
It can be seen that dim(t) = 1. This number is a measure of its non-linearity, the smaller the number
the closer the tree is to a list. Since it is not a perfect binary tree, the height of t (3) is greater than its
dimension.

Given a set of CHCs P and k ∈ N, we split each predicate H occurring in P into the predicates H≤d

and H=d where d ∈ {0,1, . . . ,k}. Here H≤d and H=d generate trees of dimension at most d and exactly
d respectively.

Definition 2 (At-most-k-dimension program P≤k) It consists of the following clauses (adapted from
[20]):

Kafle, Gallagher and Ganty 3

Figure 2: (a) derivation tree of Fibonacci 3 and (b) its tree dimension.

%linear clauses

1. fib(0)(A,A) :- A>=0, A=<1.

2. false(0) :- A>5, B<A, fib(0)(A,B).

%epsilon-clauses

3. false[0] :- false(0).

4. fib[0](A,B) :- fib(0)(A,B).

Figure 3: Fib≤0 : at-most 0-dimension program of Fib.

1. Linear clauses:
If H← C ∈ P , then H=0← C ∈ P≤k.
If H← C ,B1 ∈ P then H=d ← C ,B=d

1 ∈ P≤k for 0≤ d ≤ k.

2. Non-linear clauses:
If H← C ,B1,B2, . . . ,Br ∈ P with r > 1:

• For 1≤ d ≤ k, and 1≤ j ≤ r:
Set Z j = B=d

j and Zi = B≤d−1
i for 1≤ i≤ r∧ i 6= j. Then: H=d ← C ,Z1, . . . ,Zr ∈ P≤k.

• For 1≤ d ≤ k, and J ⊆ {1, . . . ,r} with |J|= 2:
Set Zi = B=d−1

i if i ∈ J and Zi = B≤d−2
i if i ∈ {1, . . . ,r}\ J. If all Zi are defined, i.e., d ≥ 2 if

r > 2, then: H=d ← C ,Z1, . . . ,Zr ∈ P≤k.

3. ε-clauses:
H≤d ← H=e ∈ P≤k for 0≤ d ≤ k , and every 0≤ e≤ d.

The at-most 0-dimension program of Fib in Figure 1 is depicted in Figure 3 (where the numbers on
the first column are not clause identifiers and are there for future reference). In textual form we represent
a predicate p≤k by p[k] and a predicate p=k by p(k). Since some programs have derivation trees of
unbounded dimension, trying to verify a property for its increasing dimension separately is not a practical
strategy. To deal with this, we need some construction which characterises derivation trees of at-least
k-dimension. Next we define this construction (at-least k-dimension program). For this, we split each
predicate H occurring in P into the predicates H>d and H≥0 where d ∈ {0,1 . . . ,k}. Here H>d generates
trees of dimension at-least d +1 and H≥0 generates trees of any dimension.

Definition 3 (At-least k+1-dimension program P>k) In addition to the linear, non-linear and ε-clauses
from Definition 2 (with each predicate H≤k and H=k from P≤k renamed to H>k and H≥0 respectively),
the at-least k+1-dimension program P>k consists of the following clauses:

4 Decomposition by tree dimension in Horn clause verification

%linear clauses

fib<0>(A,A) :- A>=0, A=<1.

false<0> :- A>5, B<A,fib<0>(A,B).

%epsilon-clauses

false{0} :- false<0>.

fib{0}(A,B) :- fib<0>(A,B).

%link clauses

false<0> :- false.

fib<0>(A,B) :- fib(A,B).

%original clauses (all clauses)

fib(A, A):- A>=0, A=<1.

false:- A>5, fib(A,B), B<A.

fib(A, B) :- A > 1, A2 = A - 2, fib(A2, B2),

A1 = A - 1, fib(A1, B1), B = B1 + B2.

Figure 4: Fib>0 : at-least 1-dimension program of Fib.

1. Link-clauses:

For each H← B ∈ P there is a clause H≥0← H ∈ P>k.

2. Original clauses:

All clauses in P are also in P>k.

The at-least 1-dimension program of Fib in Figure 1 is depicted in Figure 4. In textual form we
represent a predicate p>k by p{k} and a predicate p≥0 by p<k>.

3 Procedure for verification

Given a set of CHCs P (including clauses with false head, also known as integrity constraints), the CHC
verification problem is to check whether there exists a model of P. This is equivalent to checking whether
there is any feasible derivation tree for false; if there is such a derivation then there is no model. We say
P is safe if it has a model and unsafe if it has no model. The procedure VERIFY(P) is described in
algorithm 1. VERIFY makes use of the procedure SAFE(P) in the Algorithm 1, which is an oracle that
returns safe, unsafe or unknown. The oracle is sound: if SAFE(P) returns safe (unsafe) then P is safe
(unsafe). SAFE could be any existing automatic Horn clause solver [12, 19, 18, 17, 6]. When it cannot
verify a program within a given time limit, the unknown answer is emitted. A given set of Horn clauses
P can be transformed into a new set of clauses P≤k and P>k. In order to prove some property of all
derivations of P, we systematically apply these transformations, for various values of k, to decompose
the proof into separate proofs for P≤k (line 4) and P>k (line 9). If both are safe then P is safe. If one of
them is unsafe then P is unsafe. If an oracle cannot prove whether P≤k is safe/unsafe then we return an
unknown answer (we assume that the oracle would also return unknown for larger values of k). But if it
cannot prove whether P>k is safe/unsafe then we try the while loop in the algorithm 1 with k = k+1.

One possible optimisation that we can make in Algorithm 1 is to consider P>k instead of P in the
next iteration of the while loop if we reach line 14. This is because at this stage we have already proven
the safety of P≤k.

The soundness of Algorithm 1 is captured by the following lemma and proposition.

Kafle, Gallagher and Ganty 5

Algorithm 1: Verification algorithm for Horn clauses

1 Procedure VERIFY (P)
Input: Set of CHCs P
Output: safe, unsafe, unknown

2 initialization: k← 0
3 while true do
4 generate P≤k

5 r1← SAFE(P≤k)
6 if r1 6= safe then
7 return r1
8 end
9 generate P{k}

10 r′1← SAFE(P>k)
11 if r′1 6= unknown then
12 return r′1
13 end
14 k← k+1
15 end

Lemma 1 (Decomposition by dimension) For all k, program P is safe if and only if both P≤k and P>k

are safe.

Proposition 1 (Soundness) If Algorithm 1 returns safe then the input program is safe. If it returns
unsafe then the program is unsafe.

4 Dimension decomposition using finite tree automata

In this section, we show an alternative method for constructing an at-least k-dimension program, using
operations on finite tree automata (FTAs). We first describe the connection between Horn clauses and
FTAs and show how to construct an FTA from a set of Horn clauses.

4.1 Trace automata for CHCs

We add identifiers to clauses, whose purpose is to act as constructors of trace trees representing deriva-
tions. The identifiers are chosen from a set Σ of ranked function symbols. If P is a set of CHCs, let
idP : P→ Σ be an assignment of function symbols to clauses, such that for every clause cl ∈ P, the arity
of idP(cl) equals the number of atoms in the body of cl. We allow the same symbol to be assigned by
idP to more than one clause. We can also identify the predicates whose derivations are of interest (the
accepting predicates in Definition 4).

Definition 4 (Trace FTA for a set of CHCs) Let P be a set of CHCs, Σ be a set of ranked function
symbols and idP : P→ Σ be a mapping from clauses to function symbols of appropriate arity. Let F be a
set of predicates from P called the accepting predicates. Define the trace FTA for P as A F

P = (Q,F,Σ,∆)
where

• Q is the set of predicate symbols of P;

6 Decomposition by tree dimension in Horn clause verification

• F ⊆ Q is the set of accepting predicate symbols;

• Σ is a set of function symbols;

• ∆ = {c(p1, . . . , pk)→ p | cl ∈ P, cl = p(X)← C , p1(X1), . . . , pk(Xk), c = idP(cl)}.
If F is the set of all predicate symbols occurring in the clauses we omit the superscript F from A F

P .
The set of trees accepted by A F

P is written L (A F
P). Elements of L (A F

P) are called the trace trees
for P. L (A F

P) is isomorphic to the set of (successful and unsuccessful) derivation trees (for atomic
formulas with accepting predicates) constructible from P and from now on we identify trace trees with
derivations. We do not define derivation trees formally here, but refer to the notion of an AND-tree in
the literature [22, 9].

Example 1 Let P be the set of CHCs in Figure 1 and let F = {fib,false}. Let idP map the clauses to
c1,c2,c3 respectively. Then A F

P = (Q,F,Σ,∆) where:

Q = {fib,false} ∆ = {c1→ fib,
Σ = {c1,c2,c3} c2(fib,fib)→ fib,

c3(fib)→ false}
Figure 2(a) shows a trace tree recognised by this FTA. The tree can also be written c3(c2(c2(c1,c1),c1)).

If a mapping idP : P→ Σ assigns a unique identifier to each clause, that is, idP is injective, then there
is an inverse mapping id−1 : range(idP)→ P.

Definition 5 (chcid(A)) Given an FTA A = (Q,F,Σ,∆) and an injective mapping id such that Σ ⊆
range(id), we can construct a set of CHCs from A , called chcid(A), defined as follows:

chcid(A) = {q(X)← C ,q1(X1), . . . ,qn(Xn) | c(q1, . . . ,qn)→ q ∈ ∆,
id−1(c) = q(X)← C ,q1(X1), . . . ,qn(Xn)}

The set of accepting predicates of chcid(A) is defined to be F.

In the definitions we reuse the states in the FTA as predicate symbols in the constructed clauses. In
practice we use some injective renaming function from states to predicates in the constructed program.
Further discussion of the mappings between CHCs and FTAs can be found in [19]. By construction, the
derivations of chcid(A) (for the accepting predicates) correspond to the elements of L (A).

4.2 Construction of the at-least k-dimensional program using FTA operations

In the construction of the at-least k-dimension program P>k in Definition 4, the original program clauses
from P are included in the generated clauses. The presence of the original clauses suggests that the
“decomposed” verification problem for P>k is as hard as the original problem for P, since it contains the
clauses of P as well as others, and so this form might not lend itself to verification.

Thus in the following construction we build P>k based on FTA language difference, and the original
clauses are not copied to the at-least k-dimension program. We first define a general FTA-difference for
CHCs.

Definition 6 (FTA-difference for CHCs) Let P and Q be sets of CHCs, F1 and F2 their respective ac-
cepting predicates and idP : P→ Σ and idQ : Q→ Σ their respective identifier assignments, where idP is
injective. Let A F1

P and A F2
Q be the trace FTAs constructed from P,Q respectively. Then the FTA-difference

of P and Q (with their respective accepting predicates) written PF1−QF2 , is given as chcidP(A
F1

P \A F2
Q)

where \ is the difference of FTAs [3]. The set of accepting predicates is the set of accepting states for the
difference FTA.

Kafle, Gallagher and Ganty 7

The set of derivations for PF1 −QF2 contains, by construction, those derivations of PF1 that are not
derivations of QF2 . We now apply these notions to the verification procedure based on decomposition.
We are given a set of CHCs P, with accepting predicates F = {false}. In the program P≤k, the set of
accepting predicates is Fk = {false≤k}. Note that we can ignore the derivations for the other predicates
of the form false≤ j or false= j since false≤k by construction accumulates their derivations, for all j ≤ k.

4.2.1 Assignment of identifiers in the at-most-k-dimension program

Given a program P and the at-most-k-dimension program P≤k, we intend to construct the difference
P{false}−P≤k{false} using Definition 6. In order to do so, we first need to construct the identifier assign-
ment idP≤k so as to preserve trace trees from P. This requires the modification of P≤k to eliminate the
ε-clauses, as follows.

Definition 7 (Unfolding of ε-clauses in P≤k) Let P≤k be the at-most-k-dimension program obtained
from P using Definition 2. Replace each ε-clause of form H≤d ← H=e by the set of clauses H≤d ← B,
where H=e← B is either a linear or non-linear clause in P≤k.

The elimination of ε-clauses is an instance of the well-known unfolding transformation which preserves
the derivability of atomic formulas. In other words an atom A is derivable from a program P if and only
if it is derivable after applying the unfolding transformation [21].

In the following definition, the clause identifiers are chosen for clauses in P≤k Informally, every
clause of P≤k inherits the clause identifier for the clause in P from which it originates. More precisely
we define the clause identifiers for P≤k as follows.

Definition 8 (Assignment of clause identifiers in P≤k) Let P≤k be the at-most-k-dimension program
obtained from P using Definition 2, with ε-clauses eliminated according to Definition 7. Each clause
of P≤k is a linear, non-linear or an ε-unfolded-clause. The clause identifiers are assigned in two steps as
follows.

1. Assign to each linear or non-linear clause the clause identifier from the clause in P from which it
is derived in Definition 2.

2. Assign to each unfolded ε-clause the clause identifier for the linear or non-linear clause used to
unfold it using Definition 7.

We are now in a position to compare the sets of trace trees for P and P≤k using their respective FTAs.

Lemma 2 Let P be a set of CHCs and let idP : P→ Σ be an injective function assigning clause identifiers
to P. Let F1 = {false}. Let k≥ 0 and let P≤k be the at-most-k-dimension program obtained from P using
Definition 2 with ε-clauses unfolded using Definition 7 and let F2 = {false≤k}. Then L (A F2

P≤k) = {t | t ∈
L (AF1

P),dim(t)≤ k}.
The proof is by induction on derivations in P≤k and uses the correspondence of the clause identifiers as
set up in Definition 8.

Theorem 1 Let P be a set of CHCs and let idP : P→ Σ be an injective function assigning clause identi-
fiers to P. Let k ≥ 0 and let P≤k be the at-most-k-dimension program obtained from P using Definition 2
with ε-clauses unfolded using Definition 7. Then false is derivable from P−P≤k if and only if false>k is
derivable from P>k.

8 Decomposition by tree dimension in Horn clause verification

c1. fib(0)(A,A) :- A>=0, A=<1.

c3. false(0) :- A>5, B<A, fib(0)(A,B).

c3. false[0] :- A>5, B<A, fib(0)(A,B).

c1. fib[0](A,B) :-A>=0, A=<1.

Figure 5: Fib≤0 after unfolding ε-clauses and assigning clause identifiers.

Thus we have shown a different method of constructing the at-least k-dimension program P>k, namely
by taking the difference of P with P≤k, which contains only derivations (for its accepting predicates) that
have dimension greater than k.

Details on difference construction can be found in [19]. We construct the difference of two FTAs by
(1) standardising apart the predicate names; (2) forming the union of the two FTAs; (3) determinising the
union; (4) removing from the determinised FTA all states (and transitions that contain them) that contain
an accepting state of the second FTA. Note that the set of states of the determinised FTA is a subset of
the powerset of the original states. Note that determinisation of FTAs is often considered prohibitively
complex even for small FTAs. We use a recent optimised FTA determinisation algorithm [10], returning
a compact form of the determinised called product form, which can be used directly in constructing the
resulting clauses.

Example 2 We illustrate this through an example using Fib≤0 (Figure 3). The clauses 1 and 2 in Fib≤0,
will have c1 and c3 as identifiers since they were derived respectively from the clauses c1 and c3 in Fib
(Figure 1). By unfolding ε-clauses (clauses 3 and 4) using respectively clauses 2 and 1 in Figure 3, we
obtain false[0] :- A>5, B<A, fib(0)(A,B) and fib[0](A,B) :-A>=0, A=<1. They will have
identifiers c3 and c1 respectively. Therefore, the clauses in Fib≤0 will have the identifiers assigned as
shown in Figure 5.

After assigning identifiers to each of the clauses in Fib≤0, we can construct an FTA corresponding to
it using Definition 4, and obtain the FTA shown in Figure 6: as before we represent a predicate p≤k by
p[k] and a predicate p=k by p(k).

Q = {fib(0), false(0), false[0], fib[0]} ∆ = {c1→ fib(0),
F = {false[0]} c3(fib(0))→ false(0),
Σ = {c1,c3} c3(fib(0))→ false[0],

c1→ fib[0]}

Figure 6: FTA (Q,F,Σ,∆) corresponding to Fib≤0.

The difference FTA between A
{false}

Fib and A
{false≤0}

Fib≤0 accepts trees rooted at false which have di-
mension greater than 0. The determinised FTA (DFTA) constructed as explained above is shown in the
Figure 7. DFTA states are sets of predicates, and we represent a set using square brackets instead of curly
brackets in the code, e.g. [fib(0), fib[0], fib]. Furthermore the product form referred to above
contains set of DFTA states, such as [[fib(0), fib[0], fib], [fib]].

We can generate a new program from this DFTA together with the original program Fib following
the approach taken in [19] obtaining the program in Figure 8. It should be noted that the derivation trees
rooted at false have dimension at-least 1. Now verification of the original program Fib is decomposed
into verifying the program in Figure 3 (where false[0] is replaced by false and the program in Figure
8.

Kafle, Gallagher and Ganty 9

c1 -> [fib(0), fib[0], fib].

c2([[fib(0), fib[0], fib], [fib]],

[[fib(0), fib[0], fib], [fib]]) -> [fib].

c3([[fib]]) -> [false].

Figure 7: Transitions of the determinised FTA.

fib_0(A,A) :- A>=0, A=<1.

fib(A,B) :- A>1,C=A-2,D=A-1,B=E+F,fib_1(C,F), fib_1(D,E).

false :- A>5, B<A, fib(A,B).

fib_1(A,B) :- fib_0(A,B).

fib_1(A,B) :- fib(A,B).

Figure 8: At-least 1-dimension program of Fib produced using the difference of FTAs

5 Program instrumentation with dimension

The dimension of successful derivations in a set of CHCs is not always obvious from the text of the
clauses. In some cases a bound on the dimension is clear from the form of the clauses; for instance
all derivations using a set of linear clauses clearly have dimension zero. But consider the well known
91-function of McCarthy1, represented in Figure 9 using Horn clauses.

Although it is possible to construct derivation trees of arbitrary dimension using the clauses in Figure
9, the dependencies between the two recursive calls to mc91 imply that no successful derivation has
dimension greater than 2. We now show how to establish this using a transformation to instrument the
clauses with dimension information, and then use automatic verification tools to establish properties of
the dimension.

Definition 9 (Dimension-instrumented clauses) Let P be a set of CHCs. Define the set Pdim of CHC as
follows.

• For each predicate p of arity m define a predicate p′ of arity m+1.

• For each clause in P of the form

p(X)← C , p1(X1), . . . , pn(Xn)

construct a clause

p′(X ,K)← C , p
′
1(X1,K1), . . . , p

′
n(Xn,Kn),dimn(K1, . . . ,Kn,K)

in Pdim, where K1, . . . ,Kn,K are variables added as the final argument for their respective predi-
cates, and dimn(K1, . . . ,Kn,K) is defined according to the rules in Definition 1 for determining the
dimension of a tree.

1http://en.wikipedia.org/wiki/McCarthy 91 function

mc91(N,X) :- N > 100, X = N-10.

mc91(N,X) :- N =< 100, Y = N+11,

mc91(Y,Y2), mc91(Y2,X).

Figure 9: McCarthy’s 91-function defined as Horn clauses

10 Decomposition by tree dimension in Horn clause verification

fib(A, A, K):- A>=0, A=<1, dim0(K).

fib(A, B, K) :- A > 1, A2 = A - 2, fib(A2, B2, K1),

A1 = A - 1, fib(A1, B1, K2), B = B1 + B2, dim2(K1, K2, K).

dim0(K):-K=0.

dim2(K1, K2, K3):-K1>=K2+1, K3=K1.

dim2(K1, K2, K3):-K2>=K1+1, K3=K2.

dim2(K1, K2, K3):- K1=K2, K3 = K1+1.

Figure 10: Fib program instrumented with its dimension

Example 3 The dimension-instrumented version of the McCarthy 91-function contains the following
clauses.
mc91(N,X,K) :- N > 100, X = N-10, dim0(K).

mc91(N,X,K) :- N =< 100, Y = N+11,

mc91(Y,Y2,K1), mc91(Y2,X,K2), dim2(K1,K2,K).

dim0(K):-K=0.

dim2(K1, K2, K3):-K1>=K2+1, K3=K1.

dim2(K1, K2, K3):-K2>=K1+1, K3=K2.

dim2(K1, K2, K3):- K1=K2, K3 = K1+1.

Using the instrumented program we can try to prove information about the dimension, such as upper or
lower bounds or other relationships between the dimension and other predicate arguments. It follows
from the undecidability result of Gruska [14] on context-free grammars, that the problem of determining
whether the dimension of set of CHC is bounded by a constant is, in general, undecidable.

Example 4 To establish that the upper bound of successful derivations is 2, for facts mc91(X,Y), we
add the following integrity constraint to the dimension-instrumented clauses.
false :- K > 2, mc91(X,Y,K).

The clauses together with the integrity constraint are given to an automatic solver for Horn clauses
[12, 19], which are able to prove the safety of the clauses and thus establish the upper bound of 2.

In the next example, we show that the dimension can depend on the values of other predicate argu-
ments.
Example 5 The dimension-instrumented version of the Fib clauses is shown in Figure 10. The property
to be proved is that the dimension of Fib is lesser or equal to the half of its input value, expressed by
the integrity constraint false:- fib(A,B, K), 2*K -1>=A. Again, this property is established by
applying a Horn clause solver to prove the safety of the clauses together with the integrity constraint.

Example 6 We present the well known counting change example taken from [1, Chapter 1]. The Figure
11 shows its CLP encoding and the Figure 12 shows the dimension-instrumented version in CLP. The
property of interest is to relate the number of different coins (counts) with the program dimension. We
can establish that the dimension is at most the number of different coins as expressed by the integrity
constraint false :- B>=1, K > B, cc(A, B, C, K).

In general, verifying whether a program has a certain dimension is as challenging as proving any
other properties of the program. But in some cases the knowledge of program dimension is useful for
proving other program properties. For instance, using the knowledge that the McCarthy 91-function has
dimension at most 2 would allow us to restrict the proof of any program property relating to successful
derivations to the program P[2] where P is the set of clauses for the McCarthy 91-function.

Kafle, Gallagher and Ganty 11

% base case: that is a hit

cc(0, Y, 1) :- Y>0.

% base case: that is a miss

cc(X, _, 0) :- X<0.

cc(_, Y, 0) :- Y=<0.

%inductive case

cc(X, Y, Z) :- X>0, kinds_of_coins(Y,A),

X1 = X-A, cc(X1, Y, Z1),

Y1 = Y-1, cc(X, Y1, Z2), Z = Z1 + Z2.

kinds_of_coins(A,B) :- A >= 1, B >= 1.

Figure 11: Counting change example encoded as CLP clauses

cc(0, Y, 1,K) :- Y>0, dim0(K).

cc(X, _, 0,K) :- X<0, dim0(K).

cc(_, Y, 0,K) :- Y=<0, dim0(K).

cc(X, Y, Z,K) :-

X>0, kinds_of_coins(Y,A, K0), X1 = X-A,

cc(X1, Y, Z1,K1), Y1 = Y-1, cc(X, Y1, Z2,K2),

Z = Z1 + Z2, dim3(K0, K1,K2,K).

kinds_of_coins(A,B, K) :- A >= 1, B >= 1, dim0(K).

dim3(K0, K1,K2,K):-

dim2(K0, K1, K3), dim2(K3,K2, K).

%predicates dim0(K) and dim2(K1, K2, K) are defined as above

Figure 12: Counting change example instrumented with its dimension

6 Related Work

The notion of dimension of a tree has a long history in science (starting with Geology) which has been
detailed by Esparza et al. [8]. However, the use of dimension for program verification is more recent.
Ganty and Iosif used it [11] for computing summaries of programs with procedures whose variables
(global, local and parameters) take their value from the set of integers. Roughly speaking, the method
they define first computes procedure summaries for all derivation trees of dimension 0, then they compute
summaries for derivation trees of dimension 1 reusing the summaries computed for dimension 0 and so
on.

Decomposition can be compared to refinement techniques based on automata [15, 16, 19] in which
the aim is to eliminate sets of program traces that have been shown to be safe. Proof of the safety of a
given dimension or dimensions of a set of clauses allows those dimensions to be eliminated, focusing
the proof on the remaining dimensions. Our decomposition technique offers a very precise and practical
approach to checking and eliminating infinite sets of traces.

12 Decomposition by tree dimension in Horn clause verification

7 Experimental results

We carried out an experiment on a set of 16 non-linear CHC verification problems taken from the repos-
itory2 of software verification benchmarks. Our aim in the current paper is not to make a systematic
comparison with other verification techniques; these are exploratory experiments to establish whether
dimension-based decomposition is practical. The results are summarized in Table 1.

Table 1: Experimental results on non-linear
CHC verification problems

Program Result Time(s) dim(k)
addition safe 4 0
bfprt safe 4 0
binarysearch safe 4 0
countZero safe 3 0
floodfill safe 3 0
identity safe 4 0
merge safe 5 0
palindrome safe 3 0
fib safe 4 0
mc91 safe 4 0
revlen safe 4 0
running unsafe 6 1
triple unsafe - -
buildheap unsafe - -
parity unsafe 4 0
remainder unsafe 4 0
avg. time(s) 4

Columns Program, Result, Time and dim(k) respec-
tively represent a program, its verification result using
our approach, time in seconds taken to generate the pro-
grams and solve it and a value of a proof decomposition
parameter k.

For the safety check (the procedure SAFE in Algo-
rithm 1) we use the verification procedure described in
[18] which uses abstract interpretation over the domain
of convex polyhedra, with a timeout of 5 minutes. The
symbol “-” in Table 1 denotes that we were unable to
solve these problems within the given time. Our ap-
proach solves 14 out of 16 problems with an average
time of 4 seconds (over the solved problems). Our pre-
vious approach based on refinement with finite tree au-
tomata described in [19] solves 1 more additional prob-
lem, that is, triple than our current approach. These ex-
amples were also run on QARMC [13] which solves all
the problems (much faster).

Most of the problems are solved when we decom-
pose the proof with the value of k = 0. This indicates
that separating the proofs for linear programs eases the
verification task. The splitting induced as a result of sep-
arating a set of traces has an effect on delaying join and
widening operations during convex polyhedra analysis which increases its precision. In addition to this,
some of the case base proofs (for example conditionals) becomes a normal proof without conditionals
due to proof separation and the process of finding invariants becomes easier.

8 Conclusion and future work

We presented a program transformation approach to Horn clause verification using the notion of tree di-
mension to decompose the verification problem by separating dimensions. We presented one algorithm
based on this idea which yielded preliminary results on set of non-linear Horn clause verification bench-
marks, showing that the approach is feasible and this transformation is useful both for proving safety of
a program as well as for finding bugs.

Other ideas of program verification based on tree-dimension are worth investigating, including proof
by induction based on tree dimension, and further investigation of proof strategies that could exploit
knowledge of dimension bounds (such as those discussed in Section 5).

2https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/Eldarica/RECUR/

Kafle, Gallagher and Ganty 13

Although it is formulated in the context of Datalog, it is known from Afrati et al. [2] that a set of
CHC of bounded dimension can be turned into an equivalent set of linear CHC. The exact complexity of
their procedure is still open.

References

[1] Harold Abelson & Gerald J. Sussman (1996): Structure and Interpretation of Computer Programs, Second
Edition. MIT Press.

[2] Foto N. Afrati, Manolis Gergatsoulis & Francesca Toni (2003): Linearisability on datalog programs. Theor.
Comput. Sci. 308(1-3), pp. 199–226, doi:10.1016/S0304-3975(02)00730-2.

[3] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison & M. Tommasi (2007):
Tree Automata Techniques and Applications. Available on: http://www.grappa.univ-lille3.fr/tata.
Release October, 12th 2007.

[4] Patrick Cousot & Radhia Cousot (1977): Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In Robert M. Graham, Michael A. Harrison
& Ravi Sethi, editors: Conference Record of the Fourth ACM Symposium on Principles of Programming
Languages, Los Angeles, California, USA, January 1977, ACM, pp. 238–252, doi:10.1145/512950.512973.
Available at http://dl.acm.org/citation.cfm?id=512950.

[5] Patrick Cousot & Nicolas Halbwachs (1978): Automatic Discovery of Linear Restraints Among Variables of
a Program. In Alfred V. Aho, Stephen N. Zilles & Thomas G. Szymanski, editors: Conference Record of the
Fifth Annual ACM Symposium on Principles of Programming Languages, Tucson, Arizona, USA, January
1978, ACM Press, pp. 84–96, doi:10.1145/512760.512770. Available at http://dl.acm.org/citation.
cfm?id=512760.

[6] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi & Maurizio Proietti (2014): VeriMAP: A Tool
for Verifying Programs through Transformations. In Erika Ábrahám & Klaus Havelund, editors: Tools and
Algorithms for the Construction and Analysis of Systems - 20th International Conference, TACAS 2014,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,
France, April 5-13, 2014. Proceedings, Lecture Notes in Computer Science 8413, Springer, pp. 568–574,
doi:10.1007/978-3-642-54862-8 47.

[7] Javier Esparza, Stefan Kiefer & Michael Luttenberger (2007): On Fixed Point Equations over Commuta-
tive Semirings. In: STACS 2007, 24th Annual Symposium on Theoretical Aspects of Computer Science,
Proceedings, LNCS 4393, Springer, pp. 296–307, doi:10.1007/978-3-540-70918-3 26.

[8] Javier Esparza, Michael Luttenberger & Maximilian Schlund (2014): A Brief History of Strahler Numbers.
In: LATA ’14, 8th Int. Conf. on Language and Automata Theory and Applications, LNCS 8370, Springer, p.
113, doi:10.1007/978-3-319-04921-2 1.

[9] J. P. Gallagher & L. Lafave (1996): Regular Approximation of Computation Paths in Logic and Functional
Languages. In: Partial Evaluation, LNCS 1110, Springer, pp. 115–136, doi:10.1007/3-540-61580-6 7.

[10] John P. Gallagher, Mai Ajspur & Bishoksan Kafle (2014): An Optimised Algorithm for Determinisation and
Completion of Finite Tree Automata. Technical Report 145, Roskilde University, Denmark. Available from
http://arxiv.org/pdf/1511.03595v1.pdf.

[11] Pierre Ganty, Radu Iosif & Filip Konečný (2013): Underapproximation of Procedure Summaries for Integer
Programs. In: TACAS ’13: Proc. 19th Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems, LNCS 7795, Springer, pp. 247–261, doi:10.1007/978-3-642-36742-7 18.

[12] Sergey Grebenshchikov, Ashutosh Gupta, Nuno P. Lopes, Corneliu Popeea & Andrey Rybalchenko (2012):
HSF(C): A Software Verifier Based on Horn Clauses - (Competition Contribution). In Cormac Flanagan &
Barbara König, editors: TACAS, LNCS 7214, Springer, pp. 549–551, doi:10.1007/978-3-642-28756-5 46.

14 Decomposition by tree dimension in Horn clause verification

[13] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea & Andrey Rybalchenko (2012): Synthesiz-
ing software verifiers from proof rules. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, ACM, pp. 405–416,
doi:10.1145/2254064.2254112.

[14] Jozef Gruska (1971): A Few Remarks on the Index of Context-Free Grammars and Languages. Information
and Control 19(3), pp. 216–223, doi:10.1016/S0019-9958(71)90095-7.

[15] Matthias Heizmann, Jochen Hoenicke & Andreas Podelski (2009): Refinement of Trace Abstraction.
In: Static Analysis, 16th International Symposium, SAS 2009, LNCS 5673, Springer, pp. 69–85,
doi:10.1007/978-3-642-03237-0 7.

[16] Matthias Heizmann, Jochen Hoenicke & Andreas Podelski (2013): Software Model Checking for People
Who Love Automata. In: Computer Aided Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings, LNCS 8044, Springer, pp. 36–52, doi:10.1007/978-3-
642-39799-8 2.

[17] Krystof Hoder & Nikolaj Bjørner (2012): Generalized Property Directed Reachability. In Alessandro Cimatti
& Roberto Sebastiani, editors: Theory and Applications of Satisfiability Testing - SAT 2012 - 15th Interna-
tional Conference, Trento, Italy, June 17-20, 2012. Proceedings, Lecture Notes in Computer Science 7317,
Springer, pp. 157–171, doi:10.1007/978-3-642-31612-8 13.

[18] Bishoksan Kafle & John P. Gallagher (2015): Constraint Specialisation in Horn Clause Verification. In:
Proceedings of the 2015 Workshop on Partial Evaluation and Program Manipulation, PEPM, Mumbai, India,
January 15-17, 2015, ACM, pp. 85–90, doi:10.1145/2678015.2682544.

[19] Bishoksan Kafle & John P. Gallagher (2015): Tree Automata-Based Refinement with Application to Horn
Clause Verification. In: Verification, Model Checking, and Abstract Interpretation - 16th International Con-
ference, VMCAI 2015, Mumbai, India, January 12-14, 2015. Proceedings, LNCS 8931, Springer, pp. 209–
226, doi:10.1007/978-3-662-46081-8 12.

[20] Michael Luttenberger (2011): An Extension of Parikh’s Theorem beyond Idempotence. CoRR abs/1112.2864.
Available at http://arxiv.org/abs/1112.2864.

[21] Alberto Pettorossi & Maurizio Proietti (1999): Synthesis and Transformation of Logic Programs Using Un-
fold/Fold Proofs. J. Log. Program. 41(2-3), pp. 197–230, doi:10.1016/S0743-1066(99)00029-1.

[22] Robert F. Stärk (1989): A Direct Proof for the Completeness of SLD-Resolution. In Egon Börger, Hans Kleine
Büning & Michael M. Richter, editors: CSL ’89, 3rd Workshop on Computer Science Logic, Kaiserslautern,
Germany, October 2-6, 1989, Proceedings, Lecture Notes in Computer Science 440, Springer, pp. 382–383,
doi:10.1007/3-540-52753-2 52.

Attachment D3.3.10

Convex polyhedral abstractions,

specialisation and property-based

predicate splitting in Horn clause

verification

Published at the 1st Workshop on Horn Clauses
for Verification and Synthesis (HCVS 2014)

175

Nikolaj Bjørner, Fabio Fioravanti, Andrey Rybalchenko,
Valerio Senni (Eds.): First Workshop on
Horn Clauses for Verification and Synthesis (HCVS 2014)
EPTCS 169, 2014, pp. 53–67, doi:10.4204/EPTCS.169.7

Convex polyhedral abstractions, specialisation and
property-based predicate splitting in Horn clause verification∗

Bishoksan Kafle
Roskilde University

Denmark
kafle@ruc.dk

John P. Gallagher
Roskilde University

Denmark
IMDEA Software Institute

Madrid, Spain
jpg@ruc.dk

We present an approach to constrained Horn clause (CHC) verification combining three techniques:
abstract interpretation over a domain of convex polyhedra, specialisation of the constraints in CHCs
using abstract interpretation of query-answer transformed clauses, and refinement by splitting pred-
icates. The purpose of the work is to investigate how analysis and transformation tools developed
for constraint logic programs (CLP) can be applied to the Horn clause verification problem. Ab-
stract interpretation over convex polyhedra is capable of deriving sophisticated invariants and when
used in conjunction with specialisation for propagating constraints it can frequently solve challeng-
ing verification problems. This is a contribution in itself, but refinement is needed when it fails, and
the question of how to refine convex polyhedral analyses has not been studied much. We present
a refinement technique based on interpolants derived from a counterexample trace; these are used
to drive a property-based specialisation that splits predicates, leading in turn to more precise con-
vex polyhedral analyses. The process of specialisation, analysis and splitting can be repeated, in a
manner similar to the CEGAR and iterative specialisation approaches.

1 Introduction

In this paper we explore the use of techniques used in constraint logic program (CLP) analysis and
specialisation, for the purpose of CHC verification. Pure CLP is syntactically and semantically the same
as CHC. Unlike CLP, CHCs are not always regarded as executable programs, but rather as specifications
or semantic representations of other formalisms. However these are only pragmatic distinctions and the
semantic equivalence of CHC and CLP means that techniques developed in one framework are applicable
to the other.

Relevant concepts from CLP include the approximation of the minimal model of a CLP program us-
ing abstract interpretation, specialisation of a CLP program with respect to a goal and model-preserving
transformation of CLP programs. Relevant concepts drawn from the CHC verification literature include
finding a model of a set of CHCs, property-based abstraction, counterexample generation, and refinement
of property-based abstraction using interpolants.

The results shown in the paper are preliminary and much research remains to be done in exploiting
the many connections and possibilities for cross-fertilisation between CLP and CHC. The contributions
of this paper are:

∗The research leading to these results has received funding from the European Union 7th Framework Programme under grant
agreement no. 318337, ENTRA - Whole-Systems Energy Transparency and the Danish Natural Science Research Council grant
NUSA: Numerical and Symbolic Abstractions for Software Model Checking.

54 Horn clause verification through constraint specialisation and abstract interpretation

• to demonstrate that abstract interpretation over convex polyhedra is capable of deriving sophisti-
cated invariants, and when used in conjunction with specialisation for propagating constraints it
can frequently solve challenging verification problems;

• to investigate the problem of refinement of polyhedral abstractions, drawing ideas from
counterexample-guided refinement.

In Section 2 we define the basic notation and concepts needed for the verification procedure. Section
3 reviews the technique of abstract interpretation over convex polyhedra, applied to CLP/CHC, along
with the important enhancement of this technique using widening thresholds. In Section 4 a procedure
for specialisation of CHCs is described, based on query-answer transformations and abstract interpreta-
tion. A simple but surprisingly effective verification tool-chain combining specialisation with abstract
interpretation is introduced. Section 5 explains how to use a (spurious) counterexample from a failed
verification attempt to construct a property-based specialisation using interpolants. Experimental results
and related works are reported in Section 6 and Section 7 respectively. Finally in Section 8 we conclude
and discuss possible extensions and improvements.

2 Preliminaries

A CHC is a first order predicate logic formula of the form ∀(φ ∧B1(X1)∧ . . .∧Bk(Xk)→H(X)) (k≥ 0),
where φ is a conjunction of constraints with respect to some background theory, Xi,X are (possibly
empty) vectors of distinct variables, B1, . . . ,Bk,H are predicate symbols, H(X) is the head of the clause
and φ ∧B1(X1)∧ . . .∧Bk(Xk) is the body. Sometimes the clause is writtenH(X)← φ ∧B1(X1), . . . ,Bk(Xk)
and in concrete examples it is written in the form H :- φ, B1(X1),. . .,Bk(Xk). In examples, predicate
symbols start with lowercase letters while we use uppercase letters for variables.

In this paper we take the constraint theory to be linear arithmetic with the relation symbols ≤,≥,
<,> and =. There is a distinguished predicate symbol false which is interpreted as false. In practice the
predicate false only occurs in the head of clauses; we call clauses whose head is false integrity constraints,
following the terminology of deductive databases. Thus the formula φ1 ← φ2 ∧B1(X1), . . . ,Bk(Xk) is
equivalent to the formula false← ¬φ1 ∧ φ2 ∧B1(X1), . . . ,Bk(Xk). The latter might not be a CHC (e.g.
if φ1 contains =) but can be converted to an equivalent set of CHCs by transforming the formula ¬φ1
and distributing any disjunctions that arise over the rest of the body. For example, the formula X=Y

:- p(X,Y) is equivalent to the set of CHCs false :- X>Y, p(X,Y) and false :- X<Y, p(X,Y).
Integrity constraints can be seen as safety properties. For example if a set of CHCs encodes the behaviour
of a transition system, the bodies of integrity constraints represent unsafe states. Thus proving safety
consists of showing that the bodies of integrity constraints are false in all models of the CHC clauses.
Figure 1 shows an example set of CHCs (taken from [6]), modeled over reals containing an integrity
constraint, and in this example the problem is to prove that the body of the first clause is unsatisfiable.

2.1 The CHC verification problem.

To state this more formally, given a set of CHCs P, the CHC verification problem is to check whether
there exists a model of P. Obviously any model of P assigns false to the bodies of integrity constraints.
We restate this property in terms of the derivability of the predicate false. Let P |= F mean that F is a
logical consequence of P, that is, that every interpretation satisfying P also satisfies F .

Lemma 1. P has a model if and only if P (|= false.

Bishoksan Kafle and John P. Gallagher 55

c1. false:- N>0,I=0,A=0,B=0, l(I,A,B,N).

c2. l(I,A,B,N):-I < N, l_body(A,B,A1,B1), I1 = I+1, l(I1,A1,B1,N).

c3. l(I,A,B,N):- I >=N, A + B > 3 * N.

c4. l(I,A,B,N):- I >=N, A + B < 3 * N.

c5. l_body(A0,B0,A1,B1):- A1 = A0+1, B1 = B0+2.

c6. l_body(A0,B0,A1,B1):- A1 = A0+2, B1 = B0+1.

Figure 1: Example program t4.pl [6]

Proof. Writing I(F) to mean that interpretation I satisfies F , we have:

P (|= false ≡ there exists some interpretation I such that I(P) and ¬I(false)
by definition of the |= relation

≡ there exists some interpretation I such that I(P)
(since ¬I(false) is true by defn. of false)

≡ P has a model.

This lemma holds for arbitrary interpretations (only assuming that the predicate false is interpreted as
false), uses only the textbook definitions of “interpretation” and “model” and does not depend on the
constraint theory.

The verification problem can be formulated deductively rather than model-theoretically. We can
exploit proof procedures for constraint logic programming [24] to reason about the satisfiability of a set
of CHCs. Let the relation P * A denote that A is derivable from P using some proof procedure. If the
proof procedure is sound then P * A implies P |= A, which means that P * false is a sufficient condition
for P to have no model, by Lemma 1. This corresponds to using a sound proof procedure to find or
check a counterexample. On the other hand to show that P does have a model, soundness is not enough
since we need to establish P (|= false. As we will see in Section 2.3 we approach this problem by using
approximations to reason about the non-provability of false, applying the theory of abstract interpretation
[11] to a complete proof procedure for atomic formulas (the “fixed-point semantics” for constraint logic
programs [24, Section 4]). In effect, we construct by abstract interpretation a proof procedure that is
complete (but possibly not sound) for proofs of atomic formulas. With such a procedure, P (* false
implies P (|= false and thus establishes that P has a model.

2.2 Representation of Interpretations

An interpretation of a set of CHCs is represented as a set of constrained facts of the form A← C where
A is an atomic formula p(Z1, . . . ,Zn) where Z1, . . . ,Zn are distinct variables and C is a constraint over
Z1, . . . ,Zn. If C is true we write A← or just A. The constrained fact A← C is shorthand for the set of
variable-free facts Aθ such that C θ holds in the constraint theory, and an interpretation M denotes the set
of all facts denoted by its elements; M assigns true to exactly those facts. M1 ⊆M2 if the set of denoted
facts of M1 is contained in the set of denoted facts of M2.

Minimal models. A model of a set of CHCs is an interpretation that satisfies each clause. There exists
a minimal model with respect to the subset ordering, denoted M[[P]] where P is the set of CHCs. M[[P]]

56 Horn clause verification through constraint specialisation and abstract interpretation

can be computed as the least fixed point (lfp) of an immediate consequences operator (called SDP in [24,
Section 4]), which is an extension of the standard TP operator from logic programming, extended to han-
dle the constraint domainD. Furthermore lfp(SDP) can be computed as the limit of the ascending sequence
of interpretations /0,SDP (/0),SDP (SDP (/0)), This sequence provides a basis for abstract interpretation of
CHC clauses.

2.3 Proof Techniques

Proof by over-approximation of the minimal model. It is a standard theorem of CLP that the minimal
model M[[P]] is equivalent to the set of atomic consequences of P. That is, P |= p(v1, . . . ,vn) if and only
if p(v1, . . . ,vn) ∈ M[[P]]. Therefore, the CHC verification problem for P is equivalent to checking that
false (∈M[[P]]. It is sufficient to find a set of constrained facts M′ such that M[[P]]⊆M′, where false (∈M′.
This technique is called proof by over-approximation of the minimal model.

Proof by specialisation. A specialisation of a set of CHCs P with respect to an atom A is the transfor-
mation of P to another set of CHCs P′ such that P |= A if and only if P′ |= A. Specialisation is usually
viewed as a program optimisation method, specialising some general-purpose program to a subset of its
possible inputs, thereby removing redundancy and pre-computing statically determined computations.
In our context we use specialisation to focus the verification problem on the formula to be proved. More
specifically, we specialise a set of CHCs with respect to a “query” to the atom false; thus the specialised
CHCs entail false if and only if the original clauses entailed false.

3 Abstract Interpretation over Convex Polyhedra
Convex polyhedron analysis (CPA) [12] is a program analysis technique based on abstract interpretation
[11]. When applied to a set of CHCs P it constructs an over-approximation M′ of the minimal model of
P, where M′ contains at most one constrained fact p(X)← C for each predicate p. The constraint C is
a conjunction of linear inequalities, representing a convex polyhedron. The first application of convex
polyhedron analysis to CLP was by Benoy and King [4]. Since the domain of convex polyhedra con-
tains infinite increasing chains, the use of a widening operator for convex polyhedra [11, 12] is needed
to ensure convergence of the abstract interpretation. Furthermore much research has been done on im-
proving the precision of widening operators. One techniques is known as widening-upto, or widening
with thresholds [23]. A threshold is an assertion that is combined with a widening operator to improve
its precision.

Recently, a technique for deriving more effective thresholds was developed [27], which we have
adapted and found to be effective in experimental studies. The thresholds are computed by the following
method. Let SDP be the standard immediate consequence operator for CHCs mentioned in Section 2.2.
That is, if I is a set of constrained facts, SDP (I) is the set of constrained facts that can be derived in one
step from I. Given a constrained fact p(Z)← C , define atomconstraints(p(Z)← C) to be the set of
constrained facts {p(Z)←Ci | C =C1∧ . . .∧Ck,1≤ i≤ k)}. The function atomconstraints is extended
to interpretations by atomconstraints(I) =

⋃
p(Z)←C∈I{atomconstraints(p(Z)← C)}.

Let I. be the interpretation consisting of the set of constrained facts p(Z)← true for each predicate
p. We perform three iterations of SDP starting with I. (the first three elements of a “top-down” Kleene
sequence) and then extract the atomic constraints. That is, thresholds is defined as follows.

thresholds(P) = atomconstraints(SD(3)
P (I.))

Bishoksan Kafle and John P. Gallagher 57

A difference from the method in [27] is that we use the concrete semantic function SDP rather than the
abstract semantic function when computing thresholds. The set of threshold constraints represents an
attempt to find useful predicate properties and when widening they help to preserve invariants that might
otherwise be lost during widening. See [27] for further details. Threshold constraints that are not invari-
ants are simply discarded during widening.

4 Specialisation by constraint propagation

We next present a procedure for specialising CHC clauses. In contrast to classical specialisation tech-
niques based on partial evaluation with respect to a goal, the specialisation does not unfold the clauses at
all; rather, we compute a specialised version of each clause in the program, in which the constraints from
the goal are propagated top-down and answers are propagated bottom-up. The implementation is based
on query-answer transformations and abstract interpretation over convex polyhedra.

Let P be a set of CHCs and let A be an atomic formula. For each clause H ←B in P we compute a
new clause H ←C,B where C is a constraint, yielding a program PA specialised for A. If the addition
of C makes the clause body unsatisfiable, it is the same as removing the clause from PA. Clearly PA
may have fewer consequences than P but our procedure guarantees that it preserves the inferability of
(constrained instances of) A. That is, for every constraint C over the variables of A, P |= ∀(C→ A) if and
only if PA |= ∀(C→ A).

The procedure is as follows: the inputs are a set of CHCs P and an atomic formula A.

1. Compute a query-answer transformation of Pwith respect to A, denoted Pqa
A , containing predicates

pq and pa for each predicate p in P.

2. Compute an over-approximation of the model of Pqa
A , expressed as a set of constrained facts

p∗(X)← C, where ∗ is q or a. We assume that each predicate p∗ has exactly one constrained
fact in the model (where C is possibly false or a disjunction).

3. For each clause p(X)←B in P, let the model of pa be pa(X)←Ca (where X is the same tuple of
variables in p(X) and pa(X)).

4. Replace the clause p(X)←B in P by p(X)←Ca,B in PA.

Note that if for some predicate p, Ca is false, then all the clauses for p are removed in PA as their bodies
are unsatisfiable. We now explain each step in turn.

4.1 The query-answer transformation

The query-answer transformation was inspired by – but is a generalisation of – the magic-set transforma-
tion from deductive databases [3]. Its purpose, both in deductive databases and in subsequent applications
in logic program analysis [15] was to simulate goal-directed (top-down) computation or deduction in a
goal-independent (bottom-up) framework. Let us define the transformation.

Given a set of CHCs P and an atom A, the query-answer program for P wrt. A, denoted Pqa
A , con-

sists of the following clauses. For an atom A = p(t), Aa and Aq represent the atoms pa(t) and pq(t)
respectively.

• (Answer clauses). For each clause H ←C,B1, . . . ,Bn (n ≥ 0) in P, Pqa
A contains the clause Ha←

C,Hq,Ba
1, . . . ,Ba

n.

58 Horn clause verification through constraint specialisation and abstract interpretation

• (Query clauses). For each clause H←C,B1, . . . ,Bi, . . . ,Bn (n≥ 0) in P, Pqa
A contains the following

clauses:
Bq

1←C,Hq.
· · ·
Bq
i ←C,Hq,Ba

1, . . . ,Ba
i−1.

· · ·
Bq
n←C,Hq,Ba

1, . . . ,Ba
n−1.

• (Goal clause). Aq← true.
The program Pqa

A encodes a left-to-right, depth-first computation of the query ← A for CHC clauses
P (that is, the standard CLP computation rule, SLD extended with constraints). This is a complete
proof procedure, assuming that all clauses matching a given call are explored in parallel. (Note: the
incompleteness of standard Prolog CLP proof procedures arises due to the fact that clauses are tried in a
fixed order).

The relationship of the model of the program Pqa
A to the computation of the goal←A in P is expressed

by the following property1. An SLD-derivation in CLP is a sequence G0,G1, . . . ,Gk where each Gi is a
goal ←C,B1, . . . ,Bm, where C is a constraint and B1, . . . ,Bm are atoms. In a left-to-right computation,
Gi+1 is obtained by resolving B1 with a program clause.
Property 1 (Correctness of query-answer transformation). Let P be a set of CHCs and A be an atom.
Let Pqa

A be the query-answer program for P wrt. A. Then
(i) if there is an SLD-derivation G0, . . . ,Gi where G0 =← A and Gi =←C,B1, . . . ,Bm, then Pqa

A |=
∀(C|vars(B1)→ Bq

1);

(ii) if there is an SLD-derivation G0, . . . ,Gi where G0 =← A, containing a sub-derivation Gj1 , . . . ,Gjk ,
where Gji←C′,B1,B′ and Gjk =←C,B′, then Pqa

A |= ∀(C|vars(B1)→Ba
1). (This means that the atom

B1 in G ji was successfully answered, with answer constraint C|vars(B1)).

(iii) As a special case of (ii), if there is a successful derivation of the goal← A with answer constraint
C then Pqa

A |= ∀(C→ Aa).

4.2 Over-approximation of the model of the query-answer program Pqa
false

The query-answer transformation of P with respect to false is computed. It follows from Property 1(iii)
that if false is derivable from P then Pqa

false |= falsea. Convex polyhedral analysis of Pqa
false yields an

overapproximation ofM[[Pqa
false]], sayM′, containing constrained facts for the query and answer predicates.

These represent the calls and answers generated during all derivations starting from the goal false.

4.3 Strengthening the constraints in P

We use the information in M′ to specialise the original clauses in P. Suppose M′ contains constrained
facts pq(X)← Cq and pa(X)← Ca. If there is no constrained fact p∗(X)← C∗ for some p∗ then we
consider M′ to contain p∗(X)← false. The clauses in P with head predicate p can be strengthened using
the constraints Cq and Ca. Namely, for every clause p(X)← B in P (assuming that the constrained
facts are renamed to have the same variables X) the conjunction Cq∧Ca are added to the body B. The
addition of Cq corresponds to propagating constraints “top-down” (via the calls) while the addition of

1 Note that the model of Pqa
A might not correspond exactly to the calls and answers in the SLD-computation, since the CLP

computation treats constraints as syntactic entities through decision procedures and the actual constraints could differ.

Bishoksan Kafle and John P. Gallagher 59

c1. false:- N>0,I=0,A=0,B=0, l(I,A,B,N).

c2. l(A,B,C,D) :- 2*A+ -1*B>=0,-1*A+1*D>0,-1*A+1*B>=0,3*A+ -1*B+ -1*C=0,

1*A+ -1*E= -1,l_body(B,C,F,G),l(E,F,G,D).

c3. l(A,B,C,D):- 3*A+ -3*D>0,1*D>0,2*A+ -1*B>=0,-3*A+3*D> -3,

-1*A+1*B>=0,3*A+ -1*B+ -1*C=0.

c4. l(A,B,C,D):- false.

c5. l_body(A,B,C,D) :- -1*A+2*B>=0, 2*A+ -1*B>=0,

1*A+ -1*C= -1,1*B+ -1*D= -2.

c6. l_body(A,B,C,D) :- -1*A+2*B>=0,2*A+ -1*B>=0,1*A+ -1*C= -2,1*B+ -1*D= -1.

Figure 2: Example program t4.pl [6] with strengthened constraints

Ca represented propagation “bottom-up” (via the answers). Furthermore, note that Ca → Cq since the
answers for p are always stronger than the calls to p. Thus it suffices to add the constraint Ca to B.

Specialisation by strengthening the constraints preserves the answers of the goal with respect to
which the query-answer transformation was performed. In particular, in our application we have the
following property.

Property 2. If P is a set of CHCs and Pfalse is the set obtained by strengthening the clause constraints
as just described, then P |= false if and only if Pfalse |= false.

The result of strengthening the constraints in Figure 1, using the query-answer program with respect
to the goal false, is shown in Figure 2. Note that the constraint in clause c4 is strengthened to false.

4.4 Analysis of the model of the specialised clauses

It may be that the clauses Pfalse do not contain a clause with head false. In this case safety is proven,
since clearly Pfalse (|= false. If this check fails, the convex polyhedral analysis is now run on the clauses
Pfalse. As the experiments later show, safety is often provable by checking the resulting model; if no
constrained fact for false is present, then Pfalse (|= false. If safety is not proven, there are two possibilities:
the approximate model is not precise enough, but P has a model, or there is a proof of false. To distinguish
these we proceed to try to refine the clauses by splitting predicates.

5 Safety Check and Program Refinement
This section outlines a procedure for safety check, counterexample analysis and refinement. Refinement
is considered when a proof of safety or an existence of a real counterexample (that is, a proof of false
cannot be established.

Safety check and counterexample analysis The absence of a constrained fact for predicate false in
the over-approximation proves that the given set of CHCs is safe. If safety can not be shown, our
implementation of the convex polyhedron analysis produces a derivation tree for false as a trace term
which we define formally below. For our program in Figure 1, the set of constrained facts representing
the approximate model is shown below.

f1. l_body(A,B,C,D) :- 1*B+ -1*D>= -2,-1*B+1*D>=1,-1*A+2*B>=0, 2*A+ -1*B>=0,

1*A+1*B+ -1*C+ -1*D= -3.

60 Horn clause verification through constraint specialisation and abstract interpretation

f2. false :- true.

f3. l(A,B,C,D) :- 1*D>0,2*A+ -1*B>=0,-1*A+1*B>=0,-3*A+3*D> -3,

3*A+ -1*B+ -1*C=0.

Since there is a constrained fact for false, the shortest derivation for it is found, using clause c1 followed
by clause c3. This will be represented as a trace term c1(c3), which is formally defined below. The
idea of trace terms to capture the shape of derivations was introduced by Gallagher and Lafave [18].

AND-trees and trace terms. Each CHC is associated with an identifier, as shown in Figure 1. These
identifiers are treated as constructors whose arity is the number of non-constraint atoms in the clause
body. The following definitions of derivations and trace terms is adapted from [18].

An AND-tree is a tree each of whose nodes is labelled by an atom and a clause, such that
1. each non-leaf node is labelled by a clause A← C,A1, . . . ,Ak and an atom A, and has children

labelled by A1, . . . ,Ak,
2. each leaf node is labelled by a clause A←C and an atom A.

We assume that the variables in node labels are renamed appropriately, details are not given here. Any
finite derivation corresponds to an AND-tree, and each AND-tree T can be associated with a trace term
tr(T) defined as:

1. c j, if T is a single leaf node labelled by the clause of form A←C with identifier c j; or
2. ci(tr(T1), . . . ,tr(Tn)), if T is labelled by the clause with identifier by ci, and has subtrees T1, . . . ,Tn.

A trace-term uniquely defines an AND-tree (up to renaming of variables). The set of constraints of an
AND-tree, represented as constr(T) is

1. C, if T is a single leaf node labelled by the clause of form A←C; or

2. C∪⋃
i=1..n(constr(Ti)) if T is labelled by the clause A←C,A1, . . . ,Ak and has subtrees T1, . . . ,Tn.

We say that an AND-tree T is satisfiable if SAT(constr(T)). Let T be an AND-tree whose root is labelled
by atom A. Define proj(T) to be constr(T)|vars(A).

Interpolants. Given two sets of constraints C1,C2 such that C1 ∪C2 is unsatisfiable, a (Craig) inter-
polant is a constraint I with (1) C1 ⊆ I, (2) I ∪C2 is unsatisfiable and (3) I contains only variables
common to C1 and C2. We implemented the algorithm from [31] for interpolants for linear constraints.

Given an AND-tree T where ¬SAT(constr(T)), we can construct an interpolant for each non-root
node of T , also known as tree interpolants. Let T ′ be a sub-tree of T , whose root is labelled with A′. Then
the interpolant I associated with A′ is defined as above where C1 = constr(T ′) and C2 = constr(T)\C1,
and the interpolants of subtree of T ′ together with the constraints at the root of T ′ implies I. Note that by
construction of the AND-tree, the only variables in common between C1 and C2 (and hence in I) are the
variables in A′, the label of T ′. More details on tree interpolation can be found in [8].

The set interpolant(T) is the set of constrained facts A← I, for all non-root nodes of T labelled by
atom A with interpolant I as defined above.

Counterexample checking. Given a trace term, let T be the corresponding AND-tree. We report that
the CHCs have no model if SAT(constr(T)), and our procedure terminates. For our example it can be
verified that SAT(constr(c1(c3))) does not hold, so the trace c1(c3) is a false alarm. We now use the
interpolants to split predicates and try to get a more precise approximation of the model.

Bishoksan Kafle and John P. Gallagher 61

From the trace term c1(c3) in the running example we derive interpolant(c1(c3)) = {I} where
I = l(A,B,C,D)← A+−3∗B+C+D=< 0.

We then split the constrained facts in the approximation of the model, using the corresponding inter-
polants and their negations. In the example we split constrained fact f3 by strengthening its constraint
with I and ¬I respectively. Fioravanti et al. use a related technique for splitting clauses [16]. Strength-
ening first with I we get
l(A,B,C,D):- D>0,2*A+ -1*B>=0,-1*A+1*B>=0,-3*A+3*D> -3,

3*A+ -1*B+ -1*C=0,A+ -3*B+C+D=<0

which after simplification becomes
l(A,B,C,D) :- -4*A+4*B+ -1*D>=0,1*D>0,-3*A+3*D> -3,2*A+ -1*B>=0,

3*A+ -1*B+ -1*C=0.

We follow the same step with ¬I and obtain the following set of constrained facts.
l(A,B,C,D) :- -4*A+4*B+ -1*D>=0,1*D>0,-3*A+3*D> -3,2*A+ -1*B>=0,

3*A+ -1*B+ -1*C=0.

l(A,B,C,D) :- 4*A+ -4*B+1*D>0,-1*A+1*B>=0,-3*A+3*D> -3,2*A+ -1*B>=0,

3*A+ -1*B+ -1*C=0.

These together with f1 and f2 give us a new set of constrained facts, which forms the input to the
refinement phase of our procedure.

Refinement by Predicate Splitting. Refinement consists of obtaining a specialised set of CHCs from
a given set of constrained facts and input set of CHCs. We do this by using polyvariant specialisation
(PS) based on the method of multiple specialisation [32] with a property-based abstract domain based
on the given set of constrained facts. PS is a program specialisation which introduces several new pred-
icates corresponding to specialised versions of the same predicate. Polyvariant specialisation brings the
expressive power of disjunctive predicates into the analysis [17]. Space does not permit a more detailed
description. For our running example we obtain a split of the predicate l into l 1 and l 3 , and the
specialised program is as follows.
false :- 1*A>0,1*B=0,1*C=0,1*D=0,l_3(B,C,D,A).

l_3(A,B,C,D) :- 2*A+ -1*B>=0,-1*A+1*B>=0,-1*A+1*D>0,4*A+ -4*B+1*D>0,

3*A+ -1*B+ -1*C=0, A+ -1*E= -1,l_body_2(B,C,F,G),l_1(E,F,G,D).

l_3(A,B,C,D) :- 4*A+ -4*B+1*D>0,3*A+ -3*D>0,-1*A+1*B>=0,-3*A+3*D> -3,

3*A+ -1*B+ -1*C=0.

l_1(A,B,C,D) :- 2*A+ -1*B>=0,-1*A+1*B>=0,-1*A+1*D>0,3*A+ -1*B+ -1*C=0,

1*A+ -1*E= -1,l_body_2(B,C,F,G),l_1(E,F,G,D).

l_1(A,B,C,D) :- 3*A+ -3*D>0,2*A+ -1*B>=0,1*D>0,-1*A+1*B>=0,-3*A+3*D> -3,

3*A+ -1*B+ -1*C=0.

l_body_2(A,B,C,D) :- 2*A+ -1*B>=0,-1*A+2*B>=0,1*A+ -1*C= -1,1*B+ -1*D= -2.

l_body_2(A,B,C,D) :- 2*A+ -1*B>=0,-1*A+2*B>=0,1*A+ -1*C= -2,1*B+ -1*D= -1.

The next iteration continues with this specialised program. The intention of splitting and PS is to
guarantee progress of refinement, that is, a counterexample once eliminated never occurs again. Our
procedure does not guarantee progress, that is, the same spurious counterexamples might appear in sub-
sequent iterations, but in practice we find the polyvariant specialisation usually eliminates the given
counterexample. The large number of constants in the above examples are derived during invariants
computation. In the next iteration, our example terminates with a real counter example, thus proving our
example program unsafe (over the real numbers).

62 Horn clause verification through constraint specialisation and abstract interpretation

Toolchain. Our verification procedure is summarised in Figure 3, which is divided into three parts,
an abstractor (inside green dotted box), followed by a safety check and counterexample analyser and
refiner (inside red box). It should be noted that the tools inside the green and red boxes produce new set
of CHCs by specialisation.

CPS – Constraint Propagation Specialiser
CPA –Convex Polyhedra Analyser SA – Safety Analyser

PS – Polyvariant Specialiser

CHC P
Specialiser -Abstractor - Analyser Refiner-Specialiser

CPS CPA
CHC P’

safecEx

trace

constrs

constrs

CHC P”

CHC P’

SA PS

Figure 3: CHC verification toolchain.

The effects of CPA and PS in our procedure complement each other and the CPA model gets more
accurate during refinement which allows generation of better specialised programs. In essence, it marries
the effectiveness of CPA with PS.

6 Experiments

Table 1 presents the results of applying our toolchain depicted in Figure 3 to a number of benchmark
programs taken from the repository of Horn clause benchmarks in SMT-LIB22 and other sources includ-
ing [19, 26, 22, 5, 14]. The experiments were carried out using a computer, Intel(R) X5355 having 4
processors (each @ 2.66GHz) and total memory of 6 GB. Debian 5 (64 bit) is the Operating System
running in it and we set 2 minutes of timeout for each experiment. Our tool-chain is implemented in
32-bit Ciao Prolog [9]3 and the Parma Polyhedra Library [1]4 for this purpose.

In Table 1, columns Program, “n” , Result and time (sec) respectively represent the benchmark pro-
gram, the number of refinement iterations necessary to verify a given property, the results of verification
and the time (in seconds) to verify them. Value 0 in column “n” means that no refinement is necessary,
whereas value greater than 0 indicates the actual number of iterations necessary and value “-” means that
these programs are beyond the reach of our current tool within the given time limit. Problems marked
with (*) were not handled by our tool-chain since their solution generates numbers which do not fit in 32
bits, the limit of our Ciao Prolog implementation. Problems such as systemc-token-ring.01-safeil.c con-
tain complicated loop structure with large strongly connected components in the predicate dependency
graph and our convex polyhedron analysis tool is unable to derive the required invariant.

2https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/
3http://ciao-lang.org/
4http://bugseng.com/products/ppl/

Bishoksan Kafle and John P. Gallagher 63

Program n Result time Program n Result time
(secs) (secs)

MAP-disj.c.map.pl 0 safe 1.0 jaffex1c.pl 0 safe 0.01
MAP-forward.c.map.pl 0 safe 1.0 jaffex1a.pl 0 safe 0.01
t1.pl 0 safe 0.01 qrdcmp.smt2 0 safe 118.0
t1-a.pl 0 safe 0.01 choldc.smt2 0 safe 19.0
t2.pl 0 safe 0.01 lop.smt2 0 safe 39.0
t3.pl 0 safe 1.0 pzextr.smt2 0 safe 40.0
t4.pl 1 unsafe 1.0 qrsolv.smt2 0 safe 18.0
t5.pl 0 safe 0.01 tridag.smt2 0 safe 13.0
MAP-disj.c-scaled.pl 0 safe 1.0 systemc-pc-sfifo 1 0 unsafe 12.0
INVGEN-id-build 0 safe 1.0 loops-terminator 0 unsafe 0.01
INVGEN-nested5 0 safe 1.0 loops-for-bounded 3 unsafe 5.0
INVGEN-nested6 0 safe 117.0 TRACER-testabs15 0 safe 1.0
INVGEN-nested8 0 safe 1.0 INVGEN-apache-esc-abs 0 safe 2.0
INVGEN-svdsomeloop 0 safe 3.0 DAGGER-barbr.map.c 0 safe 119.0
INVGEN-svd1 2 safe 13.0 systemc-token-ring.01-safeil.c - ? -
INVGEN-svd4 0 safe 5.0 sshs3-srvr1a-safeil.c(*) - ? -
loops-count-up-down 0 unsafe 1.0 sshs3-srvr1b-safeil.c - ? -
loops-sum04 8 unsafe 2.0 amebsa.smt2 - ? -
dfpp12.pl 0 safe 0.01 bandec.smt2(*) - ? -
TRACER-testloop27 1 unsafe 1.0 TRACER-testloop28 - ? -
TRACER-testloop8 0 unsafe 0.01 crank.smt2 - ? -
jaffex1b.pl 0 safe 0.01 pldi12.pl - ? -
jaffex1d.pl 0 safe 0.01 loops-sum01 - ? -

Table 1: Experimental results on CHC benchmark problems

The results of our procedure in a larger set of benchmarks obtained from previous sources are sum-
marised in Table 2. Though our tool-chain is not optimized at all, the overall result shows that it compares
favourably with other advanced verification tools like HSF [20], VeriMAP [14], TRACER [25] etc. in
both time and the number of problems solved, and thus showing the effectiveness of our approach.

without refinemet with refinement
solved (safe/unsafe) 160 (142/18) 181 (158/23)
unknown/ timeout 49/7 -/35

total time 1293 3410
average time (secs) 5.98 18.73

Table 2: Experimental results on 216 CHC verification problems, where “-” means not relevant.

64 Horn clause verification through constraint specialisation and abstract interpretation

7 Related Work

Verification of CLP programs using abstract interpretation and specialisation has been studied for some
time. The use of an over-approximation of the semantics of a program can be used to establish safety
properties – if a state or property does not appear in an over-approximation, it certainly does not appear
in the actual program behaviour. A general framework for logic program verification through abstraction
was described by Levi [29].

The use of program transformation to verify properties of logic programs was pioneered by Pettorossi
and Proietti [30] and Leuschel [28]. Transformations that preserve the minimal model (or other suitable
models) of logic programs are applied systematically to make properties explicit. For example, if a
program can be transformed to one containing a clause A← true then A is a consequence of the program.

Recent work by De Angelis et al. [13, 14] applies a specialisation approach to the Horn clause
verification problem as discussed here, namely, with integrity constraints expressing the properties to
be proved. Both our approach and theirs repeatedly apply specialisations preserving the property to be
proved. However the difference is that their specialisation techniques are based on unfold-fold transfor-
mations, with a sophisticated control procedure controlling unfolding and generalisation. Our specialisa-
tions are restricted to strengthening of constraints or polyvariant splitting based on local conditions. Their
test for success or failure is a simple syntactic check, whereas ours is based on an abstract interpretation
to derive an over-approximation.

Counterexample guided abstraction refinement (CEGAR) [10] has been successfully used in veri-
fication to automatically refine (predicate) abstractions to reduce false alarms but not much has been
explored in refining abstractions in the convex polyhedral domain. See [7, 21] for more details about the
use of interpolation in refinement. A number of tools implementing predicate abstraction and refinement
are available, such as HSF [20] and BLAST [2]. TRACER [19] is a verification tool based on CLP that
uses symbolic execution.

Informally one can say that approaches differ in where the “hard work” is performed. In the work
of De Angelis et al. the specialisation procedure is the core, whereas in the CEGAR approaches the
refinement step is crucial, and interpolation plays a central role. In our approach, by contrast, most of
the hard work is done by the abstract interpretation, which finds useful invariants as well as propagating
constraints globally. The main problem is to find effective ways of refining polyhedral abstractions.
Finding the most effective balance between specialisation, abstraction and refinement techniques is a
matter of ongoing research.

8 Conclusion and Future works

We described an iterative procedure for Horn clause verification which interleaves abstract interpretation
with specialisation. A specialised set of CHCs is produced first by strengthening the constraints in the
given clauses using the results of the abstract interpretation. Then the procedure terminates if an abstract
interpretation of the resulting program is sufficient to verify the required properties, otherwise, a poly-
variant specialisation guided by an abstract counterexample is performed using the inferred constraints
as well as interpolated constraints.

In the future, we would like to find a way of ensuring progress of refinement, maybe using the
powerset polyhedra domain, and also interface our toolchain with SMT solvers for satisfiability checking
and interpolant generation.

Bishoksan Kafle and John P. Gallagher 65

References
[1] R. Bagnara, P. M. Hill & E. Zaffanella (2008): The Parma Polyhedra Library: Toward a Complete Set of

Numerical Abstractions for the Analysis and Verification of Hardware and Software Systems. Science of
Computer Programming 72(1–2), pp. 3–21. Available at http://dx.doi.org/10.1016/j.scico.2007.
08.001.

[2] T. Ball, V. Levin & S. K. Rajamani (2011): A decade of software model checking with SLAM. Commun.
ACM 54(7), pp. 68–76. Available at http://doi.acm.org/10.1145/1965724.1965743.

[3] F. Bancilhon, D. Maier, Y. Sagiv & J. Ullman (1986): Magic Sets and other strange ways to implement
logic programs. In: Proceedings of the 5th ACM SIGMOD-SIGACT Symposium on Principles of Database
Systems. Available at http://dx.doi.org/10.1145/6012.15399.

[4] F. Benoy & A. King (1996): Inferring Argument Size Relationships with CLP(R). In J. P. Gallagher, edi-
tor: Logic-Based Program Synthesis and Transformation (LOPSTR’96), Springer-Verlag Lecture Notes in
Computer Science 1207, pp. 204–223. Available at http://dx.doi.org/10.1007/3-540-62718-9_12.

[5] D. Beyer (2013): Second Competition on Software Verification - (Summary of SV-COMP 2013). In N. Piter-
man & S. A. Smolka, editors: TACAS, Lecture Notes in Computer Science 7795, Springer, pp. 594–609.
Available at http://dx.doi.org/10.1007/978-3-642-36742-7_43.

[6] D. Beyer, T. A. Henzinger, R. Majumdar & A. Rybalchenko (2007): Path invariants. In J. Ferrante & K. S.
McKinley, editors: PLDI, ACM, pp. 300–309. Available at http://doi.acm.org/10.1145/1250734.
1250769.

[7] N. Bjørner, K. L. McMillan & A. Rybalchenko (2013): On Solving Universally Quantified Horn Clauses. In
F. Logozzo & M. Fähndrich, editors: SAS, Lecture Notes in Computer Science 7935, Springer, pp. 105–125.
Available at http://dx.doi.org/10.1007/978-3-642-38856-9_8.

[8] R. Blanc, A. Gupta, L. Kovács & B. Kragl (2013): Tree Interpolation in Vampire. In K. L. McMillan,
A. Middeldorp & A. Voronkov, editors: LPAR, Lecture Notes in Computer Science 8312, Springer, pp.
173–181. Available at http://dx.doi.org/10.1007/978-3-642-45221-5_13.

[9] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garcı́a & G. Puebla (1997): The Ciao Prolog
system. Reference manual. Technical Report CLIP3/97.1, School of Computer Science, Technical University
of Madrid (UPM). Available from http://www.clip.dia.fi.upm.es/.

[10] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu & H. Veith (2003): Counterexample-guided abstraction refinement
for symbolic model checking. J. ACM 50(5), pp. 752–794. Available at http://doi.acm.org/10.1145/
876638.876643.

[11] P. Cousot & R. Cousot (1977): Abstract Interpretation: A Unified Lattice Model for Static Analysis of Pro-
grams by Construction or Approximation of Fixpoints. In R. M. Graham, M. A. Harrison & R. Sethi, editors:
Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles,
California, USA, January 1977, ACM, pp. 238–252. Available at http://dl.acm.org/citation.cfm?
id=512950.

[12] P. Cousot & N. Halbwachs (1978): Automatic Discovery of Linear Restraints Among Variables of a Program.
In A. V. Aho, S. N. Zilles & T. G. Szymanski, editors: Conference Record of the Fifth Annual ACM Sym-
posium on Principles of Programming Languages, Tucson, Arizona, USA, January 1978, ACM Press, pp.
84–96. Available at http://dl.acm.org/citation.cfm?id=512760.

[13] E. De Angelis, F. Fioravanti, A. Pettorossi & M. Proietti (2014): Program verification via iterated special-
ization. Sci. Comput. Program. 95, pp. 149–175. Available at http://dx.doi.org/10.1016/j.scico.
2014.05.017.

[14] E. De Angelis, F. Fioravanti, A. Pettorossi & M. Proietti (2014): VeriMAP: A Tool for Verifying Programs
through Transformations. In E. Ábrahám & K. Havelund, editors: TACAS, Lecture Notes in Computer
Science 8413, Springer, pp. 568–574. Available at http://dx.doi.org/10.1007/978-3-642-54862-8_
47.

66 Horn clause verification through constraint specialisation and abstract interpretation

[15] S. Debray & R. Ramakrishnan (1994): Abstract Interpretation of Logic Programs Using Magic Transfor-
mations. Journal of Logic Programming 18, pp. 149–176. Available at http://dx.doi.org/10.1016/
0743-1066(94)90050-7.

[16] F. Fioravanti, A. Pettorossi & M. Proietti (2002): Specialization with Clause Splitting for Deriving Deter-
ministic Constraint Logic Programs. In: In Proc. IEEE Conference on Systems, Man and Cybernetics,
Hammamet, IEEE Press. Available at http://dx.doi.org/10.1109/ICSMC.2002.1167971.

[17] F. Fioravanti, A. Pettorossi, M. Proietti & V. Senni (2013): Controlling Polyvariance for Specialization-
based Verification. Fundam. Inform. 124(4), pp. 483–502. Available at http://dx.doi.org/10.3233/
FI-2013-845.

[18] J. P. Gallagher & L. Lafave (1996): Regular Approximation of Computation Paths in Logic and Functional
Languages. In O. Danvy, R. Glück & P. Thiemann, editors: Partial Evaluation, Springer-Verlag Lecture Notes
in Computer Science 1110, pp. 115–136. Available at http://dx.doi.org/10.1007/3-540-61580-6_
7.

[19] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard & P. J. Stuckey (2013): Failure tabled constraint logic
programming by interpolation. TPLP 13(4-5), pp. 593–607. Available at http://dx.doi.org/10.1017/
S1471068413000379.

[20] S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea & A. Rybalchenko (2012): HSF(C): A Software Verifier
Based on Horn Clauses - (Competition Contribution). In C. Flanagan & B. König, editors: TACAS, LNCS
7214, Springer, pp. 549–551. Available at http://dx.doi.org/10.1007/978-3-642-28756-5_46.

[21] A. Gupta, C. Popeea & A. Rybalchenko (2011): Solving Recursion-Free Horn Clauses over LI+UIF. In
H. Yang, editor: APLAS, Lecture Notes in Computer Science 7078, Springer, pp. 188–203. Available at
http://dx.doi.org/10.1007/978-3-642-25318-8_16.

[22] A. Gupta & A. Rybalchenko (2009): InvGen: An Efficient Invariant Generator. In A. Bouajjani & O. Maler,
editors: CAV, Lecture Notes in Computer Science 5643, Springer, pp. 634–640. Available at http://dx.
doi.org/10.1007/978-3-642-02658-4_48.

[23] N. Halbwachs, Y. E. Proy & P. Raymound (1994): Verification of Linear hybrid systems by means of convex
approximations. In: Proceedings of the First Symposium on Static Analysis, LNCS 864, pp. 223–237.
Available at http://dx.doi.org/10.1007/3-540-58485-4_43.

[24] J. Jaffar & M. Maher (1994): Constraint Logic Programming: A Survey. Journal of Logic Programming
19/20, pp. 503–581. Available at http://dx.doi.org/10.1016/0743-1066(94)90033-7.

[25] J. Jaffar, V. Murali, J. A. Navas & A. E. Santosa (2012): TRACER: A Symbolic Execution Tool for Verification.
In P. Madhusudan & S. A. Seshia, editors: CAV, Lecture Notes in Computer Science 7358, Springer, pp.
758–766. Available at http://dx.doi.org/10.1007/978-3-642-31424-7_61.

[26] J. Jaffar, J. A. Navas & A. E. Santosa (2011): Unbounded Symbolic Execution for Program Verification.
In S. Khurshid & K. Sen, editors: RV, Lecture Notes in Computer Science 7186, Springer, pp. 396–411.
Available at http://dx.doi.org/10.1007/978-3-642-29860-8_32.

[27] L. Lakhdar-Chaouch, B. Jeannet & A. Girault (2011): Widening with Thresholds for Programs with Complex
Control Graphs. In T. Bultan & P.-A. Hsiung, editors: ATVA 2011, Lecture Notes in Computer Science
6996, Springer, pp. 492–502. Available at http://dx.doi.org/10.1007/978-3-642-24372-1_38.

[28] M. Leuschel & T. Massart (1999): Infinite State Model Checking by Abstract Interpretation and Program
Specialisation. In A. Bossi, editor: LOPSTR’99, Lecture Notes in Computer Science 1817, Springer, pp.
62–81. Available at http://dx.doi.org/10.1007/10720327_5.

[29] G. Levi (2000): Abstract Interpretation Based Verification of Logic Programs. Electr. Notes Theor. Comput.
Sci. 40, p. 243. Available at http://dx.doi.org/10.1016/S1571-0661(05)80052-0.

[30] A. Pettorossi & M. Proietti (2000): Perfect Model Checking via Unfold/Fold Transformations. In J. W.
Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv & P. J. Stuckey,
editors: Computational Logic, Lecture Notes in Computer Science 1861, Springer, pp. 613–628. Available
at http://dx.doi.org/10.1007/3-540-44957-4_41.

Bishoksan Kafle and John P. Gallagher 67

[31] A. Rybalchenko & V. Sofronie-Stokkermans (2010): Constraint solving for interpolation. J. Symb. Comput.
45(11), pp. 1212–1233. Available at http://dx.doi.org/10.1016/j.jsc.2010.06.005.

[32] W. H. Winsborough (1989): Path-Dependent Reachability Analysis for Multiple Specialization. In E. L. Lusk
& R. A. Overbeek, editors: NACLP, MIT Press, pp. 133–153. Available at http://dblp.uni-trier.de/
db/conf/slp/slp89.html#Winsborough89.

