
Whole-Systems
Energy Transparency

ENTRA
318337

Whole-Systems ENergy TRAnsparency

Energy Optimization: Advanced
Techniques (including SW demo)

Deliverable number: D4.2
Work package: Optimization (WP4)
Delivery date: 1 October 2015 (36 months)
Actual date: 1 March 2016
Nature: Prototype
Dissemination level: PU
Lead beneficiary: Roskilde University
Partners contributed: Roskilde University, University of Bristol, IMDEA Software Insti-

tute, XMOS Limited

Project funded by the European Union under the Seventh Framework Programme,
FP7-ICT-2011-8 FET Proactive call.

Short description:

This deliverable presents results relating to tools and methods supporting energy optimisa-
tion. Both static and dynamic techniques are covered.

The deliverable includes the following attachments:

• D4.2.1: Stochastic vs. Deterministic Evolutionary Algorithm-based Allocation and Schedul-
ing for XMOS Chips. Neurocomputing, Vol. 150, pages 82–89, Elsevier, February 2015.

• D4.2.2: Energy Efficient Allocation and Scheduling for DVFS-enabled Multicore Environ-
ments using a Multiobjective Evolutionary Algorithm. Genetic and Evolutionary Compu-
tation Conference (GECCO 2015), pages 1353–1354, ACM, 2015.

• D4.2.3: Trading-off Accuracy vs. Energy in Multicore Processors via Evolutionary Algo-
rithms Combining Loop Perforation and Static Analysis-based Scheduling. Hybrid Arti-
ficial Intelligent Systems (HAIS 2015), Lecture Notes in Computer Science, Vol. 9121,
pages 690–701, Springer International Publishing, 2015.

• D4.2.4: Improved Energy-aware Stochastic Scheduling based on Evolutionary Algorithms
via Copula-based Modeling of Task Dependences. International Conference on Soft Com-
puting Models in Industrial and Environmental Applications (SOCO 2015), Advances in
Intelligent Systems and Computing, Vol. 368, pages 153–163, Springer International Pub-
lishing, 2015.

• D4.2.5: A Practical Approach for Energy Efficient Scheduling in Multicore Environments
by combining Evolutionary and YDS Algorithms with Faster Energy Estimation. The 11th
International Conference on Artificial Intelligence Applications and Innovations (AIAI’15),
IFIP Advances in Information and Communication Technology, Vol. 458, pages 478–493,
Springer, 2015.

• D4.2.6: Genetic Algorithm-based Allocation and Scheduling for Voltage and Frequency
Scalable XMOS Chips. Hybrid Artificial Intelligent Systems (HAIS 2013), Lecture Notes
in Computer Science, Vol. 8073, pages 401–410, Springer, 2013.

• D4.2.7: An Energy-Aware Programming Approach for Mobile Application Development
Guided by a Fine-Grained Energy Model. Technical report, Roskilde University, February
2016. to be submitted for publication.

Contents

1 Introduction 3

2 Global optimiser 3
2.1 Introduction . 4
2.2 Rationale . 5
2.3 Invocation from tools . 7

3 Dual-issue processing 9
3.1 Introduction . 9
3.2 Dual issue design . 9
3.3 Extra instructions to support dual issue . 10
3.4 Example dual issue . 11

4 Energy-accounting for Android app energy optimisation 12
4.1 Case study outline . 13

4.1.1 Basic Energy Operations . 14
4.1.2 Energy Model . 15

4.2 The Click & Move Scenario . 15
4.2.1 Code optimisation . 18
4.2.2 Evaluation . 23

4.3 The Orbit Scenario . 23
4.3.1 Energy Accounting . 23
4.3.2 Code optimisation . 24
4.3.3 Evaluation . 25

4.4 The Waves Scenario . 26
4.4.1 Energy Accounting . 27
4.4.2 Code optimisation . 28
4.4.3 Evaluation . 28

4.5 Conclusion . 29

5 Dynamic optimisations: energy-aware scheduling in multicore environments 30

Attachments 33
D4.2.1: Stochastic vs. Deterministic Evolutionary Algorithm-based Allocation and

Scheduling for XMOS Chips . 35

1

D4.2.2: Energy Efficient Allocation and Scheduling for DVFS-enabled Multicore En-
vironments using a Multiobjective Evolutionary Algorithm 44

D4.2.3: Trading-off Accuracy vs. Energy in Multicore Processors via Evolutionary
Algorithms Combining Loop Perforation and Static Analysis-based Scheduling . 47

D4.2.4: Tree Automata-Based Refinement with Application to Horn Clause Verification 60
D4.2.5: A Practical Approach for Energy Efficient Scheduling in Multicore Environ-

ments by combining Evolutionary and YDS Algorithms with Faster Energy Es-
timation . 71

D4.2.6: Genetic Algorithm-based Allocation and Scheduling for Voltage and Fre-
quency Scalable XMOS Chips . 88

D4.2.7: An Energy-Aware Programming Approach for Mobile Application Develop-
ment Guided by a Fine-Grained Energy Model 99

2

1 Introduction

This deliverable presents results relating to tools and methods supporting energy optimisation.
There are four main sections to the report. The global optimiser and the dual-issue processor
constitute the main “prototype” contained in the deliverable.

• In Section 2 we describe the global optimiser included as of Release 14 of the XMOS
tools; this is a stage in the XC build process where whole-program analysis is performed
in order to improve energy behaviour.

• In Section 3 we give an overview of the XMOS XS2 architecture supporting dual-issue,
that is, the ability to execute two instructions simultaneously during one clock cycle. A key
motivation for this architecture is that it cuts the energy overhead associated with executing
instructions, involving distributing clocks, maintaining program counters, resources, etc.

• In Section 4 we describe a case study in static energy optimisation of source code based
on energy transparency. The case study deals with Android app code, for which detailed
energy accounting is performed based on a source code energy model. This leads to manual
optimisations of the most energy-consuming parts of the code, which save up to 50% of
energy in some use scenarios. This work is being further developed and being incorporated
into tools supporting energy-aware mobile app development.

• In Section 5 we present a summary of a body of theoretical and experimental work on
dynamic energy optimisation. Dynamic energy optimisations aim to use an energy model
to make intelligent run-time decisions on task allocation in multicore multithreaded en-
vironments with the possibility of voltage and frequency scaling, with given constraints
and requirements on performance. This work relies heavily on ENTRA tools for energy
modelling and analysis to provide the information needed for the optimisation algorithms.

2 Global optimiser

As of release 14, the XMOS tools incorporate a global optimiser; a stage in the build process
where whole-program analysis is performed in order to improve energy behaviour.

3

file1.xc

file1_info.xml

analysis

file1.xc

file1.o

file2.xc

file2_info.xml

analysis

file2.xc

file2.o

file3.xc

file3_info.xml

analysis

file3.xc

file3.o

prog_info.xml

propagation

file.xe

mapping

compilationcompilation compilation

Figure 1: Global optimiser structure

2.1 Introduction

The global optimiser is a stage in the build process that analyses the call graph of an XCORE
program, and performs global constant propagation throughout the program, enabling later stages
in the compiler to generate efficient code.

The reason why a special phase was invented rather than taking a more traditional approach
is that:

• We need intra-modular analysis, going across boundaries of source files

• We need source-level analysis, because once we have reached the LLVM intermediary
level we have lost too much semantic information

This leads us to a tool that works as shown in Figure 1. It comprises three stages:

• A tool to analyse a single source file, and to write the results of that analysis into an XML
file that identifies function definitions, function calls, and constants. This tool is built
into the front end, and a flag on the front-end emits the XML file instead of performing a
compilation.

4

• A tool that takes all the XML source files, and based on this provide specialisations for
(each of) the source functions. This is a new tool, xpca, it generates a single XML file
that contains all the information.

• Based on the output of xpca, modules are recompiled. The final compilation stage uses the
program information file to specialise specific functions.

2.2 Rationale

There are two reasons to implement a global optimiser.

• The first reason is that it can improve the energy profile of existing code

• The second reason is that it enables software engineers to design their software in a more
modern, concise and consistent way.

The latter point is especially relevant; it is very easy to write energy efficient software on a
small scale. It is hard to properly engineer efficient software in such a way that it can be reused,
maintained, and read without specialist knowledge.

Interfaces (see Deliverable D1.2) were introduced to aid in software engineering; but their
generic implementation is not efficient. It is the combination of interfaces and the global opti-
miser which creates a potent tool that generates code that is more efficient than naively written
code.

Depending on how the interface is used, the global optimiser may recover some or all inef-
ficiencies caused by the interface itself. As an example, consider the I2C interface illustrated in
D1.2:

void i2c_master(server interface i2c_master_if c[n], size_t n,

port p_scl, port p_sda, unsigned kb_per_sec) {

unsigned bit_time = (XS1_TIMER_MHZ * 1000) / kb_per_sec;

unsigned locked_client = -1;

p_scl :> void;

p_sda :> void;

while (1) {

select {

case (size_t i =0; i < n; i++)

(n==1 || locked_client == -1 || i == locked_client) =>

c[i].read(uint8_t device, uint8_t buf[m], size_t m,

5

int send_stop_bit) -> i2c_res_t result:

...

locked_client = send_stop_bit ? -1 : i;

result = (ack == 0) ? I2C_ACK : I2C_NACK;

break;

case c[int i].send_stop_bit(void):

...

locked_client = -1;

break;

...

}

}

}

This interface works on n clients, where n is chosen by the application designer. A com-
mon choice is 1 client only, in which case the code below will optimise to remove all the
case-sequences, remove the guards, remove the locked_client variable, and all array bound
checks on the c array.

Further optimisations happen because not all parts of the interface may be used. Say that
the client only uses the read() call, but never writes data, and it always sends the implicit
stop bit, never calling the send_stop_bit() call. In that case, the code for these will be
removed. This will not improve energy efficiency, but it will reduce the memory footprint of the
application, which agains supports software engineering and avoids designers having to make
bespoke versions of interfaces.

An evaluation of the global optimiser is part of Deliverable D6.2.

Aside from optimising the interfaces, the global optimiser enables software modules to be
configured in a way that does not require a pre-processor. If we take a UART as an example,
then there is two ways to configure the UART. Configuration using #define lines requires
those to be included in the right files through a user defined include-file that is included by the
module; uart_conf.h would contain:

#define UART_PARITY 0 // Disable parity

#define UART_STOP_BITS 1 // One stop bit

#define UART_BAUD_RATE 9600 // Speed to run at

6

And then there would be some magic that causes all UART source files to include this con-
figuration header file. Alternatively, the UART module would allow configuration through the
instantiation of the thread. The uart.h include file contains the definition of the uart thread:

extern uart_thread(in parity, int stop_bits, int baud_rate);

And the main program invokes the thread with the appropriate parameters:

#incude <uart.h>

main() {

par {

uart_thread(0, 1, 9600);

}

}

With the global optimiser, these two options are now identical in terms of energy usage and
speed; however, the latter option is preferable from a software perspective as there is no magic
involved in importing the defines into the library

2.3 Invocation from tools

The XMOS tool chain will automatically invoke all the tools necessary. Since the XMOS tool
chain contains the full build system (including the dependency checker), it has full control any-
way, and it is straightforward to call the analysers and global optimisers in a transparent manner.
This is shown in Figure 2.

Figure 2: XMAKE screenshot

7

One can see that the build process comprsies five steps, three of which (steps 1, 2, and 4)
relate to the global optimiser. Step one analyses all the source files that have been changed
since the last build. Step two propagates the analysis, incorporating the analyses of source files
that have not been changed. Step three creates dependencies. Step four performs the modular
compilation, using the propagated global optimisation analysis. Step five builds the final object.

Users of the XMOS tools release 14 (and beyond) are using globally optimised code by
default.

8

3 Dual-issue processing

3.1 Introduction

Of the total energy consumed by a device when executing a program, a large fraction of this
time is related to overhead involved in executing a program; that may involve distributing clocks,
maintaining program counters, resources, etc.

Given this observation, we have developed the XS2 architecture that supports dual issue:
executing two instructions simultaneously during one clock cycle.

Executing dual issue, means that we can execute the same code in fewer clock cycles, con-
suming less power due to a cut in the overhead.

3.2 Dual issue design

The dual issue design of the XS2 architecture pivots around the two lanes that are used to execute
instructions. The lanes are not symmetrical, for that would have added an unreasonable amount
of logic and complication. Instead, the lanes are specialised as follows:

IO Lane The IO Lane can be used to execute all resource instructions, instructions that modify
the thread state (such as the status register), and all basic arithmetic operations.

Memory lane The Memory Lane can be used to execute all memory operations (load, store,
and branch operations, including subroutine call and return), and all basic arithmetic oper-
ations.

Hence, resource instructions can only execute in the left pipeline, and memory instructions
can only execute in the right pipeline:

• It is not possible to dual issue two resource operations. Allowing this would have com-
plicated the resource logic to deal with multiple simultaneous operations and would have
added to the energy profile of the processor.

• It is not possible to dual issue two memory operations. Allowing that would have forced
another port on the memory.

• It is possible to dual issue two basic operations (eg, add and add).

• It is possible to dual issue basic operations with either IO, or memory.

• It is possible to dual issue a memory operation with a resource operation.

9

• Two operations should never write to the same register.

Many of the inner loop that XCORE programs exhibit show a mixture of memory and re-
source operations, or memory and arithmetic operations. For example, a loop to input or output
a block of data uses a resource operation and a load/store operation. They depend on each other,
but by unrolling the loop once they can be dual issued. Similarly, memory and arithmetic are a
normal combination.

In addition to the simple arithmetic operations there are complex operations such as multiply,
divide, long add, CRC, etc. All of these instructions are rarer, may be associated with a large
number of gates, and may have many input and output operands. They are encoded in a long
32-bit encoding, and are executed in single issue. All dual issuable instructions are encoded in
16-bits and can be executed side by side.

3.3 Extra instructions to support dual issue

A number of instructions have been added to the instruction set to further improve energy per-
formance, and to partly counteract the restrictions above:

• Dual load and store instructions have been added. They are long instructions that fetch
(store) a pair of words from an address that is double word aligned. A full dual issue
machine would enable an arbitrary pair of words to be loaded; being able to load a pair of
subsequent words is a useful intermediary for many uses. For example, complex numbers,
coefficients of filters, subsequent items in a queue, or subsequent items in a datablock can
all be load/stored at twice the speed using these instructions.

• Similarly, dual load and store instructions for the stack have been added that facilitate more
efficient function entry and exit blocks.

• A few extra arithmetic instructions have been added to encode sequences of dependent
instructions. In particular, saturating arithmetic, extracting the result, and extracting/in-
serting words of data are supported. They are difficult to perform efficiently in dual issue
code as there are data dependencies that make dual issue hard.

• A DUALENTSP instruction is added that marks the entrance to a piece of dual issue code.
This way, each function can be written in either dual or single issue; and code that has to
be energy efficient can be made to run in dual issue, whilst code that has to be memory
efficient can be written in single issue.

10

Finally, a dedicated NOP instruction has been added. Dual issue slots that cannot be used
must be filled by a NOP instruction. Traditionally, the XS1 architecture supported a large number
of instructions that are effectively NOP instructions, such or r0,r0,r0, or r1,r1,r1,
add r11,r11,0. However, all these instructions always write into a register, and it would be
problematic if the other lane wrote in the same register. It also uses less power.

3.4 Example dual issue

As an example of how dual issue with the other instructions work out, we show the inner loop of
an FFT on XS2 below:

innerLoop1:

ldd r3, r6, r4[0]

ashr r6, r6, 1

ashr r3, r3, 1

ldd r2, r5, r4[r9]

ldd r10, r7, sp[10]

maccs r8, r7, r5, r1

maccs r8, r7, r2, r0

{ldc r7, 0 ; neg r5, r5 }

maccs r7, r10, r5, r0

maccs r7, r10, r2, r1

{add r6, r6, r8 ; sub r8, r6, r8 } // Cross use

{add r3, r3, r7 ; sub r7, r3, r7 } // Cross use

std r3, r6, r4[0]

std r7, r8, r4[r9]

{ldw r6, sp[16] ; sub r4, r4, r11 }

{lsu r8, r4, r6 ; nop }

{bf r8, innerLoop1 ; nop }

• This loop comprises 17 issue slots; executing 21 instructions. Superficially, this is a disap-
pointing issue rate of 1.23 instructions/thread cycle. However, the loop also contains five
double loads and stores, that are actually shortcuts for dual-issued loads and stores. Hence,
a fair metric is that it executes 26 instructions in 17 issue slots, giving an issue rate of 1.52
instructions/thread cycle. This reduces power by a third.

• The code has an interesting feature in issue slots 11 and 12 (marked Cross use). In
these slots, the destination operands in both lanes, are also source operands in both lanes.

11

Each instruction uses R6 and R8, and the left lane writes into R6 whereas the right lane
writes into R8. This piece of code cannot be serialised into single issue, for it would either
overwrite R6 or R8 before the register is dead. Indeed, executing this code in single issue
requires a register to be spilled, which would add a total of four instructions to the loop.
This brings the comparable single issue code to take 30 thread cycles; compared to 17
thread cycles for the dual issue code, a reduction of a factor of 1.75.

• The final difference stems from the new pre-fetch mechanism. To keep the dual issue
pipeline going the instruction buffers had to be extended, and more data is kept in them.
Due to this, the total number of thread cycles saved compared to the old single-issue archi-
tecture is close to a factor of 2.

The improvement in issue rate of nearly a factor of 2 is offset by slightly higher power consump-
tion due to the extra lane. It is very difficult to perform a precise comparison because various
other parts of the processor were improved (for energy efficiency), however, we think that overall
on average we save between a factor of 1.5 and 2.

4 Energy-accounting for Android app energy optimisation

Energy transparency can be applied in software optimisation in many ways. In this section we
describe a case study in energy-aware program optimisation in Android app development. The
approach is based on manual optimisations guided by a fine-grained energy model of Android
source code. The overall approach is as follows.

• We utilize the methodology described in [LG15] to construct the operation-based source-
code-level energy model, which is achieved by analyzing the data produced in a range of
well-designed execution cases.

• The model generates energy accounting at operation and block level, which captures the
energy characteristics of the code.

• We focus manual optimisation efforts on the most costly blocks, where we refactor the
code to remove, reduce or replace the expensive operations, meanwhile maintaining its
logical consistency with the original code.

The experimental result shows that our approach is able to save from 6.4% to 50.2% of the
overall energy consumption depending on different scenarios.

12

Table 1: Examples of Energy Operations

Operation Identified where:

Method Invocation one method is called
Parameter Object Object is one parameter of the method
Return Object the method returns an Object
Addition int int addition’s operands are integers
Multi float float multiplication’s operands are floats
Increment symbol ”++” appears in code
And symbol ”&&” appears in code
Less int float ”<”’s operands are integer and float
Equal Object null ”==”’s operands are Object and null
Declaration int one integer is declared
Assign Object null assignment’s operands are Object and null
Assign char[] char[] assignment’s operands are arrays of chars
Array Reference one array element is referred
Block Goto the code execution goes to a new block

“Energy operations” are the basic units in the source code that consume energy; all state-
ments, blocks and methods are made up of a energy operations. In our experiment, we have 120
operations. This a fine-grained compare to other approaches to modelling energy at source code
level. Energy information at the level of source lines or methods is useful; however, informa-
tion at source line level could not distinguish energy consumption of two operations in the same
source line, for example, which can be captured by modelling energy operations.

4.1 Case study outline

Our target platform is an Android development board with two ARM quad-core CPUs, and the
source code in our study is a game engine used in games, demos and other interactive appli-
cations. We evaluate the approach in three game scenarios, and the experimental result shows
that it can save varying amounts of energy in different scenarios. The full details of the archi-
tectural setup, the design of execution cases for energy modelling and the model construction
can be found in Attachment D4.2.7. We examine three different typical scenarios in user inter-
action during game-playing, based on which we are able to capture the energy characteristics
and optimise the source code in three different scenarios, namely Click & Move, Orbit and
Waves.

13

Table 2: Examples of Library Functions

Class Function

ArrayList add, get, size, isEmpty, remove
glBindTexture, glDisableClientState
glDrawElements, glEnableClientState

GL10 glMultMatrixf, glTexCoordPointer
glPopMatrix, glPushMatrix
glTexParameterx, glVertexPointer

Math max, pow, sqrt, random
FloatBuffer position, put

4.1.1 Basic Energy Operations

Energy operations are identified directly from source code. The enumeration of the operations is
inspired by Java semantics [BR15], which specifies the operational meaning, or behaviour, of the
Java language, which is the target language in the experiment. We intuitively identify semantic
operations that perform operations on the state and may be energy-consuming, and let them be
our energy operations. Operations that turn out to have little or no energy effect will automat-
ically be identified by the regression analysis in the later stage of the energy modelling. Table
1 lists 14 representative operations out of a total of 120 in the experiment. They include arith-
metic calculations like Multi float float, Addition int int, in which operands types are explicit, as
well as Increment whose operand is implicitly an integer. Boolean operations and comparisons,
such as And, Less int float and Equal Object null also form one major part. Method Invocation
and Block Goto are important for the control flow which plays a key role in the execution of
the code. Assignments and Array Reference will unexpectedly take a significant amount of the
application’s energy consumption.

The application also employs a diversity of library functions that may be written in different
languages and at lower levels of the software stack. On the other hand, usually a limited number
(67 in the experiment) of library functions are frequently called in one application. So we treat
them as basic modelling units. The examples of highly-used library functions in the experiment
are shown in Table 2. For instance, the functions in the class of GL10 are responsible for graphic
computing.

14

0	
 2	
 4	
 6	
 8	
 10	

BlockGoto_while	

Greater_int_int	

Assign_double_double	

Addi=on_float_float	

Division_int_float	

Subtrac=on_float_float	

Assign_boolean_boolean	

NotEqual_Object_null	

Return_Object	

Parameter_float	

AssignAnd_float_float	

Declara=on_float	

Declara=on_Object	

FloatBuffer.put_method	

Not_boolean	

Declara=on_int	

Mul=_int_int	

And	

Increment	

NotZero_boolean	

BlockGoto_for	

Mul=_float_float	

Assign_Object_Object	

Less_int_int	

Assign_int_int	

ArrayReference	

BlockGoto_if	

Assign_float_float	

Parameter_Object	

MethodInvoca=on	

Energy	
 Consump=on	
 (mJ)	

Figure 3: The top 30 energy consuming operations in Click & Move scenario.

4.1.2 Energy Model

An energy model is constructed (see Attachment 4.2.X for details) yielding an energy value for
each energy operation. Using this model, together with logs from the test cases used to build
the energy model, we can discover many useful pieces of information about the game-engine
code. The energy model of app source code based on energy operations facilitates comprehensive
energy accounting at different levels of granularity and from various viewpoints. For example,
we can identify the most energy-expensive operations and source code blocks.

4.2 The Click & Move Scenario

We first consider optimising the energy in the Click & Move Scenario. We use energy ac-
counting at operation and block level, according to which we improve the most costly blocks by
removing, reducing or replacing the most expensive operations. Later in Section 4.3 and Section
4.4, when we talk about the Orbit and Waves scenarios, we will briefly introduce the energy
characteristics of the code and use larger part for the code improvements.

Operation Level. Figure 3 shows the top 30 energy consuming operations, which are ranked
by their single-execution energy costs. The section marked “71.3% Energy Consumption” shows

15

the percentage of the sum of costs of the top 10 operations in the total cost, considering their
different numbers of executions in the Click & Move scenario, while “26.1% Energy Con-
sumption” means the percentage of operations from 11th to 30th. The percentages indicate that
the energy-usage of the code is largely determined by a relatively small number of operations,
because these operations are both frequently used and expensive themselves. The 30 operations
out of 187 (including library functions) take up 97.4% of the whole cost of the code, in which
the top 10 consumes the major part with a percentage of 71.3%.

Usually, it is supposed that the complex arithmetic operations, such as multiplications and
divisions, should be the most costly. However, the result shows that in terms of source code
operations, Method Invocation ranks the highest. This is because Method Invocation involves a
sequence of operations, such as storing the return address and managing the stack frame, while
instance methods are always implicitly passed a “this” reference as their first parameter.

Unexpectedly, only one arithmetic operation, Multi float float, is a member of the top 10,
and there are only six arithmetic operations in the top 30. They together cost only 6.1% of the
overall energy consumption of the application, which is contrary to our intuition.

We will see later in block-level energy accounting that assignments, comparisons and Array
Reference play significant roles in the overall energy consumption. This is not only because they
are frequently used, but also because they are costly in themselves, as shown in Figure 3.

Block Goto operations are expensive as well. Based on the types of conditionals and loops
where “Block Goto” occurs, they are classified into BlockGoto if, BlockGoto for and Block-
Goto while. The result shows that they cost different amounts of energy as operations them-
selves, respectively 6.7 mJ, 4.1 mJ, 1.1 mJ. And together with Method Invocation, they take up
37.6% of the total energy consumption of the application.

Block Level. In the execution cases, we have 108 active blocks with a wide diversity of en-
ergy usage. As shown in Figure 4a, “In Application” here means running the Click & Move

scenario with the full set of blocks. The costs of blocks “In Application” are plotted as orange
bars. Note that, blocks here obviously have distinct execution times. The cost of a fixed num-
ber (3000) of executions of one block are calculated by multiplying its single-execution cost by
3000. This could help us compare the single-execution costs of different blocks. The costs of
blocks at “3000-Times-Execution” are plotted as green bars.

Similar to energy distribution on operations, a small number (11 blocks) of all the blocks
uses up nearly half of the entire cost, which indicates that putting efforts on optimising a small
group of blocks can achieve significant energy-saving.

There are two factors that make one block costly “In Application”. The first factor is a
large number of executions. For example, the most costly block “In Application” (the rightmost

16

0	

250	

500	

750	

1000	

1250	

1500	

1750	

2000	

	
 E
ne

rg
y	

Co

ns
um

p3
on

	
 (J
ou

le
)	

Blocks	

In	
 Applica3on	

3000-­‐Times-­‐Execu3on	

(a) Block costs ”In Application” and at ”3000-
Times-Execution”.

0	

0.025	

0.05	

0.075	

0.1	

0.125	

0.15	

0.175	

0.2	

En
er
gy
	
 C
on

su
m
p4

on
	
 (m

J)	

Blocks	

Assignment	

Declara4on	

Control	
 Ops	

Array	
 Reference	

Fuc4on	
 Ops	

Boolean	
 Ops	

Arithme4c	
 Ops	

Lib	
 Func4ons	

(b) Energy proportions of different kinds of opera-
tions in blocks.

Figure 4: Energy distribution in Click & Move. Blocks are sorted by the order of their run-
time energy costs ”In Application”.

orange bar in Figure 4a) has a large number of execution times. This block takes only 30.6 mJ for
single-execution but 2128.6 J when running “In Application”. The second factor is the energy
consumption of the block itself. For example, the three prominent green bars in Figure 4a, whose
single-execution costs are 201.5 mJ, 146.9 mJ and 142.8 mJ. We will later zoom in these three
blocks to see which operations contribute to their energy costs.

We can further observe the energy proportions of operations in each block in Figure 4b. To
illustrate, operations are grouped into eight classes. Specifically, the “Block Goto” operations
and Method Invocation are gathered in Control Ops; the parameter passing and the value returns
of methods are in Function Ops; the comparisons and Booleans are in Boolean Ops; all the
arithmetic computations are in Arithmetic Ops; all the library functions are in Lib Functions.

Most of the blocks cost less than 25 mJ for single-execution. In these blocks, Control Ops
occupy the major part of the energy consumption, in contrast, Arithmetic Ops only take a tiny
proportion.

For those three most prominent blocks, assignments and Array Reference are the biggest
energy consumers. Furthermore one of the three blocks has the largest proportion of Arithmetic
Ops among all the blocks.

The most expensive block “In Application” consists of three even parts: Control Ops, Func-
tion Ops and Boolean Ops. This block is the main entrance of the game engine to draw and
display frames, so its works are conditional judgments and method invocations.

17

Table 3: The top 10 most costly blocks in Click & Move.

Block ID #Executions Energy Cost (J)

CCNode.visit() 19462 2128.6
CCNode.transform() 18903 1648.4
CCTextureAtlas.putVertex() 2119 1494.4
CCNode.visit().if 4.for 1 16880 1426.8
CCNode.transform().if 1 19664 1426.3
CCTextureAtlas.putTexCoords() 2120 1107.8
CCAtlas.updateValues().for 1 2173 1018.7
CCNode.visit().if 3.for 1 8356 915.7
CCSprite.draw() 8594 766.9
CCTexture2D.name() 13085 537.5

4.2.1 Code optimisation

Both the correctness of software, and its energy-efficiency are primary design goals for app
developers. In our case study our energy-aware programming approach is to focus on correctness
first and then apply energy optimisations after correct working code is obtained. Clearly, a
more comprehensive energy-aware development process would consider energy efficiency from
the start, in choosing algorithms and data structures. However we show now that in our case
study considerable optimisations are obtained from code that has been developed without energy-
efficiency in mind.

The overview of energy-aware programming approach is firstly finding the most costly blocks,
where we analyze the energy breakdown among the operations, and make changes to the code to
remove, reduce or replace the costly operations.

We look into the top 10 costly blocks “In Application” (see Table 3). For example, CC-
Node.visit() is the entrance block of the visit() function; CCNode.visit().if 4.for 1 is the body
block of the for loop. These 10 blocks are distributed in seven methods, so the code review
does not require heavy labor. We find four easy optimisation opportunities in blocks, such as
CCNode.visit(), CCNode.visit().if 4.for 1 and CCTexture2D.name(). There are also other op-
portunities in other blocks for saving energy, but requiring more efforts and gaining little. For
example, CCAtlas.updateValues().for 1 has several busy arithmetic expressions. Usually it is
believed that replacing the busy expression with a variable could reduce energy cost, however in
this case the overhead of variable declaration counteracts the energy-saving.

The four opportunities to improve the code are very simple and effective, but can only be
discovered by the operation-level energy information. The changes will be shown as following.

18

Program 1 Simplified parts of original code in CCNode.visit()

i f (c h i l d r e n != n u l l) {
i f b o d y 1 ;

}
draw (g l) ;
i f (c h i l d r e n != n u l l) {

i f b o d y 2 ;
}

Program 2 The changed Program 1

i f (c h i l d r e n != n u l l) {
i f b o d y 1 ;
draw (g l) ;
i f b o d y 2 ;

} e l s e {draw (g l) ; }

If Combination. This change is made in the most costly block CCNode.visit(), which has two
comparisons, two Boolean operations, one Method Invocation and one parameter passing. In fact,
the two if headers make the same comparison, as shown in Program 1. We change the code to
Program 2, which combines the two if statements and meanwhile keep it logically consistent
with Program 1. By these means each execution of the block can reduce one comparison, and
when the condition is false, it can additionally reduce one BlockGoto if .

Program 3 Simplified parts of original code in CCNode class

p u b l i c vo id v i s i t (GL10 g l) {
.

t r a n s f o r m (g l) ;
.

}
p u b l i c vo id t r a n s f o r m (GL10 g l) {

t r a n f o r m b o d y ;
}

19

Program 4 The changed Program 3

p u b l i c vo id v i s i t (GL10 g l) {
.

t r a n s f o r m b o d y ;
.

}
p u b l i c vo id t r a n s f o r m (GL10 g l) {

t r a n s f o r m b o d y ;
}

Inner-Class Method Inline. When “In Application”, the transform() function is invoked 18903
times and mostly by the visit() function. We change the Program 3 to Program 4 by inserting the
body of transform() into visit(), meanwhile remaining the original transform() function in case
that other parts of the code call it. This change can largely decrease the number of transform()’s
Method Invocations that are very expensive. However, it may be at the cost of losing readability
of the code, which could also be compensated by adding explanatory comments.

Loop-Invariant Code Motion. CCNode.visit().if 3.for 1 and CCNode.visit().if 4.for 1 are en-
trance blocks of the two for loops as seen in Program 5. These two loops have a quantity,
children .size(), which is computed in each iteration but the value is constant. We thus hoist it
outside the loop, as shown in Program 6, which can vastly save the energy of invoking and ex-
ecuting the size() function during every iteration. At the same time, we move the declaration of
the child outside the loop, considering the cost of Declaration Object is about 2.97 mJ and also
in the top 30.

Inter-Class Method Inline. CCTexture2D.name() is the 10th most costly block and costs
537.5 J “In Application”. However, its job is to simply get the value of the private member
variable, name, of the class CCTexture2D. This method has only two callers in the code. So we
consider to make this variable public and let the two callers directly get access to the variable,
which avoids the cost of Method Invocation. This change may harm the encapsulation of data,
however, only one member of one class is changed. The trade-off between energy-saving and
data encapsulation will be decided in the end by developers.

20

Program 5 The full version of Program 2

i f (c h i l d r e n != n u l l) {
f o r (i n t i =0 ; i<c h i l d r e n . s i z e () ; ++ i) {

CCNode c h i l d = c h i l d r e n . g e t (i) ;
i f (c h i l d . z O r d e r < 0) {

c h i l d . v i s i t (g l) ;
} e l s e

b r e a k ;
}
draw (g l) ;
f o r (i n t i =0 ; i<c h i l d r e n . s i z e () ; ++ i) {

CCNode c h i l d = c h i l d r e n . g e t (i) ;
i f (c h i l d . z O r d e r >= 0) {

c h i l d . v i s i t (g l) ;
}

}
} e l s e {draw (g l) ; }

21

Program 6 The changed Program 5

CCNode c h i l d = new CCNode () ; / / added
i n t c h i l d r e n s i z e = c h i l d r e n . s i z e () ; / / added
i f (c h i l d r e n != n u l l) {

f o r (i n t i =0 ; i<c h i l d r e n s i z e ; ++ i) { / / changed
c h i l d = c h i l d r e n . g e t (i) ; / / changed
i f (c h i l d . z O r d e r < 0) {

c h i l d . v i s i t (g l) ;
} e l s e

b r e a k ;
}

draw (g l) ;
f o r (i n t i =0 ; i<c h i l d r e n s i z e ; ++ i) { / / changed

c h i l d = c h i l d r e n . g e t (i) ; / / changed
i f (c h i l d . z O r d e r >= 0) {

c h i l d . v i s i t (g l) ;
}

}
} e l s e {draw (g l) ; }

22

24.5	

25	

25.5	

26	

26.5	

27	

27.5	

28	

Original	
 +	
 If	
 Comn	
 +	
 Inner-­‐Class	

MI	

+	
 Loop-­‐Invt	
 	

CM	

+	
 Inter-­‐Class	

MI	

En
er
gy
	
 C
on

su
m
pA

on
	
 (J
)	

Figure 5: Energy consumption of the code without and with the changes in Click & Move.

4.2.2 Evaluation

Figure 5 illustrates the energy consumption of the software without and with the changes in-
troduced in the previous section. From left to right, the bars indicate cumulative effects of the
changes. For example, “+ If Comn” is the energy consumption of the code with “If Combina-
tion”; “+ Inner-Class MI” is the energy consumption of the code with the changes of both “If
Combination” and “Inner-Class Method Inline”. Totally, these four simple changes save 6.4% of
the entire energy consumption without influencing the functionality of code. These changes are
made in the basic part of the game engine, which most applications will use heavily, so any gain
here can have fundamental impact. Furthermore, these changes are made with little knowledge
about the algorithm of code, the developers who wrote the code are surely able to improve the
code much more and achieve more energy-saving.

4.3 The Orbit Scenario

In this section, we briefly introduce the energy characteristics of Orbit scenario. Afterward, we
improve the most costly blocks according to the types of expensive operations. In Section 4.3.3,
we can see that the improvement can save as much as 50.2% of the overall energy consumption.

4.3.1 Energy Accounting

In the Orbit scenario, the block CCGrid3d.blit().for 1 dominates the overall energy consump-
tion. As shown in Figure 6, 80.9% of the entire cost is consumed by this block. The second

23

80.9%	

1.3%	

1.3%	

1.2%	

0.7%	

14.6%	

CCGrid3D.blit().for_1	
 CCSprite.draw()	

CCNode.visit().if_4.for_1	
 CCNode.visit()	

CCNode.draw()	
 Others	

Figure 6: In Orbit scenario, the energy proportions of blocks “In Application”.

costly block consumes only 1.3%. “In Application” here means running the Orbit scenario
without removing any block. Later in Section 4.3.2, we will barely put attention on this single
block, requiring fairly little effort to achieve improvements.

4.3.2 Code optimisation

Program 7 shows the original code of CCGrid3D.blit().for 1. In this block, the Control Ops
(BlockGoto for and Field Reference) use up 35.6% energy; Boolean Ops use up 20.5%; the
assignments use up 16.7%; Arithmetic Ops use up 14.0%; Lib Functions use up 13.3%. We find
three easy changes to reduce or replace the expensive operations.

Loop-Invariant Code Motion. In this block, the value of vertices.limit() is constantly 2112,
we thus hoist it outside the loop and replace it with the variable limit, as shown in Program 8.
This change avoids calls of vertices.limit() and at the same time decreases a small amount of
Field Reference.

Loop Unrolling. Also as shown in Program 8, we duplicate the loop body eight times, which
reduces the times of comparisons, BlockGoto fors, assignments and additions. Note that, we set
the value of increment as 24 since 24 is a factor of the limit, 2112.

Full-Use of Library Function. The job of Program 7 or Program 8 is getting all the elements
in vertices one by one and putting them into mVertexBuffer one by one. The whole Program 7 in
fact can be replaced by simply one line: mVertexBuffer.put(vertices.asReadOnlyBuffer()), which
means putting the entire vertices into mVertexBuffer. This change realizes the same functionality

24

using the already existing library function, which is one of the key library functions already
compiled into native code.

Program 7 The original code of CCGrid3D.blit().for 1

f o r (i n t i = 0 ; i < v e r t i c e s . l i m i t () ; i = i +3) {
mVer texBuf fe r . p u t (v e r t i c e s . g e t (i)) ;

mVer t exBuf fe r . p u t (v e r t i c e s . g e t (i + 1)) ;
mVer t exBuf fe r . p u t (v e r t i c e s . g e t (i + 2)) ;

}

Program 8 The changed Program 7

i n t l i m i t = v e r t i c e s . l i m i t () ; / / added
f o r (i n t i = 0 ; i < l i m i t ; i = i +24) { / / changed

mVer t exBuf fe r . p u t (v e r t i c e s . g e t (i)) ;
mVer t exBuf fe r . p u t (v e r t i c e s . g e t (i + 1)) ;
mVer t exBuf fe r . p u t (v e r t i c e s . g e t (i + 2)) ;

. . .

. . .
mVer t exBuf fe r . p u t (v e r t i c e s . g e t (i + 2 3)) ; / / added

}

4.3.3 Evaluation

Figure 7 shows the cumulative effects of the code changes on energy consumption. Excep-
tionally, “Full-Use LF” does not take previous changes into account and means only replacing
Program 7 with the built-in library function as stated above. We can see that loop-invariant code
motion does not gain much energy saving because the vertices.limit() which is a library function
as well uses a very small percentage of energy consumption. On the other hand, loop unrolling
achieves 25.8% energy saving due to the reduction of amount of Control Ops, comparisons and
assignments, which occupy most of the cost. And the most effective change is the replacement
to a library function, saving 50.2% energy consumption because this library function has been
complied into native code before execution, in contrast the java source code need run-time in-
terpretation which is not free from energy consumption. The result indicates that it is a good

25

0	

5	

10	

15	

20	

25	

30	

35	

Original	
 +	
 Loop-­‐Invt	
 	

CM	

+	
 Loop	

Unrolling	

Full-­‐Use	
 LF	

En
er
gy
	
 C
on

su
m
p@

on
	
 (k
J)	

Figure 7: Energy consumption of the code without and with the changes in Orbit.

Table 4: In the Waves scenario, the top 10 costly blocks “In Application” and energy percentages
of different kinds of operations in each block.

Block ID #Execs Joules Assi. Decl. Cont. Func. Bool. Arit. Libr.

CCGrid3D.blit().for 1 112193 8094.1 16.7% 0% 35.6% 0% 20.5% 14.0% 13.3%
CCVertex3D.CCVertex3D() 40219 5232.0 27.2% 0% 10.0% 62.8% 0% 0% 0%
CCWaves3D.update().for 1.for 1 34604 4088.7 10.7% 0% 32.1% 0% 14.7% 39.0% 2.2%
ccGridSize.ccg() 42275 3769.1 0% 0% 32.1% 67.9% 0% 0% 0%
CCGrid3DAction.setVertex() 31856 3285.4 14.6% 7.8% 30.9% 46.7% 0% 0% 0%
CCGrid3DAction.originalVertex() 36566 2891.3 19.1% 10.2% 40.3% 30.4% 0% 0% 0%
CCNode.getGrid() 49119 2145.1 0% 0% 58.1% 41.9% 0% 0% 0%
ccGridSize.ccGridSize() 10570 1173.8 30.3% 0% 31.6% 38.0% 0% 0% 0%
CCGrid3D.setVertex() 3944 657.2 10.1% 1.6% 32.8% 28.9% 0% 26.4% 0.2%
CCGrid3D.originalVertex() 2785 374.2 14.0% 1.9% 33.4% 17.9% 0% 32.8% 0%

idea for developers to make a good use of library functions rather than implementing the same
function themselves with java source code.

4.4 The Waves Scenario

In this section, similarly, we first analyze the energy characteristics of the blocks in the Waves
scenario, based on which we modify the code and then evaluate the effects of changes on energy
consumption.

26

4.4.1 Energy Accounting

Unlike the Orbit scenario where only one block dominates energy consumption, in Waves

scenario, the costs of top seven blocks are at the same order of magnitude of kJ, as listed in Table
4. The CCGrid3D.blit().for 1 is also employed in this scenario and is the most costly as well
among all the blocks. The majority of blocks in Table 4 are directly or indirectly invoked by
CCWaves3D.update().for 1.for 1, as shown in Program 9. And their jobs are mostly to set or get
the values of member variables, so a large part of energy consumption goes to assignments and
Function Ops. It was not expected that the code spends such a large amount of energy on simple
setter and getter functions.

Program 9 The original code in CCWaves3D.update()

i n t i , j ;
f o r (i = 0 ; i < (g r i d S i z e . x + 1) ; i ++) {

f o r (j = 0 ; j <(g r i d S i z e . y + 1) ; j ++) {
CCVertex3D v = o r i g i n a l V e r t e x (c c G r i d S i z e . ccg (i , j)) ;

. . .
s e t V e r t e x (c c G r i d S i z e . ccg (i , j) , v) ;

}
}

Program 10 Program 9 after Method Inline & Code Motion

c c G r i d S i z e c c g r i d s i z e = new c c G r i d S i z e (0 , 0) ; / / added
CCGrid3D c c g r i d 3 d = (CCGrid3D) t a r g e t . g e t G r i d () ; / / added
CCVertex3D v = new CCVertex3D (0 , 0 , 0) ; / / added
i n t i , j ;
f o r (i = 0 ; i < (g r i d S i z e . x + 1) ; i ++) {

f o r (j = 0 ; j <(g r i d S i z e . y + 1) ; j ++) {
c c g r i d s i z e . x= i ; c c g r i d s i z e . y= j ; / / added
v = c c g r i d 3 d . o r i g i n a l V e r t e x (c c g r i d s i z e) ; / / changed

. . .
c c g r i d 3 d . s e t V e r t e x (c c g r i d s i z e , v) ; / / changed
}

}

27

0	

3	

6	

9	

12	

15	

18	

21	

24	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

Original	
 +	
 Full-­‐Use	
 LF	
 +	
 Method	
 Inline	

&	
 CM	

GP
U
	
 E
ne

rg
y	

Co

ns
um

pH
on

	
 (k
J)	

CP
U
	
 E
ne

rg
y	

Co

ns
um

pH
on

	
 (k
J)	

CPU	

GPU	

Linear	
 (GPU)	

Figure 8: CPU and GPU Energy consumption of the code without and with the changes in
Waves.

4.4.2 Code optimisation

Full-Use of Library Function. We have referred to the optimisation for CCGrid3D.blit().for 1
in Section 4.3.2 where we replace the entire Program 7 with the one-line code, which makes use
of library functions. We keep this change in this scenario. For other blocks, we come up with
one modification as following.

Method Inline & Code Motion. As shown in Program 9, the three functions called in the inner
loop body are CCGrid3DAction.originalVertex(), ccGridSize.ccg() and CCGrid3DAction.setVertex(),
which respectively cost 2891.3 J, 3769.1 J and 3285.4 J “In Application”. Note that, CC-
Grid3DAction is the parent class of CCWaves3D, so originalVertext() and setVertex() can be
directly called without referring to their class names. As seen in Program 10, we unpack these
three methods in this block: the first and fourth “added” lines are unpacked ccGridSize.ccg(); the
second “added” and first “changed” lines are unpacked CCGrid3DAction.originalVertex(); the
second “added” and second “changed” lines are unpacked CCGrid3DAction.setVertex(). This
change removes all the Method Invocations, parameter passing and value returns related to these
three functions invoked by this block. Note that, the first three “added” lines are located outside
the loop in order to reduce energy consumption of the process of initializing objects and calling
CCNode.getGrid().

4.4.3 Evaluation

Figure 8 shows the cumulative effects of changes on energy consumption of CPU and GPU
(note that previous figures only showed the CPU energy consumption because the GPU energy

28

consumption did not vary noticeably before), and the dashed line indicates the linear trend of the
GPU energy consumption. In the case of game, usually the aimed frame rate is 60 Hz, when
the game overloads CPU, the frame rate will decrease, and when the workload is light, even very
light, the frame rate is generally fixed to 60Hz. The frame rate in “Original” is around 36Hz; that
in “+ Full-use LF” is around 50Hz; that in “+ Method Inline & CM” is around 60Hz. The change
of Full-Use LF (full use of library function) does not save energy for CPU since the execution of
original Waves actually overloads the CPU capacity, so the improvement of code enhances the
performance and enables the device to generate more frames every second. Consequently, the
GPU does more work and consumes more energy, as seen in Figure 8. After this change, when
we apply the method inline and code motion, 27.7% of the overall CPU energy is saved, and for
the same reason GPU consumes slightly more. This experimental result shows that our approach
not only saves energy but also potentially boosts performance, which benefits users doubly.

4.5 Conclusion

We proposed an energy-aware programming approach for mobile app development, which is
guided by an operation-based source-code-level energy model (the construction of which is de-
scribed in detail in the attachment). The general steps of the approach are as following: 1) we
construct the operation-based energy model by mining the data generated in a range of well-
designed execution cases; 2) based on the model, we capture the energy characteristics of the
code; 3) we improve the code by removing, reducing or replacing the expensive operations in the
costly blocks.

We evaluated this approach on a real-world game engine and on a physical Android develop-
ment board with two ARM quad-core CPUs. The experimental result shows that our approach
has a significantly positive impact on energy-saving. For different scenarios, this approach can
save energy by from 6.4% to 50.2%. The result also indicates that the performance of code is a
by-product as well of this approach, which potentially improves user experience more.

The optimisations were achieved by focussing on the mostly energy-consuming parts of the
code, as identifed by an energy accounting process. The optimisations are manual and therefore
it is vital to know that they are being applied where they can have the most effect.

The approach sometimes suggests a trade-off between the code structure and energy saving.
In other words, some optimisations cause the structure of the code to be lost (for example break-
ing encapsulation). For example, in certain cases, we could unpack some thin methods that are
highly-invoked in the code, at the cost of losing the integrity of the structure of the code to some
extent. This choice is an important one which the energy-aware developer should understand,
and depends to some degree on whether the code in question has to be modified and maintained.

29

5 Dynamic optimisations: energy-aware scheduling in multi-
core environments

We have developed dynamic optimisation techniques for achieving energy efficient scheduling
and allocation of tasks in multicore multithreaded environments with the possibility of voltage
and frequency scaling. We have developed a framework for a multiobjective Evolutionary Algo-
rithm (EA), where the objectives are energy and execution time, such that both may be subject
to some constraints, given in terms of energy budgets or task deadlines [BLG13] (also as attach-
ment D4.2.6 in this document). Based on this framework, different versions of the algorithm
were implemented in order to address different types of problems:

1. Deterministic algorithm. The time and power of the tasks are expressed as deterministic
values, which are obtained either by profiling or by static analysis at compile time. The en-
ergy of the whole schedule has been estimated either using a low level energy model of the
targeted platform [BLG15a] (attachment D4.2.2), or by using static analysis [BLLG15a]
(attachment D4.2.5). Different versions of this algorithm include:

• Possibility to introduce task migration and preemption, i.e., the execution of a task
can be stopped before finishing, and can be resumed afterwards on the same or dif-
ferent thread or core [BLG15a, BLLG15a, BLLG15b] (attachments D4.2.2, D4.2.5
and D4.2.3).

• Possibility to decrease accuracy in order to save energy in applications that permit
certain level of accuracy loss. Accuracy loss has been implemented through loop
perforation, where for a previously defined (set of) loop(s), we skip every nth loop
iteration [BLLG15b] (attachment D4.2.3).

2. Stochastic scheduling. We have proven that if the actual values of the power and execu-
tion time of the tasks are different from the estimations used to create the deterministic
scheduler, the resulting scheduler does not have to be optimal in terms of energy and exe-
cution time. In this situation it is better to represent execution time and power as random
variables with their corresponding distribution, and optimise the expected values of the
energy and/or execution time of the scheduler. Two variations of this work have been
implemented, based on the following assumptions:

• The tasks are independent [BLG15c] (attachment D4.2.1).

30

• The tasks are dependent [BLG15b] (attachment D4.2.4). In this case the dependence
has been modelled using copula theory, and it has been proven that more optimal
results are achieved when modelling existing dependency.

3. Modified YDS Algorithm [BLLG15a] (attachment D4.2.5). YDS is a well known algorithm
for task scheduling when the voltage and frequency can be scaled. Yet, it was invented in
the 90s, and the hardware platforms have changed significantly since then. Multicore chips
are practically a standard nowadays, while YDS was created for single core, and the static
power forms a growingly important part of the total power consumption of a chip. To over-
come these issues, we have performed two improvements: a) a method to stop decreasing
voltage and/or frequency before the point the total power starts increasing again, and b)
different methods to allocate tasks on different cores, which are then scheduled on each
core using separate YDSs. In comparison with the EA algorithm, YDS is much faster,
however, the final schedule provided by EA is much more optimal in terms of energy.

In all of the mentioned algorithms above it is very important to have an estimation of the
resource consumption of a task, where the resource can be time or energy. For this purpose, we
have greatly relied on the static analysis techniques implemented in the CiaoPP tool. Depending
on the nature of the scheduling, i.e., if the deadlines or the energy budgets are hard (always have
to be met), or soft (do not have be met all the time), we can use either average or worst case
estimations. For the case of worst case estimations, which are both safe and accurate, we have
combined evolutionary algorithms and static analysis.

Although the algorithms have been adapted for multicore multithreaded XMOS chips, they
can be easily adapted to any multicore environment, including large scale data centers. Given
that many tasks running in the datacenter at the same time are not related, the developed algo-
rithms can be parallelized and efficiently executed using for example the MapReduce algorithm.
On the other hand, experiments with static analysis have demonstrated that any a priori knowl-
edge about resource consumption of a task, or a program, can provide better results in terms of
additional energy savings: we have seen that the EA scheduler, which used both time and energy
estimations, performs much better in terms of energy savings than the YDS algorithm, which
uses only time estimations.

31

References

[BLG13] Z. Banković and P. Lopez-Garcia. Genetic Algorithm-based Allocation and
Scheduling for Voltage and Frequency Scalable XMOS Chips. In Hybrid Artifi-
cial Intelligent Systems (HAIS 2013), volume 8073 of Lecture Notes in Computer
Science, pages 401–410. Springer, 2013.

[BLG15a] Z. Banković and P. López-Garcı́a. Energy Efficient Allocation and Scheduling for
DVFS-enabled Multicore Environments using a Multiobjective Evolutionary Al-
gorithm. In Genetic and Evolutionary Computation Conference, GECCO 2015,
Companion Material Proceedings, pages 1353–1354. ACM, 2015.

[BLG15b] Z. Banković and P. López-Garcı́a. Improved Energy-aware Stochastic Schedul-
ing based on Evolutionary Algorithms via Copula-based Modeling of Task Depen-
dences. In Álvaro Herrero, Javier Sedano, Bruno Baruque, Héctor Quintián, and
Emilio Corchado, editors, International Conference on Soft Computing Models in
Industrial and Environmental Applications (SOCO 2015), volume 368 of Advances
in Intelligent Systems and Computing, pages 153–163. Springer International Pub-
lishing, 2015.

[BLG15c] Zorana Banković and Pedro Lopez-Garcia. Stochastic vs. Deterministic Evolution-
ary Algorithm-based Allocation and Scheduling for XMOS Chips. Neurocomput-
ing, 150:82–89, February 2015.

[BLLG15a] Z. Banković, U. Liqat, and P. López-Garcı́a. A Practical Approach for Energy Effi-
cient Scheduling in Multicore Environments by combining Evolutionary and YDS
Algorithms with Faster Energy Estimation. In The 11th International Conference
on Artificial Intelligence Applications and Innovations (AIAI’15), volume 458 of
IFIP Advances in Information and Communication Technology, pages 478–493.
Springer International Publishing, 2015.

[BLLG15b] Z. Banković, U. Liqat, and P. López-Garcı́a. Trading-off Accuracy vs. Energy
in Multicore Processors via Evolutionary Algorithms Combining Loop Perforation
and Static Analysis-based Scheduling. In Enrique Onieva, Igor Santos, Eneko Os-
aba, Héctor Quintián, and Emilio Corchado, editors, Hybrid Artificial Intelligent
Systems (HAIS 2015), volume 9121 of Lecture Notes in Computer Science, pages
690–701. Springer International Publishing, 2015.

32

[BR15] Denis Bogdanas and Grigore Roşu. K-java: A complete semantics of java. SIG-
PLAN Not., 50(1):445–456, January 2015.

[LG15] Xueliang Li and John P. Gallagher. Fine-grained energy modeling for mobile ap-
plication source code. Technical report, Roskilde University, December 2015. sub-
mitted for publication.

Attachments

33

Attachment D4.2.1

Stochastic vs. Deterministic

Evolutionary Algorithm-based

Allocation and Scheduling for XMOS

Chips

Published in Neurocomputing, Vol. 150, pages
82–89, Elsevier, February 2015.

34

Stochastic vs. deterministic evolutionary algorithm-based allocation
and scheduling for XMOS chips

Zorana Banković a,n, Pedro López-García a,b

a IMDEA Software Institute, Madrid, Spain
b Spanish Council for Scientific Research (CSIC), Spain

a r t i c l e i n f o

Article history:
Received 18 November 2013
Received in revised form
9 April 2014
Accepted 15 June 2014
Available online 2 October 2014

Keywords:
Deterministic and stochastic scheduling
Multiprocessor multithreaded architectures
Dynamic voltage and frequency scaling
Evolutionary algorithms
Multi-objective optimization

a b s t r a c t

We present an approach based on multi-objective evolutionary algorithms for the automatic scheduling
and allocation of tasks in a multiprocessor multithreaded architecture, together with an assignment of
the appropriate voltage and frequency of each processor in a way the overall energy consumed by the
execution of the tasks is optimized and all task deadlines are met. We have implemented both a
deterministic scheduling algorithm, where the execution time and the energy consumption of different
tasks have a known deterministic value, and a stochastic scheduling algorithm, where the execution
time and energy are treated as random variables with corresponding probability density functions, given
that in reality these values can vary significantly due to numerous reasons. It is assumed that execution
time and energy consumption estimations, both for the deterministic and the stochastic case, are
obtained by a static analysis process. It has already been proven for the case of makespan optimization
that the stochastic scheduling is underestimated by its deterministic counterpart, and that in many real
world situations, the stochastic scheduler outperforms the deterministic one. In this work we prove that
for the tested scenario the stochastic scheduler for energy optimization outperforms its deterministic
counterpart improving energy consumption by 15.4% in the best case.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The most common approach for solving the problem of optimal
task scheduling is to use a safe estimation of the values that the
function to be optimized depends on, such as the execution time of
each task or its power consumption. When such estimation gives a
single (numeric) value for execution time (and power/energy), we
refer to the problem as the deterministic scheduling. However, the
execution time of a task in reality can vary considerably, due to a
number of reasons, e.g. unknown memory access time, operating
system effects that cannot be known in advance, etc. For this
reason, it is more accurate to treat execution time, as well as
energy consumption, which is closely related, as a random variable
with a corresponding probability density and/or cumulative dis-
tribution function. We refer to this group of problems as stochastic
scheduling problems. Moreover, there are state-of-the-art results of
optimal scheduling for makespan optimization [1,2] that prove
that in certain situations the deterministic scheduler provides
results that significantly deviate from the optimal ones, and that
better results can be obtained using stochastic scheduling. In this

work we prove that this is also the case for energy consumption
optimization.

Our objective is to optimize the energy consumption through
scheduling and allocation of a set of tasks running on multi-
processor/multicore1 and multithreaded voltage and frequency
scalable architectures designed by XMOS [3]. In such XMOS chips,
threads are pipelined in four stages, where in each stage of the
pipeline one instruction from a different thread is executed, so in
essence we can say that the threads also run in parallel. Thus, we
deal here with two levels of parallelism: multicore with multiple
threads on each of them. Furthermore, the XMOS chips have the
possibility to dynamically scale voltage and frequency, which can
significantly contribute to energy consumption optimization, as
we will explain in the following.

The dynamic power consumption due to the switching activity
in digital CMOS circuits can be expressed with the following
formula:

P ¼ α � Ceff � V2 � f

where Ceff is the effective capacitance, V the voltage supply, f the
operating frequency, and α the switching factor. If we decrease the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.06.077
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: zorana.bankovic@imdea.org (Z. Banković),

pedro.lopez@imdea.org (P. López-García). 1 These two terms are interchangeable throughout this paper.

Neurocomputing 150 (2015) 82–89

voltage supply and the operating frequency, the dynamic power
will decrease significantly. Moreover, the static power, which is the
result of the leakage currents, also decreases quadratically with
the voltage [4]. Thus, voltage and frequency decrease can achieve
significant power and energy savings. This optimization technique
is known as Dynamic Voltage and Frequency Scaling (DVFS).
However, voltage and frequency decrease slows down the opera-
tion of the circuit, and has to be applied in a way the required
timing deadlines of all the tasks are still met. Furthermore, the
process of scaling voltage and/or frequency introduces additional
latencies, which implies that we have to develop a set of require-
ments that define the applicability of this approach.

Regarding the application of DVFS to the XMOS chips, we
assume that different processors/cores can have different (V, f)
settings, while the threads running on the same processor/core at
the same time must have the same (V, f) setting. We also assume
that the wake-up time is big enough in relation to the execution
times of the tasks to avoid the shutdown of separate processors.
However, as we will see, our approach can be easily extended to
take into account the possibility of shutdown.

Given a set of tasks and their corresponding deadlines, our
objective is to provide a scheduling and allocation, and also assign
voltage and frequency to each processor in a way the total energy
consumption is optimized, while meeting the task deadlines. We
assume that the tasks are heterogeneous, and they in general have
different starting times and deadlines. We further assume that
there is no precedence between tasks, and no preemption.
Regarding the estimation of the corresponding values for execu-
tion time and power/energy consumption, in the deterministic
case we assume that there are available analysis tools that give us
such estimations, which are a necessary input to the scheduling
algorithms we present here. Since this work has been done in the
context of the ENTRA project [5], where tools for the estimation at
compile time of the energy consumption and execution time of
programs are being developed, we have direct access to such tools.
For example, we can use the energy analyzer of the CiaoPP tool [6]
already developed. In addition we could also use any existing
timing analysis tools, for which great amount of work have been
devoted. On the other hand, an ongoing work in the ENTRA project
[5] is dedicated to deriving probability functions of both execution
time and energy consumption, as well as the interdependence
between different variables that represent time and energy of
different tasks, which is the necessary input to the stochastic
scheduler.

In general, the problem of scheduling and allocation is NP-hard.
For this reason, different heuristic algorithms have been developed
that are capable of obtaining sub-optimal solutions in real time, such
as [7], which is based on Artificial Bee Colony for makespan
minimization and machine occupation maximization, or [8], which
compares the performances of a hybrid genetic algorithm, a hybrid
simulated annealing and particle swarm optimization for the flow
shop scheduling problem in a manufacturing supply chain. Many of
these heuristic approaches use evolutionary algorithms (EAs), e.g. [9]
for the vehicle routing problem, and in particular genetic algorithms
(GAs) [10–12]. An EA is a well-known bio-inspired approach based
on the principle of the survival of the fittest. Its most important
advantage is a fast exploration of the search space, which allows the
quick finding of acceptable solutions. This is the reason our scheduler
is based on EAs. Since DVFS reduces energy, but increases execution
time, these two magnitudes are clearly in conflict. For this reason, we
use a multi-objective optimization approach, in order to find a trade-
off between energy consumption and execution time. We also
provide an appropriate representation of solutions that captures
the two levels of parallelism, i.e., at both processor and thread level,
and at the same time performs allocation and scheduling and
identifies appropriate (V, f) settings in real time, exploring in this

way the entire search space. As far as we know, the work presented
in this paper is the first solution to mentioned type of problems.

The rest of the paper is organized as follows. Section 2 presents
the most relevant related work and emphasizes the most impor-
tant advantages of our approach. Section 3 details the sources of
power consumption in CPUs and sets up the constraints that are
the basis for generating a solution. Section 4 explains the problem
that is being solved and points out the main differences between
deterministic and stochastic scheduling. Section 5 details the
implemented approach, while Section 6 explains the experimen-
tation environment and presents the most significant results.
Finally, Section 7 draws the most important conclusions and gives
some directions for future work.

2. Related work

The related work to the one presented here falls into a great
variety of topics, yet the ones with the closest relation are energy-
aware scheduling approaches using DVFS, in particular the ones
based on EAs (GAs). In the following we present these techniques
and emphasize the main advantages of our approach.

2.1. Energy-aware deterministic scheduling

Since DVFS can provide significant energy savings, its optimal
usage has been extensively studied. Some examples divide schedul-
ing and allocation in two separate steps, such as the one given in [13],
where in the first step the allocation problem is solved using Linear
Programming, while in the second one the scheduling problem is
solved for separate processors using Bin Packing. Another approach
[10] solves the scheduling problem using a GA that integrates DVFS in
the fitness function. However, such a division of the problem reduces
the search space, since it becomes limited by the optimal solution of
the first part of the problem, which does not always correspond to
the global optimum. For this reason, we believe that better solutions
can be achieved by solving the scheduling and allocation problem at
the same time, while also accounting for the DVFS. There is one
example of GA-based scheduling [11] that combines scheduling,
allocation and power management in one process. However, it only
deals with voltage scaling.

There is also a significant group of publications on using GAs for
the optimal scheduling and allocation in multiprocessor systems
with the DVFS feature. For example, the approach presented in [12]
aims to minimize both energy and makespan as a bi-objective
problem. The same problem is solved in another work [14], but
using the island model of parallel GA populations. Another approach
[15] treats the problem from two opposite points of view: in the first
one, it optimizes the energy given the scheduler length, while in the
other one it optimizes the scheduling length given the energy bound.
However, none of the solutions include the possibility of two levels of
parallelism as in our work, where each processor can have a number
of different threads executing in parallel.

2.2. Energy-aware stochastic scheduling

Stochastic scheduling has gained lots of interest over the years,
since many different cases include uncertainty. In general,
approaches to optimization under uncertainty include various mod-
eling philosophies, the most important being the following ones:

� Expectation minimization.
� Minimization of deviations from goals.
� Minimization of maximum costs.
� Optimization over soft constraints.

Z. Banković, P. López-García / Neurocomputing 150 (2015) 82–89 83

Our approach clearly belongs to the first group. The solution
presented in [16] is in the same group, however, it solves the
stochastic scheduling problem by reducing it to the deterministic
case. The benefit of this approach is the lower execution time, yet
at the cost of decreased accuracy.

Regarding DV(F)S-based approaches, the typical ones are pre-
sented in [17,18]. The first one [17] belongs to the group that take
advantage of soft constraints, in particular soft deadlines. How-
ever, it also divides the problem into two steps: in the first one it
allocates cycles to tasks and schedules them to deliver perfor-
mance guarantees, while in the second step it takes advantage of
the soft deadlines to scale the voltage. The same approach is
followed by the second GA-based work [18]. The only difference is
that in this case the problem is divided into task mapping and
task/voltage scheduling. As before, dividing the problem into two
separate steps reduces the search space and does not always result
in an optimal solution.

2.3. Advantages

Having presented the most important solutions from the state-
of-the-art and their issues, we can emphasize the following
advantages of our approach:

1. Thanks to the ENTRA project results, we can assume the avail-
ability of safe approximations of probability density functions for
the execution time and power consumption, which give us the
opportunity to gain higher accuracy when solving the scheduling
problem.

2. By considering the scheduling, allocation, and voltage and fre-
quency assignment at the same time, we explore the complete
search space, and thus we have bigger chances of finding the most
optimal solution.

3. Finally, our approach is the only one that supports two levels of
parallelism: multicore with multiple threads running on each core.

3. CPU power consumption

The energy required to complete a (set of) task(s) in time T on a
processor, given its clock frequency f and its voltage V, is defined
by

Ecpu;f ;V ¼
Z t0 þT

t0
Pcpu;f ;V ðtÞ dt ð1Þ

where Pcpu;f ;V is the (time varying) power of the processor with the
(V, f) setting. This power can be expressed as

Pcpu;f ;V ðtÞ ¼ Pfix
cpu;V þPidle;f ;V þPact

cpu;f ;V ðtÞ ð2Þ

where Pfix
cpu;V is the portion of the power that includes Phase

Locked Loop (PLL) clock generator and leakage power consump-
tion in the case of the XMOS chips [4], which is the part that only
depends on voltage, not on frequency. Pidle;f ;V is the power spent
when the processor is not executing any application, e.g., for
maintaining the clock signal active. For a certain fixed (V, f)
setting, the sum of these two values does not change in time.
For this reason, in the further text we will call this sum the
standing power consumption, denoted Pstd

cpu;V ;f . This power can be
easily obtained by measuring the CPU power when there are no
running applications for each (V, f) setting. Pact

cpu;f ;V ðtÞ is the active
power spent on switching activity during the execution of the
application(s). Thus, formula (2) can be written as

Pcpu;f ;V ðtÞ ¼ Pstd
cpu;f ;V þPact

cpu;f ;V ðtÞ ð3Þ

which used in (1) gives the energy consumed during time T:

Ecpu;f ;V ¼ Pstd
cpu;f ;V � Tþ ∑

m

i ¼ 1
Pi;f ;V � Ti ð4Þ

where Pi;f ;V is the power spent by the application i, which is
completed in time Ti, and m is the number of threads (thus, the
maximum number of applications that can be executed on one
processor at any moment is m). In the case when the threads can
complete more than one application within time T, formula (4) has
the following form:

Ecpu;f ;V ¼ Pstd
cpu;f ;V � Tþ ∑

m

i ¼ 1
∑
k

j ¼ 1
Pij;f ;V � Tij ð5Þ

where k is the maximum number of applications a thread can
execute in time T, and Tij is the execution time of the application j
running on thread i.

3.1. Introducing dynamic voltage and frequency scaling

The main benefit of introducing DVFS lies in the significant
energy reduction. However, we have to bear in mind that DVFS
slows down the execution of the tasks, and in our scheduling
problem, the task deadlines, if they exist, always have to be met.
This gives us the first set of constraints, which will be explained in
more detail in Section 3.1.1. In addition, we have to make sure that
this process in reality decreases the energy consumption. Let us
assume that ci is the number of clock cycles needed to complete
the execution of task i (ci ¼ Ti � f , where Ti is the execution time of
task i and f is the clock frequency), cimax is the maximum of all ci, αi

is the switching activity when executing task i, Ceff is the effective
capacitance of the chip, and k1 is the energy overhead of DVFS.
Then, from the previous constraints we can conclude that the
energy consumed at a clock frequency f has the following form:

Eðf Þ � k1þ
k2
f
þk3 � f 2 ð6Þ

where k2 � Pstd
cpu;f ;V � cmax

i , and k3 � Ceff �∑m
i ¼ 1αi � ci. Clearly, E(f) has

a minimum for f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=2 k33

p
, which means that a constant

decrease in voltage and frequency does not necessarily mean a
decrease in energy consumption. This gives us the second set of
constraints that will be derived in Section 3.1.2. In the notation
that we use in the following text we assume that variables are
expressed using upper case letters and constants are expressed
using lower case letters.

3.1.1. Timing constraint
In the general case, for each new frequency Fnew;i of each

processor i, after changing voltage and/or frequency, the deadlines
still have to be met:

8 iA ½1;n� 8 jA ½1;m� Toh;iþ
Cij

Fnew;i
rDij

� �
ð7Þ

where Toh;i is the time overhead introduced by DVFS on processor i
and Cij is the number of clock cycles needed to execute the
application j on processor i (and the corresponding execution time
is Cij=Fnew;i, which is reasonable to assume, given that in the XMOS
chips there is no cache memory and thus there are no pipeline
stalls, nor cache misses that would introduce additional time
overhead). Finally, Dij is the deadline of the task j executed on
processor i. We further have

8 iA ½1;n� Toh;i ¼ tohV þTohf ;i � tohV þ
10
Fold;i

þ 2
Fnew;i

� �
ð8Þ

where tohV is the time overhead of performing voltage scaling
(assumed constant) and Tohf ;i is the time overhead of performing
frequency scaling on processor i, which takes 10 clock cycles at

Z. Banković, P. López-García / Neurocomputing 150 (2015) 82–8984

most of the old clock, and two cycles of the new clock [19]. If we
want to include the possibility of shutting down the processor, the
time overhead in this case would be the wake-up time. Finally,
from (7) and (8) we get the timing constraints set:

8 iA ½1;n� 8 jA ½1;m� ðFnew;i � ðCijþ2ÞrDij�tohV �10=Fold;iÞ ð9Þ

where we assume that we know tohV , and both Fold;i and Fnew;i can
take one value from the finite set of pre-established values (V, f).
Thus, the only unknown parameters are Cij.

3.1.2. Energy minimization constraint
The second set of requirements is derived from the condition of

reducing the total energy during some known time t, high enough
so that it permits the termination of all the applications. This
implies the following condition:

8 iA ½1;n�; 8 jA ½1;m� ðtZmax
i;j

DijÞ ð10Þ

Thus, for each processor, using formula (5) we have

∑
n

i ¼ 1
EoldZ ∑

n

i ¼ 1
Enew

) ∑
n

i ¼ 1
pstdi;cpu;Fold;i ;Vold;i

� tþ ∑
n

i ¼ 1
∑
m

j ¼ 1
pij;Vold;i ;Fold;i �

Cij

Fold;i

Z ∑
n

i ¼ 1
eohþ ∑

n

i ¼ 1
pstdi;cpu;Fnew;i ;Vnew;i

� tþ ∑
n

i ¼ 1
∑
m

j ¼ 1
pij;Vnew;i ;Fnew;i

� Cij

Fnew;i

ð11Þ
where eoh is the energy spent on voltage and frequency scaling
(assumed the same for all processors), pij;Vold;i ;Fold;i and pij;Vnew;i ;Fnew;i

are the estimated total power consumptions of the application j on
processor i in the different (V, f) settings, while pcpu

std is the standing
power explained in Section 3 in different settings. Finally, from
(11), we get

∑
n

i ¼ 1
∑
m

j ¼ 1

pij;Vnew;i ;Fnew;i

Fnew;i
�
pij;Vold;i ;Fold;i

Fold;i

� �
� Cij

rt � ∑
n

i ¼ 1
ðpstdi;cpu;Fold;i ;Vold;i

�pstdi;cpu;Fnew;i ;Vnew;i
Þ�n � eoh ð12Þ

where the only unknown parameters are Cij.

4. Problem definition: deterministic vs. stochastic

In essence, the objective of the scheduler that we propose in
this paper is to optimize the total energy consumption. This is
expressed by the following formula for a given set of n hetero-
genous machines and a set of k independent tasks, for a particular
machine-task assignment χ:

EF ðχÞ ¼ ∑
1r irn

Pst;i � TF ðχÞþ ∑
1r jrk

xi;j � pi;j � τi;j
 !

ð13Þ

where

TF ðχÞ ¼ max
1r irn

∑
1r jrk

xi;j � τi;j
()

ð14Þ

is the total execution time, Pst;i is the standing power of the
machine i, xi;j is a binary value, xi;jAf0;1g, that represents whether
the task j is executed on the machine i (xi;j ¼ 1) or not (xi;j ¼ 0), pi;j
is the (dynamic) power consumption of the task j on the machine i,
and τi;j is the execution time of the task j on the machine i.

The deterministic scheduler uses the (deterministic) expected
values of the execution time and power consumption: E½τi;j� ¼ τi;j ,
and E½pi;j� ¼ pi;j . Thus, in this case the scheduler considers the

following value:

cEF ðχÞ ¼ ∑
1r irn

Pst;i �cTF þ ∑
1r jrk

xi;j � pi;j � τi;j
 !

ð15Þ

where

cTF ðχÞ ¼ max
1r irn

∑
1r jrk

xi;j � τi;j
()

ð16Þ

and, for the set of all possible schedules π, the objective is

min
χAπ

fcEF ðχÞg ð17Þ

and, if we are also interested in optimizing the execution time, we
would add

min
χAπ

fcTF ðχÞg ð18Þ

However, the stochastic scheduler treats execution time and power
consumption as random variables, and its objective is the following:

min
χAπ

fEF ðχÞg ð19Þ

i.e., minimizing the expected value of the energy consumed. Simi-
larly, if we want to optimize the execution time, the objective is

min
χAπ

fTF ðχÞg ð20Þ

There exists a body of work which proves that TF ðχÞ is under-
approximated by cTF ðχÞ. Some examples are given in [1,2]. This
means that if the actual execution times of the tasks are different
from the expected ones used in the deterministic scheduler, the
result may substantially deviate from the expected one. The
authors of the cited works show that better schedules can be
achieved by using the distributions of the task execution times.

The same can be proven for energy, using Jensen's inequality in
the same way as used in [2]. Since EF ðχÞ is a non-decreasing convex
function, Jensen's inequality

E½f ðXÞ�Z f ðE½X�Þ ð21Þ
can be applied on it. This gives us the following:

EF ¼ E ∑
1r irn

ðPst;i � TFþ ∑
1r jrk

xi;j � pi;j � τi;jÞ
" #

¼ E ∑
1r irn

Pst;i � max
1r lrn

∑
1r jrk

xl;j � τl;j
" #

þE ∑
1r irn

∑
1r jrk

xi;j � pi;j � τi;j
" #

¼ ∑
1r irn

Pst;i � E max
1r lrn

∑
1r jrk

xl;j � τl;j
 !" #

þE ∑
1r irn

∑
1r jrk

xi;j � pi;j � τi;j
" #

Z ∑
1r irn

Pst;i � max
1r lrn

E ∑
1r jrk

xl;j � τl;j
" #

þ ∑
1r irn

∑
1r jrk

xi;j � pi;j � τi;j

¼ ∑
1r irn

Pst;i � max
1r lrn

∑
1r jrk

xl;j � τl;j þ ∑
1r irn

∑
1r jrk

xi;j � pi;j � τi;j

¼ ∑
mi AM

Pst;i �cTF þ ∑
mi AM

∑
vi AV

xi;j � pi;j � τi;j

¼cEF ð22Þ
Thus, EF is under-approximated by cEF . In our experiments we will
confirm that the stochastic scheduler in certain situations per-
forms better than the deterministic one.

5. Our proposal for solving the scheduling problem

Both the deterministic and the stochastic approach for the
optimal scheduling and allocation of tasks are based on the same

Z. Banković, P. López-García / Neurocomputing 150 (2015) 82–89 85

multi-objective EA, the only difference is the objective function.
The algorithmwe propose is based on a simple EA. We have tested
two common techniques for finding or approximating the Pareto-
optimal front in multi-objective optimization problems, namely an
improved version of Nondominated Sorting Genetic Algorithm
(NSGA-II) [20] as well as an improved version of the Strength
Pareto Evolutionary algorithm (SPEA2) [21], which we describe in
the following. We also explain other important aspects of our
implementation in more detail.

5.1. Multi-objective EA: NSGA-II vs. SPEA2

As a brief reminder, we will first explain the idea of Pareto-
front and non-dominance. Without loss of generality, in minimi-
zation problems, a vector xð1Þ is partially less than another vector
xð2Þ (denoted ðxð1Þ!xð2ÞÞ), if no value in xð2Þ is less than its
corresponding value in xð1Þ, and at least one value in xð2Þ is strictly
greater than its corresponding value in xð1Þ. In this case we say that
xð1Þ dominates xð2Þ. Also, if none of the vectors dominate the other
one, they are said to be indifferent. All the vectors that are not
dominated by another are called nondominated and they form the
so-called Pareto front. All the vectors belonging to the Pareto front
can be a solution to the multi-objective problem.

As previously mentioned, the most common approaches for
approximating the Pareto front with EAs are NSGA and SPEA. The
original NSGA [22] employs ranking selection to emphasize good
points and a niche method to maintain stable subpopulations of
good points. A ranking is performed in the following way:
nondominated solutions are assigned rank 1, rank 2 includes the
solutions dominated only by those from rank 1, etc. The rank of
each solution is actually its dummy fitness value. In order to get
the fitness value, the solutions of the same rank are grouped in
niches, for which is necessary to define a sharing value, which is
the maximal of the possible distances between two solutions. The
fitness value is then obtained by dividing the dummy fitness, i.e.,
the rank, by the size of the niche. However, the definition of the
sharing value is not very clear, which is one of the reasons for
criticism of NSGA. Other reasons for criticism are its computational
complexity, OðmN3Þ, and its non-elitism, i.e., there is no propaga-
tion of the solutions to the next generation. In order to overcome
these problems the NSGA-II [20] was proposed. By performing a
systematic book-keeping, the complexity was reduced to OðmN2Þ,
while the selection process is performed on a mating pool which
consists of both parent and child populations, providing in this
way the possibility of propagating solutions to the next generation.
Finally, instead of defining a sharing value, it uses the crowding
distance, which is the average distance between two points on
either side of this point along each of the objectives.

On the other hand, SPEA [23] uses a regular population and an
archive that is an external set containing the nondominated
solutions found so far. The algorithm starts with an initial
population and an empty archive, and performs the following
steps. First, all nondominated population members are copied to
the archive, and any dominated individuals or duplicates (regard-
ing the objective values) are removed from the archive. If the size
of the updated archive exceeds a predefined limit, some archive
members are deleted by a clustering technique which preserves
the characteristics of the nondominated front. Afterwards, fitness
values are assigned to both archive and population members:

� Each individual i in the archive is assigned a strength value
SðiÞA ½0;1Þ which is the number of population members j that
are dominated by or equal (i.e., indifferent) to i, divided by the
population size plus one. For the nondominated solutions this
also represents its fitness value F(i).

� The fitness F(j) of an individual j in the population is calculated
by summing the strength values S(i) of all archive members i
that dominate or are equal to j, and adding 1 at the end.

The rest of the steps follow the standard EA.
The main criticism of SPEA concerns its fitness assignment,

since all the individuals in the population dominated by the same
elements from the archive are assigned the same fitness value,
although some may dominate others. This means that if the
archive contains only one solution, all the solutions from the
population will have the same fitness value, in which case SPEA
will behave as a random search algorithm. Moreover, if there are
many indifferent solutions in a generation, none or little informa-
tion can be obtained from the partial ordering defined by the
dominance relation. In this case a density function is defined in
order to guide the search process more effectively. The previously
mentioned clustering technique can use this information for
reducing the nondominated front while preserving its character-
istics. However, it may lose some outer solutions which should be
kept in the archive in order to maintain a good spread of the
nondominated solutions.

In order to overcome these issues, SPEA2 [21] was proposed by
the same authors. It uses a fine-grained definition of the fitness
value, where the strength includes dominators from both the
archive and the population. Furthermore, it is divided by a density
value, which is a decreasing function of the distance to its k
nearest neighbors. In addition, the archive update is performed in
a way its size remains constant, meaning that it can contain even
dominated solutions, and it also prevents the removal of the
boundary solutions.

There are many comparisons of NSGA-II and SPEA2 in different
applications [24,25]. The general conclusion is that in the majority
of the situations their performances are comparable, although
SPEA2 outperforms NSGA-II as the number of objectives grows,
while NSGA-II performs better for lower number of objectives. This
suggests that in our case, NSGA-II might be a better solution, since
we have only two objectives.

5.2. EA implementation

5.2.1. Individual
The starting point, and one of the most important parts in

designing an EA-based system is always the representation of a
solution, i.e., an individual. In our case, the solution contains
information about temporal and spatial allocation of each task.
In other words, for each processor and each of its threads we
should have an ordered (in time) set of tasks. However, since in
this work we deal with DVFS, we have to add the information
about the (V, f) state of each processor. All the threads running on
the same processor at the same time have the same (V, f) setting,
and we assume that different processors can have different (V, f)
settings, in order to solve the most general problem.

We assume that a solution to the scheduling problem is a
permutation of the task identifiers (IDs), where their order also
stands for the order of their temporal execution, assuming that
each task has a unique ID. In order to solve the allocation problem,
i.e., on which thread (and processor) each task is executed, we add
delimiters to the permutation of the task IDs that define where the
tasks are being executed, i.e., processor, thread and (V, f) setting
(the tasks between two delimiters are executed on the right-side
one). In order to be able to distinguish the delimiters from the
tasks, delimiters are coded as negative three-digit numbers, where
the first digit stands for the processor, the second one for the
thread on that processor, and the third one for the processor (V, f)
setting (recall that there is a finite number of settings). As an
example, a part of a solution is depicted in Fig. 1, where tasks with

Z. Banković, P. López-García / Neurocomputing 150 (2015) 82–8986

IDs 1, 2, 5 and 7 are executed in that order on the thread 4 of the
core 2, with the (V, f) setting coded as 4. In the most general case,
the order of delimiters is random. However, if two consecutive
delimiters that belong to the same processor have different
settings, this means that they are not being executed in parallel,
since the state has to be changed. Representing individual in the
described way has provided us with a relatively simple solution,
which does not introduce great overhead when executing the EA.

5.2.2. Population initialization
Individuals in the initial population are created by randomly

assigning tasks to random threads in random (V, f) settings.

5.3. Solution perturbations

Given that all the tasks and all the delimiters are different,
different solutions are always permutations of the set of tasks and
the set of delimiters. This gives us the opportunity to use some of
the permutation-based crossover operators, and in this case we
are using partial match crossover, since it performed better in
terms of the objective function than cycle crossover, and slightly
better than order crossover in terms of the objective function and
the execution time. Since the order of delimiters is not important
in the most general case, this operator provides at the same time
variety in consecutive changes of (V, f) settings, as well as the
capability of moving tasks from one thread to another. Regarding
mutation, it is implemented in the way that two random threads
exchange two random tasks with certain (low) probability.

5.3.1. Objective functions
The objective functions in the deterministic case are given by

the already explained formulas (15) for energy consumption and
(16) for makespan, and in the stochastic case by formula (19) for
energy and (20) for makespan. The minimization of both values is
required, while they are both penalized if the corresponding
deadline is not met by multiplying the calculated value by 10.
Since in this experiment we assume that random variables that
define time and energy consumption of different tasks are inde-
pendent (which is reasonable since they are random), the total
energy or execution time of the tasks that are being executed
sequentially on the same thread is a random variable obtained as
the sum of the random variables that define energy or execution
time of each task. Finally, in the case of the stochastic scheduling
the expected values that we want to minimize are estimated using
the Monte Carlo method.

6. Experimental evaluation

6.1. Testing environment

6.1.1. XMOS chips
Since this work is performed in the context of the ENTRA

project, we target the architecture of the XMOS chips as a proof of
concept. However, the same approach can be applied to any kind
of DVFS-enabled multi-processor architectures, either with or
without multiple threads. In the case of the XMOS chips, both
voltage and frequency scaling are possible and both introduce
a time overhead. All of the XMOS chips provide the possibility
of frequency scaling due to the existence of a programable
frequency divider. The time overhead introduced when changing

the frequency is not more than 10 cycles of the old clock, plus two
more cycles of the new clock, as expressed in Eq. (8).

However, only the XS1-SU01A-FB96 [26] chip provides the
possibility of voltage scaling due to the existence of two DC–DC
converters whose output voltage can belong to the range (0.6 V,
1.3 V). In order to apply DVSF, we should have a list of Voltage-
Frequency (V, f) pairs or ranges that provide correct chip function-
ing. The latency in this case is not controllable, and can be
estimated in the following way. Since the switching frequency of
the converter is 1 MHz, and assuming we have linear control, the
bandwidth should be 1/10 to 1/7 of it, i.e., 150 kHz in the best case.
Thus, the time it takes for the output voltage to stabilize is
1/150 kHz, which is around 6 μs.

Since this experiment is only a proof of concept, we assume
that we have two different processors, where each processor has
two different threads. We have experimentally concluded that the
XMOS chips can function properly with the voltage and frequency
levels given in Table 1. Column Pst shows the typical static power
consumption for both settings.

6.1.2. Input data
The input data to our scheduling algorithm consists of a set of

independent tasks whose power consumption and execution time
are given as random variables with a known probability density
function. The following density functions are available at moment:
Uniform, Constant, Exponential, Normal Chi-squared, Gamma,
Pareto, Poisson, Binomial, Negative Binomial, and any combination
of the previous expressed as a sum of products. A sampling from
all the above density functions can be obtained by using a package
implemented by Robert Davies [27]. In different (V, f) settings, the
power consumption is scaled with V2 and f, and the corresponding
execution time is scaled with f. Finally, the energy of a task is a
random variable obtained as the product of their corresponding
execution time and power random variables.

In order to validate the claim that the deterministic scheduler is
not always optimal, we have created an optimal stochastic
scheduler for a set of tasks with random power and execution
time probability density functions taken from the above set. Then,
we have created an optimal deterministic scheduler using the
expected values of each distribution. Finally, in order to test the
performance of both of them, we have created 10 different sets of
tasks by taking a random sample of each underlying distribution.

6.2. Obtained results and discussion

We have conducted a set of experiments with the aim of
evaluating the suitability of both the NSGA-II and the SPEA2
approaches for solving the scheduling problem. All the experi-
ments have different input data, i.e., their task time and power
distributions are different. In both the stochastic and the determi-
nistic case the underlying EA has 100 individuals, it is evolved for
50 generations, the crossover probability is 90%, and the mutation
probability is 40%. In the case of SPEA2 the archive contains 100
nondominated individuals.

In the first set of experiments we have evaluated the perfor-
mance of SPEA2, taking as the final result the nondominated

Fig. 1. An example of (part of) a solution (i.e., individual) representation.

Table 1
Valid (V,f) levels and static power for XMOS chips.

VðVÞ f ðMHzÞ PstðmWÞ

0.95 500 18.05
0.87 400 15.138

Z. Banković, P. López-García / Neurocomputing 150 (2015) 82–89 87

solution with the highest fitness value. The results of the experi-
ments are presented in Table 2 and show the percentage of cases
where the stochastic scheduler performs better than the determi-
nistic one, as well as the maximal achieved improvement.

In the second set of experiments we have also evaluated SPEA2,
but this time the final result is the nondominated solution with
minimal energy, whose execution time is lower than the given
deadline. The results are presented in Table 3.

In both sets of experiments it is evident that the number of
cases improved by the stochastic scheduler is significant, as well as
the amount of separate improvements. Furthermore, it is obvious
that in our case, it is more beneficial to take the solution with the
lowest energy than the nondominated solution with the highest
fitness value, since in the second set of experiments we have
obtained both higher energy savings and higher percentage of the
solutions improved by the stochastic scheduler. Also, we can
clearly see the trade-off between time and energy, i.e., bigger
energy improvements lead to smaller execution time improve-
ments and vice versa. However, the results obtained by SPEA2 are
in general inconclusive, in the sense that it is not clear when the
stochastic scheduler improves the results of the deterministic one.
Bearing in mind that the good characteristics of SPEA2 become
more relevant as the number of objectives grows, a possible
explanation for their somewhat unsatisfactory results is that we
only have two objectives. For this reason, we implemented the
NSGA-II algorithm as well.

The last set of experiments is performed using the NSGA-II
algorithm, taking the non-dominated individual with the minimal
energy as the final solution. The results are presented in Table 4.

As we can observe, the results are much more satisfactory,
since in almost all the experiments the stochastic scheduler
improves the performance of its deterministic counterpart, achiev-
ing higher energy savings of up to 15.4%. In the case where the
stochastic scheduler does not improve the energy consumption in
all the experiments, it improves significantly the execution time.
Thus, we can say that the results of the NSGA-II algorithm are
quite satisfactory, and it represents a better choice for our problem
than the SPEA2 algorithm.

7. Conclusions and future work

In this work we have presented an approach for optimizing the
energy consumption in a multiprocessor and multithreaded archi-
tecture. As far as we know, our approach is the only one that
performs task scheduling and allocation, as well as appropriate
voltage and frequency scaling at the same time in a single step and
deals with two levels of parallelism. We have also experimentally
shown that the stochastic scheduler can improve the results of the
deterministic one in the situations where there is uncertainty in
some of the parameters.

Our algorithms will be integrated in the tool set developed
within the ENTRA project, and will take power and execution time
estimations provided by the static analyzer of the tool set as input,
given in terms of both deterministic values and probability density
functions.

There are numerous possibilities to further improve the per-
formance of our approach. For example, the XMOS chips have the
possibility to automatically reduce the frequency of the processor
if all of its threads are waiting for an event, and thus decrease the
energy consumption even further. This feature will be included
into future versions of our scheduler, as well as the possibility of
shutting off separate components when they are not active.

Regarding the stochastic scheduler, one of its main drawbacks
is its high execution time due to the application of the Monte Carlo
method for estimating the expected value. Thus, we have to
explore the possibility of using faster estimators. Another possibi-
lity for achieving speed-up is using parallel multi-objective opti-
mization, such as the one presented in [28].

In addition, our current implementation assumes that both
execution time and power consumption of different tasks are
independent, which is reasonable in this case since their values are
randomly chosen. However, in a real world situation this is not
very realistic, having in mind that they are executed on the same
platform. Thus, we have to study different possibilities of introdu-
cing the dependence between different variables. Finally, we plan
to test the schedulers on real data.

Acknowledgments

The research leading to these results has received funding from
the European Union 7th Framework Programme under grant
agreement 318337, ENTRA - Whole-Systems Energy Transparency,
Spanish MINECO TIN'12-39391 StrongSoft and TIN'08-05624
DOVES projects, and Madrid TIC-1465 PROMETIDOS-CM project.

References

[1] A. Doğan, F. özgüner, Genetic algorithm based scheduling of meta-tasks with
stochastic execution times in heterogeneous computing systems, Clust.
Comput. 7 (2004) 177–190.

[2] T. Kidd, D. Hensgen, Why the mean is inadequate for accurate scheduling
decisions, in: Proceedings of the 1999 International Symposium on Parallel

Table 2
SPEA2 performance: the solution with the highest fitness value.

Energy Time

improved (%) max_improvement (%) improved (%) max_improvement (%)

40 1.6 40 29.7
20 4.2 0 NA
20 2.6 90 31.8
0 NA 70 19.6

90 8 0 NA
80 5.5 20 13.6
60 2.1 20 20.21

Table 3
SPEA2 performance: the solution with the lowest energy.

Energy Time

improved (%) max_improvement (%) improved (%) max_improvement (%)

30 5.5 0 NA
20 6.2 0 NA
40 3.1 70 20.1
70 1.5 10 5.1
20 2 40 25.1

100 13.5 10 24.4
50 4.2 0 NA

Table 4
NSGA-II performance: the solution with the lowest energy.

Energy Time

improved (%) max_improvement (%) improved (%) max_improvement (%)

100 13.2 0 NA
100 12.6 30 15.5
60 2.4 30 31.2

100 12.8 0 NA
100 14.8 0 NA
100 12.5 0 NA
100 15.4 0 NA

Z. Banković, P. López-García / Neurocomputing 150 (2015) 82–8988

Architectures, Algorithms and Networks, ISPAN '99, IEEE Computer Society,
Washington, DC, USA, 1999, pp. 262–267. URL: 〈http://dl.acm.org/citation.cfm?
id=850987.855693〉.

[3] XMOS, xCore : Architecture Overview, Technical Report, XMOS Ltd., 2013. URL:
〈https://www.xmos.com/en/download/public/xCORE-Architecture%28X9650D
%29.pdf〉.

[4] XMOS, Estimating Power Consumption for XS1-L Devices, Technical Report,
XMOS Ltd., 2012. URL: 〈http://www.xmos.com/download/public/Power-Con
sumption-For-XS1-L-Devices(X4271B).pdf〉.

[5] Roskilde Univ., Univ. of Bristol, IMDEA Software Institute, XMOS, The ENTRA
Project, 〈http://entraproject.eu/〉, 2013.

[6] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech, M.
Hermenegildo, K. Eder, Energy consumption analysis of programs based on
XMOS ISA-level models, in: Pre-proceedings of the 23rd International Sym-
posium on Logic-Based Program Synthesis and Transformation (LOPSTR'13),
2013.

[7] A. Madureira, I. Pereira, P. Pereira, A. Abraham, Negotiation mechanism for
self-organized scheduling system with collective intelligence, Neurocomput-
ing 132 (2014) 97–110, Innovations in Nature Inspired Optimization and
Learning Methods Selected papers from the Third World Congress on Nature
and Biologically Inspired Computing (NaBIC2011) Machines learning for Non-
Linear Processing Selected papers from the 2011 International Conference on
Non-Linear Speech Processing (NoLISP 2011).

[8] A. Noroozi, H. Mokhtari, I.N.K. Abadi, Research on computational intelligence
algorithms with adaptive learning approach for scheduling problems with
batch processing machines, Neurocomputing 101 (2013) 190–203.

[9] C. Chira, J. Sedano, J.R. Villar, M. Cámara, E. Corchado, Urban bicycles renting
systems: modelling and optimization using nature-inspired search methods,
Neurocomputing 135 (2014) 98–106, Advances in Learning Schemes for
Function Approximation Selected papers from the 11th International Con-
ference on Intelligent Systems Design and Applications (ISDA 2011).

[10] Y. Chang-tian, Y. Jiong, Energy-aware genetic algorithms for task scheduling in
cloud computing, in: 7th ChinaGrid Annual Conference (CHINAGRID'12), 2012,
pp. 43–48. http://dx.doi.org/10.1109/ChinaGrid.2012.15.

[11] V. Kianzad, S. Bhattacharyya, G. Qu, Casper: an integrated energy-driven
approach for task graph scheduling on distributed embedded systems, in:
16th IEEE International Conference on Application-Specific Systems, Architec-
ture Processors (ASAP'05), 2005, pp. 191–197. http://dx.doi.org/10.1109/ASAP.
2005.23.

[12] M. Mezmaz, Y.C. Lee, N. Melab, E. Talbi, A. Zomaya, A bi-objective hybrid
genetic algorithm to minimize energy consumption and makespan for
precedence-constrained applications using dynamic voltage scaling, in: IEEE
Congress on Evolutionary Computation (CEC'10), 2010, pp. 1–8. http://dx.doi.
org/10.1109/CEC.2010.5586540.

[13] F. Paterna, A. Acquaviva, A. Caprara, F. Papariello, G. Desoli, L. Benini, An
efficient on-line task allocation algorithm for qos and energy efficiency in
multicore multimedia platforms, in: Design, Automation Test in Europe
Conference Exhibition (DATE), 2011, March, pp. 1–6. http://dx.doi.org/10.
1109/DATE.2011.5763025.

[14] M.-S. Mezmaz, Y. Kessaci, Y. Lee, N. Melab, E.-G. Talbi, A. Zomaya, D. Tuyttens,
A parallel island-based hybrid genetic algorithm for precedence-constrained
applications to minimize energy consumption and makespan, in: 11th IEEE/
ACM International Conference on Grid Computing (GRID'10), 2010, pp. 274–
281. http://dx.doi.org/10.1109/GRID.2010.5697985.

[15] P. Kumar, S. Palani, A dynamic voltage scaling with single power supply and
varying speed factor for multiprocessor system using genetic algorithm, in:
2012 International Conference on Pattern Recognition, Informatics and Med-
ical Engineering (PRIME), 2012, pp. 342–346. http://dx.doi.org/10.1109/
ICPRIME.2012.6208369.

[16] C. Gong, X. Wang, W. Xu, A. Tajer, Distributed real-time energy scheduling in
smart grid: stochastic model and fast optimization, IEEE Trans Smart Grid 4
(2013) 1476–1489.

[17] W. Yuan, K. Nahrstedt, Energy-efficient soft real-time cpu scheduling for
mobile multimedia systems, in: Proceedings of the Nineteenth ACM Sympo-
sium on Operating Systems Principles, SOSP'03, ACM, New York, NY, USA,
2003, pp. 149–163. http://dx.doi.acm.org/10.1145/945445.945460.

[18] B. Gorjiara, N. Bagherzadeh, P.H. Chou, Ultra-fast and efficient algorithm for
energy optimization by gradient-based stochastic voltage and task scheduling,
ACM Trans. Des. Autom. Electron. Syst. 12 (2007).

[19] XMOS, XS1-L Active Energy Conservation, Technical Report, XMOS Ltd., 2010.
URL: 〈https://www.xmos.com/download/public/XS1-L-Active-Energy-Conser
vation%28X7411A%29.pdf〉.

[20] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast elitist multi-objective genetic
algorithm: Nsga-ii, IEEE Trans. Evol. Comput. 6 (2000) 182–197.

[21] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength Pareto
Evolutionary Algorithm, Technical Report, Computer Engineering and Net-
works Laboratory (TIK), 2001.

[22] N. Srinivas, K. Deb, Multiobjective optimization using nondominated sorting
in genetic algorithms, Evol. Comput. 2 (1994) 221–248.

[23] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative
case study and the strength pareto approach, IEEE Trans. Evol. Comput. 3
(1999) 257–271.

[24] J. Lee, L. Choi, S. Park, Multi-objective genetic algorithms, nsga-ii and spea2,
for document clustering, in: T.-h. Kim, H. Adeli, H.-k. Kim, H.-j. Kang, K. Kim,
A. Kiumi, B.-H. Kang (Eds.), Software Engineering, Business Continuity, and
Education, Communications in Computer and Information Science, vol. 257,
Springer, Berlin, Heidelberg, 2011,
pp. 219–227. http://dx.doi.org/10.1007/978-3-642-27207-3_22.

[25] T. Hiroyasu, S. Nakayama, M. Miki, Comparison study of spea2þ , spea2, and
nsga-ii in diesel engine emissions and fuel economy problem, in: IEEE
Congress on Evolutionary Computation, CEC 2005, vol. 1, 2005, pp. 236–242.
http://dx.doi.org/10.1109/CEC.2005.1554690.

[26] XMOS, XS1-SU01A-FB96 Datasheet, Technical Report, XMOS Ltd., 2012. URL:
〈https://www.xmos.com/download/public/XS1-SU01A-FB96-Datasheet%
28X7199A%29.pdf〉.

[27] R. Davies, Random distributions, 〈http://www.robertnz.net/〉, 2013.
[28] M. Cámara, J. Ortega, F. de Toro, A single front genetic algorithm for parallel

multi-objective optimization in dynamic environments, Neurocomputing 72
(2009) 3570–3579, Financial Engineering Computational and Ambient Intelli-
gence (IWANN 2007).

Zorana Banković obtained her Electrical Engineer
degree from the Faculty of Electrical Engineering at
the University of Belgrade (Serbia) in 2005 and her Ph.
D. degree from the Technical University of Madrid
(UPM) in 2011. Currently she is a Post Doc at IMDEA
Software Institute. Her research work has been dedi-
cated to energy efficient security solutions for wireless
sensor networks, anomaly detection and thermal-
aware optimizations in data centers. Currently, her
research work is mainly dedicated to energy aware
software optimizations.

Pedro López-García received his Ph.D. degree in Com-
puter Science from the Technical University of Madrid
(UPM), Spain. He is currently Scientific Researcher at
the Spanish Council for Scientific Research (CSIC) and
Researcher at the IMDEA Institute for Research in
Software Development Technologies. His main areas
of interest include energy aware software engineering;
abstract interpretation based program analysis and
verification of nonfunctional program properties such
as resource usage (user defined, energy, execution time,
memory,etc.); parallel and distributed computing, and
constraint logic programming.

Z. Banković, P. López-García / Neurocomputing 150 (2015) 82–89 89

Attachment D4.2.2

Energy Efficient Allocation and

Scheduling for DVFS-enabled Multicore

Environments using a Multiobjective

Evolutionary Algorithm

Published in Genetic and Evolutionary
Computation Conference (GECCO 2015), pages

1353–1354, ACM, 2015

43

Energy Efficient Allocation and Scheduling for
DVFS-enabled Multicore Environments using a

Multiobjective Evolutionary Algorithm

Zorana Banković
IMDEA Software Institute

Campus Montegancedo s/n
28223 Pozuelo de Alarcon, Madrid, Spain

zorana.bankovic@imdea.org

Pedro López-García
IMDEA Software Institute and CSIC

Campus Montegancedo s/n
28223 Pozuelo de Alarcon, Madrid, Spain

pedro.lopez@imdea.org

ABSTRACT
We present an approach for the automatic solving of the
scheduling and allocation problem in multicore environments,
as well as assigning optimal voltage and frequency levels
to each core, using a multiobjective evolutionary algorithm
(EA) where both energy consumption and the makespan are
optimised and all deadlines are met. The main advantage of
our approach is that we deal with all the aspects of the prob-
lem at once, which allows searching the whole solution space.
In addition, the algorithm introduces the possibility of task
migration, which is a novelty in EA-based approaches. Our
results show that proper scheduling and allocation can pro-
vide significant energy savings in different scenarios: for our
test case, and comparing to the well known YDS algorithm,
up to 76% on average in the case of loose deadlines, and up
70% on average in the case of tight deadlines can be saved.

CCS Concepts
•Computing methodologies → Planning for deter-
ministic actions; •Information systems→ Information
systems applications;

Keywords
Evolutionary algorithms, multiobjective optimization, schedul-
ing, allocation, multicore

1. INTRODUCTION
The objective of this work is to efficiently solve the general

problem of the scheduling and allocation of different tasks
in multicore environments, and assign voltage and clock fre-
quency to each core in a way the total energy consump-
tion is minimised, while meeting all task deadlines. The
tasks are characterised with their release time, execution
time and deadline. In general, this problem is NP-hard,
and it has been typically solved with heuristic algorithms

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’15 July 11-15, 2015, Madrid, Spain
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3488-4/15/07.

DOI: http://dx.doi.org/10.1145/2739482.2764645

since they can provide good solutions within an acceptable
amount of time. For this reason, we use Evolutionary Algo-
rithms (EAs). Furthermore, different levels of voltage and
frequency are achieved by applying the Dynamic Voltage
and Frequency Scaling (DVFS) technique. Since this tech-
nique reduces energy, but increases execution time, these
two magnitudes are in conflict. For this reason, we use mul-
tiobjective optimisation.

All the existing solutions based on EA or Genetic Algo-
rithms (GA) that treat a similar problem address it by di-
viding it into subproblems by first performing the schedul-
ing, and then assigning the proper values of voltage and
frequency. In this way the search space is reduced, which is
not the case with our solution. Finally as far as we know,
none of the existing solutions introduces the possibility of
task migration.

We test our approach on multicore voltage and frequency
scalable architectures designed by XMOS [2]. For this rea-
son, our EA is based on an existing instruction-level energy
model, which is described in [1]. However, the approach can
easily be adapted to any multicore environment.

2. OUR PROPOSED APPROACH
We use the multiobjective NSGA-II algorithm to approx-

imate the Pareto front, where the objectives are the energy
consumption, calculated in the way presented in [1], and the
execution time, calculated as the time spent until the last
task finishes its execution. Both magnitudes should be min-
imised. However, all task deadlines have also to be met: the
execution time objective is penalised by multiplying it by 10
for each task that does not met its deadline.

2.1 Representation of Individuals
Our proposed representation for individuals is shown in

Fig.1. Each gene representing a unique task ID is followed
by a gene representing the number of cycles of the task that
is being executed in the current run. The order of task
IDs represents the order of their temporal execution, i.e,
scheduling. We also use negative two digit numbers to code
the spatial allocation of the tasks in order to distinguish it
from the tasks. The first digit represents the core where the
tasks are being executed and the second one an encoding
of the (V, f) state of that core. The tasks following the
allocation code are executed on that coded location.

The population is randomly initialised: tasks are assigned
to random cores and random number of cycles are assigned

Figure 1: An example of (part of) an individual.

to tasks. However, the probability of selecting a core de-
creases as more tasks are assigned to it.

2.2 Solution Perturbations

2.2.1 The Crossover Operator
We have designed our own operator in the following way:

each child takes the order of appearance of the tasks and
their allocation from one of the parents. However, it can
take the distribution of the number of cycles from any of
the parents with equal probability.

2.2.2 The Mutation Operator
The mutation operator can perform different actions in-

volving one or two tasks. Consider two tasks i and t. In
each generation we perform one of the following operations
with the same probability: swapping: i and t, together with
their corresponding number of cycles, change their positions
in the solution; moving : move i to a random position j; and
changing the number of cycles: assigns a different number
of cycles to task i in all of its appearances.

3. EXPERIMENTAL EVALUATION
The great majority of the existing work on applying DVFS

concentrates only on dynamic power. However, it is not
beneficial to scale down voltage and frequency indefinitely:
as we keep decreasing the dynamic power, the static power
is increased, which at some point becomes the predominant
part, and as a result, the total power starts increasing again.
This issue becomes important in the case when the tasks
have loose deadlines. We have experimentally compared the
energy savings obtatined by our EA-based algorithm with
the YDS algorithm [3], which was designed having in mind
only dynamic power. The results, obtained by repeating
the same experiment 20 times, are presented in Figures 2
and 3 for the scenarios where task deadlines are loose and
tight respectivelly. As we can observe from Figure 2, energy
savings are significant when task deadlines are loose: on
average, up to 76.57% after 200 generations.

Moreover, Figure 3 shows that our EA-based algorithm
can find a feasible solution even if task deadlines are tight,
obtaining average savings of up to 70.4% after 150 genera-
tions. We believe that the reasons for such improvements are
the following, in this order: taking into account the static
power, the energy-aware scheduling of the tasks, and the
good characteristic of EA of not getting stuck in a local op-
timum, which can happen in the YDS algorithm.

4. CONCLUSIONS AND FUTURE WORK
We have presented an approach for energy-aware schedul-

ing, allocation and optimal DVFS assignment of a set of
tasks in a multicore environment based on EAs. Our exper-
imental results show the great potential of our approach.
However, the energy model we use introduces significant

Figure 2: Energy savings of our EA algorithm vs.
YDS when task deadlines are loose.

Figure 3: Energy savings of our EA algorithm vs.
YDS when task deadlines are tight.

time overhead. In order to overcome this issue we plan to
use a static analysis that estimates the energy consumed by
concurrent tasks (without actually running them) which will
significantly speed up our approach, since such estimations
can be efficiently computed.

5. ACKNOWLEDGMENTS
The research leading to these results has received funding

from the European Union 7th Framework Programme under
grant agreement 318337, ENTRA - Whole-Systems Energy
Transparency, Spanish MINECO TIN’12-39391 StrongSoft
and TIN’08-05624 DOVES projects, and Madrid TIC-1465
PROMETIDOS-CM project. We also thank XMOS Ltd.
and Henk Muller in particular for providing benchmarks and
useful information for our experimental evaluation.

6. REFERENCES
[1] S. Kerrison and K. Eder. Measuring and modelling the

energy consumption of multithreaded, multi-core
embedded software. ICT Energy Letters, pages 18–19,
July 2014.

[2] XMOS. xcore : Architecture overview. Technical
report, XMOS Ltd., 2013.

[3] F. Yao, A. Demers, and S. Shenker. A scheduling model
for reduced cpu energy. 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science,
0:374, 1995.

Attachment D4.2.3

Trading-off Accuracy vs. Energy in

Multicore Processors via Evolutionary

Algorithms Combining Loop Perforation

and Static Analysis-based Scheduling

Published in Hybrid Artificial Intelligent
Systems (HAIS 2015), Lecture Notes in

Computer Science, Vol. 9121, pages 690–701,
Springer International Publishing, 2015

46

Trading-off Accuracy vs Energy in Multicore
Processors via Evolutionary Algorithms
Combining Loop Perforation and Static

analysis-based Scheduling

Zorana Banković1, Umer Liqat1 and Pedro López-García1,2

1 IMDEA Software Institute, Madrid, Spain
2 Spanish Council for Scientific Research (CSIC), Spain

{zorana.bankovic,umer.liqat,pedro.lopez}@imdea.org

Abstract. This work addresses the problem of energy efficient schedul-
ing and allocation of tasks in multicore environments, where the tasks
can permit certain loss in accuracy of either final or intermediate re-
sults, while still providing proper functionality. Loss in accuracy is usu-
ally obtained with techniques that decrease computational load, which
can result in significant energy savings. To this end, in this work we
use the loop perforation technique that transforms loops to execute a
subset of their iterations, and integrate it in our existing optimisation
tool for energy efficient scheduling in multicore environments based on
evolutionary algorithms and static analysis for estimating energy con-
sumption of different schedules. The approach is designed for multicore
XMOS chips, but it can be adapted to any multicore environment with
slight changes. The experiments conducted on a case study in different
scenarios show that our new scheduler enhanced with loop perforation
improves the previous one, achieving significant energy savings (31% on
average) for acceptable levels of accuracy loss.

1 Introduction

Task scheduling and allocation for energy efficiency in multicore environments
is a well-known NP -hard problem which can be efficiently solved with heuristic
algorithms, such as evolutionary algorithms. One example is our approach for
scheduling and allocation, which is based on evolutionary algorithms (EAs) [1].
The algorithm was shaped for its application to XMOS multicore chips, which
give support for dynamic voltage and frequency scaling (DVFS) at chip level,
i.e., all cores have the same voltage and frequency. However, the approach can be
adapted to any multicore environment with slight modifications. In this work we
want to deal with optimally scheduling tasks which can permit certain accuracy
loss.

As a matter of fact, the great majority of today’s processors are designed in
a way that can provide a high level of accuracy. However, there are numerous

applications that allow certain accuracy loss, which still permits them to function
properly, such as video streaming, machine learning, etc. Since decreasing the
accuracy is usually achieved by reducing the computational load, this can lead
to both increase in performance and decrease in energy consumption, so here
we deal with a trade-off between accuracy on one side and performance and/or
energy on the other. One technique that achieves this is loop perforation [7],
which in essence consists in skipping every n-th loop iteration, for a given n.
Broadly speaking, accuracy can be considered as one aspect of quality of service
(QoS), so we can say that in this work we deal with the QoS/energy trade-off.

Thus, in this work we solve the following scheduling problem: given a set of
tasks with known release time and number of cycles to compute them, find proper
allocation and scheduling of the tasks, as well as a (V, f) assignment (i.e., voltage
and frequency pair) to the cores in a way the total energy is minimised, while
accuracy is maximised, meeting a minimal acceptable level of accuracy. Different
levels of accuracy are achieved by applying the loop perforation technique with
different n, where every n-th loop iteration is skipped.

Hence, we deal with two objectives: accuracy and energy. Accuracy is defined
in terms of deviations of the output signal after applying the loop perforation,
while in order to estimate energy consumption, we use an existing static analysis
which, at compile time, with no need of executing the programs, and in a matter
of seconds, gives a safe estimation of the energy consumed by programs. The
energy consumption often depends on (the size of) input data, which is not
known at compile time. For this reason, the static analysis provides the energy
as a function of the input parameters, which is evaluated when input values
are known at runtime. The energy consumption estimated by using the static
analysis for a given scheduling is calculated as the sum of energies of the tasks
running on different cores. This gives a safe upper bound on the total energy
consumption, which is good enough for deciding which schedule consumes less
energy, and can provide acceptable estimations of energy savings.

The rest of the paper is organised as follows. Section 2 gives more details
of our proposed approach. Section 3 presents an experimental evaluation of it.
Some related work is discussed in Section 4 and finally, some conclusions are
drawn in Section 5.

2 Proposed Approach

2.1 Loop Perforation

The loop perforation technique consists in skipping some loop iterations, for
example skipping every n-th iteration [7], where n can be varied in order to
trade accuracy with energy, i.e., for higher n, less instructions are skipped, so the
accuracy is higher, while more energy is saved for lower values of n. This trade-off
between accuracy and energy consumption justifies the usage of a multiobjective
algorithm. As we will see in the following, in this work the loop perforation
technique is implemented as one possibility for the mutation operator.

Fig. 1. Representation of an individual

2.2 Evolutionary Algorithm (EA)

The work presented in this paper is an extension of our previous work where we
developed a custom algorithm based on an NSGA-II multiobjective evolutionary
algorithm [1]. The conflicting objectives are accuracy and energy consumption,
since we want to decrease the energy consumption, while maintaining the accu-
racy level as high as possible (always above a given threshold).

The non-dominated solutions are generated using the well-known NSGA-II
algorithm [2], while the EA follows the standard steps of evolutionary algorithms:
initialisation, evolution, where the selection process is implemented as standard
tournament selection, and our custom-made crossover and mutation operators
are applied. In the following we give more detail on the particular improvements
carried out in this work.

Individual. A solution to the problem we are solving has to contain information
about scheduling and allocation of each task, how many cycles of each task
are executed in the current run (since we support task migration), and voltage
and frequency levels of the core at each moment. In this work we add a new
dimension to the problem, which is the possibility to decrease accuracy through
loop perforation and thus it also has to be encoded in the individual. For this
reason, we add one more field after each task, which encodes n, i.e., the iterations
which can be skipped in one or more loops previously identified in each task. An
example of a part of an individual is given in Figure 1, and can be read in the
following way: on core 1 in state 2 we execute in this order,

– 48 cycles of task 1, without performing loop perforation on it, and
– 77 cycles of task 5, where we skip every 4th iteration in the loop previously

defined.

Population Initialisation. Individuals in the initial population are created by
randomly assigning tasks to random cores in random (V, f) settings with equal
probability. However, in order to provide a load balanced solution (as much as
possible), the probability of choosing a core decreases as its load increases. The
number of cycles of a task executed in each run, as well as the loop iterations to
be skipped are also randomly chosen.

The Crossover Operator. Our custom crossover operator is designed in the
following way:

– Each child preserves the order of appearance of the tasks, as well as their
allocation from one of the parents,

– But, can take the distribution of the number of cycles, as well as the number
of loop iterations to be skipped of one of them with equal probability.

The Mutation Operator. The mutation operator can perform different oper-
ations involving one or two tasks (designated as i and t in the following text).
In each generation we perform one of the following operations with the same
probability:

– Swapping: i and t, together with their corresponding number of cycles and
loop iterations to be skipped, change their positions in the solution. However,
in order to avoid creating solutions which are not viable, i and t have to
belong to the cores which are executed in parallel.

– Moving : move i to a random position j. For the same reason as before, the
position j has to belong to a core being executed in the same state as i’s
original state.

– Changing the cycle distribution: Randomly change distribution of the cycles
of task i between its appearances on different cores.

– Loop Perforation: For a random task i, assign randomly the number of loop
iterations to be skipped, update the total number of cycles, i.e., decrease
the total number of cycles for the amount corresponding to the cycles of the
skipped loops, and share them randomly between the existing appearances
of the task i in the solution.

These operators are depicted in Fig.2:

– Swapping: Tasks 1 and 2 are swapped between cores 1 and 2 while both in
state 1.

– Moving : First part of task 1 (40 cycles) are moved to core 2 before task 2.
– Changing the number of cycles: Task 1 now executes 25 cycles on core 1 in

state 1 and 45 cycles on core 2 and state 2.
– Loop perforation: Task 1, where loop perforation has not been performed,

now skips every 20th task in the defined loop, which results in decreased
number of cycles, i.e., it has 60 cycles, where the first 35 cycles are executed
in the first appearance of the task 1, while the remaining 25 cycles are
executed in its second appearance.

Objective Functions: Energy Consumption. This objective represents the
total energy consumption of the given schedule, and it should be minimised. It
is given with the following formula:

E =
∑

1≤i≤n

(Pst,i · T +
∑

1≤j≤k

(xi,j · pi,j · τi,j)) (1)

where Pst,i is the static power of the core i, T is the total execution time of
the schedule, i.e., the moment when the last task finishes its execution, τi,j is
the execution time of task j on core i, xi,j is a binary value, xi,j ∈ {0, 1},

Fig. 2. Different possibilities for mutation

that represents whether the task j is executed on the core i (xi,j = 1) or not
(xi,j = 0), and pi,j is the power of task j when executed on core i.

Objective Functions: Accuracy. In this work accuracy is defined as an av-
erage error of the output after applying loop perforation, and it should be min-
imised. If a task performs some sort of signal processing, where the output is
a digital signal consisting of a number of samples, the error is calculated as
the Euclidean distance between the outputs obtained with and without loop
perforation.

2.3 Energy Static Analysis as Input

In order to statically estimate the energy consumed by programs we use an
existing static analysis. It is a specialization of the generic resource analysis pre-
sented in [8] for programs written in a high-level C-based programming language,
XC [9], running on the XMOS XS1-L architecture, that uses the instruction-level
energy cost models described in [3]. The analysis is general enough to be applied
to other programming languages and architectures (see [4, 5] for details). It en-
ables a programmer to symbolically bound the energy consumption of a program
P on input data x̄ without actually running P (x̄). It is based on setting up a
system of recursive cost equations over a program P that capture its cost (energy
consumption) as a function of the sizes of its input arguments x̄. Consider for
example the following program written in XC:

i n t f a c t (i n t N) {
i f (N <= 0) return 1 ;
re turn N ∗ f a c t (N − 1) ;

}

The transformation based analysis framework of [4, 5] would transform the as-
sembly (or LLVM IR) representation of the program into an intermediate se-
mantic program representation (HC IR), that the analysis operates on, which
is a series of connected code blocks, represented as Horn Clauses. The analyzer
deals with this HC IR always in the same way, independent of where it originates
from, setting up cost equations for all code blocks (predicates).

facte(N) = fact_ife(0 ≤ N,N) + centsp + cstw + cldw + cldc + clss + cbf

fact_ife(B,N) =




facte(N − 1) + cbu + 2 cldw + csub +

+ cbl + cmul + cretsp if B is true
cmkmsk + cretsp if B is false

The cost of the function fact is captured by the equation facte which in
turn depends on the equation fact_ife, that captures the cost of the two clauses
representing the two branches of the if statement, and a sequence of low-level
instructions. The cost of low-level instructions, which constitute an energy cost
model, is represented by ci where i ∈ {entsp, stw, ldw, ...} is an assembly in-
struction. Such costs are supplied by means of assertions that associate basic
cost functions with elementary operations.

If we assume (for simplicity of exposition) that each instruction has unitary
cost in terms of energy consumption, i.e., ci = 1 for all i, we obtain the energy
consumed by fact as a function of its input data size (N): facte(N) = 13 N +8

3 Experimental Evaluation

3.1 Testing Environment

XMOS Chips. In this work we target the XS1-L architecture of the XMOS
chips as a proof of concept. Although these chips are multicore and multi-
threaded, in this work we assume a single core architecture with 8 threads,
which is the architecture for which we have an available energy model. All
threads have their own register set and up to 4 instructions per thread can
be buffered, which are scheduled in a way to minimize simultaneous memory
accesses by consecutive threads. The threads enter a 4-stage pipeline, meaning
that only one instruction from a different thread is executed at each pipeline
stage. If the pipeline is not full, the empty stages are filled with NOPs (no
operation). Effectively, this means that we can assume that the threads are run-
ning in parallel, with frequency F/N , where F is the frequency of the chip, and
N = max(4, numberOfThreads).

DVFS is implemented at the chip level, which means that all the threads
have the same voltage and frequency at the same time. All XMOS chips support
frequency scaling. However, only the XS1-SU01A-FB96 [6] chip provides the
possibility of voltage scaling enabled by two DC-DC converters whose output
voltage belongs to the range (0.6V, 1.3V). In order to apply DVFS, we need list of
Voltage-Frequency (V,f) pairs or ranges that provide a correct chip functioning.
We have experimentally concluded that the XMOS chips can function properly
with the voltage and frequency levels given in Table 1.

Table 1. Viable (V, f) pairs for XMOS chips.

V oltage(V) 0.95 0.87 0.8 0.8 0.75 0.7
frequency(MHz) 500 400 300 150 100 50

Task Set. We use two real world programs for testing:

– fir(N): Finite Impulse Response (FIR) filter. In essence, it computes the
inner-product of two vectors: a vector of input samples, and a vector of
coefficients.

– biquad(N): Part of an equaliser implementation, which uses a cascade of
Biquad filters. The energy consumed depends on the number of filters in the
cascade, also known as banks N.

These filters are often used in signal processing, where some certain level of accu-
racy loss can be permitted. This makes them good candidates for experimenting
with the accuracy/energy trade-off. We have used four different FIR implementa-
tions, with different number of coefficients: 85, 97, 109 and 121. Furthermore, we
have used four implementations of the biquad program, with different number of
banks: 5, 7, 10 and 14. We have tested our approach in scenarios with 32 tasks,
each one corresponding to one of the above mentioned implementations. The
tasks corresponding to the same implementation have different release times.

The energy consumed by the programs is inferred at compile time by the
static analysis described in Section 2.3. This energy is expressed as a function
of an input parameter N , which is known at run time only. In the case of FIR,
N is the number of coefficients, while in the case of the Biquad cascade, N
is the number of banks. These functions are given in Table 2. The analysis
assumes that a single program is running on one thread on the XMOS chip,
while all other threads are inactive. This means that only the first stage of the
pipeline is occupied with an instruction, while the rest are empty, i.e., occupied
with NOPs. In this implementation, the EA algorithm approximates the total
energy of a schedule taking the sum of the energies of all the tasks running
on different cores, i.e., threads, as we have seen in Section 2.2. However, in
reality if all the threads are active and execute a program, each pipeline stage
will contain an instruction from a different thread. For this reason, we can say
that the estimation produced by the static analysis of the energy consumed by
a set of tasks is an upper bound on the actual energy consumption. However,
this estimation provides precise enough information for the EA to decide which
schedule is better.

3.2 Testing Scenario

We have tested our approach on a scenario of 32 tasks, where each task imple-
ments either an FIR or a Biquad cascade previously described. For the case of
FIR, loop perforation takes out a few coefficients, while in the case of Biquad
cascade, it takes out a few banks. All tasks have different release time. Task

Table 2. Energy functions for 3 different pairs of voltage (V) / frequency (F, in MHz)

V = 0.70 V = 0.75 V = 0.80
F = 50 F = 100 F = 150

fir(N) 74.93 N + 124.5 43.36 N + 71.9 33.41 N + 55.2

biquad(N) 386 N + 128 223.6 N + 74.2 172.5 N + 57.2

V = 0.80 V =0.87 V = 0.95
F = 300 F = 400 F = 500

fir(N) 20.14 N + 33.2 18.95 N + 31.09 19.15 N + 31.3

biquad(N) 104.3 N + 34.4 98.31 N + 32.4 99.48 N + 32.7

deadlines do not exist. However, we should bear in mind that in the case of
DVFS it is not beneficial to scale down voltage and frequency indefinitely, since
at some point static power consumption becomes more significant than dynamic
power consumption. Thus, if we keep decreasing the dynamic power, the static
power is increased at the same time, and as a result, the total energy consump-
tion increases. The input signal to all tasks is a standardised set of input samples
for testing in signal processing.

3.3 Obtained Results and Discussion

The EA has been trained with the following parameters: population of 200 indi-
viduals, evolved for 150 generations, crossover rate: 0.9, and mutation rate: 0.9
- since mutation introduces loop perforation, a high rate is needed.

In order to illustrate the energy savings provided by loop perforation (referred
to as Case 1 in the following text), we have trained another EA, where the
objectives are to minimize energy and execution time, without the possibility
of loop perforation (referred to as Case 2 in the following). This algorithm has
been trained with the same parameters given above. Since both algorithms are
multiobjective, the result of the training of both is a Pareto front of possible
solutions with different trade-off between the objectives. Examples of Pareto
fronts obtained in Case 1 and Case 2 are given in Figures 3 and 4 respectively.
In Case 1 we have picked a solution with the smallest energy objective value,
whose maximal deviation from the final result (accuracy) is below (above) a given
threshold, while in Case 2 we have chosen a solution with the smallest energy
objective. The results are presented in Table 3, with the following columns:

– Column 1: Maximal acceptable average error (or equivalently, minimal ac-
ceptable level of accuracy) of the final result.

– Column 2: Average energy of the final schedule obtained in a set of experi-
ments of Case 1 estimated by static analysis given in mJ (mili Joules).

– Column 3: Average energy of the final schedule obtained in a set of experi-
ments of Case 2 estimated by static analysis given in mJ (mili Joules).

– Column 4: Obtained savings expressed as % and calculated as
Column3−Column2

Column3 · 100.

Fig. 3. Pareto front for Energy/Accuracy trade-off EA (Case1)

Table 3. Obtained savings with different levels of minimal acceptable accuracy.

Max. Case 1: Case 2: Savings(%)
Avg. Error Avg. En.(mJ) Avg. En.(mJ) Avg. CI0.05

10−6 0.487 0.721 16.18 0.93 - 31.42
2 · 10−6 0.461 0.597 18.21 3.54 - 32.87
3 · 10−6 0.434 0.666 31.04 13.72 - 48.37

– Column 5 : Statistics of the experiments expressed as 0.05 confidence interval,
i.e., we can claim with 95% certainty that the final result will belong to this
interval.

As we can observe, energy savings that can be obtained with loop perforation
are significant and range from 3% to 40% in different experiments, even with
small permitted level of error. As we increase the accepted level of average error,
the savings increase, as expected, which is clearly depicted in Figure 5. However,
the relationship between the accuracy and the energy savings depends on the ap-
plication: some applications can preserve acceptable accuracy by skipping more
loop iterations (and hence achieve bigger energy savings) than others that lose
acceptable accuracy by skipping less loop iterations (and hence achieve smaller
energy savings).

Fluctuations in the final result in different experiments appear due to the
imprecision of the static analysis, since currently it gives an upper bound, rather
than a realistic estimation of energy consumption. This can explain the big
confidence intervals. Since the acceptable level of error is small, we could observe
that in the final result only tasks that perform FIR could skip a few iterations,
while some of the tasks that perform biquad could skip one iteration at most,
since the number of iterations is bigger in FIR than in the case of the biquad
cascade. In Table 4 we present an example of a part of an output containing tasks

Fig. 4. Pareto front for Energy/Time trade-off EA (Case 2)

where loop perforation was applied, where the maximal acceptable error is 10−6.
In the table, for each task, we show the original number of loop iterations, the
number of loop iterations after applying loop perforation, and N , where every
N -th loop is skipped. The actual error of this example is 7.8 · 10−7, but we still
achieve significant energy savings.

4 Related Work

In the existing literature techniques that include QoS as an objective in schedul-
ing are mainly designed for Grid or Cloud Computing environments, where QoS
is measured as either execution time, cost, etc., which has to be provided ac-
cording to the signed Service Level Agreement (SLA) between the provider and
the customer [11, 10, 12]. Multiobjective genetic algorithms were used in [12] to
minimize cost and execution time, since they can be in conflict. A similar ap-
proach is presented in [11]. However, in the recent past, energy consumption has
become a bottleneck, so it has become very important to reduce it. One such
work is given in [10], where the authors try to minimize energy and maximize
QoS at the same time in a Cloud Computing environment. The multiobjective
optimisation problem is solved using particle swarm optimisation.

However, as far as we know, none of the approaches in the literature propose
to trade-off QoS (accuracy in our case) with energy or performance in a schedul-
ing problem by transforming the code, in our case by using loop perforation.

5 Conclusions

In this work we have presented an approach for energy efficient scheduling in
multicore environments, adapted to multicore XMOS processors, where signifi-

Fig. 5. Energy savings for different accuracy levels

cant additional energy can be saved if a certain level of accuracy reduction in
final result is allowed. Accuracy reduction is performed by using the loop perfo-
ration technique. Our experimental results show that, even with small acceptable
levels of error in the result, significant energy savings can be obtained.

However, the energy estimation of different schedules is based on a static
analysis that can only provide an upper bound. Although it is still capable of
providing energy savings, better results could be achieved with more precise
energy estimations. For this reason, we are developing an energy analysis of
concurrent program, which is expected to provide additional savings.

Acknowledgements. The research leading to these results has received fund-
ing from the European Union 7th Framework Programme under grant agree-
ment 318337, ENTRA -Whole-Systems Energy Transparency, Spanish MINECO
TIN’12-39391 StrongSoft and TIN’08-05624 DOVES projects, and Madrid TIC-
1465 PROMETIDOS-CM project.

References

1. Z. Banković and P. Lopez-Garcia. Stochastic vs. Deterministic Evolutionary
Algorithm-based Allocation and Scheduling for XMOS Chips. Neurocomputing,
pages 82–89, 2014.

2. Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast elitist
multi-objective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary
Computation, 6:182–197, 2000.

3. S. Kerrison and K. Eder. Energy modelling of software for a hardware multi-
threaded embedded microprocessor. ACM Transactions on Embedded Computing
Systems (TECS), 2015. To appear.

Table 4. Result of an experiment: tasks whose final number of loop iterations has been
changed.

Task Original num. of Final num. of N
loop iterations loop iterations

FIR97-1 97 87 9
FIR85-1 85 76 9
FIR121-1 121 108 9
FIR109-1 109 104 21
FIR97-2 97 96 96
FIR85-2 85 84 84
FIR121-2 121 120 120
FIR109-2 109 108 108
FIR97-3 97 87 9
FIR85-3 85 76 9
FIR121-3 121 108 9
FIR109-3 109 97 9
FIR85-4 85 84 1
FIR121-3 121 81 3
FIR109-3 109 97 9

4. U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech, M.V.
Hermenegildo, and K. Eder. Energy Consumption Analysis of Programs based on
XMOS ISA-level Models. In Proceedings of the 23rd International Symposium on
Logic-Based Program Synthesis and Transformation (LOPSTR’13), 2014.

5. P. López-García, editor. Initial Energy Consumption Analysis. ENTRA Project:
Whole-Systems Energy Transparency (FET project 318337), April 2014. Deliver-
able 3.2, http://entraproject.eu.

6. XMos Ltd. Xs1-su01a-fb96 datasheet, november 2012.
7. Henry Hoffmann Sasa Misailovic, Stelios Sidiroglou and Martin Rinard. Managing

performance vs. accuracy trade-offs with loop perforation. In Proc. of FSE’11.
ACM Press, 2011.

8. A. Serrano, P. Lopez-Garcia, and M. Hermenegildo. Resource Usage Analysis
of Logic Programs via Abstract Interpretation Using Sized Types. Theory and
Practice of Logic Programming, 30th Int’l. Conference on Logic Programming
(ICLP’14) Special Issue, 14(4-5):739–754, 2014.

9. D. Watt. Programming XC on XMOS Devices. XMOS Limited, 2009.
10. Sonia Yassa, Rachid Chelouah, and Rachid Chelouah andBertrand Granado.

Multi-objective approach for energy-aware workflow scheduling in cloud computing
environments. The Scientific World Journal, 2013. Article ID: 350934.

11. Guangchang Ye, Ruonan Rao, and Minglu Li. A multiobjective resources schedul-
ing approach based on genetic algorithms in grid environment. In Grid and Coop-
erative Computing Workshops, 2006. GCCW ’06. Fifth International Conference
on, pages 504–509, Oct 2006.

12. Jia Yu, Michael Kirley, and Rajkumar Buyya. Multi-objective planning for work-
flow execution on grids. In Proceedings of the 8th IEEE/ACM International Con-
ference on Grid Computing, GRID ’07, pages 10–17, Washington, DC, USA, 2007.
IEEE Computer Society.

Attachment D4.2.4

Improved Energy-aware Stochastic

Scheduling based on Evolutionary

Algorithms via Copula-based Modeling

of Task Dependences

Published in International Conference on Soft
Computing Models in Industrial and

Environmental Applications (SOCO 2015),
Advances in Intelligent Systems and Computing,
Vol. 368, pages 153–163, Springer International

Publishing, 2015

59

Improved Energy-aware Stochastic Scheduling
based on Evolutionary Algorithms via

Copula-based Modeling of Task Dependences

Zorana Banković1 and Pedro López-Garćıa1,2

1 IMDEA Software Institute, Madrid, Spain
2 Spanish Council for Scientific Research (CSIC), Spain

{zorana.bankovic,pedro.lopez}@imdea.org

Abstract. In this work we apply the copula theory for modeling task
dependence in a stochastic scheduling algorithm. Our previous work, as
well as the majority of the existing related works, assume independence
between the tasks involved, but this is not very realistic in many cases. In
this paper we prove that, when task dependence exists, better results can
be obtained when it is modeled. Our results show that the performance of
the stochastic scheduler is significantly improved if we assume a certain
level of task dependence: on average 18% of the energy consumption can
be saved compared to the results of the deterministic scheduler, along
with 81% of improved test cases, versus 2.44% average savings when task
independence is assumed, along with 50% of improved test cases.

1 Introduction

The most common approach when dealing with a system which depends on
a group of random variables is to assume that the variables are independent,
mainly because the mathematical apparatus becomes too complex, or simply
because it is not possible to mathematically describe the underlying dependence.
However, this simplification often results in assuming an initial scenario which
is very different from reality, which limits the usefulness of the final result. An
example of this approach is stochastic scheduling, where the relevant character-
istics of the tasks are represented as random variables with the corresponding
distribution function, and, as far as we know, in the majority of existing works,
the variables describing different tasks are considered to be independent, or mod-
elled with normal distributions [6], which is often not realistic.

The main objective of our work is to minimize the energy consumption in
multithreaded multicore Dynamic Voltage and Frequency Scaling (DVFS) en-
abled platforms through optimal task scheduling. In general, the problem of
scheduling and allocation is NP-hard. Thus, the problem has been addressed
with different heuristic algorithms that are capable of obtaining sub-optimal so-
lutions in real time due to their fast exploration of the search space. For this
reason, our scheduler is based on an Evolutionary Algorithm (EA). Since DVFS

reduces energy, but increases execution time, these two magnitudes are clearly
in conflict. For this reason, we use a multi-objective optimisation approach in
order to find a trade-off between energy consumption and execution time. We
also provide an appropriate representation of solutions that captures two levels
of parallelism, processor (core) and thread level parallelism, and at the same
time performs allocation and scheduling and identifies appropriate voltage and
frequency settings (i.e., (V, f) pairs), exploring in this way the entire search
space.

This work is a part of a bigger tool for scheduling based on EAs [3], to which
we want to add the possibility of modelling dependence between the tasks. For
this reason, in this work we experiment with modeling dependence between the
execution time and power of different tasks using copulas [12], in particular
Archimedean copulas [11]. However, if we wanted a stand-alone implementation
on copula-supported scheduling, a promising approach would be to use Esti-
mation of Distribution Algorithms [8]. The main advantage of copulas when
modeling dependence is the fact that they do not depend on the marginal distri-
butions. In this work we have decided to study the applicability of Archimedean
copulas for two important reasons: they have been extensively studied and the
mathematical apparatus for their manipulation is quite mature, and they are
known to properly model the existing tail dependency between two variables,
i.e., the possibility of achieving extreme values at the same time, which can be
expected in our case. In particular, in this work we experiment with Gumbel
copulas [11] due to their proper modeling of positive right-tail dependence, e.g.,
if one task takes more time due to a prolonged memory access, it will lead to
longer execution time of all the tasks that are related to it, as well as energy con-
sumption, which is important when dealing with a time and/or energy budget.
However, it does not model negative dependence, i.e., achieving small values at
the same time, which is not important in our case since it does not affect the
budgets mentioned above.

The rest of the paper is organised as follows. In Section 2 we give a short
overview of the copula theory, necessary for understanding and reproducing the
results of our work, while in Section 3 we detail our proposed approach. Sec-
tion 4 presents and discusses the obtained results. In Section 5 we list the most
important related work. Finally, some conclusions are drawn in Section 6.

2 Copulas for Modeling Dependency

In this section we give a short survey on copulas [12]. In essence, the copula
theory gives us a mathematical framework for describing dependence between
the variables irrespectively of their underlying distribution functions.

Sklar’s Theorem (1959) Let H be a continuous two-dimensional distribution
function with marginal distribution functions F and G. Then there exists a
copula C such that

H(x, y) = C(F (x), G(y)) =⇒ C(x, y) = H(F−1(x), G−1(y)) (1)

Thus, for any two distribution functions F and G and copula C, the function H
is a two-dimensional distribution function with marginals F and G.

Archimedean Copulas. An important group of copulas are the Archimedean
copulas, where the dependence level depends on one parameter. They are defined
in the following way: let φ be a continuous strictly decreasing function from I to
[0,∞] such that φ(1) = 0, and let φ[−1] denote the pseudo-inverse of φ:

φ[−1](t) = φ−1(t) for t ∈ [0, φ(0)] and φ[−1](t) = 0 for t ≥ φ(0) (2)

Then, if φ is convex, the function

C(u, v) = φ[−1](φ(u) + φ(v)) (3)

is an Archimedean copula and φ is called its generator function. In the case of
the Gumbel copula used in this work the generator function is the following:

φ(t) = (− ln t)θ where θ ∈ [1,∞). (4)

Monte Carlo for Copula-based Models. Since in our work we use Monte
Carlo simulation to calculate the expected value of random variables, in the
following we show how it is integrated in the copula model [10].

If we want to find the expected value of a function g : Rd → R applied to a
random vector (X1, X2, ..., Xd) whose cumulative distribution function (cdf) is
H, the expected values we need are calculated in the following way:

E[g(X1, X2, ..., Xd)] =

∫

Rd

g(x1, x2, ..., xd)dH(x1, x2, ..., xd) (5)

If H is given by its copula model expressed with formula 1, formula 5 can be
written in the following way:

E[g(X1, X2, ..., Xd)] =

∫

[0,1]d
g(F−11 (u1), ..., F−1d (ud))dC(u1, ..., ud) (6)

If copula C and marginals F1, .., Fd are known or estimated, the expected
value can be approximated using the following Monte Carlo algorithm:

1. Draw a sample (Uk1 , U
k
2 , ..., U

k
d) ∼ C, k = (1, 2, .., n) of size n from copula C.

2. Calculate a sample of (X1, X2, ..., Xd) by applying the inverse cdf of marginal
functions:

(Xk
1 , X

k
2 , ..., X

k
d) = (F−11 (Uk1), F−12 (Uk2), ..., F−1d (Ukd)) ∼ H(k = 1, ..., n)

3. Approximate E[g(X1, X2, ..., Xd)] with its empirical value:

E[g(X1, X2, ..., Xd)] ≈
1

n

n∑

k=1

g(Xk
1 , X

k
2 , ..., X

k
d)

Archimedean Copula Simulation. In order to draw a sample from Archimedean
copulas (step 1 of the previous Monte Carlo algorithm), we follow the algorithm
for Laplace transform Archimedean copulas, which are all the copulas whose
generator function φ is a Laplace transform of some function G. The algorithm
has been proven correct in [10] and consists on the following steps:

1. Generate a pseudorandom variable V whose cdf is G.

– For the Gumbel copula used in this work, V is a stable distribution
(class of probability distributions allowing skewness and heavy tails),
St(1/θ, 1, γ, 0), with γ = (cos(π/2/θ))θ and Ĝ = exp(−t1/θ).

2. Generate independent and identically distributed random variables
(X1, X2, ..., Xd).

3. Return Ui = Ĝ(− lnXi

V), i = 1, ..., d.

3 Our Proposed Approach based on EAs

In the following we present the main aspects of our EA implementation. Our
multiobjective EA is based on the NSGA-II implementation [5], since in our
previous work [3] the best results were obtained when this technique was applied.

Individuals. An individual, as a representation of a solution to the problem,
has to contain information about temporal and spatial allocation of each task. A
solution to the scheduling, i.e., temporal aspect of the problem is a permutation
of the task identifiers (IDs), where their order also stands for the order of their
temporal execution, assuming that each task has a unique ID. In order to solve
the allocation problem, i.e., on which thread (and core) each task is executed, we
add delimiters to the permutation of the task IDs that define where the tasks are
being executed, i.e., core, thread and (V, f) setting (the tasks between two de-
limiters are executed on the right-side one). In order to be able to distinguish the
delimiters from the tasks, delimiters are coded as negative three-digit numbers,
where the first digit stands for the core, the second one for the thread on that
core, and the third one for the core (V, f) setting (assuming that there is a finite
number of settings, which is realistic). As an example, a part of an individual is
depicted in Fig. 1, where tasks with IDs 1, 2, 5 and 7 are executed in that order
on thread 4 of core 2, with the (V, f) setting coded as 4. In the most general
case, the order of delimiters is random. However, if two consecutive delimiters
that belong to the same core have different (V, f) settings, this means that they
are not being executed in parallel, since the voltage and/or frequency have to
be changed. Representing individuals in the way described above has provided
us with a relatively simple approach, which does not introduce great overhead
when executing the EA.

Population Initialisation. Since our problem setting in this work is simple
(two cores with two thread each), individuals in the initial population are cre-
ated by randomly assigning tasks to random threads in random (V, f) settings.
However, in more complicated problem settings with more cores and threads

Fig. 1. An example of (part of) a solution (i.e., individual) representation.

per core, with task deadlines etc., we will have to consider adding a heuristic in
order to provide a feasible solution in each run.

Solution Perturbations. Given that all the tasks and all the delimiters are
different, different solutions are always permutations of the set of tasks and the
set of delimiters. This gives us the opportunity to use some of the permutation-
based crossover operators, and in this case we are using partial match crossover,
since it performed better in terms of the objective function than cycle crossover,
and slightly better than order crossover in terms of the objective function and
the execution time. Since the order of delimiters is not important in the most
general case, this operator provides at the same time variety in consecutive
changes of (V, f) settings, and the capability of moving tasks from one thread
to another. Regarding mutation, it is implemented in a way that two random
threads exchange two random tasks with certain (low) probability.

Objective Functions. The objective of the scheduler is to minimize the to-
tal energy consumption, as well as the execution time. Since in this work we
apply DVFS, which decreases energy, but increases time, these two values are
clearly in conflict, and thus the use of multiobjective optimisation is justified.
In general, these values are expressed with the following formulas for a given set
of n heterogenous machines and a set of k tasks, for a particular machine-task
assignment χ:

E(χ) =
∑

1≤i≤n
(Pst,i · T (χ) +

∑

1≤j≤k
xi,j · pi,j · τi,j)

T (χ) = max
1≤i≤n

{
∑

1≤j≤k
xi,j · τi,j}

(7)

where Pst,i is the static power of the machine i, xi,j is a binary value, xi,j ∈ {0, 1},
that represents whether the task j is executed on the machine i (xi,j = 1) or not
(xi,j = 0), pi,j is the (dynamic) power consumption of the task j on the machine
i, and τi,j is the execution time of the task j on the machine i.

The objective of the stochastic scheduler is to minimize the expected value
of these formulas:

min
χ∈π
{E(χ)}

min
χ∈π
{T (χ)}

(8)

As in our previous work, these values are approximated using the Monte
Carlo method, but here we have to introduce the necessary changes to account
for the copula-based dependence:

– Total Energy: estimated in the Monte Carlo approximation presented in
Section 2, taking g(X1, .., Xd) =

∑d
i=0Xi, where d is the total number of

tasks and Xi are random variables representing the energy of each task.
– Execution Time: for each core approximated in the same way as the total

energy, after that the maximum value between all the cores is taken.

In our implementation, we use the Mathematica system [1] to calculate the
inverseCDF function (step 2 of the Monte Carlo method presented in Section 2)
due to its capability to deal with all the probability functions used in this work.
For this purpose, C++ executes Mathematica as an external program in Math-
Link mode [9].

4 Results and Discussion

4.1 Input Data

The input data to our scheduling algorithm consists of a set of tasks whose power
consumption and execution time are given as random variables with a known
probability density function. The following density functions are available at
the moment: Uniform, Constant, Exponential, Normal Chi-squared, Gamma,
Pareto, Poisson, Binomial, Negative Binomial, and any combination of the pre-
vious ones expressed as a sum of products. A sampling from all the above density
functions can be obtained by using a package implemented by Robert Davies [4].
In different (V, f) settings, the power consumption is scaled with V 2 and f , and
the corresponding execution time is scaled with f . Finally, the energy of a task
is a random variable obtained as the product of their corresponding execution
time and power random variables.

4.2 Obtained Results and Discussion

In this work we experiment with controlled dependency in synthetic data. Depen-
dency is introduced in a way that some of the random variables which describe
execution time and power of the tasks have the same fixed distribution. As we
have previously mentioned, dependence in Archimedean copulas is controlled
with the θ parameter, which in the case of the Gumbel copula belongs to the
interval [1,∞), where θ = 1 stands for independence, while θ → ∞ stands for
comonotonicity, i.e., maximal positive dependence. However, θ ≥ 10 is already
considered as a significant level of dependence.

In order to check the possibility of improving the results of the stochastic
scheduling by introducing copulas for modeling dependence, we have created an
experiment where we fix the testing scenario, start with independence assump-
tion, i.e., θ = 1, and then increase the θ parameter in order to increase the level
of dependence. Since the main claim of our work is that the stochastic scheduling
may improve its deterministic counterpart, we check how the results are being
improved as the level of dependence increases. In particular, we repeat the sim-
ulation for three different levels of dependence: θ = 1, which is equivalent to
independence, θ = 5 and θ = 10, which assumes a high level of dependence.

Table 1. Summary of average improvements.

Test case (θ) Avg. % of Avg. Avg. min. Avg. max.
improved test cases improv. (%) improv. (%) improv. (%)

1 (1) 50 2.46 −4.58 12.1
2 (5) 81.66 18 −3.51 31.96
3 (10) 68.75 8.42 −3.95 22.75

After performing the training and obtaining the Pareto front, in all the cases
we took the solution with minimal energy consumption from all the solutions
belonging to the Pareto front. The testing was performed on different sets of
test cases, each having 10 test cases generated randomly. The results are sum-
marised in Table 1, where we can observe (from left to right) average % of test
cases where the stochastic scheduler improves the deterministic one, along with
average improvement, and average minimal and maximal improvement in all test
cases. Figure 2 illustrates the evolution of different test cases (1-6 are different
test case sets, each having 10 different test cases), sorted by their improvement.
Note that negative numbers actually mean that the stochastic scheduler wors-
ened the performances.

In the current implementation we rely on Mathematica to calculate the in-
verse cdf, which significantly increases simulation time, since it takes 6–8 hours
on a 2.5GHz Intel Core i5 with 4GB DDR3.

From the table and the figures we can draw a few interesting conclusions:

– The stochastic scheduler improves a significant number of test cases, even
when assuming independence (θ = 1).

– The best obtained results correspond to θ = 5, which assumes certain level
of dependence, although less than maximal positive dependence, which is
close to θ = 10. This confirm our expectation, since in our test cases some
of the variables describing power and/or time are correlated, but not all of
them.

– The maximal observed energy improvement achieved in a particular case is
around 62%, while the maximal observed performance (in terms of energy
savings) decrease is 28%, both belonging to the case θ = 5 (Figure 2).

– The test cases that obtained better performances with the deterministic
scheduler, i.e., whose performances were decreased after applying the stochas-
tic scheduler (and which can be observed as “negative” improvement in both
Table 1 and Figure 2), had values which were close to the average values of
the corresponding distributions, which were used to design the determinis-
tic scheduler. This behaviour was also expected, since the main idea of the
stochastic scheduler is to improve the scheduling when the real data deviate
significantly from the expected ones used to create the deterministic sched-
uler. However, from this testing scenario we were not able to properly decide
the threshold level which would tell us when it is beneficial to start using
the stochastic scheduler.

(a) θ = 1

(b) θ = 5

(c) θ = 10

Fig. 2. Evolution of Minimal, Average and Maximal Improvements (%) for θ = 1, 5, 10

5 Related Work

Stochastic scheduling has gained lots of interest over the years, since many dif-
ferent cases include uncertainty. In general, approaches to optimisation under
uncertainty include various modeling philosophies, the most important being
the following ones:

– Expectation minimisation.
– Minimisation of deviations from goals.
– Minimisation of maximum costs.
– Optimisation over soft constraints.

Our approach clearly belongs to the first group. The solution presented in [7]
is in the same group, however, it solves the stochastic scheduling problem by
reducing it to the deterministic case. The benefit of this approach is the lower
execution time, yet at the cost of decreased accuracy.

Copulas have been used in different versions of scheduling-related problems.
For example, in [2] they are used in power supply system scheduling to model
the presence of uncertain renewables, such as wind and solar energy. Another
work given in [6] assesses the schedule reliability of airport schedules using cop-
ulas. One more example is given in [13], where the authors use copulas to assess
the schedule risk of a software development project. However, all of them use
Gaussian or Student-t copulas, which can be applied only if the marginal distri-
butions are either normal or Student-t, while in our work there is no restriction
on the marginal distributions. As far as we know, there were no attempts to use
copulas in the way presented in this work.

6 Conclusions

In this work we have studied the possibility of introducing dependence of both
power consumption and execution time of the tasks which run on the same
platform in order to improve the results of optimal task scheduling. Power con-
sumption and execution time of the tasks are represented as random variables
with known distribution functions, while their dependence is modeled with Gum-
bel copulas, whose θ parameter is varied in order to simulate different levels of
dependence. As far as we know, this is the first work that uses copula-based
dependence in the context of stochastic scheduling where the important aspects
of the tasks are modeled using random distribution functions. If there is depen-
dence present in the underlying data, our results show that the performance
of the stochastic scheduler is significantly improved after assuming certain level
of dependence: on average 18% of energy consumption can be saved compared
to the results of the deterministic scheduler, along with 81% of improved test
cases, versus 2.44% average savings when task independence is assumed, along
with 50% of improved test cases. The obtained rates demonstrate the potential
of the approach in improving results of stochastic scheduling when dependence
between the tasks is present. In the future we plan to devote additional effort

to providing faster simulation time, which would enable a real world implemen-
tation of the approach. Furthermore, we will test the approach on real world
data.

Acknowledgements. The research leading to these results has received fund-
ing from the European Union 7th Framework Programme under grant agree-
ment 318337, ENTRA - Whole-Systems Energy Transparency, Spanish MINECO
TIN’12-39391 StrongSoft and TIN’08-05624 DOVES projects, and Madrid TIC-
1465 PROMETIDOS-CM project.

References

1. Mathematica. http://www.wolfram.com/mathematica/.
2. Sajjad Abedi, Gholam Hossein Riahy, Seyed Hossein Hosseinian, and Mehdi

Farhadkhani. Improved stochastic modeling: An essential tool for power system
scheduling in the presence of uncertain renewables. 2013.

3. Z. Banković and P. Lopez-Garcia. Stochastic vs. Deterministic Evolutionary
Algorithm-based Allocation and Scheduling for XMOS Chips. Neurocomputing,
pages 82–89, 2014.

4. Robert Davies. Random distributions. http://www.robertnz.net/, 2013.
5. Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast elitist

multi-objective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary
Computation, 6:182–197, 2000.

6. Tony Diana. Improving schedule reliability based on copulas: An application to
five of the most congested {US} airports. Journal of Air Transport Management,
17(5):284 – 287, 2011.

7. Chen Gong, Xiaodong Wang, Weiqiang Xu, and A. Tajer. Distributed real-time
energy scheduling in smart grid: Stochastic model and fast optimization. IEEE
Transactions on Smart Grid, 4(3):1476–1489, 2013.

8. Yasser Gonzalez-Fernandez and Marta Soto. copulaedas: An r package for estima-
tion of distribution algorithms based on copulas. Journal of Statistical Software,
58(9):1–34, 2014.

9. Mathematica. MathLink Reference Guide, 1993.
10. A.J. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Management: Concepts,

Techniques, and Tools. Princeton Series in Finance. Princeton University Press,
2010.

11. Alexander J. McNeil and et al. Multivariate archimedean copulas, d-monotone
functions and l1-norm symmetric distributions, 2009.

12. Roger B. Nelsen. Properties and applications of copulas: A brief survey. In First
Brazilian Conference on Statistical Modelling in Insurance and Finance, pages 10–
28, 2003.

13. Dengsheng Wu, Hao Song, Minglu Li, Chen Cai, and Jianping Li. Modeling risk
factors dependence using copula method for assessing software schedule risk. In
Software Engineering and Data Mining (SEDM), 2010 2nd International Confer-
ence on, pages 571–574, June 2010.

Attachment D4.2.5

A Practical Approach for Energy

Efficient Scheduling in Multicore

Environments by combining

Evolutionary and YDS Algorithms with

Faster Energy Estimation

Published in The 11th International Conference
on Artificial Intelligence Applications and
Innovations (AIAI’15), IFIP Advances in

Information and Communication Technology,
Vol. 458, pages 478–493, Springer, 2015

70

A Practical Approach for Energy Efficient
Scheduling in Multicore Environments by

combining Evolutionary and YDS Algorithms
with Faster Energy Estimation

Zorana Banković1, Umer Liqat1 and Pedro López-García1,2

1 IMDEA Software Institute, Madrid, Spain
2 Spanish Council for Scientific Research (CSIC), Spain

{zorana.bankovic,umer.liqat,pedro.lopez}@imdea.org

Abstract. Energy efficient scheduling and allocation in multicore envi-
ronments is a well-known NP -hard problem. Nevertheless approximated
solutions can be efficiently found by heuristic algorithms, such as evo-
lutionary algorithms (EAs). However, these algorithms have some draw-
backs that hinder their applicability: typically they are very slow, and
if the space of the feasible solutions is too restricted, they often fail to
provide a viable solution. In this paper we propose an approach that
overcomes these issues. The approach is based on a custom EA that is
fed with predicted information provided by an existing static analysis
about the energy consumed by tasks. This solves the time inefficiency
problem. In addition, when this algorithm fails to produce a feasible so-
lution, we resort to a modification of the well-known YDS algorithm that
we have performed, well adapted to the multicore environment and to
the situations when the static power becomes the predominant part. This
way, we propose a combined approach that produces an energy efficient
scheduling in reasonable time, and always finds a viable solution. The
approach has been tested on multicore XMOS chips, but it can easily be
adapted to other multicore environments as well. In the tested scenarios
the modified YDS can improve the original one up to 20%, while our EA
can save 55− 90% more energy on average than the modified YDS.

Keywords: Scheduling, energy efficiency, multicore systems, evolution-
ary algorithms, YDS.

1 Introduction

Energy efficient scheduling has gained a lot of interest in the recent past. A great
number of publications, e.g., [6], try to present it as a mixed integer linear opti-
misation problem, which can be solved using mixed integer linear programming,
or using a heuristic approach. However, these algorithms become impractical or
fail to deliver a solution as the problem size grows. There is a significant group of

publications on using EAs for the problem of optimal scheduling and allocation
in multiprocessor systems that allow Dynamic Voltage and Frequency Scaling
(DVFS), e.g., the approach presented in [11] aims to minimize both energy and
makespan as a bi-objective problem.

Energy efficient scheduling and allocation in multicore environments with
enabled DVFS is a well-known NP -hard problem. Nevertheless approximated
solutions can be efficiently found by heuristic algorithms, such as evolutionary
algorithms (EAs). An example is our previous EA-based algorithm [3]. In our
setting, we want to solve the general scheduling problem where the tasks have
arbitrary release times and deadlines, and where preemption and migration of
tasks are allowed, but the problem still remains NP -hard for arbitrary release
times and deadlines of the tasks which are not agreeable,1 as it was proven in [1].
Our algorithm has been adapted for its application to multicore XMOS chips,
but it could easily be adapted to any multicore environment, ranging from small
scale embedded systems up to large scale systems, such as data centers. Its first
practical implementation relied on an existing analytical model for calculating
the energy consumption for programs running on these chips [8]. The energy
model is limited to the cases when all the cores belong to the same chip, thus
they must run at the same voltage and frequency level at each moment. For this
reason, in this work we solve the problem of the so-called global DVFS, when all
the cores always have the same voltage and frequency.

In our first EA implementation, each individual in each generation is evalu-
ated by using the above mentioned program energy model, which requires the
execution traces of the programs. Given that the traces can be huge, even for
small programs, such evaluation introduces a huge amount of overhead. In order
to overcome this issue, in this paper we use an existing static analysis which,
at compile time, without the need of executing the programs, and in a few sec-
onds, gives a safe estimation of the energy consumed by programs. As energy
consumption often depends on (the size of) input data, which is not known at
compile time, the static analysis provides the energy as a function of the input
parameters, which is calculated once such input values are known at runtime. The
energy consumption estimated by using the static analysis for a given scheduling
is computed as the sum of the energies of the tasks running on different cores.
This gives a safe upper bound on the total energy consumption, although it may
be less precise than the estimations computed with the program energy model
mentioned previously. This may reduce possible energy savings, nevertheless, the
information it provides is still good enough to decide which scheduling is better,
and the gain in speed of the algorithm is huge: the simulation time is reduced
from a few hours to a few minutes.

However, the EAs can have trouble in finding a viable solution, in the sense
that not all task deadlines are met, if the task deadlines are too tight. In order
to overcome this problem, we have adapted the standard YDS 2 algorithm [15]
(explained in Section 2) to multicore environments. As we will see later, our

1 Two tasks are agreeable if the task with later release time also has a later deadline.
2 The name is created using the first letter of the authors’ last names.

Fig. 1. Overview of our scheduling approach.

experimental results show that if the EA finds a viable solution, it is better than
the one obtained by our modified YDS algorithm in terms of energy savings.

For these reasons, the approach we propose (depicted in Figure 1) consists
of the following steps:

1. Perform the static analysis of the input tasks to estimate the energy con-
sumed by each of them.

2. Execute the EA using such estimations.
– If the EA provides a viable solution, i.e., all the task deadlines are met,

this is the final solution.
– Otherwise, execute our modified YDS algorithm and take its output as

the final solution.

We can distinguish two energy models in Figure 1:

– Instruction-level energy model: gives an estimation of the energy consumed
by the execution of a single instruction, which in general depends on its
inputs, context, etc. However, for simplicity, the model assigns a constant
value to each instruction. It is used by an abstract-interpretation based static
analysis to infer the energy consumed by a program.

– Program-level energy model: a formula that gives the energy consumption of
the entire program, as presented in [8], which is used by our modified YDS
algorithm.

In summary, in this paper we propose a time efficient scheduling approach,
which always provides a viable energy efficient solution, and scales well as the
input size grows. The main original contributions of our approach are:

1. The combination of an EA algorithm that resorts to a modified YDS algo-
rithm, which always provides a viable solution.

2. Use of static analysis for energy estimation at compile time to guide the
EA process, which results in significant speed-up in solving the scheduling
problem, and hence the practicability of our approach, while still providing
a solution with significant energy savings.

3. An improvement of the YDS algorithm, which efficiently solves the static
power issue in the situations the chip cannot be switched off (explained in
Section 2).

The rest of the paper is organised as follows. Section 2 gives more details
about our proposed approach. Section 3 presents an experimental evaluation of
the approach. Finally, some conclusions are drawn in Section 4.

2 Our Proposed Approach

Evolutionary Algorithm The approach we propose is based on the NSGA-
II [4] multiobjective evolutionary algorithm with two objectives: the execution
time and the total energy consumption, where both should be minimised. The
objectives are clearly in conflict, since the application of DVFS reduces energy,
but increases execution time. This justifies the usage of a multiobjective algo-
rithm. NSGA-II has been proven in the literature to perform good when the
number of objectives is small [3], and in our case we have only two.

Since the output of the multiobjective approach is a set of solutions which
form the (approximated) Pareto front, we can choose the solution that meets
some given energy and/or time requirements. Usually we pick the solution with
the minimal energy consumption among those that meet the given time bound
(if applicable).

Individual Representation The problem that we are solving is the optimal
(in terms of energy or time, possibly under some requirements involving them)
allocation and scheduling of a set of tasks, where each task is defined by its:

– Unique ID.
– Release time, i.e., the moment when the task becomes available.
– Deadline, i.e., the latest moment when the task has to finish.
– Number of clock cycles, as a good approximation of the execution time.

Thus, the solution to this problem has to contain the following information:

– The core(s) where each task will be executed. Since we allow task migration,
a task can be allocated to more than one core.

– The current voltage and clock frequency (V, f) state to exploit DVFS.
– The time periods when the tasks are executed.
– The number of clock cycles each task will execute in the different periods

marked by the preemption and migration of that task. This allows to express
the number of cycles a task will execute before it is preempted, as well as
the number of cycles it will execute after it is resumed in the same or in a
different core, etc.

Having in mind these requirements, we have designed the solution represen-
tation as shown in Figure 2, which does not introduce significant overhead when
executing the EA. Any given task has a positive (unique) number as its ID.

Each gene representing a task ID is followed by a gene representing the number
of cycles of the task that will be executed without any preemption. The order of
task IDs represents the order of their temporal execution. We also use negative
two digit numbers to encode the spatial allocation of the tasks. The first digit
represents the core where the tasks are being executed and the second one an
encoding of the (V, f) state of that core. As it will be explained in Section 3,
Table 1, the number of different cores and states is finite, as well as the number
of their combinations. The tasks following the allocation code are executed on
that coded location. For instance, on Figure 2 we read: on core 1 in state 2, 48
cycles of task 1 will be executed, and 77 cycles of task 5, in this exact order, etc.

Our approach allows a random order of allocation codes, in order to solve the
most general problem. However, if two consecutive allocation codes have different
(V, f) states, this means that the tasks allocated to the cores they represent will
not be executed in parallel, since all of the cores have to run at the same (V, f)
at any moment, and thus the (V, f) state has to be changed before the second
group of tasks is executed. For example, in Figure 2 the allocation code following
−12 is −24, which means that the chip will be first in the (V, f) state 2 and all
tasks allocated to core 1 will be executed sequentially on that core. After they
finish their execution, the core will change its (V, f) state from 2 to 4, and the
tasks allocated to core 2 will be executed sequentially on core 2. If the second
allocation code were −22 instead of −24, then the (V, f) state would not change,
and the tasks allocated on cores 1 and 2 would be executed in parallel.

Fig. 2. An example of (part of) a solution (i.e., individual) representation.

Population Initialisation Individuals in the initial population are created by
randomly assigning tasks to random cores in random (V, f) settings with equal
probability. However, in order to provide a load balanced solution (as much as
possible), the probability of choosing a core decreases as its load increases, which
is given by the following formula:

Prob =
1

NumberOfCores
− CurrentCoreLoad

TotalLoad
(1)

where CurrentCoreLoad stands for the current load of the core expressed as
the number of cycles, while TotalLoad stands for the total number of cycles
of all the tasks on all cores. According to the formula, at the beginning of the
initialisation process, all cores have the same probability of being chosen, while
this probability decreases as the core becomes loaded, and is close to 0 when the

load reaches the state where it is equally distributed in all cores. If during the
initialisation process a newly calculated probability value of a core is below 0,
the value is rounded to 0, and no new load will be assigned to that core. These
random solutions do not always have to provide a viable solution, i.e., some of
the tasks might miss their deadlines. For this reason, the mutation operator and
the objectives are designed to deal with this problem.

Solution Perturbations Given the unique nature of the individual represen-
tation, we have designed new crossover and mutation operators. The individuals
that participate in the crossover are selected by using the standard tournament
selection process.

The Crossover Operator Since our solution allows task migration, a given
task ID can appear more than once, so we cannot apply any of the existing
permutation-based crossover operators. Thus, we have designed our own oper-
ator, where each child will preserves the order of genes representing the task
allocation and scheduling from one parent, and only the genes representing the
number of cycles can be taken from the other parent. In this way, the produced
offspring is a combination of both parents, and is at the same time a viable
solution to the problem. The process is depicted in Figure 3 for the most simple
case of 2 cores, 2 tasks and 2 states, with one possible output. We can observe
that the first child, C1 takes the scheduling and allocation from the first parent,
P1, and the cycle distribution from the second parent, P2, while the second, C2,
takes the scheduling and allocation from P2 and the cycle distribution from P1.

Fig. 3. An example of a crossover operation.

The Mutation Operator The mutation operator can perform different actions
involving one or two tasks. Consider two tasks i and t. When choosing the first
one we give higher probability to the tasks which miss their deadlines, in order
to achieve a viable solution as soon as possible. In each generation we perform

either one of the following operations with the same probability (depicted in
Fig. 4):

– Swapping: i and t, together with their corresponding number of cycles, ex-
change their positions in the solution. However, in order to avoid creating
solutions which are not viable, i and t have to belong to the cores that are
executed in parallel (defined with consecutive allocation codes that are in the
same (V, f) state). In Fig. 4 we can observe that tasks 1 and 2 are swapped
between cores 1 and 2, and both cores are in state 1.

– Moving : move i to a random position j. For the same reason as before, the
position j has to belong to a core being executed in parallel as i’s. In Fig. 4
we can observe that the first part of task 1 (40 cycles) is moved to core 2,
before task 2.

– Changing the number of cycles: assigns a different number of cycles to all
the appearances of task i, in a way the total number of cycles of that task
remains the same. In Fig. 4 we can observe that task 1 after the change
executes 25 cycles on core 1 in state 1 and 45 cycles on core 2 in state 2.

Fig. 4. Examples of mutation operations.

Objective Functions

Execution Time One objective of our optimisation problem is to minimize the
total execution time of the schedule, which is the time spent since the first task
starts its execution until the last task finishes its execution. However, since the
initial population is randomly created, it is possible that some of the tasks miss
their deadlines, making the solution unviable. Assuming that these solutions
can provide some quality genetic material, we do not want to discard them com-
pletely, but we penalize them by adding the amount of time the tasks have missed
their deadlines to the objective function. Thus, the time objective function for
n cores and k different tasks is the following:

T̂ = T +
∑

1≤i≤n

(
∑

1≤j≤k

xi,j · yj · (si,j + τi,j − deadlinej)) (2)

where T is the total execution time, given by:

T = max
1≤i≤n
1≤j≤k

(xi,j · (si,j + τi,j))− min
1≤i≤n
1≤j≤k

(xi,j · si,j) (3)

where si,j ≥ 0 is the moment when task j is scheduled on core i (si,j = 0 if the
task j is not scheduled on core i), τi,j is the execution time of task j on core
i, xi,j is a binary value, that represents whether the task j is executed on core
i (xi,j = 1) or not (xi,j = 0). The second part of formula (2) represents the
penalisation, where yj is another binary value that expresses whether the task
j has missed its deadline, deadlinej , (yj = 1) or not (yj = 0).

Energy Consumption This objective represents the total energy consumption
of the given schedule. In the most general case it is given by the following formula:

E =
∑

1≤i≤n

(Pst,i · T +
∑

1≤j≤k

(xi,j · pi,j · τi,j)) (4)

where Pst,i is the static power of core i, T is the same as in formula (3), pi,j
is the dynamic power of task j when executed on core i, and xi,j and τi,j are
the same as in formula (2). In this work we use static analysis to estimate the
energy of single tasks, which will be explained in more detail in Section 2, while
the energy is the sum of the energies of all the tasks, as given in formula (4).

TheModified YDS AlgorithmYDS [15] is a well known algorithm for energy-
efficient scheduling for single core DVFS-enabled environments. We have chosen
it because it always finds a feasible (and optimal) solution that minimises the
total energy consumption, it is simple and fast. However, it does not take into
account the static power, which nowadays forms an important part of the total
power. YDS reduces the frequency and voltage in order to minimise the dynamic
power in a way that the execution time of tasks are extended to their deadlines.
However, this also results in an increase of the static energy. Thus, there is
a critical point from which further reduction of voltage and frequency actually
starts increasing the energy consumption. Attempts to reducing the static energy
when applying DVFS have mainly tried to group the inactive periods by moving
task executions towards their deadline or its release point, and turning off the
chip during such periods [7]. However, this is not always possible since chip wake
up can take more time than available. Our alternative proposal does not turn off
the chip, but instead, finds the critical (V, f) point below which further decrease
is not beneficial. Thus, our modification of YDS consists of the following steps:

1. In order to decide if it is beneficial to further decrease the frequency, and
in this way avoid the problem when the increase in energy consumed by the
static power leads to the total energy increase, we use the simple slope-based
method presented in [12].

2. In order to support the multicore system, we propose two different heuristics
for allocating the tasks to different cores: the load balanced solution and the
solution where a task allocation leads to the minimal frequency increase.
After the allocation, the YDS algorithm is applied to each core.

3. In order to adapt the algorithm so that it assigns only the frequencies sup-
ported by the system, we propose to divide the computational load into two
parts and execute them on two supported frequencies in a way the total
execution time remains (almost) the same.

A Solution to the Static Power Issue of YDS As mentioned before, we
use the simple slope-based method presented in [12]. The only requirement for
its application is the availability of a power model where the static and dynamic
power are separated. The main idea of the method is the following. If we fix the
voltage, the power is a linear function of the frequency, and after applying some
simple numeric transformations (explained in [12] in detail), it can be expressed
in this way:

Pf = Pfmin +m · (f − fmin) (5)

where Pf denotes that the power depends on frequency f , and fmin is the min-
imal possible frequency, assumed to be the one which permits the execution of
tasks to finish at their deadlines, and m is called the slope of the power function.
If we can compare energies at different frequencies, we will know if it is energy
efficient to decrease the frequency. Since power is a function of m, the same ap-
plies to energy, and thus it determines the decision of decreasing the frequency.
In theory, there should exist a slope at which energy is equal for all frequencies.
This slope is called the critical power slope:

mcritical =
Pfmin − Pidle

fmin
(6)

If the actual slope m (calculated from Eq. 5) is greater than the critical one
then we can decrease the frequency in order to save energy. However, if the slope
is lower than the critical one, then the frequency should be increased in order to
save the energy. Since the voltage can also change, the slope should be calculated
for each (Vx, fx) point for each frequency fx:

mfx
critical =

Pfx − Pidle

fx
(7)

This value is then compared with the actual slope mfx at each (Vx, fx) point
with frequency fx. Again, if mfx > mfx

critical, we should decrease the frequency
in order to save the energy. However, if mfx < mfx

critical, the frequency should
be increased in order to save the energy.

Optimal Task-Core Allocation Other aspects of adapting YDS to a multicore
environment consist of finding an optimal number of cores, and allocation, i.e.,
assignments of tasks to cores. In this work we do not deal with the first part of
the problem, we just show that an optimal number of cores exists and it is not
necessarily equal to the maximal possible number of cores. Regarding the second
part, we have tested two possibilities:

1. Assign tasks to the cores so that the load is equally distributed between
them.

2. Assign tasks in the way its addition assumes minimal change in frequency: a
task t is assigned to the core with minimal activity, measured as the number
of clock cycles in its active period (t_release_time, t_deadline).

Assigning Frequencies Supported by the System If the frequency f cal-
culated by YDS is not supported by the system, the total number of cycles ωi is
divided in two parts, ωi1 and ωi2, which are executed on two frequencies f1 and
f2 (f1 ≤ f ≤ f2) supported by the underlying system. The values of ωi1 and ωi2

are calculated by solving the following system of equations:

ωi

f
≈ ωi1

f1
+
ωi2

f2

ωi = ωi1 + ωi12

(8)

Energy Static Analysis as Input In order to estimate the energy consumed
by programs without actually running them we use an existing static analysis.
It is a specialisation of the generic resource analysis presented in [13] for pro-
grams written in a high-level C-based programming language, XC [14], running
on the XMOS XS1-L architecture, that uses the instruction-level energy cost
models described in [10]. The analysis is general enough to be applied to other
programming languages and architectures (see [10, 9] for details). It enables a
programmer to symbolically bound the energy consumption of a program P on
input data x̄ without actually running P (x̄). It is based on setting up a sys-
tem of recursive cost equations over a program P that capture its cost (energy
consumption) as a function of the sizes of its input arguments x̄. Consider for
example the following program written in XC:

i n t f a c t (i n t N) {
i f (N <= 0) return 1 ;
re turn N ∗ f a c t (N − 1) ;

}
The transformation based analysis framework of [10, 9] would transform the
assembly (or LLVM IR) representation of the program into an intermediate
semantic program representation (HC IR), that the analysis operates on, which
is a series of connected code blocks, represented as Horn Clauses. The analyser
deals with this HC IR always in the same way, independent of where it originates
from, setting up cost equations for all code blocks (predicates).

facte(N) = fact_ife(0 ≤ N,N) + centsp + cstw + cldw + cldc + clss + cbf

fact_ife(B,N) =




facte(N − 1) + cbu + 2 cldw + csub +

+ cbl + cmul + cretsp if B is true
cmkmsk + cretsp if B is false

The cost of the function fact is captured by the equation facte which in
turn depends on the equation fact_ife, that captures the cost of the two clauses
representing the two branches of the if statement, and a sequence of low-level

Table 1. Viable (V, f) pairs for XMOS chips.

V oltage(V) 0.95 0.87 0.8 0.8 0.75 0.7
frequency(MHz) 500 400 300 150 100 50

instructions. The cost of low-level instructions, which constitute an energy cost
model, is represented by ci where i ∈ {entsp, stw, ldw, ...} is an assembly in-
struction. Such costs are supplied by means of assertions that associate basic
cost functions with elementary operations.

If we assume (for simplicity of exposition) that each instruction has unitary
cost in terms of energy consumption, i.e., ci = 1 for all i, we obtain the energy
consumed by fact as a function of its input data size (N): facte(N) = 13 N+8.

The functions inferred by the static analysis are arithmetic functions (poly-
nomial, exponential, logarithmic, etc.) that depend on input data sizes (natural
numbers). We use them in our scheduling and allocation algorithm to estimate
the energy consumed by the different tasks involved. Such estimation can be
computed very efficiently once the input data sizes of the tasks are known, since
all the basic arithmetic functions involved can be evaluated in little bounded
time.

3 Experimental Evaluation

XMOS Chips In this work we target the XS1-L architecture of the XMOS chips
as a proof of concept. Although these chips are multicore and multithreaded, in
this work we assume a single core architecture with 8 threads, which is the
architecture for which we have an available energy model. In this case, we can
use the algorithm and representation of individuals described in Section 2 by
considering that a thread in our experiments is conceptually equivalent to a core
executing tasks sequentially, as described previously. We refer the reader to [3]
for a description of a representation of individuals whose allocation codes include
three digits, representing: a core, a thread running in parallel on that core, and
a (V, f) state.

In the XS1-L architecture, the threads enter a 4-stage pipeline, meaning
that only one instruction from a different thread is executed at each pipeline
stage. If the pipeline is not full, the empty stages are filled with NOPs (no
operation). Effectively, this means that we can assume that the threads are
running in parallel, with frequency F/N , where F is the frequency of the chip,
and N = max(4, numberOfThreads). DVFS is implemented at the chip level,
which means that all the cores have the same voltage and frequency at the
same time. In order to apply DVFS, we need a list of Voltage-Frequency (V, f)
pairs or ranges that provide a correct chip functioning. We have experimentally
concluded that the XMOS chips can function properly with the voltage and
frequency levels given in Table 1.

Task Set In order to test our proposed approach, we use two different groups
of task sets. The first group is made up of small tasks, where the EA train-
ing with the program-level energy model takes around one day to complete.
This group is used to show the difference between the results obtained with
the EA trained with the program-level energy model and the EA trained with
the energy estimations obtained by the static analysis. In this group, we use
four different arithmetic programs: fact(N), for calculating the factorial of N,
fibonacci(N) for calculating the Nth Fibonacci number, sqr(N) for computing
N2 and power_of_two(N) for computing 2N . In total, we have created a set of 22
tasks to be scheduled, corresponding to the execution of the previous programs
with different inputs N .

In the second group we use real world programs, where the EA training based
on the program-level energy model is not practical: fir(N), i.e., Finite Impulse
Response (FIR) filter, which in essence computes the inner-product of two vec-
tors of dimension N, a vector of input samples, and a vector of coefficients, and
biquad(N), which is a part of an equaliser implementation, based on a cascade
of Biquad filters, whose consumed energy depends on the number of banks N.
We have used four different FIR implementations, with different number of co-
efficients: 85, 97, 109 and 121. Furthermore, we have used four implementations
of the biquad benchmark, with different number of banks: 5, 7, 10 and 14. We
have tested our approach in scenarios of 16 and 32 tasks, each one corresponding
to such implementations. The tasks corresponding to the same implementation
have different release times and deadlines.

The energy consumed by the programs is inferred at compile time by the
static analysis described in Section 2. Such energy is expressed as a function
of a parameter N , the size of the input, which is only known at runtime. Such
functions are given in Table 2 for 3 of the 6 different voltage and frequency levels
used in this work (for conciseness, as the functions for each program have the
same complexity order, but different coefficients). The static analysis assumes
that a single program (task) is running on one thread on the XMOS chip, while
all other threads are inactive. In this implementation, the EA algorithm approx-
imates the total energy of a schedule by adding the energies of all the tasks.
Although in this way we loose precision, the estimation still provides precise
enough information for the EA to decide which schedule is better.

Testing Scenarios In our current implementation, we assume no dependency
between the tasks since it is not supported by the available energy models. The
release times and deadlines of the different tasks are set in different scenarios
in order to experimentally show the benefits of DVFS and optimal scheduling,
where all the tasks have different release times and deadlines, with tighter dead-
lines; and that it is important to take into account the static power, especially
in the case of loose deadlines.

Scenario 1: Tasks with Loose Deadlines In this scenario the release time of
a task k, denoted T k

rel is a random moment between 0 and the total execution
time at the maximal frequency of all the tasks executed sequentially on a single
core. Also, the deadline of a task is a random moment between T k

rel +10×T k
maxf

Table 2. Energy functions inferred by static analysis for 3 different pairs of voltage
(V)/frequency (MHz).

V = 0.70 V = 0.75 V = 0.80
F = 50 F = 100 F = 150

fact(N) 60.5 N + 46 35 N + 26.7 27 N + 20.5

fib(N) 87.19× 1.62N+ 50.32× 1.62N+ 38.68× 1.62N+
26.7× (−0.62)N − 74.7 15.44× (−0.62)N − 43 11.85× (−0.62)N − 33.2

sqr(N) 21.3 N2 + 121 N 12.3 N2 + 69.8 N 9.48 N2 + 53.7 N
+39.1 +22.5 +17.3

powerOf2(N) 55.1× 2N − 39 63.7× 2N − 39 24.49× 2N − 30

fir(N) 74.93 N + 124.5 43.36 N + 71.9 33.41 N + 55.2

biquad(N) 386 N + 128 223.6 N + 74.2 172.5 N + 57.2

and T k
rel + 20 × T k

maxf , where T
k
maxf denotes the execution time of the task at

maximum frequency. This way we achieve a scenario with loose deadlines even
at a smaller frequency.

Scenario 2: Tasks with Tight Deadlines Here, the release time is the same
as in Scenario 1. However, the deadline of a task is a random moment between
T k
rel + 5 × T k

maxf and T k
rel + 7 × T k

maxf . This way we get tighter deadlines, but
also provide a set of tasks which are schedulable on the given platform. Note
that the deadlines become even tighter as the frequency decreases.

Results: The Improved YDS Table 3 shows the savings of our improved YDS
algorithm presented in Section 2 compared to the original YDS, for different
number of cores and for two different ways of task allocation: Alloc. 1, where the
load is evenly distributed between the cores, and Alloc. 2, where the addition of
a task implies a minimal increase in the frequency. The energy saving resulting
from a particular scheduling is calculated using the following formula:

Y DS_original − Y DS_modified
Y DS_original

· 100 (9)

In Table 3, energy savings are achieved in all, but in two cases with tight dead-
lines. A possible reason could be the fact that all the threads need to have the
same frequency always, which means that the maximal necessary frequency is
assigned, which is not necessarily be optimal for all the threads. However, in the
case of loose deadlines, the savings are much more significant, since the static
power plays a more important role.

Results: EA vs. improved YDS Both EA and YDS are implemented in C++.
EA extends the MOGAlib library [5] for multiobjective genetic algorithms. In
the EA, the population of 200 individuals is evolved for 150 generations. The
probability of both crossover and mutation is 0.9. The mutation is assigned
higher probability than usual due to its important role for reaching a viable
solution. Since the result of the optimisation process is a set of possible solutions

Table 3. Energy savings obtained by the modified YDS vs. the original YDS (%).

Tight deadlines Loose deadlines
#Cores Alloc. 1 Alloc. 2 Alloc. 1 Alloc. 2

1 4.18 4.18 6.21 6.21
2 1.5 4.26 14.67 14.67
3 -5.26 3.17 14.67 14.67
4 2.22 2.77 8.8 8.8
5 -3.28 3.47 11.18 11.18
6 0.95 4.34 11.82 11.82
7 4.8 3.03 10.9 10.9
8 19.36 5.61 10.56 10.56

which form the approximated Pareto front, we take the solution with minimal
energy consumption where all task deadlines are met.

Table 4 presents results comparing the EA trained with the energy estima-
tions provided by static analysis, versus the improved YDS algorithm presented
in Section 2. In the first column, the energy of the final solution calculated by
using the program-level energy model is given (EAs). The second column gives
the energy of the final scheduling obtained by the modified YDS algorithm (re-
ferred as Y DSm) using the program-level energy model, while the third column
gives the energy saving of the EA trained with static analysis compared to YDS.
Finally, the last column shows the energy saving obtained with the EA trained
with the program-level energy model(EAm) [2], which is only applicable in the
scenarios with a small number of numeric tasks. Each row shows statistics for
each scenario taken from 10-20 runs of the algorithm for the same scenario,
where CI0.01 and CI0.05 represent 99% and 95% confidence intervals, meaning
that we can claim with 99(95)% certainty that the final result will fall in these
intervals.

In order to perform the comparison between the EA and Y DSm, in the
case of EA and tight deadlines, we present the results when the EA can find
a viable solution. However, the EA does not always provide a viable solution
in all the scenarios with tight deadlines created as explained previously. As we
can see in Table 4, if the EA finds a viable solution, it always performs better
than the Y DSm. We can also observe that the EA trained with the program-
level energy model achieves better results. However, the EA trained with the
energy estimations by static analysis still achieves very good results, but with
the training process that lasts around 10 minutes, compared to around 24 hours
of training the EA with the program-level energy model, which makes it much
more practical.

4 Conclusions and Future Work

In this work we propose a holistic approach for optimal scheduling, allocation and
voltage(V) and frequency(f) assignment in multicore environments, adapted for

Table 4. EA vs. improved YDS in different scenarios.

EAs(µJ) Y DSm(µJ) (Y DSm−EAs)
Y DSm

(%) (Y DSm−EAm)
Y DSm

(%)

A scenario with 22 small numeric tasks and loose deadlines
Mean 14.3 33.1 56.8 76.57

CI 0.01 11.6 - 17 NA 48.64 - 64.95 67.87-85.27
CI 0.05 12.2 - 16.4 NA 50.45 - 63.14 70.05- 83.09

A scenario with 22 small numeric tasks and tight deadlines
Mean 14.6 34.8 60.92 69.83

CI 0.01 11.5-17.7 NA 49.14 - 66.95 57.18-57.18
CI 0.05 12.2 - 17 NA 51.15 - 64.94 60.34-60.34
A scenario with 16 tasks made of Biquad and FIR filters and loose deadlines
Mean 4.38 35.3 87.59 NA

CI 0.01 3.4 - 5.3 NA 85 - 90.37 NA
CI 0.05 3.7 - 5.1 NA 85.55 - 89.52 NA

A scenario with 16 tasks made of Biquad and FIR and tight deadlines
Mean 14.5 35.4 59.04 NA

CI 0.01 9.4- 19.6 NA 44.63 - 73.45 NA
CI 0.05 10.6 - 18.4 NA 48.02 - 70.06 NA
A scenario with 32 tasks made of Biquad and FIR filters and loose deadlines
Mean 17.85 68.16 73.81 NA

CI 0.01 10.8 - 25 NA 63.32 - 84.15 NA
CI 0.05 12.5 - 23.3 NA 65.82 - 81.66 NA
A scenario with 32 tasks made of Biquad and FIR filters and tight deadlines
Mean 29.43 68.16 56.82 NA

CI 0.01 0.72 - 51.6 NA 24.3 - 89.44 NA
CI 0.05 12.5 - 46.3 NA 32.07 - 81.66 NA

multicore XMOS chips. The main part of our approach is based on our custom
developed EA-algorithm, which relies on static analysis to efficiently estimate
the energy of input tasks. The use of such static analysis improves significantly
the speed of the EA training process, thus allowing its real world applicability.
Furthermore, since in the case of very tight task deadlines the EA can fail in
providing a feasible solution, we add one more stage based on the YDS algorithm,
which has been adapted for multicore environments and improved in a way it
takes into account the static power. In this way, we have developed an efficient
approach which is capable of providing energy savings in each possible scenario.

However, although the use of static analysis based estimations still provides
energy savings, we have seen that better results can be achieved with more
precise energy estimations. For this reason, we plan to use a static analysis
of the energy consumed by concurrent programs, which is expected to provide
additional savings. As a future work, we also plan to study the effect of different
versions of the crossover and mutation operators in different situations, which
could enable adding a heuristic for choosing the optimal version for each possible
scenario.

Acknowledgements. The research leading to these results has received fund-
ing from the European Union 7th Framework Programme under grant agree-
ment 318337, ENTRA -Whole-Systems Energy Transparency, Spanish MINECO
TIN’12-39391 StrongSoft project, and the Madrid M141047003 N-GREENS pro-
gram.

References

1. S. Albers, F. Müller, and S. Schmelzer. Speed scaling on parallel processors. In
Proc. of SPAA ’07, pages 289–298, USA, 2007. ACM.

2. Z. Banković and P. López-García. Energy Efficient Allocation and Scheduling
for DVFS-enabled Multicore Environments using a Multiobjective Evolutionary
Algorithm. In Proc. of GECCO ’15. ACM, 2015. To Appear.

3. Z. Banković and P. Lopez-Garcia. Stochastic vs. Deterministic Evolutionary
Algorithm-based Allocation and Scheduling for XMOS Chips. Neurocomputing,
150:82–89, 2015.

4. Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast elitist
multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6:182–197, 2000.

5. Balázs Gaál. Multi-Level Genetic Algorithms and Expert System for Health Pro-
motion. PhD thesis, Univ. of Panonia, Faculty of Information Technology, 12 2009.

6. Marco E. T. Gerards et al. Analytic clock frequency selection for global DVFS. In
Proc. of PDP ’14, pages 512–519, 2014.

7. R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage scaling for
real-time embedded systems. In Proc. of DAC ’04, pages 275–280. ACM, 2004.

8. S. Kerrison and K. Eder. Measuring and modelling the energy consumption of
multithreaded, multi-core embedded software. ICT Energy Letters, pages 18–19,
July 2014.

9. U. Liqat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, M. V. Hermenegildo, J. P.
Gallagher, and K. Eder. Inferring Energy Consumption at Different Software Lev-
els: ISA vs. LLVM IR. Technical report, ENTRA Project, April 2014. Appendix
D3.2.4 of Deliverable D3.2. Available at http://entraproject.eu.

10. U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech, M.V.
Hermenegildo, and K. Eder. Energy Consumption Analysis of Programs based on
XMOS ISA-level Models. In Proceedings of LOPSTR’13, 2014.

11. Mohand Mezmaz et al. A bi-objective hybrid genetic algorithm to minimize energy
consumption and makespan for precedence-constrained applications using dynamic
voltage scaling. In Proc. IEEE CEC ’10, pages 1–8. IEEE, 2010.

12. Akihiko Miyoshi et al. Critical power slope: Understanding the runtime effects of
frequency scaling. In Proc. of ICS ’02, pages 35–44, USA, 2002. ACM.

13. A. Serrano, P. Lopez-Garcia, and M. Hermenegildo. Resource Usage Analysis of
Logic Programs via Abstract Interpretation Using Sized Types. TPLP, ICLP’14
Special Issue, 14(4-5):739–754, 2014.

14. D. Watt. Programming XC on XMOS Devices. XMOS Limited, 2009.
15. F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy.

2013 IEEE 54th Annual Symposium on Foundations of Computer Science, 0:374,
1995.

Attachment D4.2.6

Genetic Algorithm-based Allocation and

Scheduling for Voltage and Frequency

Scalable XMOS Chips

Published in Hybrid Artificial Intelligent
Systems (HAIS 2013), Lecture Notes in

Computer Science, Vol. 8073, pages 401–410,
Springer, 2013

87

Genetic Algorithm-based Allocation and
Scheduling for Voltage and Frequency Scalable

XMOS Chips

Zorana Banković1 and Pedro López-García1,2

1 IMDEA Software Institute, Madrid, Spain
2 Spanish Council for Scientific Research (CSIC), Spain

{zorana.bankovic,pedro.lopez}@imdea.org

Abstract. In this work we present a novel approach, based on genetic
algorithms, for automatic scheduling and allocation of tasks in a multi-
processor multi-threaded architecture, together with an assignment of
the appropriate voltage and frequency of each processor in a way the over-
all energy consumption is optimized and all task deadlines are met. The
approach deals with scheduling, allocation and voltage and frequency as-
signment at the same time, and provides good solutions in a very short
time. As far as we know, this is the first approach that supports two
levels of parallelism: multi-processor and multi-thread.

1 Introduction

Dynamic power consumption due to switching activity in digital CMOS circuits
can be expressed with the following formula: P = αCeffV

2f , where Ceff is the
effective capacitance, V is the operating voltage, f is the operating frequency,
and α the switching factor. If we can decrease the voltage supply and the operat-
ing frequency, the dynamic power will decrease significantly. On the other hand,
static power which is the result of the leakage currents also decreases quadrati-
cally with voltage [?]. Thus, voltage decrease can achieve significant power and
energy savings. This process is known as Dynamic Voltage and Frequency Scal-
ing (DVFS). However, it slows down the operation of the circuit, and has to be
applied in a way the required deadlines are still fulfilled. Furthermore, the pro-
cess introduces additional latencies, so we have to develop a set of requirements
that define the applicability of this approach.

The objective of this work is to optimize energy consumption through op-
timal scheduling and allocation for a set of tasks on XMOS chips, which are
multiprocessor and multithreaded voltage and frequency scalable architecture.
In XMOS chips threads are pipelined in a four-stage pipeline, where in each
stage one instruction from different thread is executed, so in essence we can say
that the threads also run in parallel. Thus, we deal here with two levels of par-
allelism. We assume that different processors can have different (V, f) setting,

while the threads running on the same processor at the same time must have
the same (V, f) setting.

Given a set of tasks and their corresponding deadlines, the objective is to
provide a scheduling and allocation, and also assign voltage and frequency for
each processor that would optimize the energy, while respecting the deadlines.
The tasks are heterogeneous, and they in general have different starting time
and deadline. We assume that there is no precedence between tasks, and no
preemption. In order to solve the problem, we need to have safe estimates of
power consumption of each task, as well as its execution time. Since this work
falls into ENTRA project [?], whose main task is to provide the programmer
the estimation of the energy consumption of his/hers program at compile time,
we assume that there exists an analysis that would give us this information, as
necessary input. On the other hand, there is a great body of work about time
analysis, so we assume that the analyzer will provide us this information as well.

The general problem of scheduling and allocation is NP-hard. In order to solve
it, different heuristic algorithms have been developed since they are capable of
obtaining sub-optimal solutions in real time. Many of them use genetic algorithm
(GA) [?,?,?] due to its fast exploration of the search space, which allows it to
quickly find acceptable solutions. For this reason, our scheduler will also be based
on GA. We will provide appropriate solution representation that captures the
two levels of parallelism, i.e. at both processor and thread level, and in the same
run performs allocation and scheduling and identifies appropriate (V, f) setting
in real time. As far as we know, this is the only solution for this type of problems.

The rest of the work is organized as follows. Section 2 details the sources of
power consumption, while Section 3 explains the problem that is being solved
and draws the constraints that are the basis for generating the solution. Section 4
details the implemented solution, while Section 5 explains the experimentation
environment and presents the most significant results. Section 6 presents the
most relevant related work, and finally, Section 7 draws the most important
conclusions.

2 CPU Power Consumption

The energy required to complete a (set of) task(s) in time T on one processor,
given the frequency f and voltage V is defined by:

Ecpu,f,V =

t0+T∫

t0

Pcpu,f,V (t)dt (1)

where Pcpu,f,V is the time varying XCore power at (V,f) setting. This power can
be calculated as:

Pcpu,f,V (t) = P fix
cpu,V + Pidle,f,V + P act

cpu,f,V (t) (2)

where P fix
cpu is the portion of the power that includes PLL and leakage [?], which

is the part that only depends on voltage, not on frequency. Pidle,f,V is the power

spent when the processor is not executing any application. For a certain fixed
(V,f) setting, the sum of these two does not change in time, so in the further text
we will call it standing power consumption, P std

cpu,V,f . This power can be easily
obtained by measuring the CPU power when there are no running applications
for each (V,f) setting. On the other hand, P act

cpu,f,V (t) is the active power spent
on switching activity during the execution of the application(s). Finally, we can
write:

Pcpu,f,V (t) = P std
cpu,f,V + P act

cpu,f,V (t) (3)

which put in 1 gives the energy consumed during time T :

Ecpu,f,V = P std
cpu,f,V T +

M∑

i=1

Pi,f,V Ti (4)

where Pi,f,V is the power spent by the application i, which is executed during
time of Ti, and M is the number of threads, i.e. the maximal number of appli-
cations that can be executed on one processor at certain moment. In the cases
when the threads can finish more than one application within time T , formula 4
would have the following form:

Ecpu,f,V = P std
cpu,f,V T +

M∑

i=1

K∑

j=1

Pij,f,V Tij (5)

where K is the maximal number of applications a thread can execute in time T .

3 Problem Description

Problem Definition
Given a set of concrete tasks, provide optimal scheduling and (V,f) pair(s)
for each processor in order to optimize energy consumption.

Input
– Set of tasks with their corresponding deadlines.
– Set of possible (V,f) pairs.
– Available hardware: n - number of processors, m - number of threads per

processor.
Output

Viable scheduling and allocation that optimizes energy.

In the following text we assume the notation where variables are expressed using
upper case letters, while constants are expressed using lower case letters.

3.1 Timing Constraint

In general case, for each new frequency Fnew,i of each processor i, the following
should remain valid:

∀i ∈ [1, n],∀j ∈ [1,m], Toh,i +
Cij

Fnew,i
≤ Dij (6)

where Toh is the time overhead introduced by DVFS and Cij is the number
of clock cycles needed to execute the application j on processor i, giving its
execution time to be Cij

Fnew,i
. This is reasonable to assume, given that in XMOS

there are no pipeline stalls, nor cache misses, since there is no cache memory.
We further have:

∀i ∈ [1, n], Toh,i = tohV
+ Tohf,i

≈ tohV
+

10

Fold,i
+

2

Fnew,i
(7)

where tohV
is the time overhead of performing voltage scaling (assumed to be

constant), while Tohf
if the time overhead of performing frequency scaling, which

takes 10 clock cycles at most of the old clock, and two cycles of the new clock [?].
Finally, from 6 and 7 we get the timing constraints set:

∀i ∈ [1, n],∀j ∈ [1,m], Fnew,i · (Cij + 2) ≤ Dij − tohV
− 10/Fold,i (8)

where we consider that we know tohV
, and both Fold and Fnew can take one

value from the finite set of the pre-established values (V,f).

3.2 Energy Minimization Constraint

The second set of requirements is derived from the condition of reducing the total
energy during some known time t, high enough so that it permits the termination
of all the applications. This implies the following condition:

∀i ∈ [1, n],∀j ∈ [1,m], t ≥ max
i,j

Dij (9)

Thus, for each processor, we have:
n∑

i=1

Eold ≥
n∑

i=1

Enew ⇒

n∑

i=1

pstdi,cpu,Fold,i,Vold,i
· t+

n∑

i=1

m∑

j=1

pij,Vold,i,Fold,i
· Cij

Fold,i
≥

n∑

i=1

eoh +
n∑

i=1

pstdi,cpu,Fnew,i,Vnew,i
· t+

n∑

i=1

m∑

j=1

pij,Vnew,i,Fnew,i
· Cij

Fnew,i

(10)

where eoh is the energy spent on voltage and frequency scaling, pij,Vold,i,Fold,i

and pij,Vnew,i,Fnew,i are estimated total power consumptions of the application
j on XCore i in the different (V, f) settings, while pstdcpu is the standing power
explained in Section 2 in different settings. Finally, from 10, we get:

n∑

i=1

m∑

j=1

(
pij,Vnew,i,Fnew,i

Fnew,i
− pij,Vold,i,Fold,i

Fold,i
) · Cij ≤

t ·
n∑

i=1

(pstdi,cpu,Fold,i,Vold,i
− pstdi,cpu,Fnew,i,Vnew,i

)− n · eoh
(11)

where the only unknown parameters are Cij .

4 Proposed Solution

Our solution for optimal scheduling and allocation is based on GA. We have
used steady-state GA, where the number of individuals of the population is
the same in every generation and in every generation 60% of the population
with lowest objective values is replaced with newly created individuals. Custom
roulette wheel selector is used for the selection process. In the following text we
will explain other important aspects of its implementation in more detail.

Individual. The starting point, and one of the most important parts, in design-
ing a GA-based solution is always a representation of a solution, i.e. individual.
In our case, the solution contains information about temporal and spatial allo-
cation of each task. In other words, for each processor and each of its threads
we should have an ordered (in time) set of tasks. However, since in this work we
deal with DVFS, we have to add the information about the (V, f) state of each
processor. All the threads on the same processor have the same (V, f) setting
in the same moment, but we assume that different processors can have different
(V, f) setting, in order to solve the most general problem.

We can look at a solution to the scheduling problem as a permutation of
the task identifiers, where their order also stands for the order of their temporal
execution, assuming that each task has a unique identifier. On the other hand, in
order to solve the allocation problem, i.e. on which thread (and which processor)
each task is executed, we can add delimiters to the permutation of the task IDs
that would define where the tasks are being executed, i.e. processor, thread and
(V, f) setting (the tasks between two delimiters are executed on the right-side
one). In order to be able to distinguish delimiters from the task, they are used as
negative three-digit numbers, where the first digit stands for the processor, the
second for the thread on that processor, and the third for the processor (V, f)
setting (there is a finite number of settings). Part of a solution is depicted in
Fig. 1, where tasks with IDs 1, 2, 5 and 7 are executed in that order on the thread
4 of the core 2, with the (V, f) setting marked as 4. In the most general case,
the order of delimiters is random. However, if two consecutive delimiters that
belong to the same processor have different settings, this means that they are
not being executed in parallel, since the state has to be changed. Representing
solution in the described way has provided us with a relatively simple solution,
which will not introduce great overhead when executing GA.

Fig. 1. Solution Representation

Population Initialization. We have used a heuristics when initializing the
population in order to provide some good quality individuals from the begin-
ning. According to it, the task is added to the thread in the way the total
resulting energy up to the moment is minimal. However, the total energy is cal-
culated for the time equal to the farthest deadline for each thread. In this way,
more weight is given to the static power overhead. Thus, the objective of this
heuristic is to promote delaying the execution of each task towards its deadline
through minimizing the energy overhead. However, since in general GAs benefits
from great variety of solutions, we also introduce random solutions. During the
initialization process, each individual randomly chooses between heuristics and a
randomly generated solution, where the heuristics has slightly bigger possibility
to be chosen (0.6).

Solution Perturbations. Given that all the tasks and all the delimiters are
different, different solutions are always a permutation of a set of tasks and the set
of delimiters. This gives us the opportunity to use some of the permutation-based
crossover operator, and in this case we are using the partial match crossover, since
it performed better in the terms of objective function than the cycle crossover,
and slightly better than order crossover in the terms of objective function and
execution time. Since the order of delimiters is not important in the most general
case, this operator provides at the same time variety in consecutive changes of
(V, f) settings, as well as moving tasks from one thread to another. Regarding
mutation, it is implemented in the way that two random threads exchange two
random tasks with a small probability.

Objective Function. Since the aim is to the minimize total energy, the objec-
tive function is the total energy consumed for executing the given set of tasks
and it is calculated as presented in Section 2. However, the execution time for
each thread is taken as the farthest deadline of its tasks, in order to take full
advantage of the DVFS possibility. Furthermore, we have to be sure that the so-
lution is viable, i.e. that all given deadlines are met. We deal with this problem
through the penalization of the inviable solutions by multiplying their energy by
10. In this way, viable solutions will always have higher objective function and
thus higher probability of surviving to the next generation.

5 Experimental Evaluation

5.1 Testing Environment

XMOS Chips. The target architecture for this work are XMOS chips. However,
the same approach can be followed for any kind of DVFS-enabled multi-processor
architectures. In the case of XMOS chip, both voltage and frequency scaling are
possible and both introduce time overhead. All their chips provide the possibility
of frequency scaling due to the existence of a programable frequency divider. The

time overhead introduced when changing frequency is not more than 10 cycles
of the old clock, plus two more cycles of the new clock.

On the other hand, only XS1-SU01A-FB96 [?] chip provides the possibility
of voltage scaling due to the existence of two DC-DC converters whose output
voltage can belongs to the range (0.6V, 1.3V). In order to apply DVSF, we should
have a list of Voltage-Frequency (V,f) pairs or ranges that provide correct chip
functioning. The latency in this case is not controllable, and can be estimated
in the following way. Since the switching frequency of the converter is 1MHz,
and assuming we have linear control, the bandwidth should be 1/10 to 1/7 of
it, i.e. 150kHz in the best case. Thus, the time it takes for the output voltage to
stabilize is 1/150kHz, which is around 6µs.

We have experimentally concluded that the XMOS chips can function prop-
erly in six (V, f) settings given in the first two columns of Table 1. In order to
include the possibility of shutdown, we could include the state (0(V),0(MHz))
and take the wake-up time as the latency of changing the state, and proceed in
the same way. For the purpose of this experiment, we assume that we have four
different processors, where each processor has eight different threads.

Task Set For the purpose of this initial experiment we have used the tasks from
the well known SPECCPU2006 [?] benchmark. The input dataset is composed
of 200 tasks randomly chosen, where each is one from the benchmarks. Each
task is independent. The same reasonable deadline is assigned to each task, so
it provides the possibility of applying DVFS. Their execution time is measured
on a general purpose computer, and the execution time on an XMOS chip is
estimated to be Tmeasured · fXMOS

fgp
. This estimation is based on the assumption

that the total number of execution cycles is the same in both cases, and that it
is representative of the total execution time. While this is true for the XMOS, in
the general purpose computer this is not the case due to cache misses, pipeline
stalls, etc. Thus, in the future we would have to profile the tasks on the XMOS
chips, or use static analysis. It is important to point out that the duration of
the tasks, as well as their energy, are much bigger than both time and energy
overhead of DVFS scaling, so in this experiment the overhead will not be a
limiting factor.

Table 1. Typical power consumption for each processor state

V (V) f(MHz) Pdyn(mW) Pst(mW)

0.95 500 117.325 18.05
0.87 400 78.7176 15.138
0.8 300 49.92 12.8
0.8 150 24.96 12.8
0.75 100 14.625 11.25
0.7 50 6.37 9.8

Since this work represents an initial study of the approach, we have taken
that the power consumption of each task is typical XMOS power consumption
given in [?]. The estimations for different (V, f) settings are estimated by scaling
with voltage and frequency in the case of dynamic power, while the static power
is scaled with voltage, i.e. Pdyn =

P base
dyn ·fnew·V 2

new

fbase·V 2
base

and Pst =
P base

st ·V 2
new

V 2
base

. These
values are given in Table 1 for each (V, f) setting. However, it is assumed that
in the future the analyzer will give us an estimation of power consumption of
each task.

5.2 Obtained Results and Discussion

Genetic algorithm is executed on 500 individuals, during 100 generations. Greater
number of individuals does not provide significantly better solution. In Fig. 2
we can see that the best objective value does not significantly change during
the last iterations. The objective value is given in Wh. Under these settings, the
total execution time of the algorithm is around six minutes on an Intel Dual
Core machine, with 2.4GHz clock.

Fig. 2. Evolution of the best, the average and the maximum objective value

The average savings achieved in this way are 33.94%, with standard deviation
of 0.56%, compared to the same scheduling and allocation without the DVFS.
Speaking in the terms of statistical significance, we can be 95% sure that the
obtained savings will belong to the interval (33.02%, 34.86%). A typical solution
is presented in Fig. 3. Separate (V, f) settings are distinguished with different
colors, where the settings 1-6 correspond to the ones given in Table 1, and one
time unit corresponds to one task. As we can observe, the majority of the tasks
are executed in low power settings 4, 5 and 6.

6 Related Work

Since DVFS can provide significant energy savings, its optimal usage has been
extensively studied. Some examples divide scheduling and allocation in two sep-

Fig. 3. A Scheduling and Allocation Solution per Core with Assigned DVFS setting

arate tasks, such as the one given in [?], where in the first step the allocation
problem is solved using Linear Programming, while in the second the scheduling
problem is solved for separate processors using Bin Packing. Another solution [?]
solves the scheduling problem using GA, while it integrates DVFS in the fitness
function. However, we believe that more optimal solutions could be achieved
when solving scheduling and allocation at the same time, while also accounting
for the DVFS. There is one example of GA-based scheduling [?] that combines
scheduling, allocation and power management in one task. However, it deals only
with voltage scaling.

There is also a significant group of publications on using GAs for optimal
scheduling and allocation in multiprocessor systems with DVFS possibility. An
example given in [?] treats the problem as bi-objective, where they want to
minimize both energy and make span. The same objective is solved in another
work [?], but using the island model of parallel GA populations. Yet, in this work
our aim is to optimize the energy while meeting the deadlines, but our approach
can easily be adapted to work as multi-objective. Another solution [?] treats
the problem from two opposite points of view: in the first one, optimizes the
energy given the scheduler length, while in the other optimizes the scheduling
length given the energy bound. Finally, none of the solutions does not include the
possibility of two levels of parallelism, where each processor can have a number
of different threads executing in parallel.

7 Conclusions

In this work we have presented a solution for optimizing energy consumption for a
multiprocessor and multithreaded architecture. The solution performs scheduling

and allocation as one task, and deals with two levels of parallelism, which is the
only solution of this kind as far as we know.

The solution will form part of the tool developed within the ENTRA project,
when we will be able to include the power and time estimates provided by the
ENTRA static analyzer. There are also possibilities to further improve the per-
formances of the solution. For example, XMOS chips have the possibility to
automatically reduce the frequency of the processor if all of its threads are wait-
ing for an event, and in this way decrease the energy consumption even further.
This feature will be included into future versions of our scheduler, as well as the
possibility of shutting off separate components while they are not active.

Acknowledgements. The research leading to these results has been supported
by the European FP7/2007-2013 318337 ENTRA project, and the Spanish TIN2012-
39391-C04-01 STRONGSOFT project. svn st

References

Attachment D4.2.7

An Energy-Aware Programming

Approach for Mobile Application

Development Guided by a Fine-Grained

Energy Model

Roskilde University, February 2016. submitted
for publication

98

1

An Energy-Aware Programming Approach for
Mobile Application Development Guided by a

Fine-Grained Energy Model
Xueliang Li John P. Gallagher

Abstract—Energy efficiency has a significant influence on user
experience of battery-driven devices such as smartphones and
tablets. It is shown that software optimization plays an important
role in reducing energy consumption of system. However, in
mobile devices, the conventional nature of compiler considers
not only energy-efficiency but also limited memory usage and
real-time response to user inputs, which largely limits the
compiler’s positive impact on energy-saving. As a result, the code
optimization relies more on developers. In this paper, we propose
an energy-aware programming approach, which is guided by
an operation-based source-code-level energy model. And this
approach is placed at the end of software engineering life cycle to
avoid distracting developers from guaranteeing the correctness of
system. The experimental result shows that our approach is able
to save from 6.4% to 50.2% of the overall energy consumption
depending on different scenarios.

I. INTRODUCTION

The smartphone, the most popular mobile device,
has been considered as one of the most important in-
vention in the contemporary age. In February 2015,
the penetration of smartphones was about 75% in
the U.S [4]. This figure is still growing. With the
improvement of hardware processing capability and
software development environment, the smartphone
is no longer a handset only to make phone calls,
also play entertaining games, watch movie videos,
browse web pages and so on. On the other hand,
users are meanwhile frustrated by the limited battery
capacity – applications running in parallel could
easily drain a fully-charged battery within 24 hours.

Software optimization barely by the compiler
achieves very little energy-saving for mobile de-
vices since besides energy-saving the compiler on
a mobile device has to think of many other im-
portant factors, such as limited memory usage and
quick responses to user interactions. The Android
platform, say, employs the Just-In-Time (JIT) com-
piler [6], also known as the dynamic compiler. Its
optimization window is generally as small as one
or two basic blocks in order to use less memory
and quicken the delivery of performance boost.
However, the small window largely restricts the
space of energy-saving strategies. Eventually, the
refactoring of code should rely more on developers.

Unfortunately, current software development is
performed in an energy-oblivious manner. Through-
out the engineering life cycle, most developers

and designers are blind to the energy usage of
code written by themselves. However, developers
are desperate for the knowledge on energy-aware
programming techniques. In the most popular soft-
ware development forum STACKOVERFLOW [40],
energy-related questions are marked as favorites
3.89 more often than the average questions [34].
And among the energy-related questions, code-
design-related ones are prominently more popular.
Moreover, it has been estimated that energy-saving
by a factor of as much as three to five could be
achieved solely by software optimization [12]. To
realize this, the first step is to analyze the energy
accounting of source code at different levels of
granularity and from different points of view.

In order to enable energy accounting of code,
energy modeling of code is needed to bridge the
gap between high-level source code and low-level
hardware, where energy is consumed. However,
traditional bottom-to-top modeling techniques [8],
[36], [42], [44] face obstacles when the software
stack of the system consists of a number of abstract
layers. On the Android platform, say, the source
code is in Java and then translated to Java byte-code,
further to Dalvik [3] byte-code, native code and
machine code and finally has chance to execute on
the processors and consume energy. Consequently,
the modeling task has to characterize the links
among all the layers.

Instead of building a software energy model layer
by layer, another approach to acquiring software-
level energy information is to use the hardware
readings, like CPU state residency, CPU utilization,
L1/L2 Cache misses and battery trace, as predic-
tors of software energy use [11], [33], [45], [46].
However, they are only capable of obtaining energy
information at a coarse level of granularity such
as methods or applications. Two pieces of work
[14], [20] result in source-line energy information.
The former requires low-level energy profiles. The
latter employs accurate measurement to acquire the
energy consumption of source lines.

The energy information on blocks or more coarse-
grained units could identify the hot spots in the
code, but it gives few clues about how to make
changes to the code. The source line is also not an

2

appropriate level of granularity to provide energy
information. For instance, the header of for loop
contains three segments which are initialization,
boolean and update at the same source line, but
usually have distinct numbers of executions. So the
energy information about the source line of the
header is not very sensible for developers.

Li et al. [21] propose a source-level energy model
based on "energy operations", which is more fine-
grained and able to provide more valuable informa-
tion for code optimization. Compared with coarse-
grained techniques, there are several advantages of
the operation-based model in guiding the energy-
aware programming techniques:
• The energy operations are basic units that con-

stitute the energy consumption of entire soft-
ware. Thus using the energy estimate of oper-
ations, the developers can assess the effects of
code changes on energy consumption of code.

• It provides more valuable information on how
to make changes. For example, the experiment
shows that the "methode invocation" is the most
expensive operation, suggesting that in some
case we may inline some thin methods at the
cost of losing the integrity of the structure of
code.

In this paper, we propose an energy-aware pro-
gramming approach guided by fine-grained energy
model of source code. The generic procedures of
the approach are as following:
• We utilize the methodology described in [21] to

construct the operation-based source-code-level
energy model, which is achieved by analyzing
the data produced in a range of well-designed
execution cases .

• The model generates energy accounting at oper-
ation and block level, which captures the energy
characteristics of the code.

• We put efforts on the most costly blocks, where
we refactor the code to remove, reduce or
replace the expensive operations, meanwhile
maintain its logical consistency with the origi-
nal code.

Our target platform is an Android development
board with two ARM quad-core CPUs, and the
source code in our study is a game engine used in
games, demos and other interactive applications. We
evaluate the approach in three game scenarios, and
the experimental result shows that it can save energy
consumption by from 6.4% to 50.2% depending on
different scenarios.

In the rest of this paper, we firstly introduce the
identification of energy operations in Section II. The
architectural setup and the design of execution cases
are detailed in Section III. We elaborate the data
collection and the model construction separately
in Section IV and Section V, based on which we

TABLE I: Examples of Energy Operations

Operation Identified where:
Method Invocation one method is called
Parameter_Object Object is one parameter of the method
Return_Object the method returns an Object
Addition_int_int addition’s operands are integers
Multi_float_float multiplication’s operands are floats
Increment symbol "++" appears in code
And symbol "&&" appears in code
Less_int_float "<"’s operands are integer and float
Equal_Object_null "=="’s operands are Object and null
Declaration_int one integer is declared
Assign_Object_null assignment’s operands are Object and null
Assign_char[]_char[] assignment’s operands are arrays of chars
Array Reference one array element is referred
Block Goto the code execution goes to a new block

are able to capture the energy characteristics and
optimize the source code in three different scenarios,
Click & Move, Orbit and Waves, as respec-
tively seen in Section VI, VII and VIII.

II. BASIC ENERGY OPERATIONS

There are two reasons why Li et al. [21] choose
to build the source code energy model based on
"energy operations". Firstly, an energy operation
is "atomic", which means that all the statements,
source lines, blocks and methods are made up of a
certain number of kinds of operations (in the exper-
iment, we have 120 operations). Secondly, it is fine-
grained. Energy information at the level of source
lines or methods is useful; however, information
at source line level could not distinguish energy
consumption of two operations in the same source
line, for example.

Energy operations are identified directly from
source code. The enumeration of the operations
is inspired by Java semantics [7], which specifies
the operational meaning, or behavior, of the Java
language, which is the target language in the exper-
iment. We intuitively identify semantic operations
that perform operations on the state and may be
energy-consuming, and let them be our energy op-
erations. Ones that have little or no energy effect
will automatically be identified by the regression
analysis in the later stage of the analysis. Table
I lists 14 representative operations out of a total
of 120 in the experiment. They include arithmetic
calculations like Multi_float_float, Addition_int_int,
in which operands types are explicit, as well as
Increment whose operand is implicitly an integer.
Boolean operations and comparisons, such as And,
Less_int_float and Equal_Object_null also form one
major part. Method Invocation and Block Goto are
important for the control flow which plays a key
role in the execution of the code. Assignments and
Array Reference will unexpectedly take a significant
amount of the application’s energy consumption, as
will be shown in Section VI-A.

3

TABLE II: Examples of Library Functions

Class Function
ArrayList add, get, size, isEmpty, remove

glBindTexture, glDisableClientState
glDrawElements, glEnableClientState

GL10 glMultMatrixf, glTexCoordPointer
glPopMatrix, glPushMatrix
glTexParameterx, glVertexPointer

Math max, pow, sqrt, random
FloatBuffer position, put

The application also employs a diversity of li-
brary functions that may be written in different
languages and at lower levels of the software stack.
On the other hand, usually a limited number (67 in
the experiment) of library functions are frequently
called in one application. So we treat them as basic
modeling units. The examples of highly-used library
functions in the experiment are shown in Table II.
For instance, the functions in the class of GL10 are
responsible for graphic computing.

III. EXPERIMENTAL SETUP

In this section, we will introduce the setup of the
target device and source code. We also explain the
design principles of the execution cases.

A. Target Device

Experimental target: we employ an Odroid-XU+E
development board [30] as the target device. It
possesses two ARM quad-core CPUs, which are
Cortex-A15 with 2.0 GHz clock rate and Cortex-A7
with 1.5 GHz. The eight cores are logically grouped
into four pairs. Each pair consists of one big and one
small core. So from the operating system’s point of
view there are four logic cores. In our experiment,
we turn off the small cores and run workload on
big cores at a fixed clock frequency of 1.1 GHz.
We do this in order to remove the influence of
voltage, clock rate and CPU performance on the
power usage.

Power Reading Script: Odroid-XU+E has a built-
in power monitoring tool to measure the voltage
and current of CPUs with a frequency of 30 Hz and
updates the samples in a log file. We wrote a script
to obtain the samples from the file. During execution
we run the script on an idle core to minimize its
influence on the application.

Note that the power monitor gives two sequences
of power samples: one is for the big cores and the
other is for the small cores. We pick the sequence
of power samples of the big cores, because we only
run workload on them.

B. Target Source Code

The target source code is the Cocos2d-Android
[2] game engine, a framework for building games,

demos and other interactive applications. It also
implements a fully-featured physics engine. Games
are increasingly popular on mobile phones, and
the applications include more and more fancy and
energy-consuming features, requiring high CPU per-
formance. Energy modeling and accounting, ex-
plained in the rest of this paper, will present op-
portunities to guide software development towards
energy efficiency.

C. Design of Execution Cases

The execution cases whose energy usage is mea-
sured and analyzed represent typical sequences of
actions during game, including user inputs. We fo-
cus on three scenarios which are Click & Move,
Orbit and Waves.

In the Click & Move scenario, the sprite (the
character in the game) moves to the position where
the tap occurs. In the Orbit scenario, the sprite
together with the grid background spins in the three-
dimension space. In the Waves scenario, the sprite
scales up and down, meanwhile the grid background
waves like flow. In both the Orbit and Waves sce-
narios, the animation will restart from the starting
point whenever and wherever the tap occurs.

To simulate the game scenarios under different
sequences of user inputs, we script with the Android
Debug Bridge [1] (ADB) , a command line tool con-
necting the target device to the host, to automatically
feed the input sequences to the target device.

In order to obtain a more varied set of execution
cases, we vary the executions of individual basic
blocks in the code. This is achieved by systemati-
cally removing a set of blocks for each execution
case, using the control flow graph obtained using the
Soot tool [38]. We ensure that each block could be
removed in some execution case. Thus an execution
case is made up of one user input sequence and one
set of basic blocks.

IV. DATA COLLECTION

In this section, we describe the collection of data
on the number of times each operation executes and
the energy consumption of an execution case, based
on which we construct the energy model.

A. Number of Executions of Operations

To obtain the number of times that each operation
executes in an execution case, we need to determine
at which level of granularity to track the execution.
We choose the level of "blocks". A block is a
sequence of consecutive statements, without loops
or branches. It is sufficient to track block executions,
since if one part of a block is processed, the rest
certainly will be processed as well.

4

(a) for loop (b) while loop

Fig. 1: Block division of for and while loops in control
flow graph.

Fig. 2: The flow of the operation-execution data collection.

We could consider collecting data at other levels
of granularity. Tracing individual statements might
overload the capacity of the target device. On the
other hand, methods or classes are unsuitable ex-
ecution units, since we cannot determine which
parts of the method or class will be active during
the execution, and this information about energy
operations is lost.

We then divide the source code into blocks. For
individual syntactic structures, we deal with block
division case by case. For loops and while loops
are handled as shown in Figure 1. In a for loop,
the header usually has three segments which are
initialization, boolean and update. They are divided
into three different blocks. Similarly, we set the
while header itself as a block ("block 2" in Figure
1b). In order to build the log, we instrument the
source code with a log instruction at the beginning
of each block.

The generic view of the collection of the
operation-execution data is displayed in Figure 2.
We build a dictionary showing, for each block, the
number of occurrences within it of each energy
operation, such as those in Table I. This dictionary
is built using a parser that traverses all the blocks

in the code.
Then, using the log file recording the processed

blocks, together with the dictionary, we can sum
up the number of times that each energy operation
is executed during an execution case. To be more
precise, let Bi be the number of times that the ith
block is executed (this is obtained from the log
file). Let Oi, j be the number of occurrences of
operation j in block i (this is obtained from the
dictionary). Then the total number of executions of
the jth operation is ∑n

i=1(Bi ∗Oi, j), where n is the
total number of blocks.

B. Energy Approximation from Power Samples

We write a script to obtain the power samples
from the built-in measurement component with
a frequency of 30 Hz. The power samples are
the discrete values sampled from the power trace;
we approximate energy consumption by calculating
Equation (1): p = power(t) is the power trace, that
is, the continuous power-vs-time function; power(ti)
is the power sample at time-stamp ti; ∆i equals to
ti− ti−1, which is the interval between two sequen-
tial samples.

E =
∫ tn

t0
power(t)dt ≈

n

∑
i=1

power(ti) ·∆i (1)

where t0 ≤ t1 ≤ t2 · · · ≤ tn−1 ≤ tn

C. Challenges in Practice

Measurement limitation: the sampling rate of
the built-in power monitor is 30 Hz. However,
the instruction execution rate is about several mil-
lion per second. That means, one power sample
measures the energy cost of hundreds of thousand
instructions. Even though the state of the art of the
power measurement can reach a sampling rate of
tens of KHz [17], one power sample still includes
up to thousands of instructions.

To deal with this problem, we first lengthen the
sessions of all the execution cases to above 100
seconds, and then run each case for ten times to
calculate their average energy cost. Compared with
the execution cases that only run once with sessions
around one second, this approach can reduce the
error of measuring energy consumption of the code
by three orders of magnitude.

Run-time context: during the running of the
application, the Dalvik virtual machine performs
garbage collection, which is not part of the
application and still could be included in the power
samples.

The Dalvik virtual machine produce time-
stamp logs when launching the garbage collection

5

procedure. We consider the garbage collection as
one library function, so it will be integrated in the
model.

Code instrumentation and power reading
script: although the instrumentation is at block
level rather than statement level, its impact on
energy consumption is still not negligible and
its cost is as much as 50% of the application’s
energy consumption itself. Also, the energy cost
of the power reading script is up to 5% of the
application’s consumption.

We followed three experimental principles to ad-
dress this problem. Firstly, for each execution case,
the log of the execution path and of the power sam-
ples are separated into two separate runs. In the first
round, we record the execution path without reading
power samples. In the second round, we only trace
power and disable the instrumented log instructions.
So for each execution case, the instrumentation for
logging the execution path will not influence the
power samples.

Secondly, in each of the two runs, the main
process of the application is allocated to one CPU
core, while the thread logging execution path or
power samples is allocated to another CPU core,
minimizing effects due to interaction of the threads.

Thirdly, we design one "idle execution case"
paired with each execution case; this only runs the
power reading script without the application. By
this means we can get the energy consumption of
the main application process by excluding the cost
of the "idle execution case" from the execution
case. Note that the durations of execution cases
are different, so we need to have a distinct "idle
execution case" for each execution case.

In summary, each execution case will be run 21
times: once for tracing the execution path; ten times
for calculating the average energy consumption of
the "idle execution case", and ten times for calcu-
lating average energy consumption of the execution
case.

V. MODEL CONSTRUCTION

The entire energy consumption is composed of
three parts: the cost of energy operations, the cost of
library functions and the idle cost. The aimed model
is formalized in Equation (2). The cost of energy
operations is the sum of Costopi ·Ne(opi) (the cost of
one operation multiplied by the number of its execu-
tions), where opi ∈ EnergyOps. EnergyOps is the
set containing all the operations. The cost of library
functions is the sum of Cost f unci ·Ne(f unci) (the cost
of one library function multiplied by the number of
its executions), where f unci ∈ LibFuncs. LibFuncs
is the set of library functions. The Idle Cost is the
energy consumption of the "idle execution case".

The lengths of case sessions are varying, so the
Idle Cost is different for each execution case.

E =
opi∈EnergyOps

∑ Costopi ·Ne(opi) (2)

+
f unci∈LibFuncs

∑ Cost f unci ·Ne(f unci)+ Idle Cost

The model construction is based on regression
analysis, finding out the correlation between energy
operations and their costs from the data obtained
in the execution cases. We set out the collected
data in the matrices in Equation (3). The leftmost
matrix (N) contains the execution numbers of l
operations (including energy operations and library
functions) in m execution cases, acquired as shown
in Section IV. Each row indicates one execution
case. Each column represents one operation. The
vector (~cost) in the middle contains the costs of l
operations, which are the values we are aiming to
estimate. The vector (~e) on the right of the equal
mark contains the measured entire energy costs of
the execution cases. So for each execution case,
the entire energy cost is the sum of the costs of
operations. It should be noticed that the energy
costs ~e exclude the Idle Cost which is measured
when no application workload is being processed.




n(1)1 n(1)2 ... n(1)l
n(2)1 n(2)2 ... n(2)l

... ...

n(m−1)
1 n(m−1)

2 ... n(m−1)
l

n(m)
1 n(m)

2 ... n(m)
l



×




cost1
cost2
...

costl


=




e1
e2
...

em−1
em




(3)
Inevitably, the power samples are not absolutely

accurate. Furthermore, the energy model in reality
is unlikely to be completely linear. For these reasons
Equation (3) may be unsolvable, that is, the vector
~e is out of the column space of N. We thus employ
the gradient descent algorithm [29] to compute the
approximate values of ~cost.

The elements of ~cost are randomly initialized and
then improved by the gradient descent algorithm
iteratively. We first introduce the error function J
(computed by Equation (4)) which indicates the
quality of the model. The smaller J is, the better the
model is. ~n(i) is the ith row in N, ~cost is the middle
vector above. ~n(i)× ~cost is the estimated energy cost
for the ithexecution case, e(i) is its observed energy
cost. J first computes the sum of the squared values
of the estimate errors of all the execution cases,
which is afterwards divided by 2m to get the average

6

0	
 2	
 4	
 6	
 8	
 10	

BlockGoto_while	

Greater_int_int	

Assign_double_double	

Addi=on_float_float	

Division_int_float	

Subtrac=on_float_float	

Assign_boolean_boolean	

NotEqual_Object_null	

Return_Object	

Parameter_float	

AssignAnd_float_float	

Declara=on_float	

Declara=on_Object	

FloatBuffer.put_method	

Not_boolean	

Declara=on_int	

Mul=_int_int	

And	

Increment	

NotZero_boolean	

BlockGoto_for	

Mul=_float_float	

Assign_Object_Object	

Less_int_int	

Assign_int_int	

ArrayReference	

BlockGoto_if	

Assign_float_float	

Parameter_Object	

MethodInvoca=on	

Energy	
 Consump=on	
 (mJ)	

Fig. 3: The top 30 energy consuming operations in Click &
Move scenario.

value.

J(cost1,cost2, ...costl) =
1

2m

m

∑
i=1

(~n(i)× ~cost− e(i))2

(4)

cost j := cost j−α
∂J(cost1, ...cost j, ...costl)

∂cost j
(5)

= cost j−α
1
m

m

∑
i=1

(~n(i)× ~cost) ·n(i)j

j = 1,2, ...l

The idea of gradient descent is to minimize J by
repeatedly updating all the elements in ~cost with
Equation (5) until convergence. The partial deriva-
tive of the function J on cost j gives the direction
in which increasing or decreasing cost j will reduce
J. Every element (cost j) of ~cost is updated one
by one in each iteration. The value α determines
how large the step of each iteration is. If it is too
large, the extremum value will possibly be missed;
if too small, the minimizing process will be rather
time-consuming. It needs to be manually tuned.
Theoretically, the gradient descent algorithm could
only find the local optima. In practice, we randomly
set the values in ~cost and restart the entire gradient
decent procedure for several times to look for the
global optima.

In the experiment, the three scenarios (Click &
Move, Orbit and Waves) separately have their
own processes of data collection and model con-
struction since different scenarios may have dif-
ferent sets of parameters (costs of operations) for
the model (Equation (2)). The cost of the same

TABLE III: NMAE in Cross Validation

Scenario Set 1st 2nd 3rd 4th
Training 17.7% 15.0% 13.6% 18.9%

Click & Move Validation 14.2% 14.2% 19.7% 17.8%
Training 19.9% 17.9% 14.4% 16.8%Orbit Validation 11.7% 17.0% 18.0% 15.0%
Training 13.9% 14.1% 14.8% 15.0%Waves Validation 16.8% 16.7% 16.1% 17.2%

operation is not absolutely constant in certain cases,
one of the reasons is that the values of operands
influence the energy consumption of operations,
as seen in [31]. Our modeling approach is trying
to make a good approximation of the costs of
operations for individual scenarios.

To validate the reliability of model, we apply
the four-round cross validation. If the model is
proved to be reliable, then we use it for the energy
accounting in later stages, otherwise we try other
solutions to improve the model. The four-round
cross validation procedure is as following: the set
of execution cases are randomly divided into four
subsets; in each round, one of them is chosen to be
the validation set and the others together to be the
training set.

NMAE =
1
n

n

∑
i=1
|

ˆe(i)− e(i)

e(i)
| (6)

In Table III, we can see the Normalized Mean Ab-
solute Error (NMAE) of the model in three scenar-
ios in training and validation sets in the four rounds.
The NMAE is a well-known statistical criterion that
shows how well the estimated value matches the
measured one. It is computed by Equation (6), the
mean value of normalized difference between the
predicted energy cost ê and the measured cost e.
The lower the ratio the better the result. In the three
scenarios, the NMAE in training sets ranges from
13.6% to 19.9%, and in validation sets from 11.7%
to 19.7%.

For the three scenarios, the sets of parameters
respectively generated in the 2nd, 4th and 3rd
rounds of cross validation are chosen to help analyze
the energy property of the code in Section VI-A,
because they have good balance on both training and
validation sets. Their NMAEs are around 15.0%,
which means the model’s inference accuracy is
around 85.0%.

VI. THE CLICK & MOVE SCENARIO

In this section, we detail energy accounting at
operation and block level, according to which we
improve the most costly blocks by removing, re-
ducing or replacing the most expensive operations.
Later in Section VII and Section VIII, when we talk

7

0	

250	

500	

750	

1000	

1250	

1500	

1750	

2000	

	
 E
ne

rg
y	

Co

ns
um

p3
on

	
 (J
ou

le
)	

Blocks	

In	
 Applica3on	

3000-­‐Times-­‐Execu3on	

(a) Block costs "In Application" and at "3000-Times-Execution".

0	

0.025	

0.05	

0.075	

0.1	

0.125	

0.15	

0.175	

0.2	

En
er
gy
	
 C
on

su
m
p4

on
	
 (J
ou

le
)	

Blocks	

Assignment	

Declara4on	

Control	
 Ops	

Array	
 Reference	

Fuc4on	
 Ops	

Boolean	
 Ops	

Arithme4c	
 Ops	

Lib	
 Func4ons	

(b) Energy proportions of different kinds of operations in blocks.

Fig. 4: Energy distribution in Click & Move. Blocks are sorted by the order of their run-time energy costs "In Application".

about the Orbit and Waves scenarios, we will
briefly introduce the energy characteristics of the
code and use larger part for the code improvements.

A. Energy Accounting

The energy model of app source code based on
energy operations facilitates comprehensive energy
accounting at different levels of granularity and
from various viewpoints. In this section, we will see
the rank of the most expensive operations, and the
contributions of different operations to the energy
consumption of each block.

Operation Level:
Figure 3 shows the top 30 energy consum-

ing operations, which are ranked by their single-
execution energy costs. "71.3% Energy Consump-
tion" presents the percentage of sum of costs of
top 10 operations in the total cost, considering
their different numbers of executions in the Click
& Move scenario. "26.1% Energy Consumption"
means the percentage of operations from 11th to
30th. The percentages indicate that the energy-usage
of the code is largely determined by a relatively
small number of operations. It is because these oper-
ations are frequently used and meanwhile expensive
themselves. The 30 operations out of 187 (including
library functions) take up 97.4% of the whole cost
of the code, in which the top 10 consumes the major
part with a percentage of 71.3%.

Usually, it is supposed that the sophisticated
arithmetic operations, such as multiplications and
divisions, should be the most costly. However, the
result shows that Method Invocation ranks the high-
est. This is due to a sequence of complex pro-
cesses to fulfill Method Invocation, such as storing
the return address and managing the stack frame.
Instance methods are always implicitly passed a
"this" reference as their first parameter. It suggests

a trade-off between the structure and the energy
saving when writing the code. That means, in certain
cases, we could unpack some thin methods that are
highly-invoked in the code, at the cost of losing the
integrity of the structure of the code to some extent.

Unexpectedly, only one arithmetic operation,
Multi_float_float, is a member of the top 10. And
there are only six arithmetic operations in the top 30.
They together cost only 6.1% of the overall energy
consumption of the application, which is contrary
to our instincts.

Later in block-level energy accounting, we will
see that assignments, comparisons and Array Ref-
erence play significant roles in the overall energy
consumption. This is not only because they are
frequently used, but also because they are costly
as operations themselves, as shown in Figure 3.

Block Goto operations are expensive as well.
Based on the types of conditionals and loops where
"Block Goto" occurs, they are classified into Block-
Goto_if, BlockGoto_for and BlockGoto_while. The
result shows that they cost different amounts of
energy as operations themselves, respectively 6.7
mJ, 4.1 mJ, 1.1 mJ. And together with Method
Invocation, they take up 37.6% of the total energy
consumption of the application.

Block Level:
In the execution cases, we have 108 active blocks

with a wide diversity of energy usage. As shown
in Figure 4a, "In Application" here means running
the Click & Move scenario with the full set
of blocks. The costs of blocks "In Application"
are plotted as orange bars. Note that, blocks here
obviously have distinct execution times. The cost of
a fixed number (3000) of executions of one block
are calculated by multiplying its single-execution
cost by 3000. This could help us compare the single-
execution costs of different blocks. The costs of
blocks at "3000-Times-Execution" are plotted as

8

green bars.
Similar to energy distribution on operations, only

a small number (11 blocks) of all the blocks uses
up nearly half of the entire cost, which indicates
that putting efforts on optimising a small group of
blocks can achieve significant energy-saving.

There are two factors that make one block costly
"In Application". The first factor is a large number
of executions. For example, the most costly block
"In Application" (the rightmost orange bar in Figure
4a) has a large number of execution times. This
block takes only 30.6 mJ for single-execution but
2128.6 Joule when running "In Application". The
second factor is the energy consumption of the block
itself. For example, the three prominent green bars
in Figure 4a, whose single-execution costs are 201.5
mJ, 146.9 mJ and 142.8 mJ. We will later zoom in
these three blocks to see which operations contribute
to their energy costs.

We can further observe the energy proportions of
operations in each block in Figure 4b. To illustrate,
operations are grouped into eight classes. Specif-
ically, the "Block Goto" operations and Method
Invocation are gathered in Control Ops; the param-
eter passing and the value returns of methods are in
Function Ops; the comparisons and Booleans are in
Boolean Ops; all the arithmetic computations are in
Arithmetic Ops; all the library functions are in Lib
Functions.

Most of the blocks cost less than 25 mJ for single-
execution. In these blocks, Control Ops occupy the
major part of the energy consumption, in contrast,
Arithmetic Ops only take a tiny proportion.

For those three most prominent blocks, assign-
ments and Array Reference are the biggest energy
consumers. Furthermore one of the three blocks has
the largest proportion of Arithmetic Ops among all
the blocks.

The most expensive block "In Application" con-
sists of three even parts: Control Ops, Function Ops
and Boolean Ops. This block is the main entrance
of the game engine to draw and display frames,
so its works are conditional judgments and method
invocations.

B. Code Optimization

The most important consideration of app devel-
opers is to guarantee the correctness of software,
which should then be followed by energy-efficiency.
So our energy-aware programming approach is ap-
plied at the end of software engineering life circle
when the software system is roughly complete.

The overview of energy-aware programming ap-
proach is firstly finding the most costly blocks,
where we analyze the energy breakdown among the
operations, and make changes to the code to remove,
reduce or replace the costly operations.

TABLE IV: The top 10 costly blocks in Click & Move.

Block ID #Executions Energy Cost (J)
CCNode.visit() 19462 2128.6
CCNode.transform() 18903 1648.4
CCTextureAtlas.putVertex() 2119 1494.4
CCNode.visit().if_4.for_1 16880 1426.8
CCNode.transform().if_1 19664 1426.3
CCTextureAtlas.putTexCoords() 2120 1107.8
CCAtlas.updateValues().for_1 2173 1018.7
CCNode.visit().if_3.for_1 8356 915.7
CCSprite.draw() 8594 766.9
CCTexture2D.name() 13085 537.5

We look into the top 10 costly blocks "In Appli-
cation" (see Table IV). For example, CCNode.visit()
is the entrance block of the visit() function; CCN-
ode.visit().if_4.for_1 is the body block of the for
loop. These 10 blocks are distributed in seven meth-
ods, so the code review does not require heavy labor.
We find four easy optimization opportunities in
blocks, such as CCNode.visit(), CCNode.visit().if_4.
for_1 and CCTexture2D.name(). There are also
other opportunities in other blocks supposed to save
energy, but requiring more efforts and gaining lit-
tle. For example, CCAtlas.updateValues().for_1 has
several busy arithmetic expressions. Usually it is
believed that replacing the busy expression with an
variable could reduce energy cost, however in this
case the overhead of variable declaration counteracts
the energy-saving.

The four opportunities to improve the code are
very simple and effective, but can only be discov-
ered by the operation-level energy information. The
changes will be shown as following.

Program 1 Simplified parts of original code in CCNode.visit()

if (children_ != null) {
if_body1;

}
draw(gl);
if (children_ != null) {

if_body2;
}

Program 2 The changed Program 1
if (children_ != null) {

if_body1;
draw(gl);
if_body2;

} else {draw(gl);}

If Combination:
This change is made in the most costly block

CCNode.visit(), which has two comparisons, two
Boolean operations, one Method Invocation and one
parameter passing. In fact, the two if headers make
the same comparison, as shown in Program 1. We
change the code to Program 2, which combines the
two if statements and meanwhile keep it logically

9

consistent with Program 1. By the means each
execution of the block can reduce one comparison,
and when the condition is false, it can additionally
reduce one BlockGoto_if .

Program 3 Simplified parts of original code in CCNode class
public void visit(GL10 gl) {

......
transform(gl);

......
}
public void transform(GL10 gl) {

tranform_body;
}

Program 4 The changed Program 3
public void visit(GL10 gl) {

......
transform_body;

......
}
public void transform(GL10 gl) {

transform_body;
}

Inner-Class Method Inline:
When "In Application", the transform() function

is invoked 18903 times and mostly by visit() func-
tion. We change the Program 3 to Program 4 by
inserting the body of transform() into visit(), mean-
while remaining the original transform() function in
case that other parts of the code call it. This change
can largely decrease the number of transform()’s
Method Invocations that are very expensive. How-
ever, it may be at the cost of losing readability of the
code, which could also be compensated by adding
explanatory comments.

Program 5 The full version of Program 2
if (children_ != null) {
for (int i=0; i<children_.size(); ++i) {

CCNode child = children_.get(i);
if (child.zOrder_ < 0) {

child.visit(gl);
} else

break;
}
draw(gl);
for (int i=0; i<children_.size(); ++i) {

CCNode child = children_.get(i);
if (child.zOrder_ >= 0) {

child.visit(gl);
}

}
} else {draw(gl);}

Loop-Invariant Code Motion:
CCNode.visit().if_3.for_1 and CCN-

ode.visit().if_4.for_1 are entrance blocks of the
two for loops as seen in Program 5. These
two loops have a quantity, children_.size(), which
is computed in each iteration but the value is
constant. We thus hoist it outside the loop, as

shown in Program 6, which can vastly save the
energy of invoking and executing the size() function
during every iteration. At the same time, we move
the declaration of the child outside the loop,
considering the cost of Declaration_Object is about
2.97 mJ and also in the top 30.

Program 6 The changed Program 5
CCNode child = new CCNode(); //added
int children_size = children_.size(); //added
if (children_ != null) {

for (int i=0; i<children_size; ++i) { //changed
child = children_.get(i); //changed
if (child.zOrder_ < 0) {

child.visit(gl);
} else

break;
}

draw(gl);
for (int i=0; i<children_size; ++i) { //changed

child = children_.get(i); //changed
if (child.zOrder_ >= 0) {

child.visit(gl);
}

}
} else {draw(gl);}

Inter-Class Method Inline:
CCTexture2D.name() is the 10th costly block and

costs 537.5 Joule "In Application". However, its job
is to simply get the value of the private member
variable, _name, of the class CCTexture2D. And this
method has only two callers in the code. So we
consider to make this variable public and let the
two callers directly get access to the variable, which
avoids the cost of Method Invocation. This change
may harm the encapsulation of data, however, only
one member of one class is changed. The trade-off
between energy-saving and data encapsulation will
be at last decided by developers.

C. Evaluation

Figure 5 illustrates the energy consumption of the
software without and with the changes introduced
in the previous section. From left to right, the bars
indicate accumulative effects of the changes. For
example, "+ If Comn" is the energy consumption
of the code with "If Combination"; "+ Inner-Class
MI" is the energy consumption of the code with the
changes of both "If Combination" and "Inner-Class
Method Inline". Totally, these four simple changes
save 6.4% of the entire energy consumption without
influencing the functionality of code. These changes
are made in the basic part of the game engine, where
most applications will base on, so any gain here
can have fundamental impact. Furthermore, these
changes are made with little knowledge about the
algorithm of code, the developers who wrote the
code are surely able to improve the code much more
and achieve more energy-saving.

10

24.5	

25	

25.5	

26	

26.5	

27	

27.5	

28	

Original	
 +	
 If	
 Comn	
 +	
 Inner-­‐Class	

MI	

+	
 Loop-­‐Invt	
 	

CM	

+	
 Inter-­‐Class	

MI	

En
er
gy
	
 C
on

su
m
pA

on
	
 (k
J)	

Fig. 5: Energy consumption of the code without and with the
changes in Click & Move.

80.9%	

1.3%	

1.3%	

1.2%	

0.7%	

14.6%	

CCGrid3D.blit().for_1	
 CCSprite.draw()	

CCNode.visit().if_4.for_1	
 CCNode.visit()	

CCNode.draw()	
 Others	

Fig. 6: In Orbit scenario, the energy proportions of blocks
"In Application".

VII. THE ORBIT SCENARIO

In this section, we briefly introduce the energy
characteristics of Orbit scenario. Afterward, we
improve the most costly blocks according to the
types of expensive operations. In Section VII-C, we
can see that the improvement can save as much as
50.2% of the overall energy consumption.

A. Energy Accounting

In the Orbit scenario, the block
CCGrid3d.blit().for_1 dominates the overall energy
consumption. As shown in Figure 6, 80.9% of the
entire cost is consumed by this block. The second
costly block consumes only 1.3%. "In Application"
here means running the Orbit scenario without
removing any block. Later in Section VII-B, we will
barely put attention on this single block, requiring
fairly little effort to achieve improvements.

B. Code Optimization

Program 7 shows the original code of CC-
Grid3D.blit().for_1. In this block, the Control Ops
(BlockGoto_for and Field Reference) use up 35.6%
energy; Boolean Ops use up 20.5%; the assignments
use up 16.7%; Arithmetic Ops use up 14.0%; Lib
Functions use up 13.3%. We find three easy changes
to reduce or replace the expensive operations.

Loop-Invariant Code Motion:
In this block, the value of vertices.limit() is con-

stantly 2112, we thus hoist it outside the loop and
replace it with the variable limit, as shown in Pro-
gram 8. This change avoids calls of vertices.limit()
and at the same time decreases a small amount of
Field Reference.

Loop Unrolling:
Also as shown in Program 8, we duplicate the

loop body eight times, which reduces the times
of comparisons, BlockGoto_fors, assignments and
additions. Note that, we set the value of increment
as 24 since 24 is a factor of the limit, 2112.

Full-Use of Library Function:
The job of Program 7 or Program 8 is getting all

the elements in vertices one by one and putting them
into mVertexBuffer one by one. The whole Program
7 in fact can be replaced by simply one line:
mVertexBuffer.put(vertices.asReadOnlyBuffer()),
which means putting the entire vertices into
mVerteBuffer. This change realizes the same
functionality using the already existing library
function, which is one of the key library functions
already compiled into native code.

Program 7 The original code of CCGrid3D.blit().for_1
for (int i = 0; i < vertices.limit(); i=i+3) {

mVertexBuffer.put(vertices.get(i));
mVertexBuffer.put(vertices.get(i+1));
mVertexBuffer.put(vertices.get(i+2));

}

Program 8 The changed Program 7
int limit = vertices.limit(); //added
for (int i = 0; i < limit; i=i+24) { //changed

mVertexBuffer.put(vertices.get(i));
mVertexBuffer.put(vertices.get(i+1));
mVertexBuffer.put(vertices.get(i+2));

...

...
mVertexBuffer.put(vertices.get(i+23)); //added

}

C. Evaluation

Figure 7 shows the accumulative effects of the
code changes on energy consumption. Exception-
ally, "Full-Use LF" does not take previous changes
into account and means only replacing Program 7
with the built-in library function as stated above.

11

0	

5	

10	

15	

20	

25	

30	

35	

Original	
 +	
 Loop-­‐Invt	
 	

CM	

+	
 Loop	

Unrolling	

Full-­‐Use	
 LF	

En
er
gy
	
 C
on

su
m
p@

on
	
 (k
J)	

Fig. 7: Energy consumption of the code without and with the
changes in Orbit.

We can see that loop-invariant code motion does not
gain much energy saving because the vertices.limit()
which is a library function as well uses a very
small percentage of energy consumption. On the
other hand, loop unrolling achieves 25.8% energy
saving due to the reduction of amount of Control
Ops, comparisons and assignments, which occupy
most of the cost. And the most effective change is
the replacement to a library function, saving 50.2%
energy consumption because this library function
has been complied into native code before execu-
tion, in contrast the java source code need run-
time interpretation which is not free from energy
consumption. The result indicates that it is a good
idea for developers to make a good use of library
functions rather than implementing the same func-
tion themselves with java source code.

VIII. THE WAVES SCENARIO

In this section, similarly, we first analyze the
energy characteristics of the blocks in the Waves
scenario, based on which we modify the code and
then evaluate the effects of changes on energy
consumption.

A. Energy Accounting

Unlike the Orbit scenario where only one
block dominates energy consumption, in Waves
scenario, the costs of top seven blocks are at
the same order of magnitude of kJ, as listed in
Table V. The CCGrid3D.blit().for_1 is also em-
ployed in this scenario and is the most costly as
well among all the blocks. The majority of blocks
in Table V are directly or indirectly invoked by
CCWaves3D.update().for_1.for_1, as shown in Pro-
gram 9. And their jobs are mostly to set or get the
values of member variables, so a large part of energy
consumption goes to assignments and Function Ops.

It was not expected that the code spends such a
large amount of energy on simple setter and getter
functions.
Program 9 The original code in CCWaves3D.update()

int i, j;
for(i = 0; i < (gridSize.x+1); i++) {

for(j = 0; j <(gridSize.y+1); j++) {
CCVertex3D v = originalVertex(ccGridSize.ccg(i,j));

...
setVertex(ccGridSize.ccg(i,j), v);

}
}

Program 10 Program 9 after Method Inline & Code Motion
ccGridSize ccgridsize = new ccGridSize(0,0); //added
CCGrid3D ccgrid3d = (CCGrid3D) target.getGrid(); //added
CCVertex3D v = new CCVertex3D(0,0,0); //added
int i, j;
for(i = 0; i < (gridSize.x+1); i++) {

for(j = 0; j <(gridSize.y+1); j++) {
ccgridsize.x=i;ccgridsize.y=j; //added
v = ccgrid3d.originalVertex(ccgridsize); //changed

...
ccgrid3d.setVertex(ccgridsize, v); //changed
}

}

B. Code Optimization

Full-Use of Library Function:
We have talked about the optimization for

CCGrid3D.blit().for_1 in Section VII-B where we
replace the entire Program 7 with the one-line
code, which makes use of library functions. We
keep this change in this scenario. For other blocks,
we come up with one modification as following.

Method Inline & Code Motion:
As shown in Program 9, the three

functions called in the inner loop body are
CCGrid3DAction.originalVertex(), ccGridSize.ccg()
and CCGrid3DAction.setVertex(), which
respectively cost 2891.3 Joule, 3769.1 Joule
and 3285.4 Joule "In Application". Note that,
CCGrid3DAction is the parent class of CCWaves3D,
so originalVertext() and setVertex() can be directly
called without referring to their class names.
As seen in Program 10, we unpack these three
methods in this block: the first and fourth "added"
lines are unpacked ccGridSize.ccg(); the second
"added" and first "changed" lines are unpacked
CCGrid3DAction.originalVertex(); the second
"added" and second "changed" lines are unpacked
CCGrid3DAction.setVertex(). This change removes
all the Method Invocations, parameter passing
and value returns related to these three functions
invoked by this block. Note that, the first three
"added" lines are located outside the loop in order
to reduce energy consumption of the process of
initializing objects and calling CCNode.getGrid().

12

TABLE V: In Waves scenario, the top 10 costly blocks "In Application". And the energy percentages of different kinds of
operations in each block.

Block ID #Executions Energy Cost (J) Assi. Decl. Cont. Func. Bool. Arit. Libr.
CCGrid3D.blit().for_1 112193 8094.1 16.7% 0% 35.6% 0% 20.5% 14.0% 13.3%
CCVertex3D.CCVertex3D() 40219 5232.0 27.2% 0% 10.0% 62.8% 0% 0% 0%
CCWaves3D.update().for_1.for_1 34604 4088.7 10.7% 0% 32.1% 0% 14.7% 39.0% 2.2%
ccGridSize.ccg() 42275 3769.1 0% 0% 32.1% 67.9% 0% 0% 0%
CCGrid3DAction.setVertex() 31856 3285.4 14.6% 7.8% 30.9% 46.7% 0% 0% 0%
CCGrid3DAction.originalVertex() 36566 2891.3 19.1% 10.2% 40.3% 30.4% 0% 0% 0%
CCNode.getGrid() 49119 2145.1 0% 0% 58.1% 41.9% 0% 0% 0%
ccGridSize.ccGridSize() 10570 1173.8 30.3% 0% 31.6% 38.0% 0% 0% 0%
CCGrid3D.setVertex() 3944 657.2 10.1% 1.6% 32.8% 28.9% 0% 26.4% 0.2%
CCGrid3D.originalVertex() 2785 374.2 14.0% 1.9% 33.4% 17.9% 0% 32.8% 0%

0	

3	

6	

9	

12	

15	

18	

21	

24	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

Original	
 +	
 Full-­‐Use	
 LF	
 +	
 Method	
 Inline	

&	
 CM	

GP
U
	
 E
ne

rg
y	

Co

ns
um

pH
on

	
 (k
J)	

CP
U
	
 E
ne

rg
y	

Co

ns
um

pH
on

	
 (k
J)	

CPU	

GPU	

Linear	
 (GPU)	

Fig. 8: CPU and GPU Energy consumption of the code without
and with the changes in Waves.

C. Evaluation

Figure 8 shows the accumulative effects of
changes on energy consumption of CPU and GPU
(note that previous figures only showed the CPU
energy consumption because the GPU energy con-
sumption did not vary noticeably before), and the
dashed line indicates the linear trend of the GPU
energy consumption. In the case of game, usually
the aimed frames per second (FPS) is 60 Hz, when
the game overloads CPU, the FPS will decrease,
and when the workload is light, even very light,
the FPS is generally fixed to 60Hz. The FPS in
"Original" is around 36Hz; that in "+ Full-use LF"
is around 50Hz; that in "+ Method Inline & CM"
is around 60Hz. The change of Full-Use LF (full
use of library function) does not save energy for
CPU since the execution of original Waves actually
overloads the CPU capacity, so the improvement
of code enhances the performance and enables the
device to generate more frames every second. Con-
sequently, the GPU does more work and consumes
more energy, as seen in Figure 8. After this change,
when we apply the method inline and code motion,
27.7% of the overall CPU energy is saved, and
for the same reason GPU consumes slightly more.
This experimental result shows that our approach

not only saves energy but also potentially boosts
performance, which benefits users doubly.

IX. RELATED WORK

Energy Modeling:
From the hardware side, initial efforts on en-

ergy modeling research have been put on circuits-
level (see the survey [28]), gate-level [26], [27]
and register-transfer-level [15]. Later, research fo-
cus shifted towards high-level modelings, such as
software and behavioral levels [25].

Energy modeling techniques for software start
with the basic instruction level, which calculates the
sum of energy consumption of basic instructions and
transition overheads [8], [42]. Gang et al. [36] base
the model at the function-level while considering
the effects of cache misses and pipeline stalls on
functions. T. K. Tan et al. [41] utilize regression
analysis for high-level software energy modeling.

However, the run-time context considered in the
above works is unsophisticated, free from user in-
puts, a virtual machine, dynamic compilation and so
on. Furthermore the software stack below the level
that they deal with (such as the level of the basic
or assembly instruction) is relatively thin.

When research is focused on the energy of mobile
applications, the level of granularity of the tech-
niques is increased as well. An important part of
such efforts is the use of operating system and hard-
ware features as predictors to estimate the energy
consumption at the component, virtual machine and
application level [11], [18], [33], [37], [45], [46].

Shuai et al. [14] and Ding et al. [20] propose
approaches to get source line energy information.
The former requires the specific energy profile of the
target system, and the workload is fine-tuned. The
latter utilizes advanced measurement techniques to
obtain the source line energy cost.

Compared with approaches above, Li et al. [21]
explore the idea of identifying energy operations
and constructing a fine-grained model based on op-
erations which is able to capture energy information
at a level more fine-grained than source line.

Energy-Saving Techniques:

13

A large amount of research efforts on energy-
saving for mobile devices have been put on the main
hardware components, such as the CPU, display
and network interface. The CPU low-power-design
techniques involve dynamic voltage-frequency scal-
ing [22] and heterogeneous architecture [13], [23].
Techniques for display contain dynamically dim-
ming the back-light [9], [32], tone-mapping based
back light scaling [5], [16]. The network-related
techniques try to exploit idle and deep sleep oppor-
tunities [24], [39], shape the traffic [10], [35] and
so on.

There are many pieces of work relevant to code
refactor for energy-saving . Vetro’ et al. [43] define
the concept of energy code smells that are the code
patterns (such as self assignment, repeated condi-
tionals and useless control flow) maybe energy-
consuming. However, the code patterns selected in
[43] have very little impact (less than 1.0%) on
energy consumption. Our experimental result shows
that our approach is able to save half of the entire
energy consumption in certain scenario.

Ding et al. [19] conducted a small scale evalua-
tion of several commonly suggested programming
practices that may reduce energy. Its result shows
that reading array length, accessing class field and
method invocation all cost noticeable energy. How-
ever, this work only provides a small number of
suggestions to developers on how to make the code
more energy-efficient.

Compared with previous work, our research pro-
pose a systematic energy-aware programming ap-
proach, which is guided by the operation-based
source-code-level energy model. The experimental
result shows that this approach is an effective guide-
line for energy-aware mobile application develop-
ment.

X. CONCLUSION

In this paper, we propose an energy-aware pro-
gramming approach for mobile app development,
which is guided by the operation-based source-
code-level energy model. The general steps of the
approach are as following: 1) we construct the
operation-based energy model by mining the data
generated in a range of well-designed execution
cases; 2) based on the model, we capture the energy
characteristics of the code; 3) we improve the code
by removing, reducing or replacing the expensive
operations in the costly blocks.

We evaluate this approach on a real-world game
engine and on a physical Android development
board with two ARM quad-core CPUs. The ex-
perimental result shows that our approach has a
significantly positive impact on energy-saving. For
different scenarios, this approach can save energy
by from 6.4% to 50.2%. The result also indicates

that the performance of code is a byproduct as well
of this approach, which potentially improves user
experience more.

REFERENCES

[1] Android Debug Bridge. http://developer.android.com/tools/help/adb.html.
[2] Cocos2d-Android. https://code.google.com/p/cocos2d-android/.
[3] Dalvik Virtual Machine. http://source.android.com/devices/tech/dalvik/.
[4] Report: U.S. Smartphone Penetration Now At 75 Percent.

http://marketingland.com/report-us-smartphone-penetration-now-75-
percent-117746, 2015.

[5] B. Anand, K. Thirugnanam, J. Sebastian, P. G. Kannan, A. L. Ananda,
M. C. Chan, and R. K. Balan. Adaptive display power management for
mobile games. In Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, MobiSys ’11, pages 57–70,
New York, NY, USA, 2011. ACM.

[6] Android. A JIT Compiler for Android’s Dalvik VM. http://www.android-
app-developer.co.uk/android-app-development-docs/android-jit-
compiler-androids-dalvik-vm.pdf.

[7] D. Bogdanas and G. Roşu. K-java: A complete semantics of java.
SIGPLAN Not., 50(1):445–456, Jan. 2015.

[8] C. Brandolese, W. Fomacian, F. Salice, and D. Sciuto. An instruction-
level functionality-based energy estimation model for 32-bits micropro-
cessors. In Design Automation Conference, 2000. Proceedings 2000,
pages 346–350, 2000.

[9] W.-C. Cheng and M. Pedram. Power minimization in a backlit tftlcd
display by concurrent brightness and contrast scaling. Consumer
Electronics, IEEE Transactions on, 50(1):25–32, Feb 2004.

[10] C. Chiasserini and R. Rao. Improving battery performance by using
traffic shaping techniques. Selected Areas in Communications, IEEE
Journal on, 19(7):1385–1394, Jul 2001.

[11] M. Dong and L. Zhong. Self-constructive high-rate system energy
modeling for battery-powered mobile systems. In Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services,
MobiSys ’11, pages 335–348, New York, NY, USA, 2011. ACM.

[12] C. Edwards. Lack of software support marks the low power scorecard
at dac. In Electronics Weekly., pages 15–21, June 2011.

[13] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio,
P. Huang, M. Arora, S. Nath, V. Bhatt, J. Babb, S. Swanson, and
M. Taylor. The greendroid mobile application processor: An architecture
for silicon’s dark future. Micro, IEEE, 31(2):86–95, March 2011.

[14] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. Estimating mobile
application energy consumption using program analysis. In Proceedings
of the 2013 International Conference on Software Engineering, ICSE
’13, pages 92–101, Piscataway, NJ, USA, 2013. IEEE Press.

[15] C.-T. Hsieh, Q. Wu, C.-S. Ding, and M. Pedram. Statistical sampling
and regression analysis for rt-level power evaluation. In Computer-Aided
Design, 1996. ICCAD-96. Digest of Technical Papers., 1996 IEEE/ACM
International Conference on, pages 583–588, Nov 1996.

[16] A. Iranli and M. Pedram. Dtm: Dynamic tone mapping for backlight
scaling. In Proceedings of the 42Nd Annual Design Automation
Conference, DAC ’05, pages 612–617, New York, NY, USA, 2005.
ACM.

[17] X. Jiang, P. Dutta, D. Culler, and I. Stoica. Micro power meter for
energy monitoring of wireless sensor networks at scale. In Proceedings
of the 6th International Conference on Information Processing in Sensor
Networks, IPSN ’07, pages 186–195, New York, NY, USA, 2007. ACM.

[18] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya. Virtual
machine power metering and provisioning. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, pages 39–50, New
York, NY, USA, 2010. ACM.

[19] D. Li and W. G. J. Halfond. An investigation into energy-saving
programming practices for android smartphone app development. In
Proceedings of the 3rd International Workshop on Green and Sustain-
able Software, GREENS 2014, pages 46–53, New York, NY, USA, 2014.
ACM.

[20] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan. Calculating source
line level energy information for android applications. In Proceedings
of the 2013 International Symposium on Software Testing and Analysis,
ISSTA 2013, pages 78–89, New York, NY, USA, 2013. ACM.

[21] X. Li and J. P. Gallagher. A top-to-bottom view: Energy analysis for
mobile application source code. CoRR, abs/1510.04165, 2015.

14

[22] X. Li, G. Yan, Y. Han, and X. Li. Smartcap: User experience-oriented
power adaptation for smartphone’s application processor. In Proceedings
of the Conference on Design, Automation and Test in Europe, DATE ’13,
pages 57–60, San Jose, CA, USA, 2013. EDA Consortium.

[23] F. X. Lin, Z. Wang, R. LiKamWa, and L. Zhong. Reflex: Using low-
power processors in smartphones without knowing them. SIGPLAN Not.,
47(4):13–24, Mar. 2012.

[24] J. Liu and L. Zhong. Micro power management of active 802.11
interfaces. In Proceedings of the 6th International Conference on Mobile
Systems, Applications, and Services, MobiSys ’08, pages 146–159, New
York, NY, USA, 2008. ACM.

[25] E. Macii, M. Pedram, and F. Somenzi. High-level power modeling,
estimation, and optimization. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 17(11):1061–1079, Nov
1998.

[26] R. Marculescu, D. Marculescu, and M. Pedram. Adaptive models for
input data compaction for power simulators. In Design Automation
Conference, 1997. Proceedings of the ASP-DAC ’97 Asia and South
Pacific, pages 391–396, Jan 1997.

[27] F. Najm. Transition density: a new measure of activity in digital
circuits. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 12(2):310–323, Feb 1993.

[28] F. Najm. A survey of power estimation techniques in vlsi circuits.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
2(4):446–455, Dec 1994.

[29] A. Ng. CS229 lecture notes. http://cs229.stanford.edu/notes/cs229-
notes1.pdf, 2012.

[30] Odroid. Odroid-XUE. http://www.hardkernel.com/main/main.php.
[31] J. Pallister, S. Kerrison, J. Morse, and K. Eder. Data dependent energy

modelling: A worst case perspective. CoRR, abs/1505.03374, 2015.
[32] S. Pasricha, M. Luthra, S. Mohapatra, N. Dutt, and N. Venkatasubra-

manian. Dynamic backlight adaptation for low-power handheld devices.
IEEE Design Test of Computers, 21(5):398–405, 2004.

[33] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside
my app?: Fine grained energy accounting on smartphones with eprof.
In Proceedings of the 7th ACM European Conference on Computer
Systems, EuroSys ’12, pages 29–42, New York, NY, USA, 2012. ACM.

[34] G. Pinto, F. Castor, and Y. D. Liu. Mining questions about software
energy consumption. In Proceedings of the 11th Working Conference
on Mining Software Repositories, MSR 2014, pages 22–31, New York,
NY, USA, 2014. ACM.

[35] C. Poellabauer and K. Schwan. Energy-aware traffic shaping for wireless
real-time applications. In Real-Time and Embedded Technology and
Applications Symposium, 2004. Proceedings. RTAS 2004. 10th IEEE,
pages 48–55, May 2004.

[36] G. Qu, N. Kawabe, K. Usarni, and M. Potkonjak. Function-level power
estimation methodology for microprocessors. In Design Automation
Conference, 2000. Proceedings 2000, pages 810–813, 2000.

[37] A. Shye, B. Scholbrock, and G. Memik. Into the wild: Studying real user
activity patterns to guide power optimizations for mobile architectures.
In Proceedings of the 42Nd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 42, pages 168–178, New York, NY, USA,
2009. ACM.

[38] Soot. A framework for analyzing and transforming Java and Android
Applications. http://sable.github.io/soot/.

[39] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins. Turducken:
Hierarchical power management for mobile devices. In Proceedings of
the 3rd International Conference on Mobile Systems, Applications, and
Services, MobiSys ’05, pages 261–274, New York, NY, USA, 2005.
ACM.

[40] STACKOVERFLOW. http://stackoverflow.com.
[41] T. Tan, A. Raghunathan, G. Lakshminarayana, and N. Jha. High-level

software energy macro-modeling. In Design Automation Conference,
2001. Proceedings, pages 605–610, 2001.

[42] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded
software: a first step towards software power minimization. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 2(4):437–445,
Dec 1994.

[43] P. G. M. M. Vetro’ A., Ardito L. Definition, implementation and valida-
tion of energy code smells: an exploratory study on an embedded system.
In ENERGY 2013 : The Third International Conference on Smart Grids,
Green Communications and IT Energy-aware Technologies, pages 34–
39, March 2013.

[44] T. Šimunić, L. Benini, G. De Micheli, and M. Hans. Source code opti-
mization and profiling of energy consumption in embedded systems. In
Proceedings of the 13th International Symposium on System Synthesis,

ISSS ’00, pages 193–198, Washington, DC, USA, 2000. IEEE Computer
Society.

[45] C. Wang, F. Yan, Y. Guo, and X. Chen. Power estimation for mobile
applications with profile-driven battery traces. In Proceedings of the
2013 International Symposium on Low Power Electronics and Design,
ISLPED ’13, pages 120–125, Piscataway, NJ, USA, 2013. IEEE Press.

[46] L. Zhang, B. Tiwana, R. Dick, Z. Qian, Z. Mao, Z. Wang, and
L. Yang. Accurate online power estimation and automatic battery
behavior based power model generation for smartphones. In Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), 2010
IEEE/ACM/IFIP International Conference on, pages 105–114, Oct 2010.

